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Topic 14: Multiparameter Persistence Module De-
composition
In previous chapters, we have considered filtrations that are parameterised by a single parameter
such as Z or R. Naturally, they give rise to a 1-parameter persistence module. In this chapter, we
generalize the concept and consider persistence modules that are parameterized by one or more
parameters such as Zd or Rd.They are called multiparameter persistence modules in general. Mul-
tiparameter persistence modules naturally arise from filtrations that are parameterized by multiple
values such as the one shown in Figure 14.1 over two parameters.

Figure 14.1: A bi-filtration parameterized over curvature and radius; picture taken from [6].

The classical algorithm of Edelsbrunner et al. [11] presented earlier provides a unique decom-
position of the 1-parameter persistence module over Z implicitly generated by an input simplicial
filtration. Similarly, a multiparameter persistence module M over the grid Zd can be implicitly
given by an input multiparameter finite simplicial filtration and we look for computing a de-
composition (Definition 10) M =

⊕
i Mi. The modules Mi are the counterparts of bars in the

1-parameter case and are called indecomposables. These indecomposables are more complicated
and cannot be completely characterized as in the one-parameter case. Nonetheless, for finitely
generated persistence modules defined over Zd, their existence is guaranteed by the Krull-Schmidt
theorem [2]. Figure 14.2 illustrates indecomposables of some modules.

An algorithm for decomposing a multiparameter persistence module can be derived from the
so-called Meataxe algorithm which applies to much more general modules than we consider in
TDA at the expense of high computational cost. Sacrificing this generality and still encompassing
a large class of modules that appear in TDA, we can design a much more efficient algorithm.
Specifically, we present an algorithm that can decompose a finitely presented module with a time
complexity that is much better than the Meataxe algorithm though we lose the generality as the
module needs to be distinctly graded as explained later.

For measuring algorithmic efficiency, it is imperative to specify how the input module is pre-
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Figure 14.2: Decomposition of a finitely generated 2-parameter persistence module: (left) rect-
angle decomposable module: each indecomposable is supported by either bounded (A) or un-
bounded rectangle (B and C), D is a free module; (right) interval decomposable module: each
indecomposable is supported over a 2D interval (defined in next chapter).

sented. Assuming an index set of size m and vector spaces of dimension O(m), a 1-parameter
persistence module can be presented by a set of matrices of dimensions O(m) × O(m) each rep-
resenting a linear map Mi → Mi+1 between two consecutive vector spaces Mi and Mi+1. This
input format is costly as it takes O(m3) space (O(m2)-size matrix for each index) and also does
not appear to offer any benefit in time complexity for computing the bars. An alternative pre-
sentation is obtained by considering the persistence module as a graded module over a polyno-
mial ring k[t] and presenting it with the so-called generators {gi} of the module and relations
{
∑

i αigi = 0 | αi ∈ k[t]} among them. A presentation matrix encoding the relations in terms of
the generators characterizes the module completely. Then, a matrix reduction algorithm akin to
the persistence algorithm MatPersistence that we covered earlier provides the desired decomposi-
tion1. Figure 14.3 illustrates the advantage of this presentation over the other costly presentation.
In practice, when the 1-parameter persistence module is given by an implicit simplicial filtra-
tion, one can apply the matrix reduction algorithm directly on a boundary matrix rather than first
computing a presentation matrix from it and then decomposing it. If there are O(n) simplices
constituting the filtration, the algorithm runs in O(n3) time with simple matrix reductions and
in O(nω) time with more sophisticated matrix multiplication techniques where ω < 2.373 is the
exponent for matrix multiplication.

The Meataxe algorithm for multiparameter persistence modules follows the costly approach
analogous to the one in the 1-parameter case that expects the presentation of each individual linear
map explicitly. In particular, it expects the input d-parameter module M over a finite subset of
Zd to be given as a large matrix in kD×D with entries in a fixed field k = Zq, where D is the sum
of dimensions of vector spaces over all points in Zd supporting M. The time complexity of the
Meataxe algorithm is O(D6 log q) [15]. In general, D might be quite large. It is not clear what is

1Notice that persistence algorithm takes a filtration as input whereas here we are considering a module presented
with matrices as input.
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Figure 14.3: Costly presentation (top) vs. graded presentation (bottom,right). The top chain can
be summarized by three generators g1, g2, g3 at grades (0), (1), (2) respectively, and two relations
0 = t2g1 + tg2, 0 = t2g2 + tg3 at grades (2), (3) respectively (Definition 5). The grades of
the generators and relations are given by the first times they appear in the chain. Finally, these
information can be summarized succinctly by the presentation matrix on the right.

the most efficient way to transform an input that specifies generators and relations ( or a simplicial
filtration) to a representation matrix required by the Meataxe algorithm. A naive approach is to
consider the minimal sub-grid in Zd that supports the non-trivial maps. In the worst-case, with
N being the total number of generators and relations, one has to consider O(

(
N
d

)
) = O(Nd) grid

points in Zd each with a vector space of dimension O(N). Therefore, D = O(Nd+1) giving a
worst-case time complexity of O(N6(d+1) log q). Even allowing approximation, the algorithm runs
in O(N3(d+1) log q) time [16].

In this chapter, we take the alternate approach where the module is treated as a finitely pre-
sented graded module over multivariate polynomial ring R = k[t1, · · · , td] [7] and presented with
a set of generators and relations graded appropriately. Given a presentation matrix encoding
relations with generators, our algorithm computes a diagonalization of the matrix giving a pre-
sentation of each indecompsable which the input module decomposes into. Compared to the
1-parameter case, we have to cross two main barriers for computing the indecomposables. First,
we need to allow row operations along with column operations for reducing the input matrix. In
1-parameter case, row operations become redundant because column operations already produce
the bars. Second, unlike in 1-parameter case, we cannot allow all left-to-right column or bottom-
to-top row operations for the matrix reduction because the parameter space Zd, d > 1, unlike Z
only induces a partial order on these operations. These two difficulties are overcome by an in-
cremental approach combined with a linearization trick. Given a presentation matrix with a total
of O(N) generators and relations that are graded distinctly, the algorithm runs in O(N2ω+1) time.
Surprisingly, the complexity does not depend on the parameter d.

Computing presentation matrix from a multiparameter simplicial filtration is not easy. For
d-parameter filtrations with n simplices, a presentation matrix of size O(nd−1) × O(nd−1) can
be computed in O(nd+1) time by adapting an algorithm of Skryzalin [27] as described in [10].
We will not present this construction here. Instead, we focus on the two cases, 2-parameter
persistence modules where the homology groups could be multi-dimensional and d-parameter
persistence modules where the homology group is only zero dimensional. For these two cases,
we can compute the presentation matrices more efficiently. For the 2-parameter case, Lesnick
and Wright [22] gives an efficient O(n3) algorithm for computing a presentation matrix from an
input filtration. In this case, N, the total number of generators and relations, is O(n). For the 0-th
homology groups, presentation matrices are given by the boundary matrices straightforwardly as
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detailed in Section 14.5.2 giving N = O(n).

14.1 Multiparameter Persistence modules

We define persistence modules in this chapter differently using the definition of graded modules
in algebra. Graded module structures provide an appropriate framework for defining the mul-
tiparameter persistence, in particular, for the decomposition algorithm that we present. Also,
navigating between the simplicial filtration and the module induced by it becomes natural with
the graded module structure.

14.1.1 Persistence modules as graded modules

First, we recollect the definition of modules. It requires a ring. We consider a module where the
ring R is taken as the polynomial ring.

Definition 1 (Polynomial ring). Given a variable t and a field k, the set of polynomials given by

k[t] = {a0 + a1t + a2t2 + · · · + antn | n ≥ 0, ai ∈ k}

forms a ring with usual polynomial addition and multiplication operations. The definition can be
extended to multivariate polynomials

k[t] = k[t1, · · · , tk] = {Σi1,··· ,ik ai1,··· ,ik t
i1
1 · · · t

i j
j · · · t

ik
k | i1, · · · , ik ≥ 0, ai1,··· ,ik ∈ k}.

We use polynomial ring to define multiparameter persistence modules. Specifically, let R =

k[t1, · · · , td] be the d-variate Polynomial ring for some d ∈ Z+ with k being a field. Throughout
this chapter, we assume coefficients are in k. Hence homology groups are vector spaces.

Definition 2 (Graded module). A Zd-graded R-module (graded module in brief) is an R-module
M that is a direct sum of k-vector spaces Mu indexed by u = (u1, u2, . . . , ud) ∈ Zd, i.e. M =⊕

u Mu, such that the ring action satisfies that ∀i,∀u ∈ Zd, ti · Mu ⊆ Mu+ei , where {ei}
d
i=1 is the

standard basis in Zd. The indices u ∈ Zd are called grades.

Another interpretation of graded module is that, for each u ∈ Zd, the action of ti on Mu
determines a linear map ti• : Mu → Mu+ei by (ti•)(m) = ti · m. So, we can also describe a graded
module equivalently as a collection of vectors spaces {Mu}u∈Zd with a collection of linear maps
{ti• : Mu → Mu+ei ,∀i,∀u} where the commutative property (t j•) ◦ (ti•) = (ti•) ◦ (t j•) holds. The
commutative diagram in Figure 14.4 shows a graded module for d = 2, also called a bigraded
module.

Definition 3 (Graded module R). There is a special graded module M where Mu is the k-vector
space generated by tu = tu1

1 tu2
2 · · · t

ud
d and the ring action is given by the ring R. We denote it with

R not to be confused with the ring R which is used to define it.

Before we introduce persistence modules as instances of graded modules, we extend the no-
tion of simplicial filtration to the multiparameter framework.
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· · · · · · · · ·

· · · M0,2 M1,2 M2,2 · · ·

· · · −→ M0,1 M1,1 M2,1 · · ·

· · · M0,0 M1,0 M2,0 · · ·

· · · ↑ · · ·

t2•

t1•

t1•

t2• t1•t2•

t22•

t21•

t1•

t2•

Figure 14.4: A graded 2-parameter module. All sub-diagrams of maps and compositions of maps
are commutative.

Definition 4 (d-parameter filtration). A (d-parameter) simplicial filtration is a family of simplicial
complexes {Xu}u∈Zd such that for each grade u ∈ Zd and each i = 1, · · · , d, Xu ⊆ Xu+ei .

Figure 14.5 shows an example of a 2-parameter filtration and various graded modules associ-
ated with it. The module resulting with the homology group at the bottom right is a persistence
module. The figure also shows other graded modules of chain groups (left) and boundary groups
(middle).

Definition 5 (d-parameter persistence module). We call a Zd-graded R-module M a d-parameter
persistence module when Mu for each u ∈ Zd is a homology group defined over a field and
the linear maps corresponding to ring actions among them are induced by inclusions in a d-
parameter simplicial filtration. We call M finitely generated if there exists a finite set of elements
{g1, · · · , gn} ⊆ M such that each element m ∈ M can be written as an R-linear combination of
these elements, i.e. m =

∑n
i=1 αigi with αi ∈ R. We call this set {gi} a generating set or generators

of M. A generating set is called minimal if its cardinality is minimal among all generating sets.
The R-linear combinations

∑n
i=1 αigi that are 0 are called relations. We will see later that a module

can be represented by a set of generators and relations.

In this exposition, we assume that all modules are finitely generated. Such modules always
admit a minimal generating set. In our example in Figure 14.5, the vertex set {vb, vr, vg} is a
minimal generating set for the module of zero-dimensional homology groups.

Definition 6 (Morphism). A graded module morphism, called morphism in short, between two
modules M and N is defined as an R-linear map f : M → N preserving grades: f (Mu) ⊆ Nu,∀u ∈
Zd. Equivalently, it can also be described as a collection of linear maps { fu : Mu → Nu} which
gives the following commutative diagram for each u and i:

Mu Mu+ei

Nu Nu+ei

ti

fu fu+ei

ti
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Figure 14.5: (top) An example of a 2-parameter simplicial filtration. Each square box indicates
what is the current (filtered) simplical complex at the bottom left grid point of the box. (bottom)
We show different modules considering different abelian groups arising out of the complexes with
the ring actions on the arrows (see Section 14.5 for details): (a) The module of 0-th chain groups

C0, A =

 t1 0 0
0 t1 0
0 0 t1

 and B =

 t2 0 0
0 t2 0
0 0 t2

. (b) The module of 0-th boundary groups B0,

C =

(
t1 0
0 t1

)
and D =

(
t2 0
0 t2

)
. (c) The module of the 0-th homology groups H0, it has

one connected component in 0-th homology groups at grades except (0, 0) and (1, 1), and has two
connected components at grade (1, 1).

Two graded modules M,N are isomorphic if there exist two morphisms f : M → N and g : N →
M such that g ◦ f and f ◦ g are identity maps. We denote it as M ' N.

Definition 7 (Shifted module). For a graded module M and some u ∈ Zd, define a shifted graded
module M→u by setting (M→u)v = Mv−u for each v.

Definition 8 (Free module). We say a graded module is free if it is isomorphic to the direct sum
of a collection of R j, denoted as

⊕
j R j, where each R j = R→u j for some u j ∈ Zd. Here R is the

special graded module in definition 3.

Definition 9 (Homogeneous element). We say an element m ∈ M is homogeneous if m ∈ Mu for
some u ∈ Zd. We denote gr(m) = u as the grade of such homogeneous element. To emphasize
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the grade of a homogeneous element, we also write mgr(m) := m.

A minimal generating set of a free module is called a basis. We usually further require that
all the elements (generators) in a basis are homogeneous. For a free module F '

⊕
j R j such

a basis exists. Specifically, {e j : j = 1, 2, · · · } is a homogeneous basis of F, where e j indicates
the multiplicative identity in R j. The generating set {e j : j = 1, 2, · · · } is often referred to as the
standard basis of

⊕
j R j =< e j : j = 1, 2, · · · >.

14.2 Presentations of persistence modules

Definition 10 (Decomposition). For a finitely generated module M, we call M '
⊕

Mi a
decomposition of M for some collection of modules {Mi}. We say M is indecomposable if
M ' M1 ⊕ M2 =⇒ M1 = 0 or M2 = 0 where 0 denotes a trivial module. By the Krull-Schmidt
theorem [2], there exists an essentially unique (up to permutation and isomorphism) decomposi-
tion M '

⊕
Mi with every Mi being indecomposable. We call it the total decomposition of M.

For example, the free module R in Definition 3 is generated by < e(0,0)
1 > and the free module

R→(0,1) ⊕ R→(1,0) is generated by < e(0,1)
1 , e(1,0)

2 >. A free module M generated by < eu j
j : j =

1, 2, · · · > has a (total) decomposition M '
⊕

j R→u j .

Definition 11 (Isomorphic morphisms). Two morphisms f : M → N and f ′ : M′ → N′ are
isomorphic, denoted as f ' f ′, if there exist isomorphisms g : M → M′ and h : N → N′ such
that the following diagram commutes:

M N

M′ N′

f

g
'

h
'

f ′

Essentially, like isomorphic modules, two isomorphic morphisms can be considered the same.
For two morphisms f1 : M1 → N1 and f2 : M2 → N2, there exists a canonical morphism
g : M1 ⊕M2 → N1 ⊕ N2, g(m1,m2) = ( f1(m1), f2(m2)), which is essentially uniquely determined
by f1 and f2 and is denoted as f1 ⊕ f2. A module is trivial if it has only the element 0 at every
grade. We denote a trivial morphism by 0 : 0→ 0. Analogous to the decomposition of a module,
we can also define a decomposition of a morphism.

Definition 12 (Morphism decomposition). A morphism f is indecomposable if f ' f1 ⊕ f2 =⇒

f1 or f2 is the trivial morphism 0 : 0 → 0. We call f '
⊕

fi a decomposition of f . If each fi is
indecomposable, we call it a total decomposition of f .

Like decompositions of modules, the total decompositions of a morphism is also essentially
unique.
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14.2.1 Presentation and its decomposition

To study total decompositions of persistence modules that are treated as graded modules, we
draw upon the idea of presentations of graded modules and build a bridge between decomposi-
tions of persistence modules and corresponding presentations. Decompositions of presentations
can be transformed to a matrix reduction problem with possibly nontrivial constrains which we
will introduce in Section 14.3. We first state a result saying that there are one to one correspon-
dences between persistence modules, presentations, and presentation matrices. Recall that, by
assumption, all modules are finitely generated. A graded module hence a persistence module ac-
commodates a description called its presentation that aids finding its decomposition. We remind
the reader that a sequence of maps is exact if the image of one map equals the kernel of the next
map.

Definition 13 (Presentation). A presentation of a graded module H is an exact sequence

F1 F0 H 0 where F1, F0 are free.
f g

We call f a presentation map. We say a graded module H is finitely presented if there exists a
presentation of H with both F1 and F0 being finitely generated.

The exactness of the sequence implies that im f = ker g and im g = H. The double arrows on
the second map in the sequence signifies the surjection of g. It follows that coker f ' H and the
presentation is determined by the presentation map f .

Remark 1. Presentations of a given graded module are not unique. However, there exists an
essentially unique (up to isomorphism) presentation f of a graded module in the sense that any
presentation f ′ of that module can be written as f ′ ' f ⊕ f ′′ with coker f ′′ = 0. We call this
unique presentation the minimal presentation. See more details of the construction and properties
of minimal presentation in [10].

Definition 14 (Presentation matrix). Given a presentation F1 f
→ F0 → H, fixed bases of F1

(relations) and F0 (generators) provide a matrix form [ f ] of the presentation map f , which we
call a presentation matrix of H. It has entries in R. In the special case that H is a free module with
F1 being a zero module, we define the presentation matrix [ f ] of H to be a null column matrix
with matrix size ` × 0 for some ` ∈ N.

In Figure 14.6, we illustrate the presentation matrix of the module H0 consisting of zero
dimensional homology groups induced by the filtration shown in Figure 14.5. We will see later
that, in this case, f equals the boundary morphism ∂1 : C1 → C0 whose columns are edges and
rows are vertices. For example, the red edge er whose grade is (1, 1) has two boundary vertices
vb, the blue vertex with grade (0, 1) and vr, the red vertex with grade (1, 0). To bring vb to grade
(1, 1), we need to multiply by the polynomial t1. Similarly, to bring vr to grade (1, 1), we need to
multiply by t2. The corresponding entries in the column of er are t1 and t2 respectively indicated
by shaded boxes. Actual matrices are shown later in Example 1.

An important property of a persistence module H is that a decomposition of its presentation
f corresponds to a decomposition of H itself. The decomposition of f can be computed by diag-
onalizing its presentation matrix [ f ]. Informally, a diagonalization of a matrix A is an equivalent
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matrix A′ in the following form (see formal Definition 15 later):

A′ =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak


All nonzero entries are in Ai’s and we write A '

⊕
Ai. It is not hard to see that for a map

f '
⊕

fi, there is a corresponding diagonalization [ f ] '
⊕

[ fi]. With these definitions and the
fact that persistence modules are graded modules, we have the following theorem that motivates
the decomposition algorithm (see proof in [10]).

er eb eg

vb

vr

vg

(1,1) (2,1) (1,2)

(0,1)

(1,0)

(1,1)

0 1 2

0

1

2

Figure 14.6: The presentation matrix of the module H0 consisting of zero dimensional homology
groups for the example in Figure 14.5. The boxes in the matrix containing non-zero entries are
shaded.

Theorem 1. There are 1-1 correspondences between the following three structures arising from
a minimal presentation map f : F1 → F0 of a graded module H, and its presentation matrix [ f ]:

1. A decomposition of the persistence module H '
⊕

Hi;

2. A decomposition of the presentation map f '
⊕

fi;

3. A diagonalization of the presentation matrix [ f ] '
⊕

[ f ]i.

Remark 2. From Theorem 1, we can see that there exist an essentially unique total decomposition
of a presentation map and an essentially unique total diagonalization of the presentation matrix
of H which correspond to an essentially unique total decomposition of H (up to permutation,
isomorphism, and trivial summands). In practice, we might be given a presentation which is not
necessarily minimal. One way to handle this case is to compute the minimal presentation of the
given presentation first. For 2-parameter modules, this can be done by an algorithm presented
in [22]. The other choice is to compute the decomposition of the given presentation directly,
which is sufficient to get the decomposition of the module thanks to the following proposition.
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Proposition 2. Let f be any presentation (not necessarily minimal) of a graded module H. The
following statements hold:

1. for any decomposition of H '
⊕

Hi, there exists a decomposition of f ' ⊕ fi such that
coker fi = Hi,∀i;

2. the total decomposition of H follows from the total decomposition of f .

Remark 3. By Remark 1, any presentation f can be written as f ' f ∗ ⊕ f ′ with f ∗ being the
minimal presentation and coker f ′ = 0. Furthermore, f ′ can be written as f ′ ' g ⊕ h where g
is an identity map and h is a zero map. The corresponding matrix form is [ f ] ' [ f ∗] ⊕ [g] ⊕ [h]
with [g] being an identity submatrix and [h] being an empty matrix representing a collection
of zero columns. Therefore, one can easily read these trivial parts from the result of matrix
diagonalization. See the following diagram for an illustration.

[ f ] =



f ∗ g h

[ f ∗]

1
1

1


14.3 Presentation matrix: diagonalization and simplification

Our aim is to compute a total diagonalization of a presentation matrix over Z2. Here we formally
define some notations used in the diagonalization. All modules are assumed to be finitely pre-
sented and we take k = Z2 for simplicity though the method can be generalized for any finite
field (Exercise 8). We have observed that a total decomposition of a module can be achieved by
computing a total decomposition of its presentation f . This in turn requires a total diagonalization
of the presentation matrix [ f ]. Here we formally define some notations about the diagonalization.

Given an ` ×m matrix A = [Ai, j], with row indices Row(A) = [`] := {1, 2, · · · , `} and column
indices Col(A) = [m] := {1, 2, · · · ,m}, we define an index block B of A as a pair

[
Row(B), Col(B)

]
with Row(B) ⊆ Row(A),Col(B) ⊆ Col(A). We say an index pair (i, j) is in B if i ∈ Row(B) and
j ∈ Col(B), denoted as (i, j) ∈ B. We denote a block of A on B as the matrix restricted to
the index block B, i.e. [Ai, j](i, j)∈B, denoted as A|B. We call B the index of the block A|B. We
abuse the notations Row(A|B) := Row(B) and Col(A|B) := Col(B). For example, the ith row
ri = Ai,∗ = A|[{i},Col(A)] and the jth column c j = A∗, j = A|[Row(A),{ j}] are blocks with indices[
{i},Col(A)] and

[
Row(A), { j}] respectively. Specifically,

[
∅, { j}

]
represents an index block of a

single column j and [{i},∅] represents an index block of a single row i. We call [∅,∅] the empty
index block.

A matrix can have multiple equivalent forms for the same morphism they represent. We use
A′ ∼ A to denote the equivalence of matrices. One fact about equivalent matrices is that they can
be obtained from one another by row and column operations introduced later (Chapter 5 in [8]).
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Definition 15 (Diagonalization). A matrix A′ ∼ A is called a diagonalization of A with a set of
nonempty disjoint index blocks B = {B1, B2, · · · , Bk} if rows and columns of A are partitioned into
these blocks, i.e., Row(A) =

∐
i Row(Bi) and Col(A) =

∐
i Col(Bi), and all the nonzero entries

of A′ have indices in some Bi (
∐

i denotes disjoint union). We write A′ =
⊕

Bi∈B
A′|Bi . We

say A′ =
⊕

Bi∈B
A′|Bi is total if no block in this diagonalization can be diagonalized further into

smaller nonempty blocks. That means, for each block A′|Bi , there is no nontrivial diagonalization.
Specifically, when A is a null column matrix (the presentation matrix of a free module), we say
A is itself a total diagonalization with index blocks {[{i},∅] | i ∈ Row(A)}.

Note that each nonempty matrix A has a trivial diagonalization with the set of index blocks
being the singleton {(Row(A),Col(A))}. Guaranteed by Krull-Schmidt theorem [2], all total di-
agonalizations are unique up to permutations of their rows and columns, and equivalent transfor-
mation within each block. The total diagonalization of A is denoted generically as A∗. All total
diagonalizaitons of A have the same set of index blocks unique up to permutations of rows and
columns. See Figure 14.7 for an illustration of a diagonalized matrix.

1 2 43 5

1

2

3

4

5

6

1 2 43 5

1

2

3

4

5

6

Figure 14.7: (left) A nontrivial diagonalization where the locations of non-zero entries are colored
and the color for all such entries in the same block are the same. (right) The same matrix with
permutation of columns and rows to bring entries of a block in adjacent locations, the three index
blocks are: ((1, 4, 6)(1, 3)), ((2, 3)(2, 4)), and ((5)(5)).

14.3.1 Simplification

First we want to transform the diagonalization problem to an equivalent problem that involves
matrices with a simpler form. The idea is to simplify the presentation matrix to have entries only
in k which is taken as Z2. There is a correspondence between diagonalizations of the original
presentation matrix and certain constrained diagonalizations of the corresponding transformed
matrix.

We first make some observations about the homogeneous property of presentation maps and
presentation matrices. Equivalent matrices actually represent isomorphic presentations f ′ ' f
that admit commutative diagram,

F1 F0

F1 F0

f

h1
'

h0
'

f ′
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where h1 and h0 are endomorphisms on F1 and F0 respectively. The endomorphisms are realized
by basis changes between corresponding presentation matrices [ f ] ' [ f ′]. Since all morphisms
between graded modules are required to be homogeneous (preserve grades) by definition, we can
use homogeneous bases (all the basis elements chosen are homogeneous elements2) for F0 and
F1 to represent matrices. Let F0 =< g1, · · · , g` > and F1 =< s1, · · · , sm > where gi and si are
homogeneous elements for every i. With this choice, we can consider only equivalent presentation
matrices under homogeneous basis changes. Each entry [ f ]i, j is also homogeneous. That means,
[ f ]i, j = tu1

1 tu2
2 · · · t

ud
d where (u1, u2, · · · , ud) = gr(s j) − gr(gi). Writing u = (u1, u2, · · · , ud) and

tu = tu1
1 tu2

2 · · · t
ud
d , we get [ f ]i, j = tu where u = gr(s j) − gr(gi) called the grade of [ f ]i, j. We call

such presentation matrix homogeneous presentation matrix.
For example, given F0 =< g(1,1)

1 , g(2,2)
2 >, the basis change g(2,2)

2 ← g(2,2)
2 + g(1,1)

1 is not
homogeneous since g(2,2)

2 + g(1,1)
1 is not a homogeneous element. However, g(2,2)

2 ← g(2,2)
2 +

t(1,1)g(1,1)
1 is a homogeneous change with gr(g(2,2)

2 + t(1,1)g(1,1)
1 ) = gr(g(2,2)

2 ) = (2, 2), which results
in a new homogeneous basis, {g(1,1)

1 , g(2,2)
2 + t(1,1)g(1,1)

1 }. Homogeneous basis changes always result
in homogeneous bases.

Let [ f ] be a homogeneous presentation matrix of f : F1 → F0 with bases F0 =< g1, · · · , g` >
and F1 =< s1, · · · , sm >. We extend the notation of grading to every row ri and every column
c j from the basis elements gi and s j they represent respectively, that is, gr(ri) := gr(gi) and
gr(c j) := gr(s j). We define a strict partial order <gr on rows {ri} by asserting ri <gr r j if and only
if gr(ri) < gr(r j). Similarly, we define a strict partial order on columns {c j}.

For such a homogeneous presentation matrix [ f ], we aim to diagonalize it totally by homoge-
neous change of basis while trying to zero out entries by column and row operations that include
additions and scalar multiplication of columns and rows as done in well known Gaussian elimi-
nation. We have the following observations:

1. gr([ f ]i, j) = gr(c j) − gr(ri)

2. a nonzero entry [ f ]i, j can only be zeroed out by column operations from columns ck <gr c j

or by row operations from rows r` >gr ri.

Observation (2) indicates which subset of column and row operations is sufficient to zero out
the entry [ f ]i, j. We restate the diagonalization problem as follows:

Given an n×m homogeneous presentation matrix A = [ f ] consisting of entries in k[t1, · · · , td]
with grading on rows and columns, find a total diagonalization of A under the following admissi-
ble row and column operations:

• multiply a row or column by nonzero α ∈ k; (For k = Z2, we can ignore these operations),

• for two rows ri, r j with j , i, r j <gr ri, set r j ← r j + tu · ri where u = gr(ri) − gr(r j),

• for two columns ci, c j with j , i, ci <gr c j, set c j ← c j + tv · ci where v = gr(c j) − gr(ci).

The above operations realize all possible homogeneous basis changes. That means, any ho-
mogeneous presentation matrix can be realized by a combination of the above operations.

2Recall that an element m ∈ M is homogeneous with grade gr(m) = u for some u ∈ Zd if m ∈ Mu.
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In fact, the values of nonzero entries in the matrix are redundant under the homogeneous prop-
erty gr(Ai, j) = gr(c j) − gr(ri) given by observation (1). So, we can further simplify the matrix by
replacing all the nonzero entries with their k-coefficients. For example, we can replace 2·tu with
2. What really matters are the partial orders defined by the grading of rows and columns. With
our assumption of k = Z2, all nonzero entries are replaced with 1. Based on above observations,
we further simplify the diagonalization problem to be the one as follows.

Given a k-valued matrix A with a partial order on rows and columns, find a total diagonaliza-
tion A∗ ∼ A with the following admissible operations:

• multiply a row or column by nonzero α ∈ k; (For k = Z2, we can ignore these operations).

• Adding ci to c j only if j , i and gr(ci) < gr(c j); denoted as ci → c j.

• Adding rk to rl only if l , k and gr(r`) < gr(rk); denoted as rk → rl.

The assumption of k = Z2 allows us to ignore the first set of multiplication operations on the
binary matrix obtained after transformation. We denote the set of all admissible column and row
operations as

Colop ={(i, j) | ci → c j is an admissible column operation}

Rowop ={(k, l) | rk → rl is an admissible row operation}

Under the assumption that no two columns nor rows have same grades, Colop and Rowop are
closed under transitive relation.

Proposition 3. If (i, j), ( j, k) ∈ Colop (Rowop) then (i, k) ∈ Colop (Rowop).

Given a solution of the diagonalization problem in the simplified form, one can reconstruct a
solution of the original problem on the presentation matrix by reversing the above process of sim-
plification. We will illustrate it by running the algorithm on the working example in Figure 14.5
at the end of this section. The matrix reduction we employ for diagonalization may be viewed as
a generalized matrix reduction because the matrix is reduced under constrained operations Colop
and Rowop which might be a nontrivial subset of all basic operations.

Remark 4. There are two extreme but trivial cases: (i) there are no <gr-comparable pair of rows
and columns. In this case, Colop = Rowop = ∅ and the original matrix is a trivial solution. (ii)
All pairs of rows and all pairs of columns are <gr-comparable. Or equivalently, both Colop and
Rowop are totally ordered. In this case, one can apply traditional matrix reduction algorithm to
reduce the matrix to a diagonal matrix with all nonzero blocks being 1 × 1 minors. This is also
the case for 1-parameter persistence module if one further applies row reduction after column
reduction. Note that row reductions are not necessary for reading out persistence information
because it essentially does not change the persistence information. However, in multiparameter
cases, both column and row reductions are necessary to obtain a diagonalization from which
the persistence information can be read. From this view-point, the algorithm we present can be
thought of as a generalization of the traditional persistence algorithm.
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vb(0, 1)

vr(1, 0)

vg(1, 1)

vb + vr = 0(1, 1)

vb + vg = 0(1, 2)

vr + vg = 0(2, 1)

0 1 2

0

1

2

Figure 14.8: The persistence module corresponding to the presentation matrix [∂1] shown in
Example 1. The generators are given by the three vertices with grades (0, 1), (1, 0), (1, 1) and the
relations are given by the edges with grades (1, 1), (1, 2), (2, 1).

Example 1. Consider our working example in Figure 14.5. One can see later in Section 14.5
(Case 1) that the presentation matrix of this example can be chosen to be the same as the matrix
of the boundary morphism ∂1 : C1 → C0. With fixed bases C0 =< v(0,1)

b , v(1,0)
r , v(1,1)

g > and
C1 =< e(1,1)

r , e(1,2)
b , e(2,1)

g >, this presentation matrix [∂1] and the corresponding binary matrix A
can be written as follows (recall that superscripts indicate the grades) :


[∂1] e(1,1)

r e(1,2)
b e(2,1)

g

v(0,1)
b t(1,0) t(1,1) 0

v(1,0)
r t(0,1) 0 t(1,1)

v(1,1)
g 0 t(0,1) t(1,0)

 −→


A c(1,1)
1 c(1,2)

2 c(2,1)
3

r(0,1)
1 1 1 0

r(1,0)
2 1 0 1

r(1,1)
3 0 1 1


Four admissible operations are: r3 → r1, r3 → r2, c1 → c2, c1 → c3. Figure 14.8 shows the
persistence module H0 whose presentation matrix is [∂1].

14.4 Total diagonalization algorithm

Assume that no two columns nor rows have the same grades. Without this assumption, the prob-
lem of total diagonalization becomes more complicated. At this point, we do not know how to
extend the algorithm to overcome this limitation. However, the algorithm introduced below can
still compute a correct diagonalization (not necessarily total) by applying the trick of adding small
enough perturbations to tied grades (considering Zd ⊆ Rd) to reduce the case to the one satisfying
our assumption. Furthermore, this diagonalization in fact coincides with a total diagonalization
of some persistence module which is arbitrarily close to the original persistence module under a
well-known metric called interleaving distance which we discuss in the next chapter. In practice,
the persistence module usually arises from a simplicial filtration as shown in our working exam-
ple. The assumption of distinct grading of the columns and rows is automatically satisfied if at
most one simplex is introduced at each grade in the filtration.

Let A be the presentation matrix whose total diagonalization we are seeking for. We order
the rows and columns of the matrix A according to any order that extends the partial order on
the grades to a total order, e.g., dictionary order. We fix the indices Row(A) = {1, 2, · · · , `}
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and Col(A) = {1, 2, · · · ,m} according to this order. With this ordering, observe that, for each
admissible column operation ci → c j, we have i < j, and for each admissible row operation
rl → rk, we have l > k.

For any column ct, let A≤t := A|C denote the left submatrix on C =
[
Row(A), { j ∈ Col(A) | j ≤

t}
]

and A<t denote its stricter version obtained by excluding column ct from A≤t. Our algorithm
starts with the finest decomposition that puts every free module given by each generator (rows)
into a separate block and then combine them incrementally as we process the relations (columns).
The main idea of our algorithm is presented in Algorithm 1:TotDiagonalizewhich runs as follows
(see Figure 14.9 for an illustration):

ct

B
(t−1)
i

A≤t

TT T

current column

B
(t−1)
2

B1
(t−1)

B
(t−1)
3

A<t

0 0 ct|RowB
(t−1)
2

1. Main iteration (at iteration t)

B(t−1) = {B(t−1)
1 , B

(t−1)
2 , B

(t−1)
3 }

. . .

2. Sub-column update (e.g.: B
(t−1)
i = B

(t−1)
2 )

B(t) = {B(t)
0 = (∅, {t}), B

(t)
1 }

sub-column to update

B
(t)
1

B
(t−1)
3

sub-column already reduced.
B1 unchanged

= B
(t−1)
2

sub-column untouched yet

0

ct

= ct|RowB
(t−1)
1

Figure 14.9: (left) A at the beginning of iteration t with A<t being totally diagonalized with
three index blocks B(t−1) = {B(t−1)

1 , B(t−1)
2 , B(t−1)

3 }. (right) A sub-column update step: ct|RowB(t−1)
1

has already been reduced to zero. So, B(t)
1 = B(t−1)

1 is added into B(t). White regions including
ct|RowB(t−1)

1
must be preserved afterward. Now for i = 2, we attempt to reduce purple sub-column

ct|RowB(t−1)
2

. We extend it to block on T :=
[
Row(B(t−1)

2 ), (Col(A≤t) \ Col(B(t−1)
2 ))

]
(colored purple)

and try to reduce it in BlockReduce.

1. Initialization: Initialize the collection of index blocks B(0) := {B(0)
i :=

[
{i}, ∅

]
| i ∈

Row(A)}, for the total diagonalization of the null column matrix A≤0.

2. Main iteration: Process A from left to right incrementally by introducing a column ct and
considering left submatrices A≤t for t = 1, 2, · · · ,m. We update and maintain the collection
of index blocks B(t) ← {B(t)

i } for the current submatrix A≤t in each iteration by using column
and block updates stated below. Here we use upper index (·)(t) to emphasize the iteration t.

2(a). Sub-column update: Partition the column ct into sub-columns

ct|RowB(t−1)
i

:= A[Row(B(t−1)
i ), {t}],

one for the set of rows Row(B(t−1)
i ) for each block from the previous iteration. We

process each such sub-column ct|RowB(t−1)
i

one by one, checking whether there exists
a sequence of admissible operations that are able to reduce the sub-column to zero
while preserving the prior as defined below.
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Definition 16. We say a prior with respect to a sub-column ct|RowB(t−1)
i

is the left
submatrix A<t and sub-columns ct|RowB(t−1)

j
for all j < i.

Prior preservation means that the operations together change neither A<t nor other
sub-columns ct|RowB(t−1)

j
for every j < i. If such operations exist, we apply them on

the current A to get an equivalent matrix with the sub-column ct|RowB(t−1)
i

being zeroed

out and we set B(t)
i ← B(t−1)

i . Otherwise, we leave the matrix A unchanged and add
the column index t to those of B(t−1)

i , i.e., we set B(t)
i ←

[
Row(B(t−1)

i ),Col(B(t−1)
i ) ∪

{t}
]
. After processing every sub-column ct|RowB(t−1)

i
one by one, all index blocks B(t)

i
containing column index t are merged into one single index block. At the end of
iteration t, we get an equivalent matrix A with A≤t being totally diagonalized with
index blocks B(t).

2(b). Block reduce: To update the entries of each sub-column of ct described in 2(a), we
propose a block reduction algorithm ALgorithm 3:BlockReduce to compute the cor-
rect entries. Given T :=

[
Row(B(t−1)

i ), (Col(A≤t) \ Col(B(t−1)
i ))

]
, this routine checks

whether the block T can be zeroed out by some collection of admissible operations.
If so, ct does not join the block B(t)

i and A is updated with these operations.

For two index blocks B1, B2, we denote the merging B1 ⊕ B2 of these two index blocks as
an index block

[
Row(B1) ∪ Row(B2), Col(B1) ∪ Col(B2)

]
. In the following algorithm, we treat

the given matrix A to be a global variable which can be visited and modified anywhere by every
subroutines called. Consequently, every time we update values on A by some operations, these
operations are applied to the latest A.

The outer loop is the incremental step for main iteration introducing a new column ct which
updates the diagonalization of A≤t from the last iteration. The inner loop corresponds to block
updates which checks the intersection of the current column and the rows of each previous block
one by one.

Remark 5. The algorithm TotDiagonalize does not require the input presentation matrix to be
minimal. As indicated in Remark 3, the trivial parts result in either identity blocks or single
column blocks like

[
∅, { j}

]
. Such a single column block corresponds to a zero morphism and

is not merged with any other blocks. Therefore, c j is a zero column. For a single row block[
{i}, ∅

]
which is not merged with any other blocks, ri is a zero row vector. It represents a free

indecomposable submodule in the total decomposition of the input persistence module.

We first prove the correctness of TotDiagonalize assuming that BlockReduce routine works
as claimed, namely, it checks if a sub-column of the current column ct can be zeroed out while
preserving the prior, that is, without changing the left submatrix from the previous iteration and
also the other sub-columns of ct that have already been zeroed out.

Proposition 4. At the end of each iteration t, A≤t is a total diagonalization.

Proof. We prove it by induction on t. For the base case t = 0, it follows trivially by definition.
Now assume A(t−1) is the matrix we get at the end of iteration (t − 1) with A(t−1)

≤t−1 being totally
diagonalized. That means, A(t−1)

≤t−1 = A∗
≤t−1 where A = A(0) is the original given matrix. For
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Algorithm 1 TotDiagonalize(A)

Input:
A = input matrix treated as a global variable whose columns and rows are totally ordered

respecting some fixed partial order given by the grading.
Output:

A total diagonalization A∗ with index blocks B∗

1: B(0) ← {B(0)
i :=

[
{i},∅

]
| i ∈ Row(A)}

2: for t ← 1 to m := |Col(A)| do
3: B(t)

0 ←
[
∅, {t}

]
4: for each B(t−1)

i ∈ B(t−1) do
5: T :=

[
Row(B(t−1)

i ), Col(A≤t) \ Col(B(t−1)
i )

]
6: if BlockReduce (T )== false then
7: B(t)

i ← B(t−1)
i ⊕ B(t)

0 ; \∗update Bi by appending t∗\
8: else
9: B(t)

i ← B(t−1)
i ; \∗Bi remains unchanged∗\

10: \∗ A and ct are updated in Blockreduce when it return true∗\
11: end if
12: end for
13: B(t) ← {B(t)

i } with all B(t)
i containing t merged as one block.

14: end for
15: Return (A,B(m))

contradiction, assume at the end of iteration t, the matrix we get, A(t), has left submatrix A(t)
≤t

which is not a totally diagonalized. That means, some index block B ∈ B(t) can be decomposed
further. Observe that such B must contain t because all other index blocks (not containing t) in
B(t) are also in B(t−1) which cannot be decomposed further by our inductive assumption. We
denote this index block containing t as Bt. Let A′ be the equivalent matrix of A(t) such that A′≤t is
a total diagonalization with index blocks B′. Let F be an equivalent transformation from A(t) to
A′, which decomposes Bt into at least two distinct index blocks of B′, say B0, B1, · · · . Only one
of them contains t, say B0. Then B1 consists of only indices that are from A≤t−1, which means
B1 equals some index block Bi ∈ B(t−1). Therefore, the transformation F gives a sequence of
admissible operations which can reduce the sub-column ct|Row(Bi) to zero in A(t). Starting with
this sequence of admissible operations, we construct another sequence of admissible operations
which further keeps A(t)

≤t−1 unchanged to reach the contradiction. Note that A(t)
≤t−1 = A(t−1)

≤t−1.
Observe that all index blocks of B′ other than B0 are also index blocks in B(t−1), i.e. B′\{B0} ⊆

B(t−1). For B0, it can be written as B0 =
⊕

B j∈B(t−1)\B′
B j ⊕ [∅, {t}]. Let Ba be the merge of index

blocks that are in A(t−1) and also in A′ and Bb be the merge of the rest of the index blocks of A(t−1),
i.e., Ba =

⊕
B j∈B′∩B(t−1) B j and Bb =

⊕
B j∈B(t−1)\B′

B j. Then Ba and Bb can be viewed as a coarser

decomposition on A(t−1)
≤t−1 and also on A′

≤t−1. By taking restrictions, we have A′|Ba ∼ A(t−1)|Ba

with equivalent transformation Fa and A′|Bb ∼ A(t−1)|Bb with equivalent transformation Fb. Then
Fa gives a sequence of admissible operations with indices in Ba and Fb gives a sequence of ad-
missible operations with indices in Bb. By applying these operations on A′, we can transform
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A′
≤t−1 to A(t−1)

≤t−1 with sub-column [Row(A) \ Row(B0), {t}] unchanged, which consists of the sub-
columns that have already been reduced to zero. Combining all admissible operations from the
three transformations F, Fa and Fb together, we get a sequence of admissible operations that re-
duce sub-column [Row(Bi), {t}] to zero without changing A(t)

<t and also those sub-columns which
have already been reduced. But, then BlockReduce would have returned ‘true’ signaling that Bi

should not be merged with any other block required to form the block Bt reaching a contradic-
tion. �

Now we design the BlockReduce subroutine as required. With the requirement of prior
preservation, observe that reducing the sub-column ct|RowB for some B ∈ B(t−1) is the same as
reducing T = [Row(B), (Col(A≤t) \ Col(B))] called the target block (see Figure 14.9 on right).
The main idea of BlockReduce is to consider a specific subset of admissible operations called
independent operations. Within A≤t, these operations only change entries in T and this change is
independent of their order of application. The BlockReduce subroutine is designed to search for
a sequence of admissible operations within this subset and reduce T with it, if it exists. Clearly,
the prior is preserved with these operations. The only thing we need to ensure is that searching
within the set of independent operations is sufficient. That means, if there exists a sequence of ad-
missible operations that can reduce T to 0 and meanwhile preserves the prior, then we can always
find one such sequence with only independent operations. This is what we show next.

Consider the following matrices for each admissible operation. For each admissible column
operation ci → c j, let

Yi, j := A·[δi, j]

where [δi, j] is the m×m square matrix with only one non-zero entry at (i, j). Observe that A·[δi, j]
is a matrix with the only nonzero column at j with entries copied from ci in A. Similarly, for each
admissible row operation rl → rk, let [δk,l] be the ` × ` matrix with only non-zero entry at (k, l).
let

Xk,l := [δk,l]·A

Application of a column operation ci → c j can be viewed as updating A to A·(I+ [δi, j]) = A+

Yi, j. Similar observation holds for row operations as well. For a target block T = [Row(B),Col(A≤t)\
Col(B)] defined on some B ∈ B(t−1), we say an admissible column (row) operation, ci → c j

(rl → rk resp.) is independent on T if i < Col(T ), j ∈ Col(T ) (l < Row(T ), k ∈ Row(T ) resp.).
Briefly, we just call such operations independent operations if T is clear from the context.

We have two observations about independent operations that are important. The first one
follows from the definition that T = [Row(B), Col(A≤t) \ Col(B)].

Observation 1. Within A≤t, an independent column or row operation only changes entries on T .

Observation 2. For any independent column operation ci → c j and row operation rl → rk, we
have [δk,l]·A·[δi, j] = 0. Or, equivalently

(I + [δk,l])·A·(I + [δi, j]) = A + [δk,l]A + A[δi, j] = A + Xk,l + Yi, j (14.1)

Proof. [δk,l]·A·[δi, j] = Al,i[δk, j] (see Fig 14.10 for an illustration). By definitions of independence
and T , we have l < Row(B), i ∈ Col(B). That means they are row index and column index from
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rk

rl

ci cj

Al,i

Figure 14.10: [δk,l]A[δi, j] is a matrix with the only nonzero entry at (k, j) being a copy of Al,i.

different blocks. Therefore, Al,i = 0. �

The following proposition reveals why we are after the independent operations.

Proposition 5. The target block A|T can be reduced to 0 while preserving the prior if and only if
A|T can be written as a linear combination of independent operations. That is,

A|T =
∑

l<Row(T )
k∈Row(T )

αk,lXk,l|T +
∑

i<Col(T )
j∈Col(T )

βi, jYi, j|T

where αk,l’s and βi, j’s are coefficient in k = Z2.

The full proof can be seen in [10]. Here, we give some intuitive explanation. Reducing the
target block A|T to 0 is equivalent to finding matrices P and Q encoding sequences of admissible
row operations and admissible column operations respectively so that PAQ|T = 0. For⇐ direc-
tion, we can build P = I +

∑
αk,l[δk,l] and Q = I +

∑
βi, j[δi, j] with binary coefficients αk,l’s and

βi, j’s given in Eqn. (5). Then using Observations 1 and 2, one can show PAQ indeed reduces A|T
to 0 with the prior being preserved. This provides the proof for the ‘if’ direction.

For ‘only if’ direction, as long as we show that the existence of a transformation reducing A|T
to 0 implies the existence of a transformation reducing A|T to 0 by independent operations, we
are done. This is formally proved in [10].

We can view A|T ,Yi, j|T ,Xk,l|T as binary vectors in the same |T |-dimensional space. Propo-
sition 5 tells us that it is sufficient to check if A|T can be a linear combination of the vectors
corresponding to a set of independent operations. So, we first linearize each of the matrices
Yi, j|T ’s, Xk,l|T ’s, and A|T to a column vector as described later (see Figure 14.11). Then, we
check if A|T is in the span of Yi, j|T ’s and Xk,l|T ’s. This is done by collecting all vectors Xi, j|T ’s
and Yk,l|T ’s into a matrix S called the source matrix (Figure 14.11(right)) and then reducing the
vector c := A|T with S by some standard matrix reduction algorithm with left-to-right column
additions, which we have seen before for computing persistence. This routine is presented in
Algorithm 2:ColReduce (S, c) which reduces the column c w.r.t. the input matrix S by reducing
the matrix [S|c] altogether by MatPersistence that we described previously (Topic 5).

If c = A|T can be reduced to 0, we apply the corresponding independent operations to update
A. Observe that all column operations used in reducing A|T together only change the sub-column
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ct|Row(B) while row operations may change A to the right of the column t. We say this procedure
reduces c with S.

Algorithm 2 ColReduce(S, c)

Input:
Source matrix S and target column c to reduce

Output:
Reduced column c with S

1: S′ ← [S|c]
2: Call MatPersistence(S′);
3: return c along with indices of columns in S used for reduction of c

Fact 1. There exists a set of column operations adding a column only to its right such that the
matrix [S|c] is reduced to [S′|0] if and only if ColReduce(S, c) returns a zero vector.

000 00

cjci

cj := ci

A

Lin(A)T

Yij

Lin(Yij)T

ck := c`

cj := ci

cj := ct

ST

Figure 14.11: (top) Matrix A is linearized to the vector Lin(A) in middle; (bottom) the column
operation ci → c j is captured by Yi j whose linearization is illustrated in middle; (right) source
matrix S combining all operations (row operations not shown). In the picture, (·)T denotes trans-
posed matrices.

Now we describe the linearization used in in Algorithm 3:BlockReduce. We fix a linear order
≤Lin on the set of matrix indices, Row(A) × Col(A), as follows: (i, j) ≤Lin (i′, j′) if j > j′ or
j = j′, i < i′. Explicitly, we linearly order the indices as:

((1,m), (2,m), . . . , (`, n), (1,m − 1), (2,m − 1), . . . ).

For any index block B, let Lin(A|B) be the vector of dimension |Col(B)| · |Row(B)| obtained by
linearizing A|B to a vector in the above linear order on the indices.

Proposition 6. The target block on T can be reduced to zero in A while preserving the prior if
and only if BlockReduce(T ) returns true.

Time complexity. First we analyze the time complexity of TotDiagonalize assuming that the
input matrix has size ` ×m. Clearly, max{`,m} = O(N) where N is the total number of generators
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Algorithm 3 BlockReduce(T )

Input:
Index of target block T to be reduced; Given matrix A is assumed to be a global variable

Output:
A boolean to indicate whether A|T can be reduced and reduced block A|T if possible.

1: Compute c := Lin(A|T ) and initialize empty matrix S
2: for each admissible column operation ci → c j with i < Col(T ), j ∈ Col(T ) do
3: compute Yi, j|T := (A·[δi, j])|T and yi, j = Lin(Yi, j|T ); update S← [S|yi, j]
4: end for
5: for each admissible row operation rl → rk with l < Row(T ), k ∈ Row(T ) do
6: compute Xk,l|T := ([δk,l]·A)|T and xk,l := Lin(Xk,l|T ); update S← [S|xk,l]
7: end for
8: ColReduce (S, c) returns indices of yi, j’s and xk,l’s used to reduce c (if possible)
9: For every returned index of yi, j or xk,l apply ci → c j or rl → rk to transform A

10: return A|T == 0

and relations. For each of O(N) columns, we attempt to zero out every sub-column with row
indices coinciding with each block B of the previously determined O(N) blocks. Let B has NB

rows. Then, the block T has NB rows and O(N) columns.
To zero-out a sub-column, we create a source matrix out of T which has size O(NNB) ×

O(N2) because each of O(
(

N
2

)
) possible operations is converted to a column of size O(NNB) in

the source matrix. The source matrix S with the target vector c can be reduced with an efficient
algorithm [4, 17] in O(a + N2(NNB)ω−1) time where a is the total number of nonzero elements in
[S|c] and ω ∈ [2, 2.373) is the exponent for matrix multiplication. We have a = O(NNB · N2) =

O(N3NB). Therefore, for each block B we spend O(N3NB + N2(NNB)ω−1) time. Then, observing∑
B∈B NB = O(N), for each column we spend a total time of∑

B∈B

O(N3NB + N2(NNB)ω−1) = O(N4 + Nω+1
∑
B∈B

Nω−1
B ) = O(N4 + N2ω) = O(N2ω).

Therefore, counting for all of the O(N) columns, the total time for decomposition takes O(N2ω+1)
time.

We finish this analysis by commenting that one can build the presentation matrix from a given
simplicial filtration consisting of n simplices leading to the following cases: (i) For 0-th homology,
the boundary matrix ∂1 can be taken as the presentation matrix giving N = O(n) and a total time
complexity of O(n2ω+1); (ii) for 2-parameter case, N = O(n) and presentations can be computed
in O(n3) time giving a total time complexity of O(n2ω+1); (iii) for d-parameter case, N = O(nd−1)
and a presentation matrix can be computed in O(nd+1) time giving a total time complexity of
O(n(2ω+1)(d−1)). We discuss the details in Section 14.5.
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14.4.1 Running TotDiagonalize on the working example in Figure 14.5

Example 2. Consider the binary matrix after simplification as illustrated in Example 1.


A c(1,1)

1 c(1,2)
2 c(2,1)

3

r(0,1)
1 1 1 0

r(1,0)
2 1 0 1

r(1,1)
3 0 1 1


with 4 admissible operations: r3 → r1, r3 → r2, c1 → c2, c1 → c3. The matrix remains the same
after the first column c1 is processed in TotDiagonalize.

er eb e′g
vb

vr

v′g

(1,1) (2,1) (1,2)

(0,1)

(1,0)

(1,1)

=

er eb eg
(1,1) (2,1) (1,2)

∂U V∂∗

Figure 14.12: Diagonalizing the binary matrix given in Example 1. It can be viewed as multiply-
ing the original matrix ∂ with a left matrix U that represents the row operation and a right matrix
V that represents the column operations.

Before the first iteration, B is initialized to be B = {B1 = ({1},∅), B2 = ({2},∅), B3 =

({3},∅)}. In the first iteration when t = 1, we have block B0 = (∅, {1}) for column c1. For B1 =

({1},∅), the target block we hope to zero out is T = ({1}, {1}). So we call BlockReduce(T ) to check
if A|T can be zeroed out and update the entries on T according to the results of BlockReduce(T ).
There is only one admissible operation from outside of T into it, namely, r3 → r1. The target
vector c = Lin(A|T ) and the source matrix S = {Lin(([δ1,3]A)|T )} are:

[S Lin(([δ1,3]A)|T ) c=Lin(A|T )

0 1
]

The result of ColReduce(S, c) stays the same as its input. That means we cannot reduce c at all.
Therefore, BlockReduce(T, t) returns false and nothing is updated in the original matrix.

It is not surprising that the matrix remains the same because the only admissible operation
that can affect T does not change any entries in T at all. So there is nothing one can do to
reduce it, which results in merging B1 ⊕ B0 = ({1}, {1}). Similarly, for B2 with T = ({2}, {1}),
the only admissible operation r3 → r2 does not change anything in T . Therefore, the matrix
does not change and B2 is merged with B1 ⊕ B0, which results in the block ({1, 2}, {1}). For
B3 with T = ({3}, {1}), there is no admissible operation. So the matrix does not change. But
A|T = A|({3},{1}) = 0. That means BlockReduce returns true. Therefore, we do not merge B3. In
summary, B0, B1, B2 are merged to be one block ({1, 2}, {1}) in the first iteration. So after the first
iteration, there are two index blocks in B(1): ({1, 2}, {1}) and ({3},∅).



Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 23

In the second iteration t = 2, we process the second column c2. Now B1 = ({1, 2}, {1}), B2 =

({3},∅) and B0 = (∅, {2}). For the block B1 = ({1, 2}, {1}), the target block we hope to zero out is
T = ({1, 2}, {2}). There are three admissible operations from outside of T into T , r3 → r1, r3 →

r2, c1 → c2. BlockReduce(T ) constructs the target vector c = Lin(A|T ) and the source matrix
S = {Lin(([δ1,3]A)|T ), Lin(([δ2,3]A)|T ), Lin((A[δ1,2])|T )} illustrated as follows:

[S Lin(([δ1,3]A)|T ) Lin([(δ2,3]A)|T ) Lin((A[δ1,2])|T ) c=Lin(A|T )

1 0 1 1
0 1 1 0

]
The result of ColReduce(S, c) is

[ S c

1 0 0 0
0 1 0 0

]
So the BlockReduce updates A|T to get the following updated matrix:


A′ c(1,1)

1 c(1,2)
2 c(2,1)

3

r(0,1)
1 + r(1,1)

3 1 0 1
r(1,0)

2 1 0 1
r(1,1)

3 0 1 1


and returns true since A′|T == 0. Therefore, we do not merge B1. We continue to check for
the block B2 = ({3},∅) and T = ({3}, {1, 2}), whether A′|T can be reduced to zero. There is no
admissible operation for this block at all. Therefore, the matrix stays the same and BlockReduce
returns false. We merge B2 ⊕ B0 = ({3}, {2}).

Continuing the process for the last column c3 in the third iteration t = 3, we see that B1 =

({1, 2}, {1}), B2 = ({3}, {2}) and B0 = (∅, {3}). For the block B1 = ({1, 2}, {1}), the target block we
hope to zero out is T = ({1, 2}, {2, 3}). There are four admissible operations from outside of T into
T , r3 → r1, r3 → r2, c1 → c2, c1 → c3. BlockReduce(T ) constructs the target vector c = Lin(A|T )
and the source matrix S = {Lin(([δ1,3]A)|T ), Lin(([δ2,3]A)|T ), Lin((A[δ1,2])|T )}, Lin((A[δ1,3])|T )} il-
lustrated as follows:


S Lin(([δ1,3]A)|T ) Lin([(δ2,3]A)|T ) Lin((A[δ1,2])|T ) Lin((A[δ1,3])|T ) c=Lin(A|T )

1 0 0 1 1
0 1 0 1 1
1 0 1 0 0
0 1 1 0 0


The result of ColReduce(S, c) is


S c

1 0 1 0 0
0 1 1 0 0
1 0 0 0 0
0 1 0 0 0


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So the BlockReduce updates A|T to get the following updated matrix:


A′ c(1,1)

1 c(1,2)
2 + c(1,1)

1 c(2,1)
3

r(0,1)
1 1 0 0

r(1,0)
2 + r(1,1)

3 1 0 0
r(1,1)

3 0 1 1


and returns true since A′|T == 0. Therefore, we do not merge B1 with any other block. We
continue to check for the block B2 = ({3}, {2}) and T = ({3}, {1, 3}), whether A′|T can be reduced
to zero. There is no admissible operation for this block at all. Therefore, the matrix stays the same
and BlockReduce returns false. We merge B2 ⊕ B0 = ({3}, {2, 3}).

Finally the algorithm returns the matrix A′ shown above as the final result. It is the correct
total diagonalization with two index blocks in BA∗: B1 = ({1, 2}, {1}) and B2 = ({3}, {2, 3}). An
examination of ColReduce(S, c) in all three iterations over columns reveals that the entire matrix
A is updated by operations r3 → r2 and c1 → c2. We can further transform it back to the original
form of the presentation matrix [∂1]. Observe that a row addition ri ← ri + r j reverts to a basis
change in the opposite direction.


[∂1] e(1,1)

r e(1,2)
b e(2,1)

g

v(0,1)
b t(1,0) t(1,1) 0

v(1,0)
r t(0,1) 0 t(1,1)

v(1,1)
g 0 t(0,1) t(1,0)


=⇒ 

[∂1]∗ e(1,1)
r e(1,2)

b + t(0,1)e(1,1)
r e(2,1)

g

v(0,1)
b t(1,0) 0 0

v(1,0)
r t(0,1) 0 0

v(1,1)
g + t(0,1)v(1,0)

r 0 t(0,1) t(1,0)


14.5 Computing presentations

Now that we know how to decompose a presentation by diagonalizing its matrix form, we describe
how to construct and compute these matrices in this section. For a persistence module Hp with
p-th homology groups, we consider a presentation Cp+1 → Zp � Hp → 0 where Cp+1 is a graded
module of (p + 1)-chains and Zp is a graded module of p-cycles which we describe now. Recall
that a (d-parameter) simplicial filtration is a family of simplicial complexes {Xu}u∈Zd such that for
each grade u ∈ Zd and each i = 1, · · · , d, Xu ⊆ Xu+ei .

14.5.1 Graded chain, cycle, and boundary modules

We obtain a simplicial chain complex (C·(Xu), ∂·) for each Xu in the given simplicial filtration. For
each comparable pairs in the grading u ≤ v ∈ Zd, a family of inclusion maps C·(Xu) ↪→ C·(Xv) is
induced by the canonical inclusion Xu ↪→ Xv giving rise to the following diagram:
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C·(Xu) : · · · Cp+1(Xu) Cp(Xu) Cp−1(Xu) · · ·

C·(Xv) : · · · Cp+1(Xv) Cp(Xv) Cp−1(Xv) · · ·

∂p+2 ∂p+1 ∂p ∂p−1

∂p+2 ∂p+1 ∂p ∂p−1

For each chain complex C·(Xu), we have the cycle spaces Zp(Xu)’s and boundary spaces
Bp(Xu)’s as kernels and images of boundary maps ∂p’s respectively, and the homology group
Hp(Xu) = Zp(Xu)/Bp(Xu) as the cokernel of the inclusion maps Bp(Xu) ↪→ Zp(Xu). In line with
category theory we use the notations im , ker, coker for indicating both the modules of kernel,
image, cokernel and the corresponding morphisms uniquely determined by their constructions3.
We obtain the following commutative diagram:

Bp(Xu) Zp(Xu) Hp(Xu)

· · ·Cp+1(Xu) Cp(Xu) · · ·

ker ∂p

coker

∂p+1

im ∂p+1

In the language of graded modules, for each p, the family of vector spaces and linear maps (in-
clusions) ({Cp(Xu)}u∈Zd , {Cp(Xu) ↪→ Cp(Xv)}u≤v) can be summarized as a Zd-graded R-module:

Cp(X) :=
⊕
u∈Zd

Cp(Xu), with the ring action ti · Cp(Xu) : Cp(Xu) ↪→ Cp(Xu+ei) ∀i, ∀u.

That is, the ring R acts as the linear maps (inclusions) between pairs of vector spaces in Cp(X·)
with comparable grades. It is not too hard to check that this Cp(X·) is indeed a graded module.
Each p-chain in a chain space Cp(Xu) is a homogeneous element with grade u.

Then we have a chain complex of graded modules (C∗(X), ∂∗) where ∂∗ : C∗(X) → C∗−1(X)
is the boundary morphism given by ∂∗ ,

⊕
u∈Zd ∂∗,u with ∂∗,u : C∗(Xu) → C∗−1(Xu) being the

boundary map on C∗(Xu).
The kernel and image of a graded module morphism are also graded modules as submodules

of domain and codomain respectively whereas the cokernel is a quotient module of the codomain.
They can also be defined grade-wise in the expected way:

For f : M → N, (ker f )u = ker fu, (im f )u = im fu, (coker f )u = coker fu.

All the linear maps are naturally induced from the original linear maps in M and N. In our
chain complex cases, the kernel and image of the boundary morphism ∂p : Cp(X) → Cp−1(X)
is the family of cycle spaces Zp(X) and family of boundary spaces Bp−1(X) respectively with
linear maps induced by inclusions. Also, from the inclusion induced morphism Bp(X) ↪→ Zp(X),
we have the cokernel module Hp(X), consisting of homology groups

⊕
u∈Zd Hp(Xu) and linear

maps induced from inclusion maps Xu ↪→ Xv for each comparable pairs u ≤ v. This Hp(X)
is the persistence module M which we decompose. Classical persistence modules arising from a
filtration of a simplicial complex over Z is an example of a 1-parameter persistence module where
the action t1 · Mu ⊆ Mu+e1 signifies the linear map Mu → Mv between homology groups induced
by the inclusion of the complex at u into the complex at v = u + e1.

3e.g. ker ∂p denotes the inclusion of Zp into Cp
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In our case, we have chain complex of graded modules and induced homology groups which
can be succinctly described by the following diagram:

Bp(X) Zp(X) Hp(X) Bp−1(X) Zp−1(X) Hp−1(X)

· · ·Cp+1(X) Cp(X) Cp−1(X) · · ·

ker(∂p) ker ∂p−1

∂p+1

im ∂p+1

∂p

im ∂p

An assumption. We always assume that the simplicial filtration is 1-critical, which means that
each simplex has a unique earliest birth time. For the case which is not 1-critical, called multi-
critical, one may utilize the mapping telescope, a standard algebraic construction [13], which
transforms a multi-critical filtration to a 1-critical one. However, notice that this transformation
increases the input size depending on the multiplicity of the incomparable birth times of the
simplices. For 1-critical filtrations, each module Cp is free. With a fixed basis for each free
module Cp, a concrete matrix [∂p] for each boundary morphism ∂p based on the chosen bases can
be constructed.

With this input, we discuss our strategies for different cases that depend on two parameters,
d, the number of parameters of filtration function, and p, the dimension of the homology groups
in the persistence modules.

Note that a presentation gives an exact sequence F1 → F0 � H → 0. To reveal further
details of a presentation of H, we recognize that it respects the following commutative diagram,

Y1

F1 F0 H

ker f 0

f 1

im f 1

f 0=coker f 1

where Y1 ↪→ F0 is the kernel of f 0. With this diagram being commutative, all maps in
this diagram are essentially determined by the presentation map f 1. We call the surjective map
f 0 : F0 → H generating map, and Y1 = ker f 0 the 1st syzygy module of H.

14.5.2 Multiparameter filtration, zero-dimensional homology

In this case p = 0 and d > 0. In this case, we obtain a presentation matrix straightforwardly with
the observation that the module Z0 of cycle spaces coincides with the module C0 of chain spaces.

• Presentation: C1 C0 H0
∂1 coker∂1

• Presentation matrix = [∂1] is given as part of the input.

Justification. For p = 0, the cycle module Z0 = C0 is a free module. So we have the presentation
of H0 as claimed. It is easy to check that ∂1 : C1 → C0 is a presentation of H0 since both C1 and
C0 are free modules. With standard basis of chain modules Cp’s, we have a presentation matrix
[∂1] as the valid input to our decomposition algorithm.

The 0-th homology in our working example (Figure 14.5) corresponds to this case. The
presentation matrix is the same as the matrix of boundary morphism ∂1.
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14.5.3 2-parameter filtration, multi-dimensional homology

In this case, d = 2 and p ≥ 0. Lesnick and Wright [22] present an algorithm to compute a
presentation, in fact a minimal presentation, for this case. When d = 2, by Hilbert Syzygy
Theorem [14], the kernel of a morphism between two free graded modules is always free. This
implies that the canonical surjective map Zp � Hp from free module Zp can be naturally chosen
as a generating map in the presentation of Hp. In this case we have:

• Presentation: Cp+1 Zp Hp
∂̄p+1 coker∂̄p+1

where ∂̄p+1 is the induced map from the dia-
gram:

Bp Zp Hp

Cp+1 Cp

ker ∂p

∂p+1

im ∂p+1
∂̄p+1

• Presentation matrix = [∂̄p+1] is constructed as follows:

1. Compute a basis G(Zp) for the free module Zp where G(Zp) is presented as a set of
generators in the basis of Cp. This can be done by an algorithm in [22]. Take G(Zp)
as the row basis of the presentation matrix [∂̄p+1].

2. Present im ∂p+1 in the basis of G(Zp) to get the presentation matrix [∂̄p+1] of the
induced map as follows. Originally, im ∂p+1 is presented in the basis of Cp through
the given matrix [∂p+1]. One needs to rewrite each column of [∂p+1] in the basis G(Zp)
computed in the previous step. This can be done as follows. Let [G(Zp)] denote the
matrix presenting basis elements in G(Zp) in the basis of Cp. Let c be any column
vector in [∂p+1]. We reduce c to zero vector by the matrix [G(Zp)] and note the
columns that are added to c. These columns provide the necessary presentation of c
in the basis G(Zp). This reduction can be done by the persistent algorithm described
earlier.

Justification. Unlike p = 0 case, for p > 0, we just know Zp is a (proper) submodule of Cp,
which means that Zp is not necessarily equal to the free module Cp. However, fortunately for
d = 2, the module Zp is free, and we have an efficient algorithm to compute a basis of Zp as the
kernel of the boundary map ∂p : Cp → Cp−1. Then, we can construct the following presentation
of Hp:

Bp

Cp+1 Zp Hp 0∂̄p+1

im ∂p+1

coker∂̄p+1

Here the ∂̄p+1 is an induced map from ∂p+1. With a fixed basis on Zp and standard basis of Cp+1,
we rewrite the presentation matrix [∂p+1] to get [∂̄p+1], which constitutes a valid input to our
decomposition algorithm.
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(0, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1) (1, 1, 1)

Figure 14.13: An example of a filtration of simplicial complex for d = 3 with non-free Z when
p = 1. The three red cycles are three generators in Z1. However, at grading (1, 1, 1), the earliest
time these three red cycles exist simultaneously, there is a relation among these three generators.

14.5.4 d > 2-parameter filtration, multi-dimensional homology

The above construction of presentation matrix cannot be extended straightforwardly to d-parameter
persistence modules d > 2. Unlike the case in d ≤ 2, the cycle module Z is not necessarily free
when d > 2. The issue caused by non-free Z is that, if we use the same presentation matrix as
we did in the previous case with free Z, we may lose some relations coming from the inner rela-
tions of a generating set of Z. One can fix this problem by adding these inner relations into the
presentation matrix as detailed in [10]. It is more complicated and we skip it here.

Figure 14.13 shows a simple example of a filtration of simplicial complex whose persistence
module Hp for p = 1 is a quotient module of non-free module Z. The module H1 is generated
by three 1-cycles presented as g(0,1,1)

1 , g(1,0,1)
2 , g(1,1,0)

3 . But when they appear together in (1, 1, 1),
there is a relation between these three: t(1,0,0)g(0,1,1)

1 + t(0,1,0)g(1,0,1)
2 + t(0,0,1)g(1,1,0)

3 = 0. Although
im ∂1 = 0, we still have a nontrivial relation from Z. So, we have H1 =< g(0,1,1)

1 , g(1,0,1)
2 , g(1,1,0)

3 :
s(1,1,1) = t(1,0,0)g(0,1,1)

1 + t(0,1,0)g(1,0,1)
2 + t(0,0,1)g(1,1,0)

3 >. The presentation matrix turns out to be the
following:


s(1,1,1)

g(0,1,1)
1 t(1,0,0)

g(1,0,1)
2 t(0,1,0)

g(1,1,0)
3 t(0,0,1)


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14.5.5 Time complexity

Now we consider the time complexity for computing presentation and decomposition together.
Let n be the size of the input filtration, that is, total number of simplices obtained by counting at
most one new simplex at a grid point of Zd. We consider three different cases as before:

Multi-parameter, 0-th homology: In this case, the presentation matrix [∂1] where ∂1 : C1 → C0
has size O(n) × O(n), that is, N = O(n). Therefore, the total time complexity for this case is
O(n2ω+1).

2-parameter, multi-dimensional homology: In this case, as described in section 14.5.3, first
we compute a basis G(Zp) that is presented in the basis of Cp. This is done by the algorithm of
Lesnick and Wright [22] which runs in O(n3) time. Using [G(Zp)], we compute the presentation
matrix [∂̄p+1] as described in section 14.5.3. This can be done in O(n3) time assuming that G(Zp)
has at most O(n) elements. The presentation matrix is decomposed with TotDiagonalize as in the
previous case. However, to claim that it runs in O(n2ω+1) time, one needs to ensure that the basis
G(Zp) has O(n) elements. This follows from the fact that Zp being a free submodule of Cp cannot
have a rank larger than that of Cp. In summary, the total time complexity in this case becomes
O(n3) + O(n2ω+1) = O(n2ω+1).

d-parameter, d ≥ 2, multi-dimensional homology: For d-parameter persistence modules where
d ≥ 2 (this subsumes the previous case), an algorithm that runs in time O(nd+1) and produces a
presentation matrix of dimensions O(nd−1) × O(nd−1) can be designed using a result of Skryza-
lin [27]; see [10]. Plugging N = O(nd−1) and taking the computation of presentation matrix into
consideration, we get a time complexity bound of O(nd+1) + O(n(2ω+1)(d−1)) = O(n(2ω+1)(d−1)).

14.6 Invariants

For a given persistence module, it is useful to compute invariants that in some sense summarize
the information contained in them. Ideally, these invariants should characterize the input mod-
ule completely, meaning that the two invariants should be equal if and only if the modules are
isomophic. Persistence diagrams for 1-parameter tame persistence modules are such invaraints.
For multiparameter persistence modules, no such complete invariants exist that are finite and
hence computable. However, we can still aim for invariants that are computable and characterize
the modules in some limited sense, meaning that these invariants remain equal for isomorphic
modules though may not differentiate non-isomorphic modules. Of course, their effectiveness in
practice is determined by their discriminative power. We present two such invariants below: the
first one rank invariant was suggested in [6] whereas the second one graded Betti number was
brought to TDA by [19] and studied further in [21].

14.6.1 Rank invariants

Assume that the input graded module M is finitely generated as before and additionally finitely
supported. For this we need to define the support of M.

Definition 17 (Support). Let M be a Zd-graded module. Its support is defined as the graph
supp(M) = (V, E ⊆ V × V) where a node v ∈ V if and only if Mv , 0 and an edge (u, v) ∈ E if
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and only if (i) u < v and there is no s ∈ Zd satisfying u < s < v, and (ii) rank(Mu → Mv) , 0.
We say M is finitely supported if supp(M) is finite.

Fact 2. supp(M) is disconnected if there exist two grades u < v in supp(M) so that rank(Mu →

Mv) = 0.

For a finitely generated and supported module M, we can compute a finite number of ranks
of linear maps which collectively form the rank invariant of M. For two grades u � v, the linear
maps between Mu and Mv are not defined. In the following definitions, we take them as zero
maps.

Definition 18 (Rank invariant). Let ruv = rank(Mu → Mv) for every pair u, v ∈ supp(M) with
u ≤ v. The collection {ruv} is called the rank invariant of M.

Fact 3. Rank invariant of a 1-parameter module is a complete invariant. For a 1-parameter
persistence module Hp, it is given by persistent Betti numbers βi, j

p as defined earlier.

Although in 1-parameter case, the rank invariant provides complete information about the
module, it does not do so for multiparameter persistence modules. For example, it cannot provide
information about ‘birth’ and ‘death’ of the generators. This information can be deduced from a
wider collection of rank invariant data called multirank invariant where we compute ranks of the
linear maps between vector spaces at multiple grades. Multirank invariant is still not a complete
invariant.

Definition 19 (Multirank invariant). The collection {rUV} for every pair U ⊆ supp(M) and V ⊆
supp(M) where rUV = rank

(⊕
u∈U Mu →

⊕
v∈V Mv

)
is called the multirank invariant of M.

We can retrieve the information about birth and death of generators from the multirank. For a
grade u, define its immediate predecessors Pu and immediate successors S u as:

Pu = {u′ ∈ supp(M) |u′ < u and @u′′ with u′ < u′′ < u}
S u = {u′ ∈ supp(M) |u′ > u and @u′′ with u < u′′ < u′}.

Fact 4.

1. We have that m generators get born at grade u if and only if coker
(⊕

u′∈Pu
Mu′ → Mu

)
has

dimension m.

2. We have that m generators die leaving grade u if and only if ker
(
Mu →

⊕
u′∈S u

Mu′
)

has
dimension m.

Although multirank invariants cannot characterize a multiparameter persistence module com-
pletely in general, they do so for the special case of interval decomposable modules. We will
describe these modules in details in the next chapter. Here we introduce them briefly.

We call I ⊆ supp(M) an interval if I is connected and for every u, v ∈ I, if u < w < v,
then w ∈ I. We call a persistence module with support on an interval an interval module if Mu
is unit dimensional for each vertex u ∈ supp(M). A persistence module M is called interval
decomposable if there is a decomposition M =

⊕
Mi where each Mi is an interval module.

Fact 5. Two interval decomposable modules are isomorphic if and only if they have the same
multirank invariants.
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14.6.2 Graded Betti numbers and blockcodes

For 1-parameter persistence modules, the barcodes provide a complete invariant. For multipa-
rameter persistence, we first introduce an invariant called graded Betti number, which we refine
further to define persistent graded Betti numbers as a generalization of persistence diagrams. The
decomposition of a module also allows us to define blockcodes as a generalization of barcodes.
Both of them depend on the ideas of free resolution and graded Betti numbers which are well stud-
ied in commutative algebra and are first introduced in topological data analysis by Knudson [19].

Definition 20 (Free resolution). For a graded module M, a free resolution F → M is an exact
sequence:

· · · F2 F1 F0 M 0
f 2 f 1 f 0

where each Fi is a free graded R-
module.

Now we observe that a free resolution can be obtained as an extension of a free presentation.
Consider a free presentation of M as depicted below.

Y1

F1 F0 M

ker f 0

f 1

im f 1

f 0=coker f 1

If the presentation map f 1 has nontrivial kernel, we can find a nontrivial map f 2 : F2 → F1

with im f 2 = ker f 1, which implies coker f 2 � im f 1 = ker f 0 = Y1. Therefore, f 2 is in fact a
presentation map of the module Y1 which is so called the first syzygy module of M (named after
Hilbert’s famous syzygy theorem [14]). We can keep doing this to get f 3, f 4, . . . by constructing
presentation maps on higher order syzygy modules Y2,Y3, . . . of M, which results in a diagram
depicted below, which is gives a free resolution of M.

Y3 Y2 Y1

· · · F3 F2 F1 F0 M

ker f 2 ker f 1 ker f 0

f 3

im f 3

f 2

im f 2

f 1

im f 1

f 0=coker f 1

Free resolution is not unique. However, there exists an essentially unique minimal free resolu-
tion in the sense that any free resolution can be obtained by summing the minimal free resolution
with a free resolution of a trivial module. Below we give a construction to build a minimal free
resolution from a minimal free presentation. The proof that it indeed creates a minimal free
resolution can be found in [3, 26].

Construction of minimal free resolution. Choose a minimal set of homogeneous generators
g1, · · · , gn of M. Let F0 =

⊕n
i=1 R→gr(gi) with standard basis egr(g1)

1 , · · · , egr(gn)
n of F0. The ho-

mogeneous R-map f 0 : F0 → M is determined by f 0(ei) = gi. Now the 1st syzygy module

of M, Y1 F0ker f 0

, is again a finitely generated graded R-module. We choose a minimal set
of homogeneous generators y1, · · · , ym of Y1 and let F1 =

⊕m
j=1 R→gr(y j) with standard basis

e′gr(y1)
1 , · · · , e′gr(ym)

m of F1. The homogeneous R-map f 1 : F1 → F0 is determined by f 1(e′j) = y j.
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By repeating this procedure for Y2 = ker f 1 and moving backward further, one gets a graded free
resolution of M.

Definition 21 (Graded Betti numbers). Let F j be a free module in the minimal free resolution of
a graded module M. Let βM

j,u be the multiplicity of each grade u ∈ Zd in the multiset consisting of
the grades of homogeneous basis elements for F j. Then, the mapping βM

(−,−) : Z≥0 × Zd → Z≥0 is
an invariant called the graded Betti numbers of M.

For example, the graded Betti number of the persistence module for our working example in
Figure 14.5 is listed as Table 14.1.

βM (1,0) (0,1) (1,1) (2,1) (1,2) (2,2) · · ·

β0 1 1 1
β1 1 1 1
β2 1
β≥3

Table 14.1: All the nonzero graded Betti numbers βi,u are listed in the table. Empty items are all
zeros.

Definition 22 (Persistent graded Betti numbers). Let M '
⊕

Mi be a total decomposition of
a graded module M. We have for each indecomposable Mi, the refined graded Betti numbers
βMi

= {βMi

j,u | j ∈ N,u ∈ Zd}. We call the set PB(M) := {βMi
} the persistent graded Betti numbers

of M.

For the working example in Figure 14.5, the persistent graded Betti numbers are given in two
tables listed in Table 14.2.

βM1
(1,0) (0,1) (1,1) (2,1) (1,2) (2,2) · · ·

β0 1 1
β1 1
β≥2

βM2
(1,0) (0,1) (1,1) (2,1) (1,2) (2,2) · · ·

β0 1
β1 1 1
β2 1
β≥3

Table 14.2: Persistence grades PB(M) = {βM1
, βM2

}. All nonzero entries are listed in this table.
Blank boxes indicate 0 entries.

One way to summarize the information of graded Betti numbers is to use the Hilbert function,
which is also called dimension function [9] defined as:

dmM : Zd → Z≥0 dmM(u) = dim(Mu)
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Fact 6. There is a relation between the graded Betti numbers and dimension function of a persis-
tence module as follows:

∀u ∈ Zd, dmM(u) =
∑
v≤u

∑
j

(−1) jβ j,v

Then for each indecomposable Mi, we have the dimension function dmMi related to persistent
graded Betti numbers restricted to Mi.

Definition 23 (Blockcode). The set of dimension functions Bdm(M) := {dmMi} is called the
blockcode of M.

0 1 2

0

1

2

0 1 ≥ 2

0

1

≥ 2

0 1 ≥ 2

0

1

≥ 2

k k k

k k2 k

0 k k

t1 t1

t2

[t1,0]>

[t2,t2]

[t1,t1]

t2

0

0

t1

[t2,0]> t2

k k k

k k k

0 k k

t1 t1

t2

t1

t2

t1

t2

0

0

t1

t2 t2

0 0 0

0 k 0

0 0 0

0 0

0

0

t2

t1

0

0

0

0

0 0

Figure 14.14: (top) 2-parameter simplicial filtration for our working example in Figure 14.5.
dmM1 and dmM2: each colored square represents an 1-dimensional vector space k and each
white square represents a 0-dimensional vector space. In the middle picture M1 is generated by
v0,1

b , v1,0
r which are drawn as a blue dot and a red dot respectively. They are merged at (1, 1) by

the red edge er. In the right picture, M2 is generated by v(1,1)
g + t(0,1)v1,0

r which is represented by
the combination of the green circle and the red circle together at (1, 1). After this point (1, 1), the
generator is mod out to be zero by relation of eg starting at (2, 1), represented by the green dashed
line segment, and by relation of eb + t(0,1)er starting at (1, 2), represented by the blue dashed line
segment connected with the red dashed line segment.

For our working example, the dimension functions of indecomposable summands M1 and M2

are (see Figure 14.14 for the visualization):

dmM1(u) =

1 if u ≥ (1, 0) or u ≥ (0, 1)
0 otherwise

dmM2(u) =

1 if u = (1, 1)
0 otherwise

(14.2)
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We can read out some useful information from dimension functions on each indecompos-
able. We take the dimension functions of our working example as an example. For dmM1, two
connected components are born at the two left-bottom corners of the purple region. They are
merged together immediately when they meet at grade (1, 1). After that, they persist forever as
one connected component. For dmM2, one connected component born at the left-bottom corner
of the square green region. Later at the grades of left-top corner and right-bottom corner of the
green region, it is merged with some other connected component with smaller grades of birth.
Therefore, it only persists within this green region.

In general, both persistent graded Betti numbers and blockcodes are not sufficient to classify
multiparameter persistence modules, which means they are not complete invariants. As indicated
in [5], there is no complete discrete invariant for multiparameter persistence modules. However,
interestingly, these two invariants are indeed complete invariants for interval decomposable mod-
ules like this example, which we will study in the next chapter.

14.7 Notes and Exercises

In one of the first extensions of the persistence algorithm for 1-parameter, the authors in [1]
presented a matrix reduction based algorithm which applies to a very special case of commutative
ladder Cn for n ≤ 4 defined on a subgrid of Z2. This matrix construction and the algorithm are
very different from the one presented here. This algorithm may not terminate if the input does not
satisfy the stated assumption.

We have already mentioned that the Meataxe algorithm [24] known in the computational
algebra community can be used for more general modules and hence for persistence modules.
The main advantage of this algorithm is that it applies to general persistence modules, but a major
disadvantage is that it runs very slow. Even allowing approximation, the algorithm [16] runs in
O(N3(d+1) log q) time (or O(N4(d+1) log q) as conjectured in [15] because of some special cases
mentioned in [16]) where N is the number of generators and relations in the input module that is
defined with polynomial ring Zq[t1t2 . . . td].

Under suitable finiteness condition, the fact that persistence modules are indeed finitely pre-
sented graded modules over multivariate polynoimials was first recognized by Carlsson et al. [5, 6]
and Knudson [19] and further studied by Lesnick et al. [20, 22]. The graded module structure stud-
ied in algebraic geometry and commutative algebra [12, 23] encodes a lot of information and thus
can be leveraged for designing efficient algorithms. Lesnick and Wright [22] leveraged this fact
to design an efficient algorithm for computing minimal presentations for 2-parameter persistence
modules from an input filtration on a 2D grid. Recognizing the power of expressing persistence
modules in terms of presentations, Dey and Xin [10] proposed the decomposition algorithm using
matrix equivalents of presentations and their direct sums. The materials in this chapter are mostly
taken from this paper. This decomposition algorithm can be viewed as a generalization of the
classical persistence algorithm for 1-parameter though the matrix reduction technique is more in-
volved because it has to accommodate constraints on grades. The algorithm in [10] handled these
constraints using the technique of matrix linearization as described in Section 14.4.

As a generalization of the 1-parameter persistence algorithm, it is expected that our algorithm
can be interpreted as computing invariants such as persistence diagrams or barcodes. A roadblock
to this goal is that d-parameter persistence modules do not have complete discrete invariants for
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d ≥ 2 [6, 20] . Consequently, one needs to invent other invariants suitable for multiparameter
persistence modules. The rank invariants and multirank invariants described in Section 14.6.1
serve this purpose. There is a related notion of generalized persistence diagram introduced by
Patel [25] and further studied in [18].

One natural approach taking advantage of a decomposition algorithm would be to consider
the decomposition and take the discrete invariants in each indecomposable component. This gives
invariants which may not be complete but still contain rich information. We mentioned two in-
terpretations of the output of the algorithm presented in this chapter as two different invariants:
persistent graded Betti numbers as a generalization of persistence diagrams and blockcodes as a
generalization of barcodes. The persistent graded Betti numbers are linked to the graded Betti
numbers studied in commutative algebra brought to TDA by [19]. The bigraded Betti numbers
are further studied in [22]. By constructing the free resolution of a persistence module, we can
compute its graded Betti numbers and then decompose them according to each indecomposable
module, which results into the presistent graded Betti numbers. For each indecomposable, we
apply dimension function [9],which is also known as the Hilbert function in commutative alge-
bra to summarize the graded Betti numbers for each indecomposalbe module. This constitutes a
blockcode for indecomposable module of the persistence module. The blockcode is a good vehi-
cle for visualizing lower dimensional persistence modules such as 2- or 3-parameter persistence
modules. For details on these invariants, see [10].

Exercises

1. Using the matrix diagonalization algorithm as described in this chapter, devise an algo-
rithm to compute a minimal presentation of a 2-parameter persistence module given by a
simplicial filtration over Z2.

2. Give an example of a 2-parameter simplicial filtration over Z2 at least one of whose decom-
posables is not free.

3. Give an example of a 2-parameter simplicial filtration over Z2 at least one of whose decom-
posables does not have non-trivial vector spaces of same dimensions over all grades.

4. Give an example of a 2-parameter persistence module M with three generators and relations
that have the following properties: (i) M is indecomposable, (ii) M has two indecompos-
ables, (iii) M has three indecomposables.

5. Prove that the cycle module Zp arising from a 2-parameter simplicial filtration is always
free.

6. Design a polynomial time algorithm for computing decomposition of the persistence mod-
ule induced by a given simplicial filtration over Z2 when a simplex can be a generator at
different grades.

7. Let A be a presentation matrix with n generators and relations whose grades are distinct
and totally ordered. Design an O(n3) time algorithm to decompose such a presentation.
Interpret types of each indecomposable in such a case.
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8. The algorithm TotDiagonalize has been written assuming that the field of the polynomial
ring is Z2. Write it for a general finite field.

9. Design an efficient algorithm to compute the rank invariant of a module from the simplicial
filtration inducing it.

10. Prove that a 2-parameter persistence module M is an interval (see Section 14.6.1) if and
only if supp(M) is connected and each Mu for u ∈ supp(M) has dimension 1.

11. Suppose that a 2-parameter persistence module is given by a presentation matrix. Design an
algorithm to determine if M is interval or not without decomposing the input matrix (hint:
consider computing graded Betti numbers from the grades of the rows and columns of the
matrix).

12. Write a pseudocode for the construction of a minimal free resolution given in Section 14.6.2.
Analyze its complexity.
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