| Text and class
 material | 
                             1. Computational topology, Herbert Edelsbrunner and John L. Harer, AMS 
2. Curve and surface reconstruction: Algorithms with mathematical analysis, Tamal K. Dey, Cambridge U. Press 
3. Elements of Algebraic Topology, James R. Munkres, Addison-Wesley 
4. Algebraic Topology, Allen Hatcher, Cambridge U. Press 
5. Class materials and notes posted on this web-site 
                           | 
                            
                             
                             
                            Topics  
                           
                  1. Basics Topology   
                           | 
                             These
notes are much shortened versions of some chapters from an upcoming
book ``Computational Topology for Data Analysis" by myself and Y. Wang (UC SanDiego) to be published by Cambridge U. Press 
               
Go here for the FRREE ELECTRONIC copy of the entire book. 
              
                           | 
                            
                             
                            a. Topological spaces, metric space topology [Notes] 
                           | 
                            
                             
                            b. Maps: homeomorphisms, homotopy equivalence, isotopy [Notes] 
                           | 
                            
                             
                            c. Manifolds [Notes] 
[ClassScribble1] [ClassScribble2] [ClassScribble3] 
 
                           | 
                            
                             
                             
                             
                             
                        
            
                          2. Complexes on data 
                           | 
                          a. Simplicial complexes [Munkres][Notes] 
         b. Chech complexes, Vietoris-Rips complexes [Notes] 
c. Witness complexes [deSilva-Carlsson04 paper][Notes] 
d. Graph induced complexes  [DeyFanWang13 paper][Notes] 
[ClassScribble] 
                           
                           | 
                        
                        
                          3. Homology 
                           | 
                          a. Chains, boundaries, homology groups, betti numbers [Notes, Munkres book] 
                  c. Induced maps among homology groups [Notes, Munkres book] 
                  d. Singular homology groups [Notes, Munkres book] 
f. Cohomology groups [Notes, Hatcher book] 
[ClassScribble] 
 
                           | 
                        
                        
                          4. Topological persistence 
                           | 
                          a. Filtrations, Persistent homology [Notes] 
b. Persistence diagram [Notes]  Cohen-SteinerEdelsbrunnerHarer07 paper proves the stabilty of persistence 
c. Persistence algorithm [Notes] [C-VII Edelsbrunner-Harer book, EdelsbrunneLetscherZomorodian02 paper introduced topological persistence, ZomorodianCarlsson04 paper brings algebra into persistence] 
[ClassScribble1] [ClassScribble2] 
               
                           | 
                        
                        
                          5. General Persistence (Zigzag) 
                           | 
                          a. Towers, Persistence modules from simplicial maps[Notes] 
b. Algorithm for towers [Notes] [DeyFanWang13SM paper on Annotations] 
c. Zigzag persistence and algorithms [Notes] [CarlssonSilvaMorozov09 paper on zigzag persistenc][DeyHou latest algo(2022)] 
d. Level Set persistence [Notes] 
e. Extended persistence [Notes, see the book] 
[ClassScribble1][ClassScribble2] 
 
                           | 
                        
                        
                       6. Generators and Otimality 
                        | 
                       a. Computing optimal cycle basis [Notes] [EricksonWhittlesey05 paper on greedy basis construction and 
              b. Presentation slides, DeySunWang09 paper on shortest basis from point data] 
c. Optimizing within a class [Notes][Presentation slides, DeyHiraniKrishnamoorthy10 paper on LP algorithm for shortest homologous cycle] 
d. Computing optimal persistent cycles [Notes] [DeyHouMandal 2020 SODA paper] 
 
 | 
                     
                     
                          7. Topology inference from point cloud data 
                           | 
                          a. Computing homology from data [Notes, ChazalOudot08 paper on homology inference, CCGGO09 paper on interleaving of persistence modules] 
  b. Sparsification to handle big data [Notes] [Presentation slides],  [Sheehy12 paper on sparsified Rips complex, DeyFanWang13 paper on subsampling] 
c. Homology inference [Notes] 
d. Persistence diagram approximation from scalar data[Notes] 
               
 | 
                        
              8. Persistence on graphs and Reeb graphs 
               
               
               | 
              a. Reeb graphs [Notes] 
b. Interleaving distance [Notes] 
c. Comparing graphs with persistence summary [Notes]
               | 
            
            
              | 9. Discrete Morse Theory and Persistence
               | 
              a. Discrete Morse [Notes] 
b. Discrete Morse Vector Field (DMVF) [Notes] 
c. Persistence Based DMVF [Notes] 
d. Application to graph reconstruction [Notes] 
 
               | 
            
            
              10. Nerves, Mapper, Multiscale Mapper 
               | 
              a. Nerves [Notes] 
b. Mapper [Notes] 
c. Multiscale mapper [Notes] 
               
               | 
            
              11. Multiparameter persistence module decomposition 
               | 
              a. Multiparameter persistence [Notes] 
b. Computing indecomposables [Notes] 
c. Invariants [Notes] 
 
               | 
            
              12. Multiparameter persistence and distances 
               | 
              a. Multiparameter persistence module from categorial viewpoint [Notes] 
b. Computing matching distance [Notes] 
c. Computing interleaving distance [Notes] 
               |