
Computational Topology for Data Analysis: Notes
from Book by

Tamal Krishna Dey
Department of Computer Science

Purdue University
West Lafayette, Indiana, USA 46907

Yusu Wang
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, California, USA 92093

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 1

Topic 8: Optimal generators

So far we have focused mainly on the rank of the homology groups. However, the homology
generators, that is, the cycles whose classes constitute the elements of the homology groups carry
information about the space. Computing just some generating cycles typically can be done by
the standard algorithms for computing homology groups such as the persistence algorithms. In
practice, however, we may sometimes be interested in generating cycles that have some optimal
property. In particular, if the space has a metric associated with it, one may associate a measure
with the cycles that can differentiate them in terms of their ‘size’. For example, if K is a simpli-
cial complex embedded in Rd, the measure of a 1-cycle can be its length. Then, we can ask to
compute a set of 1-cycles whose classes generate H1(K) and has minimum total length among all
such sets of cycles. Typically, the locality of these cycles capture interesting geometric features
of the space |K|; see Figure 8.1 for an example. It turns out that, for p > 1, computing an optimal
homology generators for p-dimensional homology group Hp is NP-hard [8]. However, the prob-
lem is polynomial time solvable for p = 1 [15]. A greedy algorithm which was originally devised
for computing an optimal H1-generator for surfaces [16] extends to general simplicial complexes
as described in Section 8.1.

There is another version of optimality, namely the localization of homology classes. In this
problem, given a p-cycle c, we want to compute an optimal p-cycle c∗ in the same homology
class of c, that is, [c] = [c∗]. This problem is NP-hard even for p = 1 [5]. Interestingly, there are
some special cases for which an integer program formulated for the problem can be solved with
a linear program [10]. This is the topic of Section 8.2.

The two versions mentioned above do not consider persistence framework. We may ask what
are the optimal cycles for persistent homology classes. Toward formulating the problem precisely,
we define a persistent cycle for a given bar in the barcode of a filtration. This is a cycle whose
class is created at the birth point and becomes a boundary at the death point of the bar. Among all
persistent cycles for a given bar, we want to compute an optimal one. The problem in general is
NP-hard, but one can devise polynomial time algorithms for some special cases such as filtrations
of what we call weak pseudo-manifolds [12, 13]. Section 8.3 describes these algorithms.

Figure 8.1: Double torus has one-dimensional homology group of rank four meaning that classes
of four representative cycles generating H1; (left) A non-optimal generator, (right) optimal gener-
ator.

2 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

8.1 Optimal generators/basis

We now formalize the definition for optimal cycles whose classes generate the homology group.
Strictly speaking these cycles should not be called generator because it is their classes which
generate the group. We take the liberty to call the cycles themselves as the generators.

Definition 1 (Weight of cycles). Let w : Kp → R≥0 be a non-negative weight function defined on
the set of p-simplices in a simplical complex K. We extend w to the cycle space Zp by defining
w(c) =

∑
i αiw(σi) where c =

∑
i αiσi for αi ∈ Z2. For a set of cycles C = {c1, . . . , cg | ci ∈ Zp(K)}

define its weight w(C) =
∑g

i=1 w(ci).

Definition 2 (Optimal generator). A set of cycles C = {c1, c2, . . . , cg | ci ∈ Zp(K)} is a Hp(K)-
generator if the classes {[ci] | i = 1, . . . , g} generate Hp(K). A Hp(K)-generator is optimal if there
is no other generator C′ with w(C′) < w(C).

Observe that, an optimal generator may not have minimal number of cycles whose classes
generate the homology group because we allow zero weights and hence an optimal generator may
contain extra cycles with zero weights. This prompts us to define the following.

Definition 3 (Optimal basis). A Hp(K)-generator C = {c1, c2, . . . , cg | ci ∈ Zp(K)} is a Hp(K)-
cycle basis if g = dim Hp(K). The classes of cycles in such a cycle basis constitute a basis for
Hp(K). An optimal Hp(K)-generator that is also a cycle basis is called an optimal Hp(K)-cycle
basis or Hp(K)-basis in short.

We observe that optimal Hp(K)-generators with positively weighted cycles are necessarily
cycle bases. Notice that to generate Hp(K), the number of cycles in any Hp(K)-generator has to
be at least βp(K) = dim Hp(K). On the other hand, an optimal Hp(K)-generator with positively
weighted cycles cannot have more than βp cycles because such a generator must contain a cycle
whose class is a linear combination of the classes of other cycles in the generator. Thus, omission
of this cycle still generates Hp(K) while decreasing the weight of the generator. For 1-dimension,
similar reasoning can also be applied to conclude that each cycle in a H1(K)-cycle basis necessar-
ily contains a simple cycle which together form a cycle basis (Exercise 1). A 1-cycle is simple if
it has a single connected component (seen as a graph) and every vertex has exactly two incident
edges.

Fact 1.

(i) An optimal Hp(K)-generator with positively weighted cycles is an optimal Hp(K)-basis.

(ii) Every cycle ci in a H1(K)-basis has a simple cycle c′i ⊆ ci so that {c′i}i form a H1(K)-basis.

We now focus on computing an optimal Hp(K)-basis also known as the optimal homology
basis problem or OHBP in short. One may observe that Definition 3 formulates OHBP as a
weighted `1-optimization of representatives of bases. This is very general and allows for different
types of optimality to be achieved by choosing different weights. For example, assume that the
simplicial complex K of dimension p or greater is embedded in Rd, where d ≥ p + 1. Let
the Euclidean p-dimensional volume of p-simplices be their weights. This specializes OHBP
to the Euclidean `1-optimization problem. The resulting optimal Hp(K)-basis has the smallest
p-dimensional volume amongst all such bases. If the weights are taken to be unit, the resulting
optimal solution has the smallest number of p-simplices amongst all Hp(K)-bases.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 3

8.1.1 Greedy algorithm for optimal Hp(K)-basis

Consider the following greedy algorithm in which we first sort the input cycles in nondecreasing
order of their weights, and then choose a cycle following this order if its class is independent of
the classes of the cycles chosen before.

Algorithm 1 GreedyBasis(C)

Input:
A set of p-cycles C in a complex

Output:
A maximal set of cycles from C whose classes are independent and total weight is minimum

1: Sort the cycles from C in non-decreasing order of their weights; that is, C = {c1, . . . , cn}

implies w(ci) ≤ w(c j) for i ≤ j
2: Let B := {c1}

3: for i = 2 to n do
4: if [ci] is independent wrt B then
5: B := B ∪ {ci}

6: end if
7: end for
8: if [c1] is trivial (boundary), output B \ {c1} else output B

The greedy algorithm Algorithm 1:GreedyBasis is motivated by Proposition 1. The specific
implementation of line 4 (on independence test) will be given in Section 8.1.2.

Proposition 1. Suppose that C, the input to the algorithm GreedyBasis, contains an optimal
Hp(K)-basis. Then, the output of GreedyBasis is an optimal Hp(K)-basis.

The above proposition suggests that GreedyBasis can compute an optimal cycle basis if its
input set C contains one. We show next that such an input (i.e., a set of 1-cycles containing an
optimal H1(K)-basis) can be computed for H1(K) in O(n2 log n) time where the 2-skeleton of K
has n simplices.

Specifically, given a simplicial complex K, notice that H1(K) is completely determined by
the 2-skeleton of K and hence without loss of generality we can assume K to be a 2-complex.
Algorithm 2:Generator computes a set C of 1-cycles from such a complex which includes an
optimal basis.

Proposition 2. Generator(K) computes a H1(K)-generator C with their weights in O(n2 log n)
time for a 2-complex K with n vertices and edges. Furthermore, the set C contains an optimal
basis where |C| = O(n2).

To see that Generator takes time as claimed, observe that each shortest path tree computation
takes O(n log n) time by Dijkstra’s algorithm implemented with Fibonacci heap [9]. Summing
over O(n) vertices, this gives O(n2 log n) time. Each of the O(n) edges in E \ Tv for every vertex
v gives O(n) cycles in the output accounting for O(n2) cycles in total giving |C| = O(n2). One
can save space by representing each such cycle with the the edge E \ Tv while keeping Tv for all
of them without duplicates. Also, observe that the weight of each cycle w(ce) can be computed

4 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Algorithm 2 Generator(K)

Input:
A 2-complex K

Output:
A set of 1-cycles containing an optimal H1(K)-cycle basis

1: Let K1 be the 1-skeleton of K with vertex set V and edge set E
2: C := {∅}
3: for all v ∈ V do
4: compute a shortest path tree Tv rooted at v in K1 = (V, E)
5: for all e = (u,w) ∈ E \ Tv do
6: Compute cycle ce = πu,w ∪ {e} where πu,w is the unique path connecting u and w in Tv

7: C := C ∪ {ce}

8: end for
9: end for

10: Output C

as a by-product of the Dijkstra’s algorithm because it computes the weights of the shortest paths
from the root to any of the vertices. Therefore, in O(n2 log n) time, Generator can output a
H1(K)-generator with their weights.

8.1.2 Optimal H1(K)-basis and independence check

To compute an optimal H1(K)-basis, we first run Generator on K and then feed the output to
GreedyBasis as presented in Algorithm 3:OptGen which outputs an optimal H1-cycle basis due
to Propositions 2.

Algorithm 3 OptGen(K)

Input:
A 2-complex K

Output:
An optimal H1(K)-cycle basis

1: C:= Generator(K)
2: Output C∗:=GreedyBasis(C)

However, we need to specify how to check the independence of the cycle classes in step 4
of GreedyBasis. We do this by using annotations described in previous topic. Recall that a(·)
denotes the annotation of its argument which is a binary vector. Algorithm 4:AnnotEdge is a
version of the annotation algorithm adapted to edges only.

Assume that each cycle ce ∈ C output by Generator is represented by e and implicitly by
the path πu,w in Tv. Assume that an annotation of edges has already been computed. This can be
done by the algorithm AnnotEdge. A straightforward analysis shows that AnnotEdge takes O(n3)
time where n is the total number of vertices, edges, and triangles in K. However, for achieving

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 5

Algorithm 4 AnnotEdge(K)

Input:
A simplicial 2-complex K

Output:
Annotations for edges in K

1: Let K1 be the 1-skeleton of K with edge set E
2: Compute a spanning tree T of K1; m = |E| − |T |
3: For every edge e ∈ E ∩ T , assign an m-vector a(e) where a(e) = 0
4: Index remaining edges in E \ T as e1, . . . , em

5: For every edge ei, assign a(ei)[j] = 1 iff j = i
6: for all triangle t ∈ K do
7: if a(∂t) , 0 then
8: pick any non-zero entry bu in a(∂t)
9: add a(∂t) to every edge e s.t. a(e)[u] = 1

10: delete uth entry from annotation of every edge
11: end if
12: end for

better time complexity, we can use the earliest basis algorithm described in [4] which runs in time
O(nω).

Once the annotations for edges are computed, we need to compute the annotations for the set
C of cycles computed by Generator to check independence among them in GreedyBasis. We
first describe how do we compute the annotations for a cycle in C. We compute an auxiliary
annotation of the vertices in Tv from the annotations of its edges to facilitate computing a(ce)
for cycles ce ∈ C. Traverse the tree Tv top-down and compute the auxiliary annotation a(x) of a
vertex x in Tv as a(x) = a(y) + a(exy) where y is the parent of x and exy is the edge connecting
x and y. The process is initiated by assigning a(v) for the root v to be the zero vector. It should
be immediately clear that all auxiliary annotations of the vertices can be computed in O(gn) time
where g, the length of the annotation vectors, equals β1(K). The annotation of each cycle ce ∈ C

can be computed as a(ce) = a(u) + a(w) + a(e) where e = (u,w). Again, this takes O(g) time per
edge e and hence per cycle ce ∈ C giving a time complexity of O(gn2) in total for the entire set C.

Next, we describe an efficient way of determining the independence of cycles as needed in
step 4 of GreedyBasis. Independence of the class [ce] with respect to all classes already chosen
by GreedyBasis is done in a batch mode. One can do it edge by edge incurring more cost. We use
a divide-and-conquer strategy instead.

Let ce1 , ce2 , . . . , cek be the sorted order of cycles in C computed by Generator. We construct a
matrix A whose ith column is the vector a(cei), and compute the first g columns that are indepen-
dent called the earliest basis of A. Since there are k cycles in C, the matrix A is g × k. We use the
following iterative method, based on making blocks, to compute the set J of indices of columns
that define the earliest basis. We partition A from left to right into submatrices A = [A1|A2| · · ·],
where each submatrix Ai contains g columns, with the possible exception of the last submatrix,
which contains at most g columns. Initially, we set J to be the empty set. We then iterate over the
submatrices Ai by increasing index, that is, as they are ordered from left to right. At each iteration

6 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Figure 8.2: (left) A non-trivial cycle in a double torus, (right) optimal cycle in the class of the
cycle on left.

we compute the earliest basis for the matrix [AJ |Ai], where AJ is the submatrix whose column
indices are in J. We then set J to be the indices from the resulting earliest basis, increase i, and go
to the next iteration. At each iteration we need to compute the the earliest basis in a matrix with
g rows and at most |J| + g ≤ 2g columns. Thus, each iteration takes O(gω) time, and there are at
most O(k/g) = O(n2/g) iterations. Summing over all iterations, this gives a time complexity of
O(n2gω−1).

Theorem 3. Given a simplicial 2-complex K with n simplices, an optimal H1(K)-basis can be
computed in O(nω + n2gω−1) time.

Proof. A H1-generator containing an optimal (cycle) basis can be computed in O(n2 log n) time
due to Proposition 2. One can compute an optimal H1-basis from C by GreedyBasis due to Propo-
sition 1. However, instead of using GreedyBasis, we can apply the divide-and-conquer technique
outlined above for computing the cycles output by GreedyBasis which takes O(nω+n2gω−1) time.
Retaining only the dominating terms, we obtain the claimed complexity for the entire algorithm. �

8.2 Localization

In this section we consider a different optimization problem. Here we are given a p-cycle c in an
input complex with non-negative weights on p-simplices and our goal is to compute a cycle c∗

that is of optimal (minimal) weight in the homology class [c], see Figure 8.2. We will extend this
localization problem from cycles to chains. For this, first we extend the concept of homologous
cycles to chains straightforwardly. Two p-chains c, c′ ∈ Cp are called homologous if and only if
they differ by a boundary, that is, c ∈ c′ + Bp. We ask for computing a chain of minimal weight
which is homologous to a given chain.

Definition 4. Let w : K(p) → R≥0 be a non-negative weight function defined on the set of p-
simplices in a simplicial complex K. We extend w to the chain space Cp by defining w(c) =∑

i ciw(σi) where c =
∑

i ciσi.

Definition 5. Given a non-negative weight function w : K(p) → R≥0 defined on the set of p-
simplices in a simplicial complex K and a p-chain c in Cp(K), the optimal homologous chain
problem (OHCP) is to find a chain c∗ which has the minimal weight w(c∗) among all chains
homologous to c.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 7

If we use Z2 as the coefficient ring for defining homology classes, the OHCP becomes NP-
hard. We are going to show that it becomes polynomial time solvable if (i) the coefficient ring is
chosen to be integers Z and (ii) the complex K is such that Hp(K) does not have a torsion which
may be introduced because of using Z as the coefficient ring.

We will formulate OHCP as an integer program which requires the chains to be represented
as an integer vector. Given a p-chain x =

∑m−1
i=0 xi σi with integer coefficients xi, we use x ∈ Zm

to denote the vector formed by the coefficients xi. Thus, x is the representation of the chain x in
the elementary p-chain basis, and we will use x and x interchangeably.

The main idea is to cast OHCP as an integer program. Unfortunately, integer programs are
in general NP-hard and thus cannot be solved in polynomial time unless P=NP. We solve it by a
linear program and identify a class of integer programs called totally unimodular for which linear
programs give exact solution. Then, we interpret total unimodularity in terms of topology. Our
approach to solve OHCP can be succinctly stated by following steps.

• write OHCP as an integer program involving 1-norm minimization, subject to linear con-
straints;

• convert the integer program into an integer linear program by converting the 1-norm cost
function to a linear one using the standard technique of introducing some extra variables
and constraints;

• find the conditions under which the constraint matrix of the integer linear program is totally
unimodular; and

• for this class of problems, relax the integer linear program to a linear program by dropping
the constraint that the variables be integral. The resulting optimal chain obtained by solving
the linear program will be an integer valued chain homologous to the given chain.

8.2.1 Linear program

Now we formally pose OHCP as an optimization problem. After showing existence of solutions
we reformulate the optimization problem as an integer linear program and eventually as a linear
program.

Assume that the number of p- and (p + 1)-simplices in K is m and n respectively, and let W
be a diagonal m × m matrix. Let Dp represent the boundary matrix of the boundary operator ∂p :
Cp → Cp−1 in the elementary chain bases. With these notations, given a p-chain c represented
with an integral vector, the optimal homologous chain problem in dimension p is to solve:

min
x, y
‖W x‖1 such that x = c + Dp+1 y, and x ∈ Zm, y ∈ Zn . (8.1)

We assume that W is a diagonal matrix obtained from non-negative weights on simplices as
follows. Let w be a non-negative real-valued weight function on the oriented p-simplices of K
and let W be the corresponding diagonal matrix (the i-th diagonal entry of W is w(σi) = wi).

The resulting objective function ‖W x‖1 =
∑

i wi |xi| in (8.1) is not linear in xi because it uses
the absolute value of xi. However, it is piecewise-linear in these variables. As a result, Eqn (8.1)

8 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

can be reformulated as an integer linear program in the following way [1, page 18] which splits
every variable xi into two parts x+

i and x−i :

min
∑

i

wi (x+
i + x−i)

subject to x+ − x− = c + Dp+1 y (8.2)

x+, x− ≥ 0
x+, x− ∈ Zm, y ∈ Zn .

Comparing the above formulation to the standard form integer linear program in Eqn (8.5), note
that the vector x in Eqn (8.5) corresponds to [x+, x−, y]T in Eqn (8.2) above. Thus the minimiza-
tion is over x+, x− and y, and the coefficients of x+

i and x−i in the objective function are |wi|, but the
coefficients corresponding to y j are zero. The linear programming relaxation of this formulation
just removes the constraints about the variables being integral. The resulting linear program is:

min
∑

i

wi (x+
i + x−i)

subject to x+ − x− = c + Dp+1 y (8.3)

x+, x− ≥ 0 .

To cast the program in standard form [1], we can eliminate the free (unrestricted in sign)
variables y by replacing these by y+ − y− and imposing the non-negativity constraints on the
new variables. The resulting linear program has the same objective function, and the equality
constraints:

min
∑

i

wi (x+
i + x−i)

subject to x+ − x− = c + Dp+1 (y+ − y−)

x+, x−, y+, y− ≥ 0 .

We can write the above program as

min fT z subject to Az = c, z ≥ 0 (8.4)

where f = [w, 0]T , z = [x+, x−, y+, y−]T , and the equality constraint matrix is A =
[
I −I −B B

]
,

where B = Dp+1. This is exactly in the form we want the linear program to be in view of
Eqn. (8.5). We now state a result about the total unimodularity of this matrix that allows us to
solve the optimization by a linear program.

8.2.2 Total unimodularity

A matrix is called totally unimodular if the determinant of each square submatrix is 0, 1, or −1.
The significance of total unimodularity in our setting is due to the following Theorem 4 which
follows immediately from known results in optimization [18].

Consider an integral vector b ∈ Zm and a real vector f ∈ Rn. Consider the integer linear
program

min fT x subject to Ax = b, x ≥ 0 and x ∈ Zn . (8.5)

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 9

Theorem 4. Let A be a m × n totally unimodular matrix. Then the integer linear program (8.5)
can be solved in time polynomial in the dimensions of A.

Proposition 5. If B = Dp+1 is totally unimodular then so is the matrix
[
I −I −B B

]
.

As a result of Theorem 4 and Proposition 5, we have the following algorithmic result.

Theorem 6. If the boundary matrix Dp+1 of a finite simplicial complex of dimension greater than
p is totally unimodular, the optimal homologous chain problem (8.1) for p-chains can be solved
in polynomial time.

Manifolds. Our results in the next section (Section 8.2.3) are valid for any finite simplicial
complex. But first we consider a simpler case – simplicial complexes that are triangulations of
manifolds. We show that for finite triangulations of compact p-dimensional orientable manifolds,
the top non-trivial boundary matrix Dp is totally unimodular irrespective of the orientations of its
simplices. There are examples of non-orientable manifolds where total unimodularity does not
hold (Exercise 3). Further examination of why total unimodularity does not hold in these cases
leads to the results in Theorems 9.

Let K be a finite simplicial complex that triangulates a (p+1)-dimensional compact orientable
manifold M.

Theorem 7. For a finite simplicial complex triangulating a (p + 1)-dimensional compact ori-
entable manifold, Dp+1 is totally unimodular irrespective of the orientations of the simplices.

As a result of the above theorem and Theorem 6 we have the following result.

Corollary 8. For a finite simplicial complex triangulating a (p + 1)-dimensional compact ori-
entable manifold, the optimal homologous chain problem can be solved for p-dimensional chains
in polynomial time.

8.2.3 Relative torsion

Now we consider the more general case of simplicial complexes. We characterize the total uni-
modularity of boundary matrices for arbitrary simplicial complexes. This characterization leads
to a torsion-related condition for the complexes. Since we do not use any conditions about the
geometric realization or embedding in Rp for the complex, the result is also valid for abstract sim-
plicial complexes. As a corollary of the characterization we show that the OHCP can be solved
in polynomial time as long as the input complex satisfies the torsion-related condition.

TU and relative torsion

Definition 6. A pure simplicial complex of dimension p is a simplicial complex formed by a
collection of p-simplices and their faces. Similarly, a pure subcomplex is a subcomplex that is a
pure simplicial complex.

An example of a pure simplicial complex of dimension p is one that triangulates a p-dimensional
manifold. Another example, relevant to our discussion, is a subcomplex formed by a collection
of some p-simplices of a simplicial complex and their faces.

10 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Let K be a finite simplicial complex of dimension greater than p. Let L ⊆ K be a pure
subcomplex of dimension p + 1 and L0 ⊂ L be a pure subcomplex of dimension p. We use the
definition of relative boundary operator in the book used for defining relative homology. Then,
the matrix DL,L0

p+1 representing the relative boundary operator

∂L,L0
p+1 : Cp+1(L, L0)→ Cp(L, L0) ,

is obtained by first including the columns of Dp+1 corresponding to (p + 1)-simplices in L and
then, from the submatrix so obtained, excluding the rows corresponding to the p-simplices in L0
and any zero rows. The zero rows correspond to p-simplices that are not faces of any of the
(p + 1)-simplices of L. Then the following holds.

Theorem 9. Dp+1 is totally unimodular if and only if Hp(L, L0) is torsion-free, for all pure sub-
complexes L0, L of K of dimensions p and p + 1 respectively, where L0 ⊂ L.

Corollary 10. For a simplicial complex K of dimension greater than p, there is a polynomial time
algorithm for answering the following question: Is Hp(L, L0) torsion-free for all subcomplexes L0
and L of dimensions p and (p + 1) such that L0 ⊂ L?

A special case. In Section 8.2.2 we have seen the special case of compact orientable manifolds.
We saw that the top dimensional boundary matrix of a finite triangulation of such a manifold is
totally unimodular. Now we show another special case for which the boundary matrix is totally
unimodular and hence OHCP is polynomial time solvable. This case occurs when we ask for
optimal p-chains in a simplicial complex K which is embedded in Rp+1. In particular, OHCP can
be solved by linear programming for 2-chains in 3-complexes embedded in R3. This follows from
the following result:

Theorem 11. Let K be a finite simplicial complex embedded in Rp+1. Then, Hp(L, L0) is torsion-
free for all pure subcomplexes L0 and L of dimensions p and p + 1 respectively, such that L0 ⊂ L.

Corollary 12. Given a p-chain c in a weighted finite simplicial complex embedded in Rp+1, an
optimal chain homologous to c can be computed by a linear program.

8.3 Persistent cycles

So far, we have considered optimal cycles in a given complex. Now, we consider optimal cycles
in the context of a filtration. We know that a filtration of a complex gives rise to persistence
of homology classes. An interval module which appears as a bar in the barcode are created by
homology classes that get born and die at the endpoints. However, the bar is not associated with
the class of a particular cycle because more than one cycle may get born and die at the endpoints.
Among all these cycles, we want to identify the cycle that is optimal with respect to a weight
assignment as defined earlier. Note that, as indicated earlier, an interval [b, d − 1] in the interval
decomposition of a persistence module Hp(F) arising from a simplicial filtration F corresponds
to a closed-open interval [b, d) contributing a point (b, d) in the persistence diagram Dgmp(F).
We also say that the interval [b, d) belongs to Dgmp(F).

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 11

Definition 7 (persistent cycle). Given a filtration F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, and a
finite interval [b, d) ∈ Dgmp(F), we say a cycle c is a persistent cycle for [b, d) if c is born at Kb

and becomes a boundary in Kd. For an infinite interval [b,∞) ∈ Dgmp(F), we say a cycle c is a
persistent cycle for [b,∞) if c is born at Kb.

Depending on whether the interval is finite or not, we have two cases captured in the following
definitions. Let the cycles be weighted with a weight function w : K(p)→ R≥0 defined on the set
of p-simplices in a simplicial complex K as before.

Problem 1 (PCYC-FINp). Given a finite filtration F and a finite interval [b, d) ∈ Dgmp(F), this
problem asks for computing a persitent p-cycle for the bar [b, d).

Problem 2 (PCYC-INFp). Given a finite filtration F and an infinite interval [b,∞) ∈ Dgmp(F),
this problem asks for computing a persistent p-cycle with the minimal weight for the bar [b,∞).

When p ≥ 2, computing minimal persistent p-cycles for both finite and infinite intervals is
NP-hard in general. We identify a special but important class of simplicial complexes, which we
term as weak (p + 1)-pseudomanifolds, whose minimal persistent p-cycles can be computed in
polynomial time. A weak (p + 1)-pseudomanifold is a generalization of a (p + 1)-manifold and is
defined as follows:

Definition 8 (Weak pseudomanifold). A simplicial complex K is a weak (p + 1)-pseudomanifold
if each p-simplex is a face of no more than two (p + 1)-simplices in K.

Specifically, it turns out that if the given complex is a weak (p + 1)-pseudomanifold, the
problem of computing minimal persistent p-cycles for finite intervals can be cast into a mini-
mal cut problem (see Section 8.3.1) due to the fact that persistent cycles of such kind are null-
homologous in the complex. However, when p ≥ 2 and intervals are infinite, the computation
of the same becomes NP-hard. Nonetheless, for infinite intervals, if we assume that the weak
(p + 1)-pseudomanifold is embedded in Rp+1, then the minimal persistent p-cycle problem re-
duces to a minimal cut problem (see Section 8.3.3) and hence belongs to P. Note that a simplicial
complex that can be embedded in Rp+1 is necessarily a weak (p + 1)-pseudomanifold. We also
note that while there is an algorithm [8] in the non-persistence setting which computes a minimal
p-cycle by minimal cuts (the non-persistence algorithm assumes the (p + 1)-complex to be em-
bedded in Rp+1), the algorithm for finite intervals presented here, to the contrary, does not need
the embedding assumption.

Before we present the algorithms for cases where they run in polynomial time, we summarize
the complexity results for different cases. In order to make our statements about the hardness
results precise, we let WPCYC-FINp denote a subproblem1 of PCYC-FINp and let WPCYC-
INFp, WEPCYC-INFp denote two subproblems of PCYC-INFp, with the subproblems requiring
additional constraints on the given simplicial complex. Table 8.1 lists the hardness results for
all problems of interest, where the column “Restriction on K” specifies the additional constraints
subproblems require on the given simplicial complex K. Note that WPCYC-INFp being NP-hard
trivially implies that PCYC-INFp is NP-hard.

1For two problems P1 and P2, P2 is a subproblem of P1 if any instance of P2 is an instance of P1 and P2 asks for
computing the same solutions as P1.

12 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Table 8.1: Hardness results for minimal persistent cycle problems.
Problem Restriction on K p Hardness
PCYC-FINp − ≥ 1 NP-hard
WPCYC-FINp K a weak (p + 1)-pseudomanifold ≥ 1 Polynomial
PCYC-INFp − = 1 Polynomial
WPCYC-INFp K a weak (p + 1)-pseudomanifold ≥ 2 NP-hard
WEPCYC-INFp K a weak (p + 1)-pseudomanifold in Rp+1 ≥ 2 Polynomial

The polynomial time algorithms for the cases listed in the table above map the problem of
computing optimal persistent cycles into the classic problem of computing minimal cuts in a flow
network.

Undirected flow network. An undirected flow network (G, s1, s2) consists of an undirected
graph G with vertex set V(G) and edge set E(G), a capacity function C : E(G) → [0,+∞], and
two non-empty disjoint subsets s1 and s2 of V(G). Vertices in s1 are referred to as sources and
vertices in s2 are referred to as sinks. A cut (S ,T) of (G, s1, s2) consists of two disjoint subsets S
and T of V(G) such that S ∪ T = V(G), s1 ⊆ S , and s2 ⊆ T . We define the set of edges across the
cut (S ,T) as

E(S ,T) = {e ∈ E(G) | e connects a vertex in S and a vertex in T }

The capacity of a cut (S ,T) is defined as C(S ,T) =
∑

e∈E(S ,T) C(e). A minimal cut of (G, s1, s2) is
a cut with the minimal capacity. Note that we allow parallel edges in G (see Figure 8.4) to ease
the presentation. These parallel edges can be merged into one edge during computation.

8.3.1 Finite intervals for weak (p + 1)-pseudomanifolds

In this subsection, we present an algorithm which computes minimal persistent p-cycles for finite
intervals given a filtration of a weak (p + 1)-pseudomanifold when p ≥ 1. The general approach
proceeds as follows: Suppose that the input weak (p + 1)-pseudomanifold is K which is associated
with a simplex-wise filtration F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn and the task is to compute the minimal
persistent cycle of a finite interval [b, d) ∈ Dgmp(F). Let σF

b and σF
d be the creator and destructor

pair for the interval [b, d). We first construct an undirected dual graph G for K where vertices of
G are dual to (p + 1)-simplices of K and edges of G are dual to p-simplices of K. One dummy
vertex termed as infinite vertex which does not correspond to any (p + 1)-simplices is added to G
for graph edges dual to those boundary p-simplices, i.e, the p-simplices that are faces of at most
one (p + 1)-simplex. We then build an undirected flow network on top of G where the source is
the vertex dual to σF

d and the sink is the infinite vertex along with the set of vertices dual to those
(p + 1)-simplices which are added to F after σF

d . If a p-simplex is σF
b or added to F before σF

b ,
we let the capacity of its dual graph edge be its weight; otherwise, we let the capacity of its dual
graph edge be +∞. Finally, we compute a minimal cut of this flow network and return the p-chain
dual to the edges across the minimal cut as a minimal persistent cycle of the interval.

The intuition of the above algorithm is best explained by an example illustrated in Figure 8.3,
where p = 1. The key to the algorithm is the duality between persistent cycles of the input
interval and cuts of the dual flow network having finite capacity. To see this duality, first consider

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 13

σβ

σδ

(a) (b) (c) (d)

Figure 8.3: An example of the constructions in our algorithm showing the duality between persis-
tent cycles and cuts having finite capacity for p = 1. (a) The input weak 2-pseudomanifold K with
its dual flow network drawn in blue, where the central hollow vertex denotes the dummy vertex,
the red vertex denotes the source, and the orange vertices denote sinks. All graph edges dual to
the outer boundary 1-simplices actually connect to the dummy vertex. (b) The partial complex
Kb in the input filtration F, where the bold green 1-simplex denotes σF

b which creates the green
1-cycle. (c) The partial complex Kd in F, where the 2-simplex σF

d creates the pink 2-chain killing
the green 1-cycle. (d) The green persistent 1-cycle of the interval [b, d) is dual to a cut (S ,T)
having finite capacity, where S contains all the vertices inside the pink 2-chain and T contains all
the other vertices. The red graph edges denote those edges across (S ,T) and their dual 1-chain is
the green persistent 1-cycle.

a persistent p-cycle c of the input interval [b, d). There exists a (p + 1)-chain A in Kd created
by σF

d whose boundary equals c, making c killed. We can let S be the set of graph vertices
dual to the simplices in A and let T be the set of the remaining graph vertices, then (S ,T) is a
cut. Furthermore, (S ,T) must have finite capacity as the edges across it are exactly dual to the
p-simplices in c and the p-simplices in c have indices in F less than or equal to b. On the other
hand, let (S ,T) be a cut with finite capacity, then the (p + 1)-chain whose simplices are dual to
the vertices in S is created by σF

d . Taking the boundary of this (p + 1)-chain, we get a p-cycle c.
Because p-simplices of c are exactly dual to the edges across (S ,T) and each edge across (S ,T)
has finite capacity, c must reside in Kb. We only need to ensure that c contains σF

b in order to
show that c is a persistent cycle of [b, d). In Section 8.3.2, we argue that c indeed contains σF

b , so
c is a persistent cycle.

In the dual graph, an edge is created for each p-simplex. If a p-simplex has two (p + 1)-
cofaces, we simply let its dual graph edge connect the two vertices dual to its two (p + 1)-cofaces;
otherwise, its dual graph edge has to connect to the infinite vertex on one end. A problem about
this construction is that some weak (p + 1)-pseudomanifolds may have p-simplices being face
of no (p + 1)-simplices and these p-simplices may create self loops around the infinite vertex.
To avoid self loops, we simply ignore these p-simplices. The reason why we can ignore these
p-simplices is that they cannot be on the boundary of a (p + 1)-chain and hence cannot be on a
persistent cycle of minimal weight. Algorithmically, we ignore these p-simplices by constructing
the dual graph only from what we call the (p + 1)-connected component of K containing σF

d .

Definition 9 (q-connected). Let K be a simplicial complex. For q ≥ 1, two q-simplices σ and
σ′ of K are q-connected in K if there is a sequence of q-simplices of K, (σ0, . . . , σl), such that
σ0 = σ, σl = σ′, and for all 0 ≤ i < l, σi and σi+1 share a (q − 1)-face. The property of
q-connectedness defines an equivalence relation on q-simplices of K. Each set in the partition

14 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

induced by the equivalence relation constitutes a q-connected component of K. We say K is q-
connected if any two q-simplices of K are q-connected in K. See Figure 8.4 for an example of
1-connected components and 2-connected components.

We present the pseudo-code in Algorithm 5:MinPersCycFin and it works as follows: Line 1
and 2 set up a complex K̃ that the algorithm mainly works on, where K̃ is taken as the closure
of the (p + 1)-connected component of σF

d . Line 3 constructs the dual graph G from K̃ and
line 4−15 builds the flow network on top of G. Note that we denote the infinite vertex by v∞.
Line 16 computes a minimal cut for the flow network and line 17 returns the p-chain dual to
the edges across the minimal cut. In the pseudo-codes, to make presentation of algorithms and
some proofs easier, we treat a mathematical function as a programming object. For example, the
function θ returned by DualGraphFin in MinPersCycFin denotes the correspondence between the
simplices of K̃ and their dual vertices or edges (see Section 8.3.1 for details). In practice, these
constructs can be easily implemented in any programming language.

Algorithm 5 MinPersCycFin(K, p,F, [b, d))

Input:
K: finite p-weighted weak (p + 1)-pseudomanifold
p: integer ≥ 1
F: filtration K0 ⊆ K1 ⊆ . . . ⊆ Kn of K
[b, d): finite interval of Dgmp(F)

Output:
minimal persistent p-cycle of [b, d)

1: Lp+1 ← (p + 1)-connected component of K containing σF
d \∗ set up K̃ ∗\

2: K̃ ← closure of the simplicial set Lp+1

3: (G, θ)← DualGraphFin(K̃, p) \∗ construct dual graph ∗\
4: for all e ∈ E(G) do
5: if index(θ−1(e)) ≤ b then
6: C(e)← w(θ−1(e)) \∗assign finite capacity∗\
7: else
8: C(e)← +∞ \∗assign infinite capacity∗\
9: end if

10: end for
11: s1 ← {θ(σF

d)} \∗set the source∗\
12: s2 ← {v ∈ V(G) | v , v∞, index(θ−1(v)) > d} \∗set the sink∗\
13: if v∞ ∈ V(G) then
14: s2 ← s2 ∪ {v∞}
15: end if
16: (S ∗,T ∗)← min-cut of (G, s1, s2)
17: Output θ−1(E(S ∗,T ∗))

Complexity. The time complexity of Algorithm 5 depends on the encoding scheme of the input
and the data structure used for representing a simplicial complex. For encodings of the input,

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 15

we assume K and F to be represented by a sequence of all the simplices of K ordered by their
indices in F, where each simplex is denoted by its set of vertices. We also assume a simple yet
reasonable simplicial complex data structure as follows: In each dimension, simplices are mapped
to integral identifiers ranging from 0 to the number of simplices in that dimension minus 1; each
q-simplex has an array (or linked list) storing all the id’s of its (q + 1)-cofaces; a hash map for
each dimension is maintained for the query of the integral id of each simplex in that dimension
based on the spanning vertices of the simplex. We further assume p to be constant. By the above
assumptions, let n be the size (number of bits) of the encoded input, then there are no more than
n elementary O(1) operations in line 1 and 2 so the time complexity of line 1 and 2 is O(n). It is
not hard to verify that the flow network construction also takes O(n) time so the time complexity
of MinPersCycFin is determined by the minimal cut algorithm. Using the max-flow algorithm by
Orlin [20], the time complexity of MinPersCycFin becomes O(n2).

Dual graph construction. We describe the DualGraphFin subroutine of Algorithm MinPer-
sCycFin, which returns a dual graph G and a θ denoting two bijections which we use to prove the
correctness. Given the input (K̃, p), DualGraphFin constructs an undirected connected graph G
as follows:

• Let each vertex v of V(G) correspond to each (p + 1)-simplex σp+1 of K̃. If there is any
p-simplex of K̃ which has less than two (p + 1)-cofaces in K̃, we add an infinite vertex v∞
to V(G). Simultaneously, we define a bijection

θ : {(p + 1)-simplices of K̃} → V(G) r {v∞}

by letting θ(σp+1) = v. Note that in the above range notation of θ, {v∞} may not be a subset
of V(G).

• Let each edge e of E(G) correspond to each p-simplex σp of K̃. Note that σp has at least
one (p + 1)-coface in K̃. If σp has two (p + 1)-cofaces σp+1

0 and σ
p+1
1 in K̃, then let e

connect θ(σp+1
0) and θ(σp+1

1); if σp has one (p + 1)-coface σp+1
0 in K̃, then let e connect

θ(σp+1
0) and v∞. We define another bijection

θ : {p-simplices of K̃} → E(G)

using the same notation as the bijection for V(G), by letting θ(σp) = e.

Note that we can take the image of a subset of the domain under a function. Therefore, if
(S ,T) is a cut for a flow network built on G, then θ−1(E(S ,T)) denotes the set of p-simplices
dual to the edges across the cut. Also note that since simplicial chains with Z2 coefficients can be
interpreted as sets, θ−1(E(S ,T)) is also a p-chain.

8.3.2 Algorithm correctness

In this subsection, we prove the correctness of Algorithm MinPersCycFin. Some of the symbols
we use refer to the pseudocode of the algorithm.

16 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Proposition 13. In Algorithm MinPersCycFin, s2 is not an empty set.

Proof. For contradiction, suppose that s2 is an empty set. Then v∞ < V(G) and σF
d is the (p + 1)-

simplex of K̃ with the greatest index in F. Since v∞ < V(G), any p-simplex of K̃ must be face of
two (p + 1)-simplices of K̃, so the set of (p + 1)-simplices of K̃ forms a (p + 1)-cycle created by
σF

d . Then σF
d must be a positive simplex in F, which is a contradiction. �

The following two propositions specify the duality mentioned at the beginning of this section:

Proposition 14. For any cut (S ,T) of (G, s1, s2) with finite capacity, the p-chain c = θ−1(E(S ,T))
is a persistent p-cycle of [b, d) and w(c) = C(S ,T).

Proposition 15. For any persistent p-cycle c of [b, d), there exists a cut (S ,T) of (G, s1, s2) such
that C(S ,T) ≤ w(c).

Combining the above results, we conclude:

Theorem 16. Algorithm MinPersCycFin computes a minimal persistent p-cycle for the given
interval [b, d).

8.3.3 Infinite intervals for weak (p + 1)-pseudomanifolds embedded in Rp+1

We already mentioned that computing minimal persistent p-cycles (p ≥ 2) for infinite intervals is
NP-hard even if we restrict to weak (p + 1)-pseudomanifolds [12].

However, when the complex is embedded in Rp+1, the problem becomes polynomially tractable.
In this subsection, we present an algorithm for this problem given a weak (p + 1)-pseudomanifold
embedded in Rp+1, when p ≥ 1. For p = 1, the problem is polynomial time tractable for arbitrary
complexes, see Exercise 4. The algorithm uses a similar duality described in Section 8.3.1. How-
ever, a direct use of the approach in Section 8.3.1 does not work. In particular, the dual graph
construction is different – previously there is only one dummy vertex corresponding to infinity,
now there is one per-void. For example, in Figure 8.4, 1-simplices that do not have any 2-cofaces
cannot reside in any 2-connected component of the 2-complex. Hence, no cut in the flow network
may correspond to a persistent cycle of the infinite interval created by such a 1-simplex. Further-
more, unlike the finite interval case, we do not have a negative simplex whose dual can act as a
source in the flow network.

Let (K,F, [b,+∞)) be an input to the problem where K is a weak (p + 1)-pseudomanifold
embedded in Rp+1, F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn is a simplex-wise filtration of K, and [b,+∞) is
an infinite interval of Dgmp(F). By the definition of the problem, the task boils down to comput-
ing a minimal p-cycle containing σF

b in Kb. Note that Kb is also a weak (p + 1)-pseudomanifold
embedded in Rp+1.

Generically, assume that K̃ is an arbitrary weak (p + 1)-pseudomanifold embedded in Rp+1

and we want to compute a minimal p-cycle containing a p-simplex σ̃ for K̃. By the embedding
assumption, the connected components of Rp+1 r |K̃| are well defined and we call them the voids
of K̃. The complex K̃ has a natural (undirected) dual graph structure as illustrated by Figure 8.4
for p = 1, where the graph vertices are dual to the (p + 1)-simplices as well as the voids and
the graph edges are dual to the p-simplices. The duality between cycles and cuts is as follows:

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 17

Figure 8.4: (left) A weak 2-pseudomanifold K̃ embedded in R2 with three voids. Its dual graph is
drawn in blue. The complex has one 1-connected component and four 2-connected components
with the 2-simplices in different 2-connected components colored differently.

Since the ambient space Rp+1 is contractible (homotopy equivalent to a point), every p-cycle in K̃
is the boundary of a (p + 1)-dimensional region obtained by point-wise union of certain (p + 1)-
simplices and/or voids. We can derive a cut2 of the dual graph by putting all vertices contained
in the (p + 1)-dimensional region into one vertex set and putting the rest into the other vertex
set. On the other hand, for every cut of the graph, we can take the point-wise union of all the
(p + 1)-simplices and voids dual to the graph vertices in one set of the cut and derive a (p + 1)-
dimensional region. The boundary of the derived (p + 1)-dimensional region is then a p-cycle in
K̃. We observe that by making the source and sink dual to the two (p + 1)-simplices or voids that
σ̃ adjoins, we can build a flow network where a minimal cut produces a minimal p-cycle in K̃
containing σ̃.

The efficiency of the above algorithm is in part determined by the efficiency of the dual graph
construction. This step requires identifying the voids that the boundary p-simplices are incident
on. A straightforward approach would be to first group the boundary p-simplices into p-cycles
by local geometry, and then build the nesting structure of these p-cycles to correctly reconstruct
the boundaries of the voids. This approach has a quadratic worst-case complexity. To make the
void boundary reconstruction faster, we assume that the simplicial complex being worked on is
p-connected so that building the nesting structure is not needed. Our reconstruction then runs in
almost linear time. To satisfy the p-connected assumption, we begin our algorithm by taking K̃
as a p-connected subcomplex of Kb containing σF

b and continue only with this K̃. The computed
output is still correct because the minimal cycle in K̃ is again a minimal cycle in Kb. We skip the
details of constructing void boundaries which can be done in O(n log n) time. Also, we skip the
proof of correctness of the following theorem. Interested readers can consult [12] for details.

Theorem 17. Given an infinite interval [b,∞) ∈ Dgmp(F) for a filtration F of a weak (p + 1)-
pseudomanifold K embedded in Rp+1, a minimal persistent cycle for [b,∞) can be computed in
O(n2) time where n is the number of p and (p + 1)-simplices in K.

2The cut mentioned here is defined on a graph without sources and sinks, so a cut is simply a partition of the graph’s
vertex set into two sets.

18 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

8.4 Notes and Exercises

The algorithm to compute a minimal homology basis based on a greedy strategy was first pre-
sented by Erickson and Whitlessey [16] who applied to simplicial 2-manifolds (surfaces). Chen
and Friedman [8] showed that the problem is NP-hard for all homology groups of dimensions
more than 1. Dey, Sun, and Wang [15] showed that a one dimensional minimal homology basis
can be computed in O(n4) time for a simplicial complex with n simplices. The time complexity
got improved to O(nω+1) by Busaryev et al. [4]. Finally, it was settled to O(n3) in [14]. Borradaile
et al. [2] proposed an algorithm for computing an optimal H1-basis for graphs embedded on sur-
faces. For a graph with a total of n vertices and edges, the algorithm runs in O(g3n log n) time
where g is the genus plus the number of boundaries in the surface.

The problem of computing a minimal homologous cycle in a given class is NP-hard even
in dimension one as shown by Chambers et al. [5]. They proposed an algorithm for 1-cycles
on surfaces utilizing the duality between minimal cuts of a surface-embedded graph and opti-
mal homologous cycles of a dual complex. A better algorithm is proposed in [6]. Both algo-
rithms are fixed parameter tractable running in time exponential in the genus of the surface. For
general dimension, Borradaile et al. [3] showed that the OHCP problem in dimension p can be
O(
√

log n)-approximated and is fixed-parameter tractable for weak (p + 1)-pseudomanifolds. The
only polynomial-time exact algorithm [8] in general dimension for OHCP works for p-cycles in
complexes embedded in Rp+1, which uses a reduction to minimal (s, t)-cuts. Interestingly, when
the coefficient is chosen to be Z instead of Z2 for the homology groups, the problem becomes
polynomial time solvable if there is no relative torsion as shown in [11]. The material presented
in section 8.2 is taken from this paper.

Persistence added an extra layer of complexity to the problem of computing minimal rep-
resentative cycles. Escolar and Hiraoka [17] and Obayashi [19] formulated the problem as an
integer program by adapting a similar formulation for the non-persistent case. Wu et. al [21]
adapted the algorithm of Busaryev et al. [4] to present an exponential-time algorithm, as well as
an A∗ heuristics in practice. Dey, Hou, and Mandal [13] showed that the problem of computing
minimal persistent cycle is NP-hard even for H1. In a follow-up paper, the same authors show that
the problem becomes polynomial for some special cases such as computing minimal persistent
2-cycles in a 3-complex embedded in 3-dimension [12]. The materials in section 8.3 are taken
from this source.

Exercises

1. Show that every cycle in a H1(K)-basis contains a simple cycle which together form a
H1(K)-basis themselves.

2. Define a minmax basis of Hp(K) as the set of cycles which generate Hp(K) and the max-
imum weight of the cycles is minmized among all such generators. Prove that an optimal
Hp-basis defined in Definition 2 is also a minmax basis.

3. Take an example of a triangulation of Möbius strip and show that the integer program
formulation of OHCP for it is not totally unimodular.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 19

4. Consider computing a persistent 1-cycle for a bar [b, d) given a filtration of an edge-
weighted complex K. Let c be a cycle created by the edge e = (u, v) at the birth time b
where c is formed by the edge e and the shortest path between u and v in the 1-skeleton of
the complex Kb. If [c] = 0 at Kd, prove that c is a minimal persistent cycle for the bar [b, d].

5. Give an example where the above computed cycle using shortest path at the birth time is
not a persistent cycle.

6. ([7]) For a vertex v in a complex with non-negative weights on edges, let discrete geodesic
ball Br

v of radius r is defined to be the maximal subcomplex L ⊆ K so that the shortest path
from v to every vertex in L is at most r. For a cycle c, let w(c) = min{r | c ⊆ Br

v}. Give a
polynomial time algorithm to compute a shortest Hp-cycle basis for any p ≥ 1 under this
measure.

20 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Bibliography

[1] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, Belmont, MA., 1997.

[2] Glencora Borradaile, Erin Wolf Chambers, Kyle Fox, and Amir Nayyeri. Minimum cycle
and homology bases of surface-embedded graphs. JoCG, 8(2):58–79, 2017.

[3] Glencora Borradaile, William Maxwell, and Amir Nayyeri. Minimum bounded chains and
minimum homologous chains in embedded simplicial complexes. In Sergio Cabello and
Danny Z. Chen, editors, 36th International Symposium on Computational Geometry, SoCG
2020, June 23-26, 2020, Zürich, Switzerland, volume 164 of LIPIcs, pages 21:1–21:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[4] Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K. Dey, and Yusu Wang. Annotating
simplices with a homology basis and its applications. In Algorithm Theory - SWAT 2012 -
13th Scandinavian Symposium and Workshops, Helsinki, Finland, July 4-6, 2012. Proceed-
ings, pages 189–200, 2012.

[5] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homolo-
gous cycles. In SCG ’09: Proc. 25th Ann. Sympos. Comput. Geom., pages 377–385, 2009.

[6] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows, cohomology cuts.
SIAM J. Comput., 41(6):1605–1634, 2012.

[7] Chao Chen and Daniel Freedman. Measuring and computing natural generators for homol-
ogy groups. Comput. Geometry: Theory & Applications, 43 (2):169–181, 2010.

[8] Chao Chen and Daniel Freedman. Hardness results for homology localization. Discrete &
Comput. Geometry, 45 (3):425–448, 2011.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[10] Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal homologous cycles, total
unimodularity, and linear programming. In STOC ’10: Proc. 42nd Ann. Sympos. Theo.
Comput., pages 221–230, 2010.

[11] Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal homologous cycles, total
unimodularity, and linear programming. SIAM J. Comput., 40(4):1026–1044, 2011.

21

22 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

[12] Tamal K. Dey, Tao Hou, and Sayan Mandal. Computing minimal persistent cycles: Polyno-
mial and hard cases. CoRR, abs/1907.04889, 2019.

[13] Tamal K. Dey, Tao Hou, and Sayan Mandal. Persistent 1-cycles: Definition, computation,
and its application. In Computational Topology in Image Context - 7th International Work-
shop, CTIC 2019, Málaga, Spain, January 24-25, 2019, Proceedings, pages 123–136, 2019.

[14] Tamal K. Dey, Tianqi Li, and Yusu Wang. Efficient algorithms for computing a minimal
homology basis. In LATIN 2018: Theoretical Informatics - 13th Latin American Symposium,
Buenos Aires, Argentina, April 16-19, 2018, Proceedings, pages 376–398, 2018.

[15] Tamal K. Dey, Jian Sun, and Yusu Wang. Approximating loops in a shortest homology basis
from point data. In SCG ’10: Proc. 26th Ann. Sympos. Comput. Geom., pages 166–175,
2010.

[16] Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In
SODA ’05: Proc. 16th Ann. ACM-SIAM Sympos. Discrete Algorithms, pages 1038–1046,
2005.

[17] Emerson G. Escolar and Yasuaki Hiraoka. Optimal cycles for persistent homology via linear
programming. Optimization in the Real World, 13:79–96, 2016.

[18] Arthur F. Veinott Jr. and George B. Dantzig. Integral extreme points. SIAM Review, 10
(3):371–372, 1968.

[19] Ippei Obayashi. Volume-optimal cycle: Tightest representative cycle of a generator in per-
sistent homology. SIAM J. Appl. Algebra Geom., 2(4):508–534, 2018.

[20] James B. Orlin. Max flows in O(nm) time, or better. In Proc. Forty-Fifth Annual ACM
Sympos. Theory Comput., pages 765–774, 2013.

[21] Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian, Dim-
itris N. Metaxas, and Leon Axel. Optimal topological cycles and their application in cardiac
trabeculae restoration. In Information Processing in Medical Imaging - 25th International
Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings, pages 80–92,
2017.

