
Computational Topology for Data Analysis: Notes
from Book by

Tamal Krishna Dey
Department of Computer Science

Purdue University
West Lafayette, Indiana, USA 46907

Yusu Wang
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, California, USA 92093

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 1

Topic 5: Persistence algorithms
For computational purposes, we focus on simplicial filtrations because it is not always easy to
compute singular homology of topological spaces. The algorithms that compute the persistence
diagram from a given filtration are presented in Section 5.1. First, we introduce it assuming that
the input is presented combinatorially with simplices added one at a time in a filtration. The
algorithm pairs simplices, one creating and the other destroying an interval. Then, this pairing
is translated into matrix operations assuming that the input is a boundary matrix representing
the filtration. A more efficient version of the algorithm is obtained by some simple but effective
modification.

5.1 Persistence algorithm

First, we describe a combinatorial algorithm originally proposed in [10] and later present a version
of it in terms of matrix reductions. For simplicity, assume that the input is a simplex-wise filtration

∅ = K0 ↪→ K1 ↪→ K2 ↪→ · · · ↪→ Kn = K

where K j \ K j−1 = σ j is a single simplex for each j.

Fact 1. When a p-simplex σ j = K j \ K j−1 is added, exactly one of the following two possibilities
occurs:

1. A non-boundary p-cycle c along with its classes [c] +h for any class h ∈ Hp(K j−1) are born
(created). In this case we call σ j a positive simplex (also called a creator).

2. An existing (p − 1)-cycle c along with its class [c] dies (destroyed). In this case we call σ j

a negative simplex (also called a destructor).

To elaborate the above two changes consider the example depicted in Figure 5.1. When one
moves from K7 to K8, a non-boundary loop which is a 1-cycle (e5 + e6 + e7 + e8) is created after
adding edge e8. Strictly speaking, a positive p-simplex σ j may create more than one p-cycle.
Only one of them can be taken as independent and the others become its linear combinations with
the existing ones in K j−1. From K8 to K9, the introduction of edge e9 creates two non-boundary
loops (e5 + e6 + e9) and (e7 + e8 + e9). But any one of them is the linear combination of the other
one with the existing loop (e5 + e6 + e7 + e8). Notice that there is no canonical way to choose an
independent one. However, the creation of a loop is reflected in the increase of the rank of H1. In
other words, in general, the Betti number βp increases by 1 for a positive simplex. For a negative
simplex, we get the opposite effect. In this case βp−1 decreases by 1 signifying a death of a cycle.
However, unlike positive simplices, the destroyed cycle is determined uniquely up to homology,
which is the equivalent class carried by the boundary of σ j. For example, in Figure 5.1, the loop
(e7 + e8 + e9) gets destroyed by triangle t10 when we go from K9 to K10.

Pairing. We already saw that destruction of a class is uniquely paired with a creation of a class
through the ‘youngest first’ rule. This means that each negative simplex is paired uniquely with a
positive simplex. The goal of the persistence algorithm is to find out these pairs.

2 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

v1

v0

v1 v1 v1

v1 v1 v1 v1

v1
v1 v1

v2 v2 v2

v2 v2 v2 v2

v2 v2 v2

v3 v3

v3 v3 v3 v3

v3
v3 v3

v4

v4 v4 v4 v4

v4 v4 v4

e5 e5 e5 e5

e5 e5 e5

e6
e6 e6

e6
e6

e6

e7

e7
e7 e7

e8

e8 e8 e8

e9 e9 e9
t10 t10

t11

K1 (v1,−) K2 (v2,−) K3 (v3,−) K4 (v4,−)

K5 (v3, e5) K6 (v2, e6) K7 (v4, e7) K8 (e8,−)

K9 (e9,−) K10 (e9, t10) K11 (e8, t11)

e7

Figure 5.1: Red simplices are positive and blue ones are negative. The simplices are indexed to
coincide with their order in the filtration. (·, ·) in each subcomplex shows the pairing between the
positive and the negative. The second component missing in the parenthesis shows the introducing
of a positive simplex.

Consider the birth and death of the classes by addition of simplices into a filtration. When
a p-simplex σ j is added, we explore if it destroys the class [c] of its boundary c = ∂σ j if it is
not a boundary already. The cycle c was created when the youngest (p − 1)-simplex in it, say
σi, was added. Note that a simplex is younger if it comes later in the filtration. If σi, a positive
(p − 1)-simplex, has already been paired with a p-simplex σ′j, then a class also created by σi

got destroyed when σ′j appeared. We can get the (p − 1)-cycle representing this destroyed class
and add it to ∂σ j. The addition provides a cycle that existed before σi. We update c to be this
new cycle and look for the youngest (p − 1)-simplex σi in c and continue the process till we find
one that is unpaired, or the cycle c becomes empty. In the latter case, we discover that c = ∂σ j

was a boundary cycle already and thus σ j creates a new class in Hp(K j). In the other case, we
discover that σ j is a negative p-simplex which destroys a class created by σi. We pair σ j with
σi. Indeed, one can show that the above algorithm produces the persistence pairs whose function
values lead to the persistence diagram. We give a proof for a matrix version of the algorithm later
(Theorem 2).

Definition 1 (Persistence pairs). Given a simplex-wise filtration F : K0 ↪→ K1 ↪→ · · · ↪→ Kn, for
0 < i < j ≤ n, we say a p-simplex σi = Ki \ Ki−1 and a (p + 1)-simplex σ j = K j \ K j−1 form a
persistence pair (σi, σ j) if and only if µi, j

p > 0.

The full algorithm is presented in Algorithm 1:PairPersistence, which takes as input a se-
quence of simplices σ1, σ2, · · · , σn ordered according to the filtration of a complex whose persis-
tence diagram is to be computed. It assumes that the complex is represented combinatorially with
adjacency structures among its simplices.

Let us again consider the example in Figure 5.1 and see how the algorithm Pair works. From
K7 to K8, e8 is added. Its boundary is c = (v2 + v4). The vertex v4 is the youngest positive vertex
in c but it is paired with e7 in K7. Thus, c is updated to (v3 + v4 + v4 + v2) = (v3 + v2). The vertex

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 3

Algorithm 1 PairPersistence(σ1, σ2, · · · , σn)

Input:
An ordered sequence of simplices forming a filtration of a complex

Output:
Determine if a simplex is ‘positive’ or ‘negative’ and generate persistent pairs

1: for j = 1 to n do
2: c = ∂pσ j

3: σi is the youngest positive (p − 1)-simplex in c.
4: while σi is paired and c is not empty do
5: Let c′ be the cycle destroyed by the simplex paired with σi \∗ see step 10 ∗\
6: c = c′ + c \∗ this addition may cancel simplices ∗\
7: Update σi to be the youngest positive (p − 1)-simplex in c
8: end while
9: if c is not empty then

10: σ j is a negative p-simplex; generate pair (σi, σ j); associate c with σ j as destroyed
11: else
12: σ j is a positive p-simplex \∗ σ j may get paired later ∗\
13: end if
14: end for

v3 becomes the youngest positive one but it is paired with e5. So, c is updated to (v1 + v2). The
vertex v2 becomes the youngest positive one but it is paired with e6. So, c is updated to be empty.
Hence e8 is a positive edge. Now we examine the addition of the triangle t11 from K10 to K11.
The boundary of t11 is c = (e5 + e6 + e9). The youngest positive edge e9 is paired with t10. Thus,
c is updated by adding the cycle destroyed by t10 to (e5 + e6 + e7 + e8). Since e8 is the youngest
positive edge that is not yet paired, t11 finds e8 as its paired positive edge. Observe that, we finally
obtain a loop that is destroyed by adding the negative triangle. For example, we obtain the loop
(e5 + e6 + e7 + e8) by adding t11.

5.1.1 Matrix reduction algorithm

There is a version of the algorithm PairPersistence that uses only matrix operations. First notice
the following:

• The boundary operator ∂p : Cp → Cp−1 can be represented by a boundary matrix Dp where
the columns correspond to the p-simplices and rows correspond to (p − 1)-simplices.

• It represents the transformation of a basis of Cp given by the set of p-simplices to a basis
of Cp−1 given by the set of (p − 1)-simplices.

Dp[i, j] =

{
1 if σi ∈ ∂pσ j

0 otherwise.

• One can combine all boundary matrices into a single matrix D that represents all linear
maps

⊕
p ∂p =

⊕
p(Cp → Cp−1), that is, transformation of a basis of all chain groups

4 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

together to a basis of itself, but with a shift to a one lower dimension.

D[i, j] =

{
1 if σi ∈ ∂∗σ j

0 otherwise.

Definition 2 (Filtered boundary matrix). Let F : K0 = ∅ ⊂ K1 ⊂ . . . ⊂ Km = K be a filtration
induced by an ordering of simplices (σ1, σ2, . . . , σm) in K. Let D denote the boundary matrix for
simplices in K that respects the ordering of the simplices in the filtration, that is, the simplex σi

in the filtration occupies column and row i in D. We call D the filtered boundary matrix for F.

Given any matrix A, let rowA[i] and colA[j] denote the ith row and jth column of A, respec-
tively. We abuse the notation slightly to let colA[j] denote also the chain {σi | A[i, j] = 1}, which
is the collection of simplices corresponding to 1’s in the column colA[j].

Definition 3 (Reduced matrix). Let lowA[j] denote the row index of the last 1 in the jth column
of A, which we call the low-row index of the column j. It is undefined for empty columns (marked
with −1 in Algorithm 2). The matrix A is reduced (or is in reduced form) if lowA[j] , lowA[j′]
for any j , j′; that is, no two columns share the same low-row indices.

Fact 2. Given a matrix A in reduced form, we have that the set of non-zero columns in A are all
linearly independent over Z2.

We define a matrix A to be upper-triangular if all of its diagonal elements are 1, and there is
no entry A[i, j] = 1 with i > j. We will compute a reduced matrix from a given boundary matrix
by left-to-right column additions. A series of such column additions is equivalent to multiplying
the boundary matrix on right with an upper triangular matrix.

Now, we state a result saying that if a reduced form is obtained via only left-to-right column
additions, then for each column, the low-row index is unique in the sense that it does not depend on
how the reduced form is obtained. Using this result we show that persistence pairing of simplices
can be obtained from these low-row indices. Given an n1×n2 matrix A, let A[c,d]

[a,b], a ≤ b and c ≤ d,
denote the sub-matrix formed by rows a to b, and columns from c to d. In cases when b = n2 and
c = 1, we also write it as Ad

a := A1,d
a,n2 for simplicity. Define the quantity rA(i, j) as follows:

rA(i, j) = rank (A j
i) − rank (A j

i+1) + rank (A j−1
i+1) − rank (A j−1

i).

Proposition 1 (Paring Uniqueness [7]). Let R = DV, where R is in reduced form and V is upper
triangular. Then lowR[j] = i if and only if rD(i, j) = 1.

Next, we state that a pairing based on low-row indices indeed provides persistent pairs ac-
cording to Definition 1 from which the algorithm follows. The proof appears in the book.

Theorem 2. Let D be the m × m filtered boundary matrix for a filtration F (Definition 2). Let
R = DV, where R is in reduced form and V is upper triangular. Then, the simplices σi and σ j in
F form a persistent pair if and only if lowR[j] = i.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 5

Algorithm 2 MatPersistence(D)

Input:
Boundary matrix D of a complex with columns and rows ordered by a given filtration

Output:
Reduced matrix with each column j either being empty or having a unique lowD[j] entity

1: for j = 1→ |colD| do
2: while ∃ j′ < j s.t. lowD[j′] == lowD[j] and lowD[j] , −1 do
3: colD[j] := colD[j] + colD[j′];
4: end while
5: if lowD[j] , −1 then
6: i := lowD[j]; \∗ generate pair (σi, σ j) ∗\
7: end if
8: end for

1

1

1

1

1

1

1

1

1

1

1

1

1 2 3 4

1

2

3

4

5

6

1

1

1

1

1

1

1

1

1

1

1

1 2 3 4

1

2

3

4

5

6

1

1

1

1

1

1

1

1 1

1

1

1 2 3 4

1

2

3

4

5

6

1

1

1

1

1

1

1

1

1 2 3 4

1

2

3

4

5

6

1

1

1

(a) (b) (c) (d)

1 1 1

Figure 5.2: Matrix reduction for a 6 × 4 matrix D: low of columns are shaded to point out the
conflicts. (a) lowD[1] conflicts with lowD[2] and colD[1] is added to colD[2], (b) lowD[2] conflicts
with lowD[3], (c) lowD[3] conflicts with lowD[4], (d) the addition of colD[3] to colD[4] zero out
the entire column colD[4].

The matrix reduction algorithm. Notice that there are possibly many R and V for a fixed
D forming the reduced-form decomposition. Theorem 2 implies that the persistent pairing is
independent of the particular contents of R and V as long as R is reduced and V is upper trian-
gular. If we reduce a given filtered boundary matrix D to the reduced form R only with left-to-
right column additions, indeed then we obtain R = DV as required. With this principle, Algo-
rithm 2:MatPersistence is designed to compute the persistent pairs of simplices. We process the
columns of D from left to right which correspond to the order in which they appear in the filtra-
tion. The row indices also follow the same order top down (thus “lower" refers to a larger index,
which also means that a simplex is “younger" in the filtration). We assume that |colD| denotes the
number of columns in D. Suppose we have processed all columns up to j − 1 and now are going
to process the column j. We check if the row lowD[j] contains any other lowest 1 for any column
j′ to the left of j, that is j′ < j. If so, we add colD[j′] to colD[j]. This decreases lowD[j]. We

6 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

continue this process until either we turn all entries in colD[j] to be 0, or settle on lowD[j] that
does not conflict with any other lowD[j′] to its left. In the latter case, σ j is a negative p-simplex
that pairs with the positive (p − 1)-simplex σlowD[j]. In the algorithm MatPersistence above, we
assume that when a column j is zeroed out completely, lowD[j] returns −1.

To compute the persistence diagram Dgm(F f) for a filtration F f , we first run MatPersistence
on the boundary matrix D representing F f . Every computed persistence pair (σi, σ j) gives a finite
bar [f (σ j), f (σi)] or a point with finite coordinates (f (σi), f (σ j)) in Dgm(F f). Every simplex
σi that remains unpaired provides an infinite bar [f (σi),∞] or a point (f (σi),∞) at infinity in
Dgm(F f). Observe that not every positive p-simplex σi (column i is zeroed out) gives a point at
infinity in Dgmp(F f), the only ones that do are the ones that are not paired with a (p + 1)-simplex
whose column is processed afterward. A simple fact about unpaired simplices is:

Fact 3. The number of unpaired p-simplices in a simplex-wise filtration of a simplicial complex
K equals its p-th Betti number βp(K).

We already mentioned that the input boundary matrix D should respect the filtration order,
that is, the row and column indices of D correspond to the indices of the simplices in the input fil-
tration. Observe that we can consider slightly different filtration without changing the persistence
pairs. We can arrange all of p-simplices for any p ≥ 0 together in the filtration without changing
their relative orders as follows where σi

j denotes the jth i-simplex among all i-simplices in the
original filtration.

(σ0
1, σ

0
2 . . . , σ

0
n0

), . . . , (σp
1 , σ

p
2 , . . . , σ

p
np), . . . , (σd

1, σ
d
2, . . . , σ

d
nd

) (5.1)

This means columns and rows of p-simplices in D become adjacent though retaining their relative
ordering from the original matrix. Observe that, by this rearrangement, all columns that are added
to a column j in the original D still remain to the left of j in their newly assigned indices. In other
words, processing the rearranged matrix D can be thought of as processing each individual p-
boundary matrix Dp = [∂p] separately where the column and row indices respect the relative
orders of p and (p − 1)-simplices in the original filtration.

Complexity of MatPersistence. Let the filtration F based on which the boundary matrix D is
constructed insert n simplices. This means that D has at most n rows and columns. Then, the outer
for loop is executed at most O(n) times. Within this for loop, steps 5-7 takes only O(1) time. The
complexity is indeed determined by the while loop (steps 2-4). We argue that this loop iterates
at most O(n) times. This follows from the fact that each column addition in step 3 decreases
lowD[j] by at least one and over the entire algorithm it cannot decrease by more than the length
of the column which is O(n). Each column addition in step 3 takes at most O(n) time giving a
total time of O(n2) for the while loop. Accounting for the outer for loop, we get a complexity of
O(n3) for MatPersistence.

One can implement the above matrix reduction algorithm with a more efficient data structure
noting that most of the entries in the input matrix D is empty. A linked list representing the non-
zero entries in the columns of D is space-wise more efficient. Edelsbrunner and Harer [9] presents
a clever implementation of MatPersistence using such a sparse matrix representation. For every
column j, the algorithm executes O(j − i) column additions of O(j − i) length each incurring a
cost O((j− i)2)) where i = 1 if σ j is positive and is the index of the simplex σi with which it pairs

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 7

in case σ j is negative. Therefore, the total time complexity becomes O(
∑

j∈[1,n](j− i)2). Here, we
assume that the dimension of the complex K is a constant.

It is worth noting that essentially the matrix reduction algorithm is a version of the classical
Gaussian elimination method with a given column order and a specific choice of row pivots. In
this respect, persistence of a given filtration can be computed by the PLU factorization of a matrix
for which Bunch and Hopcroft [5] gives an O(M(n)) time algorithm where M(n) is the time to
multiply two n × n matrices. It is known that M(n) = O(nω) where ω ∈ [2, 2.373) is called the
exponent for matrix multiplication.

5.1.2 Efficient Implementation

The matrix reduction algorithm considers a column from left to right and reduces it by left-to-
right additions. As we have observed, every addition to a column with index j pushes lowD[j]
upward. In the case, that σ j is a positive simplex, the entire column is zeroed out. In general,
positive simplices incur more cost than the negative ones because lowD[·] needs to be pushed all
the way up for zeroing out the entire column. However, they do not participate in any future
left-to-right column additions. Therefore, if it is known beforehand that the simplex σ j will be a
positive simplex, then the costly step of zeroing out the column j can be avoided.

Chen and Kerber [6] observed the following simple fact. If we process the input filtration
backward in dimension, that is, process the boundary matrices Dp, p = 1, . . . , d in decreasing
order of dimensions, then a persistence pair (σp−1, σp) is detected from Dp before processing the
column for σp−1 in Dp−1. Fortunately, we already know that σp−1 has to be a positive simplex
because it cannot pair with a negative simplex σp otherwise. So, we can simply ignore the column
of σp−1 while processing Dp−1. We call it clearing out column p − 1. In practice, this saves a
considerable amount of computation in cases where a lot of positive simplices occur such as in
Rips filtrations. Algorithm 3:ClearPersistence implements this idea.

We cannot take advantage of the clearing for the last dimension in the filtration. If d is the
highest dimension of the simplices in the input filtration, the matrix Dd has to be processed for all
columns because the pairings for the positive d-simplices are not available.

If the number of d-simplices is large compared to simplices of lower dimensions, the incurred
cost of processing their columns can still be high. For example, in a Rips filtration restricted up to
a certain dimension d, the number of d-simplices becomes usually much larger than the number
of, say, 1-simplices. In those cases, the clearing can be more cost-effective if it can be applied
forward.

In this respect, the following observation becomes helpful. Let D∗p denote the anti-transpose
of the matrix Dp, defined by the transpose of Dp with the columns and rows being ordered in
reverse. This means that if Dp has row and column indices 1, . . . ,m and 1, . . . , n respectively,
then D∗p(i, j) = Dp(n + 1 − j,m + 1 − i). Call it the twisted matrix of Dp. Figure 5.3 shows the
twisted matrix D∗ of the matrix D in Figure 5.2 where the rows and columns are marked with
the indices of the original matrix. The following proposition guarantees that we can compute the
persistence pairs in Dp from the matrix D∗p.

Proposition 3. (σp−1, σp) is a persistence pair computed from Dp if and only if (σp, σp−1) is
computed as a persistence pair from D∗p.

The proof of the above proposition can be found in the book. We skip the details here.

8 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

1

1 1

1

1

1

11

1

1

11

1

2

3

4

123456
1

1 1

11

1

11

1

1

11

1

2

3

4

123456

1

1

11

1

1

1

1

11

1

2

3

4

123456

1

11

1 1

1

1

2

3

4

123456

(a) (b)

(c) (d)

Figure 5.3: Matrix reduction with the twisted matrix D∗ of the matrix D in Figure 5.2 which is
first transposed and then got its rows and columns reversed in order; the conflicts in lowD[·] are
resolved to obtain the intermediate matrices shown (a) through (d); The last transformation from
(c) to (d) assumes to complete all conflict resolutions from columns 3 through 1. Observe that
every column-row pair correspond to row-column pair in the original matrix. Also, all columns
that are zeroed out here correspond to all rows in the original that did not get paired with any
column meaning that they are either negative simplex, or positive simplex not paired with any.

To apply clearing we process D∗p+1 after D∗p by calling ClearPersistence(D∗1,D
∗
2, · · · ,D

∗
d)

because if we get a pair (σp+1, σp) while processing D∗p, we already know that σp+1 is a negative
simplex and its column in D∗p+1 cannot contain a defined low entry. This means that the column
of σp+1 in D∗p+1 can be zeroed out and hence can be ignored. Now, the only boundary matrix that
needs to be processed without any clearing is D∗1. So, depending on whether Dd or D1 is large,
one can choose to process the filtration in increasing or decreasing dimensions respectively.

5.2 Notes and Exercises

The concept of topological persistence came to the fore in early 2000 with the paper by Edels-
brunner, Letscher, and Zomorodian [10] though the concept was proposed in a rudimentary form
(for 0-dimensional homology) in other papers by Frosini [11] and Robins [12]. The persistence
algorithm as described in this chapter was presented in [10] which has become the cornerstone
of topological data analysis. The original algorithm was described without any matrix reduction
which first appeared in [7]. Since then various versions of the algorithm has been presented. The
persistence for filtrations of simplicial 1-complexes (graphs) with n simplices can be computed
in O(nα(n)) time (see the book). Persistence for filtrations of simplicial 2-manifolds also can be

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 9

Algorithm 3 ClearPersistence(D1,D2, . . . ,Dd)

Input:
Boundary matrices ordered by dimension of the boundary operators with columns ordered by

filtration
Output:

Reduced matrices with each column for negative simplex having a unique low entry

1: MatPersistence(Dd);
2: for i = (d − 1)→ 1 do
3: for j = 1→ |colDi | do
4: if σ j is not paired while processing Di+1 then
5: \∗ column j is not processed if σ j is already paired∗\
6: while ∃ j′ < j s.t. lowD[j] , −1 and lowDi[j′] == lowDi[j] do
7: colDi[j] := colDi[j] + colDi[j′];
8: end while
9: if lowD[j] , −1 then

10: k := lowDi[j] \∗ generate pair (σk, σ j) ∗\
11: end if
12: end if
13: end for
14: end for

computed in O(nα(n)) time algorithm by essentially reducing the problem to computing persis-
tence on a dual graph. In general, for any constant d ≥ 1, the persistence pairs between d- and
(d − 1)-simplices of a simplicial d-manifold can be computed in O(nα(n)) time by considering
the dual graph. If the manifold has boundary, then one has to consider a ‘dummy’ vertex that
connects to every dual vertex of a d-simplex adjoining a boundary (d − 1)-simplex.

For efficient implementation, clearing and compression strategies as described in Section 5.1.2
were presented by Chen and Kerber [6]. We have given a proof (in the book) based on matrix
reduction that the same persistent pairs can be computed by considering the anti-transpose of the
boundary matrix. This is termed as the cohomology algorithm first introduced in [8]. The name
is justified by the fact that considering cohomology groups and the resulting persistence module
that reverses the arrows, we obtain the same barcode. The anti-transpose of the boundary matrix
indeed represents the coboundary matrix filtered reversely. These tricks are further used by Bauer
for processing Rips filtration efficiently in the Ripser software [2]. Boissonnat et al. [3, 4] have
suggested a technique to reduce the size of a given filtration using strong collapse of Barmak
and Minian [1]. The collapse on the complex can be efficiently achieved only through simple
manipulations of the boundary matrix.

Exercises

1. Let K be a p-complex with every (p − 1)-simplex incident to exactly two p-simplices. Let
M be a boundary matrix of the boundary operator ∂p for K. We run a different version of

10 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

the persistence algorithm on M. We scan its columns from left to right as before, but we
add the current column to its right to resolve conflict, i.e., for each i = 1, · · · , n in this order
if there exists j > i so that lowM[i] = lowM[j], then add colM[i] to colM[j]. Show that:

(a) There can be at most one such j,

(b) At termination, every column of M is either empty or has a unique low entry,

(c) The algorithm outputs in O(n2) time the same lowM[i] as the original persistence
algorithm returns on M,

2. For a given matrix with binary entries, a valid column operation is one that adds a column
to its right (Z2-addition). Similarly, define a valid row operation is the one that adds a row
to another one above it. Show that there exists a set of valid column and row operations
that leave every row and column either empty or with a single non-zero entry.

3. Let F be a filtration where every p-simplex appear only after all (p − 1)-simplices like in
Eqn. (5.1). Let F′ be a modified filtration of F as follows. For every p ≥ 0, all p-simplices
in F are ordered in non-decreasing order of their persistence values in F′ assuming that
unpaired p-simplices have persistence value ∞. Show that the persistence pairing remains
the same for F and F′.

4. For a PL-function f : |K| → R, we know how to produce a simplex-wise filtration F so that
the barcode for f can be read from the barcode of F. Design an algorithm to do the reverse,
that is, given a filtration F on a complex K, produce a filtration G of a simplicial complex
K′ so that G is indeed a simplex-wise filtration of a PL function g : |K′| → R where bars
for F can be obtained from those for G. (Hint: use barycentric subdivision of K).

Bibliography

[1] Jonathan Ariel Barmak and Elias Gabriel Minian. Strong homotopy types, nerves and col-
lapses. Discret. Comput. Geom., 47(2):301–328, 2012.

[2] Ulrich Bauer. Ripser: efficient computation of vietoris-rips persistence barcodes. CoRR,
abs/1908.02518, 2019.

[3] Jean-Daniel Boissonnat and Siddharth Pritam. Edge collapse and persistence of flag com-
plexes. In Sergio Cabello and Danny Z. Chen, editors, 36th International Symposium on
Computational Geometry, SoCG 2020, June 23-26, 2020, Zürich, Switzerland, volume 164
of LIPIcs, pages 19:1–19:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[4] Jean-Daniel Boissonnat, Siddharth Pritam, and Divyansh Pareek. Strong collapse for persis-
tence. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European
Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112
of LIPIcs, pages 67:1–67:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[5] James R. Bunch and John E. Hopcroft. Triangular factorization and inversion by fast matrix
multiplication. Mathematics of Computation, 28(125):231–236, 1974.

[6] Chao Chen and Michael Kerber. An output-sensitive algorithm for persistent homology.
Comput. Geom., 46(4):435–447, 2013.

[7] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by
updating persistence in linear time. In Proc. 22nd Annu. Sympos. Comput. Geom., pages
119–126, 2006.

[8] Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27:124003, 2011.

[9] Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. Applied
Mathematics. American Mathematical Society, 2010.

[10] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete Comput. Geom., 28:511–533, 2002.

[11] Patrizio Frosini. A distance for similarity classes of submanifolds of a euclidean space.
Bulletin of the Australian Mathematical Society, 42(3):407–415, 1990.

11

12 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

[12] Vanessa Robins. Towards computing homology from finite approximations. Topology Pro-
ceedings, 24(1):503–532, 1999.

