
Computational Topology for Data Analysis: Notes
from Book by

Tamal Krishna Dey
Department of Computer Science

Purdue University
West Lafayette, Indiana, USA 46907

Yusu Wang
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, California, USA 92093

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 1

Topic 7: Zigzag persistence
Now, we generalize a filtration by allowing the inclusion maps to be directed either way giving
rise to what we call a zigzag filtration:

F : Xa0 ↔ Xa1 ↔ · · · ↔ Xan (7.1)

where each bidirectional arrow ‘↔’ is either a forward or a backward inclusion map. In sec-
tion 7.1, we present an algorithm to compute the persistence of a zigzag filtration. A juxtaposition
of a zigzag filtration with a tower provides a further generalization referred to as a zigzag tower.
Section 7.2 presents an approach for computing the persistence of such a tower.

7.1 Persistence for Zigzag filtration

The possibility of backward inclusions in zigzag filtrations allows simplices to be deleted as we
move forward. So, essentially, we allow both insertions and deletions making it possible for the
complex to grow and shrink as we move forward with the filtration. A priori it is not obvious that
the resulting persistence module admits bar codes as in the original filtration where all inclusions
are in the forward direction. Existence of such bar codes is essential for defining persistence
pairs and designing an algorithm to compute them. We are assured by quiver theory [8] that such
bar codes also exist for zigzag filtration with both forward and backward insertions. We aim to
compute them.

K0

K1

K2

K3

K4

0 1 3 4

Figure 7.1: The zigzag filtration K0 → K1 ← K2 → K3 ← K4 has four intervals (bars) for one
dimensional homology H1, namely [0, 4], [1, 1], [3, 4], and [4, 4].

Specifically, a zigzag filtration F of a complex K (space T) is a zigzag diagram of the form:

F : X0 ↔ X1 ↔ · · · ↔ Xn−1 ↔ Xn

where for each i, Xi = Ki ⊆ K for a simplicial filtration and Xi = Ti ⊆ T for a space filtration,
and Xi ↔ Xi+1 is either a forward inclusion Xi ↪→ Xi+1 or a backward inclusion Xi ←↩ Xi+1.
Figure 7.1 illustrates a simplicial zigzag filtration and its barcode. Observe that reverse arrows

2 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

can be interpreted as simplex deletions. For any j ∈ [0, n], we let F j denote the prefix of F

consisting of the complexes (spaces) X0, . . . , X j.
For p ≥ 0, considering the p-th homology groups with coefficient in a field k (which is Z2

here), we obtain a sequence of vector spaces connected by forward or backward linear maps,
called a zigzag persistence module:

Hp(F) : Hp(X0)
ϕ0
←−→ Hp(X1)

ϕ1
←−→ · · ·

ϕn−2
←−−→ Hp(Xn−1)

ϕn−1
←−−→ Hp(Xn)

where the map ϕi : Hp(Xi) ↔ Hp(Xi+1) can either be forward or backward and is induced by the
inclusion.

In the non-zigzag case, when index set for Hp(F) is finite, we have seen that Hp(F) is a direct
sum of interval modules. In zigzag case, similar statement holds due to quiver theory [8].

Definition 1 (Quiver). A quiver Q = (N, E) is a directed graph which can be finite or infinite. A
representation V(Q) of Q is an assigment of a vector space Vi to every node Ni ∈ N and a linear
map vi j : Vi → V j for every directed edge (Vi,V j) ∈ E. Figure 7.2 illustrates representations of
two quivers.

Vi Vi+1 Vi+2Vi−1Vi−2

V ′i

vi−1,i v
i
,i

′

Vi Vi+1 Vi+2Vi−1Vi−2

vi−1,i

Vi−3

Figure 7.2: A representation of a quiver (top); a representation of an An-type quiver (bottom).

A zigzag persistence module is a special type of quiver representation where the graph is finite
and linear shaped, also known as An-type (see Figure 7.2(bottom)), where every node has at most
two directed edges incident to it. Such a quiver representation has an interval decomposition
though we need to define the intervals afresh to take into account the fact that arrows can be
bidirectional.

Definition 2. An interval module I[b,d] also called an interval or a bar over an index set 0, 1, . . . , n
with field k is a sequence of vector spaces

I[b,d] : I0 ↔ I1 · · · ↔ In

where Ik = k for b ≤ k ≤ d and 0 otherwise with the maps k← k and k→ k being identities.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 3

Theorem 1 ([2, 11, 8]). Every quiver representation V(Q) for an An-type quiver Q has an interval
decomposition, that is, V(Q) =

⊕
i I[bi,di]. Furthermore, this decomposition is unique up to

isomorphism and permutation of the intervals.

The underlying graph of a zizgzag persistence module as shown in Eq. (7.1) is of An-type.
Hence, we have the decomposition Hp(F) =

⊕
i I[bi,di] that provides the bar code for zigzag

persistence. Notice that Theorem 1 does not require the vector spaces to be finite dimensional.
Hence, we still have a valid decomposition even if the vector spaces in the zigzag persistence
module are not finite dimensional. However, for finite computation, we will assume that our
zigzag persistence module is finite both in terms of the index set and also in terms of the dimension
of the vector spaces.

Similar to non-zigzag case, each bar (interval) in a barcode (interval decomposition) corre-
sponds to a point in the persistence diagram Dgmp(F). We also say that the bar belongs to the
diagram. Sometimes, we also abuse the notation [b, d] to denote both an interval in the index set
and an interval module in a p-th zigzag persistent module.

7.1.1 Approach

We briefly describe an abstract algorithm for computing zigzag persistent intervals for a simplicial
zigzag filtration:

F : ∅ = K0 ↔ K1 ↔ · · · ↔ Kn−1 ↔ Kn.

We assume that the filtration begins with an empty complex and is simplex-wise, which means
that Ki, Ki+1 differ by only one simplex σi. This is not a serious restriction because we can
expand an inclusion of a set of simplices to a series of inclusions by a single simplex while using
any order that puts a simplex after all its faces. We have seen this before for the non-zigzag case.

The abstract algorithm we describe is derived from maintaining a consistent basis with a set
of representative cycles over the intervals as we define now. These cycles generate an interval
module in a straightforward way, i.e., picking a cycle for a homology class at each position:

Definition 3. Let p ≥ 0, F : K0 ↔ · · · ↔ Kn be a zigzag filtration, and [b, d] be an interval in
Dgmp(F). A set of representative p-cycles for [b, d] is an indexed set of p-cycles

{
ci ⊆ Ki | i ∈

[b, d]
}

so that:

1. For b > 0, [cb] is not in the image of ϕb−1 if Kb−1 ↔ Kb is a forward inclusion, or [cb] is
the non-zero class mapped to 0 by ϕb−1 otherwise.

2. For d < n, [cd] is not in the image of ϕd if Kd ↔ Kd+1 is a backward inclusion, or [cd] is
the non-zero class mapped to 0 by ϕd otherwise.

3. For each i ∈ [b, d−1], [ci]↔ [ci+1] by ϕi, that is, either [ci] 7→ [ci+1] or [ci]← [[ci+1] by ϕi.

The interval module induced by the representative p-cycles is a zigzag module I : I0 ↔ I1 · · · ↔

In such that Ii equals the 1-dimensional vector space generated by [ci] ∈ Hp(Ki) for i ∈ [b, d] and
equals 0 otherwise.

The following theorem justifies the definition of representative cycles, which says that repre-
sentative cycles always produce an interval decomposition of a zigzag module and vice versa:

4 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Theorem 2. Let p ≥ 0, F : K0 ↔ · · · ↔ Kn be a zigzag filtration with Hp(K0) = 0 and A be
an index set. One has that Hp(F) is equal to (not merely isomorphic to) a direct sum of interval
submodules

⊕
α∈A I[bα,dα] if and only if for each α ∈ A, I[bα,dα] is an interval module induced by

a set of representative p-cycles for [bα, dα] where Dgmp(F) =
{
[bα, dα] |α ∈ A

}
.

7.1.2 Zigzag persistence algorithm

We now present an abstract algorithm based on an approach in [9] which helps us design a con-
crete algorithm later. Given a filtration F : ∅ = K0 ↔ · · · ↔ Kn starting with an empty complex,
first let Dgmp(F0) = ∅. The algorithm then iterates for i ← 0, . . . , n − 1. At the beginning of
the i-th iteration, inductively assume that the intervals and their representative cycles for Hp(Fi)
have already been computed. The aim of the i-th iteration is to compute these for Hp(Fi+1). Let
Dgmp(Fi) =

{
[bα, dα] |α ∈ Ai} be indexed by a set Ai, and let

{
cαk ⊆ Kk | k ∈ [bα, dα]

}
be a

set of representative p-cycles for each [bα, dα]. For ease of presentation, we also let cαk = 0 for
each α ∈ Ai and each k ∈ [0, i] not in [bα, dα]. We call intervals of Dgmp(Fi) ending with i
as surviving intervals at index i. Each non-surviving interval of Dgmp(Fi) is directly included
in Dgmp(Fi+1) and its representative cycles stay the same. For surviving intervals of Dgmp(Fi),
the i-th iteration proceeds with the following cases determined by the types of the linear maps
ϕi : Hp(Ki)↔ Hp(Ki+1).

ϕi is isomorphic: In this case, no intervals are created or cease to persist. For each surviv-
ing interval [bα, dα] in Dgmp(Fi), [bα, dα] now corresponds to an interval [bα, i + 1] in
Dgmp(Fi+1). The representative cycles for [bα, i + 1] are set by the following rule:

Trivial setting rule of representative cycles: For each j with bα ≤ j ≤ i, the representative
cycle for [bα, i + 1] at index j stays the same. The representative cycle for [bα, i + 1] at i + 1
is set to a cαi+1 ⊆ Ki+1 such that [cαi]↔ [cαi+1] by ϕi.

ϕi points forward and is injective: A new interval [i + 1, i + 1] is added to Dgmp(Fi+1) and its
representative cycle at i + 1 is set to a p-cycle in Ki+1 containing σi. All surviving intervals
of Dgmp(Fi) persist to index i+1 and their representative cycles are set by the trivial setting
rule.

ϕi points backward and is surjective: A new interval [i + 1, i + 1] is added to Dgmp(Fi+1) and
its representative cycle at i+1 is set to a p-cycle homologous to ∂(σi) in Ki+1. All surviving
intervals of Dgmp(Fi) persist to index i + 1 and their representative cycles are set by the
trivial setting rule.

ϕi points forward and is surjective: A surviving interval of Dgmp(Fi) does not persist to i + 1.
Let Bi ⊆ Ai consist of indices of all surviving intervals. We have that

{
[cαi] |α ∈ Bi} forms

a basis of Hp(Ki). Suppose that ϕi
(
[cα1

i] + · · · + [cα`i]
)

= 0, where α1, . . . , α` ∈ B
i. We can

rearrange the indices such that bα1 < bα2 < · · · < bα` and α1 < α2 < · · · < α`. Let λ be
α1 if the arrow ◦bα−1 ↔ ◦bα points backward for every α ∈ {α1, . . . , α`} and otherwise be
the largest α ∈ {α1, . . . , α`} such that ◦bα−1 ↔ ◦bα points forward. Then, [bλ, i] forms an
interval of Dgmp(Fi+1). For each k ∈ [bλ, i], let zk = cα1

k + · · ·+cα`k ; then,
{
zk | k ∈ [bλ, i]

}
is a

set of representative cycles for [bλ, i]. All the other surviving intervals of Dgmp(Fi) persist
to i + 1 and their representative cycles are set by the trivial setting rule.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 5

ϕi points backward and is injective: A surviving interval of Dgmp(Fi) does not persist to i + 1.
Let Bi ⊆ Ai consist of indices of all surviving intervals, and let cα1

i , . . . , c
α`
i be the cycles in{

cαi |α ∈ Bi} containing σi. We can rearrange the indices such that bα1 < bα2 < · · · < bα`
and α1 < α2 < · · · < α`. Let λ be α1 if the arrow ◦bα−1 ↔ ◦bα points forward for every
α ∈ {α1, . . . , α`} and otherwise be the largest α ∈ {α1, . . . , α`} such that ◦bα−1 ↔ ◦bα points
backward. Then, [bλ, i] forms an interval of Dgmp(Fi+1) and the representative cycles for
[bλ, i] stay the same. For each α ∈ {α1, . . . , α`} not equal to λ, let zk = cαk + cλk for each k
such that bα ≤ k ≤ i, and let zi+1 = zi; then,

{
zk | k ∈ [bα, i + 1]

}
is a set of representative

cycles for [bα, i + 1]. For the other surviving intervals, the setting of representative cycles
follows the trivial setting rule.

Remark 1. Note that in the above algorithm, there is no canonical choice for the representative
classes which can be chosen differently. However, they produce the same intervals.

7.1.3 Zigzag persistence algorithm

We now present a concrete version of our approach which runs in cubic time. In this algorithm,
given a zigzag filtration F : ∅ = K0 ↔ K1 ↔ · · · ↔ Kn, a major loop iterates for i← 0, . . . , n − 1
such that the i-th iteration takes care of the changes from Ki to Ki+1. A unique integral id less
than n is assigned to each simplex in Ki and id[σ] is used to record the id of a simplex σ. Note
that the id of a simplex is subject to change during the execution. For each dimension p, a cycle
matrix Zp and a chain matrix Cp+1 with entries in Z2 are maintained. The number of columns of
Zp and Cp+1 equals rankZp(Ki) and the number of rows of Zp and Cp+1 equals n. We will see that
certain columns j of Cp+1 maintain a (p + 1)-chain whose boundary is in column j of Zp. Each
column of Zp and Cp represents a p-chain in Ki such that for each simplex σ ∈ Ki, σ belongs to
the p-chain if and only if the bit with index id[σ] in the column equals 1. For convenience, we
make no distinction between a column of the matrix Zp or Cp and the chain it represents. We use
Zp[j] to denote the j-th column of Zp (columns of Cp are denoted similarly). For each column
Zp[j], a birth timestamp bp[j] is maintained which could possibly be negative. Moreover, we let
the pivot of Zp[j] be the largest index whose corresponding bit equals to 1 in Zp[j] and denote
it as pivot(Zp[j]). At the start of the i-th iteration, for each p, the following properties for the
matrices are preserved:

1. The columns of Zp form a basis of Zp(Ki) and have distinct pivots.

2. The columns of Zp with negative birth timestamps form a basis of Bp(Ki). Moreover, for
each column Zp[j] of Zp with a negative birth timestamp, one has that Zp[j] = ∂

(
Cp+1[j]

)
.

3. For columns of Zp with non-negative birth timestamps, their birth timestamps bijectively
map to the starting indices of the intervals of Dgmp(Fi) ending with i. Moreover, for each
column Zp[j] of Zp such that bp[j] is non-negative, one has that Zp[j] is a representative
cycle at index i for the interval

[
bp[j], i

]
.

The above properties indicate that a column Zp[j] of Zp is a boundary if bp[j] < 0 and is
not a boundary otherwise. Furthermore, we have that columns of Zp with non-negative birth
timestamps represent a homology basis for Hp(Ki) at the start of the i-th iteration.

6 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Before presenting the algorithm, we first define the following total order on a set of indices in
F:

Definition 4. Let I ⊆
{
1, . . . , n − 1

}
be a set of indices. For i, j ∈ I, i �b j in the total order if and

only if one of the following holds:

• i = j.

• i < j and the function ϕ j−1 points forward.

• j < i and the function ϕi−1 points backward.

Zigzag algorithm. For each i← 0, . . . , n − 1, the algorithm does the following:

• Case ϕi is forward: From Ki to Ki+1, a p-simplex σi is added and the id of σi is set as
id[σi] = i. Since the columns of Zp−1 form a basis of Zp−1(Ki) and have distinct pivots,
∂(σi) can be represented as a sum of the columns of Zp−1 by a reduction algorithm. Suppose
that ∂(σi) =

∑
α∈I Zp−1[α] where I is a set of column indices of Zp−1, the algorithm then

checks the timestamp of Zp−1[α] for each α ∈ I to see whether all of them are boundaries.
After this, it is known whether or not ∂(σi) is a boundary in Ki. An interval in dimension p
gets born if ∂(σi) is a boundary in Ki and an interval in dimension p − 1 dies otherwise.

– Birth: Append a new column σi +
∑
α∈I Cp[α] with birth timestamp i + 1 to Zp.

– Death: Let J consist of indices in I whose corresponding columns in Zp−1 have non-
negative birth timestamps. If ϕbp−1[α]−1 points backward ∀α ∈ J, let λ be the smallest
index in J; otherwise, let λ be the largest α in J such that ϕbp−1[α−1] points forward.
Then, do the following:

1. Output the interval
[
bp−1[λ], i

]
.

2. Set Zp−1[λ] = ∂(σi), Cp[λ] = σi, and bp−1[λ] = −1.

Since the pivot of the column ∂(σi) may conflict with that of another column in Zp−1,
the following is performed to keep the pivots distinct:

1. while there are two columns Zp−1[α], Zp−1[β] with the same pivot do:
2. if bp−1[α] < 0 and bp−1[β] < 0 then:
3. Zp−1[α]← Zp−1[α] + Zp−1[β]
4. Cp[α]← Cp[α] + Cp[β]
5. if bp−1[α] < 0 and bp−1[β] ≥ 0 then:
6. Zp−1[β]← Zp−1[α] + Zp−1[β]
7. if bp−1[α] ≥ 0 and bp−1[β] < 0 then:
8. Zp−1[α]← Zp−1[α] + Zp−1[β]
9. if bp−1[α] ≥ 0 and bp−1[β] ≥ 0 then:

10. if bp−1[α] �b bp−1[β] then:
11. Zp−1[β]← Zp−1[α] + Zp−1[β]
12. else:
13. Zp−1[α]← Zp−1[α] + Zp−1[β]

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 7

• Case ϕi is backward: From Ki to Ki+1, a p-simplex σi is deleted. If there is a column in Zp

containing σi, then there are some p-cycles missing going from Ki to Ki+1 and an interval
in dimension p dies. Otherwise, an interval in dimension p − 1 gets born.

– Birth: First, the boundaries in Zp−1 need to be updated so that they form a basis of
Bp−1(Ki+1):

1. while there are two columns Zp−1[α], Zp−1[β] with negative birth timestamps s.t.
Cp[α], Cp[β] contain σi do:

2. if pivot(Zp−1[α]) > pivot(Zp−1[β]) then:
3. Zp−1[α]← Zp−1[α] + Zp−1[β]
4. Cp[α]← Cp[α] + Cp[β]
5. else:
6. Zp−1[β]← Zp−1[α] + Zp−1[β]
7. Cp[β]← Cp[α] + Cp[β]

Then, let Zp−1[α] be the only column with negative birth timestamp in Zp−1 such that
Cp[α] contains σi; set bp−1[α] = i + 1. Note that Zp−1[α] is homologous to ∂(σi) in
Ki+1, and the pivots are automatically distinct.

– Death: First, update Cp so that no columns of Cp contain σi:

1. Let Zp[α] be a column of Zp containing σi.
2. For each column1 Cp[β] of Cp containing σi, set Cp[β] = Cp[β] + Zp[α].

Then, remove σi from Zp:

1. α1, . . . , αk ← indices of all columns of Zp containing σi

2. sort α1, . . . , αk s.t. bp[α1] �b . . . �b bp[αk].
3. z← Zp[α1]
4. for α← α2, . . . , αk do:
5. if pivot(Zp[α]) > pivot(z) then:
6. Zp[α]← Zp[α] + z
7. else:
8. temp← Zp[α]
9. Zp[α]← Zp[α] + z

10. z← temp
11. output the interval

[
bp[α1], i

]
12. delete the column Zp[α1] from Zp and delete bp[α1] from bp

At the end of the algorithm, for each p and each column Zp[α] of Zp with non-negative birth
timestamp, output the interval

[
bp[α], n

]
.

1Note here we only enumrate on a Cp[β] such that Zp−1[β] is a boundary.

8 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

7.2 Persistence of zigzag towers

So far, we have considered computing persistence of towers where maps are all in the forward
direction though may not be inclusions and of zigzag filtrations where maps may be both in
forward and backward directions but cannot be other than inclusions. In this section, we consider
the zigzag towers that combines the both, that is, maps are simplicial (not necessarily inclusions)
and may point both in the forward and backward directions:

K : K0
f0
←→ K1

f1
←→ K2

f2
←→ · · ·

fn−1
←→ Kn (7.2)

Recall that each map fi : Ki → Ki+1 can be decomposed into elementary inclusions and ele-
mentary collapses. So, without loss of generality we assume that every fi is either an elementary
inclusion or an elementary collapse.

First, we propose a simulation of elementary collapses with a coning strategy that only re-
quires additions of simplices.

u

v

w x

y

u

w

x

y

(u, v) → u

u

v

w
x

y

K
K ′

K̂

Figure 7.3: Elementary collapse (u, v) → u: the cone u ∗ St v adds edges uw, uv, ux, triangles
uwx, uvx, uvw, and the tetrahedron uvwx.

Let f : K → K′ be an elementary collapse. Assume that the induced vertex map collapses
vertices u, v ∈ K to u ∈ K′, and is identity on other vertices. For a subcomplex X ⊆ K, define the
cone u ∗ X to be the complex

⋃
σ∈X {σ ∪ {u}}. Consider the augmented complex

K̂ := K ∪
(
u ∗ St v

)
.

In other words, for every simplex {u0, . . . , ud} ∈ St v of K, we add the simplex {u0, . . . , ud} ∪ {u}
to K̂ if it is not already in. See Figure 7.3. Notice that K′ is a subcomplex of K̂ in this example
which we observe is true in general.

Claim 1. K′ ⊆ K̂.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 9

Now consider the inclusions ι : K ↪→ K̂ and ι′ : K′ ↪→ K̂. These inclusions constitute the
diagram in 7.3 which does not necessarily commute. Nevertheless, it commutes at the homology
level which is precisely stated below.

Proposition 3. f∗ : H∗(K) → H∗(K′) is equal to (ι′∗)
−1 ◦ ι∗ where ι∗ and ι′∗ are inclusion induced

linear maps in the zigzag module H∗(K)
ι∗
→ H∗(K̂)

ι′∗
← H∗(K′). Furthermore, ι′∗ is an isomorphism.

Proof. We use the notion of contiguous maps which induces equal maps at the homology level.
Recall that two maps f1 : K1 → K2, f2 : K1 → K2 are contiguous if for every simplex σ ∈ K1,
f1(σ)∪ f2(σ) is a simplex in K2. We observe that the simplicial maps ι′◦ f and ι are contiguous and
ι′ induces an isomorphism at the homology level, that is, ι′∗ : H∗(K′)→ H∗(K̂) is an isomorphism.

Since ι is contiguous to ι′ ◦ f , we have ι∗ = (ι′ ◦ f)∗ = ι′∗ ◦ f∗. Since ι′∗ is an isomorphism,
(ι′∗)
−1 exists and is an isomorphism. It then follows that f∗ = (ι′∗)

−1 ◦ ι∗. �

Proposition 3 allows us to simulate the persistence of a simplicial tower with only inclusion-
induced homomorphisms which, in turn, allows us to consider a simplicial zigzag filtration. More
specifically, the simplicial tower in Eq.(7.2) generates the zigzag persistence module by induced
homomorphisms fi∗

H∗(K0)
f0∗
←→ H∗(K1)

f1∗
←→ H∗(K2)

f2∗
←→ · · ·

fn−1∗
←→ H∗(Kn) (7.3)

With our observation that every map fi∗ can be simulated with an inclusion induced map, our goal
is to replace the original simplicial tower in Eq.(7.2) with a zigzag filtration so that we can take
advantage of the algorithm in section 7.1. In view of Proposition 3, the two diagrams shown in
Figure 7.4 commute, the one on left corresponds to a forward collapse fi : Ki → Ki+1 and the
other on right corresponds to a backward collapse fi : Ki ← Ki+1.

H∗(Ki)
fi∗ //

=

��

H∗(Ki+1)

'

��

H∗(Ki+1)=oo

=

��
H∗(Ki)

ιi∗ // H∗(K̂i) H∗(Ki+1)'oo

H∗(Ki)
= //

=

��

H∗(Ki)

'

��

H∗(Ki+1)
fi∗oo

=

��
H∗(Ki)

' // H∗(K̂i+1) H∗(Ki+1)
ιi∗oo

Figure 7.4: Top modules induced from an elementary collapse are isomorphic to the modules
induced by inclusions at the bottom.

Observe that, if fi is an inclusion instead of a collapse, we can still construct similar com-
muting diagrams. In that case, we simply take K̂i = Ki+1 when fi is a forward inclusion and take
K̂i+1 = Ki when fi is a backward inclusion.

Now, we can expand each fi∗ of the persistence module in Eq. (7.3) by juxtaposing it with
an equality as in the top modules shown in Figure 7.4. Then, this expanded module becomes
isomorphic to the modules induced by inclusions at the bottom of the commuting diagrams.

In general, we first consider the expansion of the module in Eq. (7.3) to the following module
where S i = Ki+1, gi = fi, and hi is equality when fi is forward, and S i = Ki, gi is equality and

10 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

hi = fi when fi is backward.

H∗(K0)
g0
−→ H∗(S 0)

h0
←− H∗(K1)

g1
−→ H∗(S 1)

h1
←− H∗(K2)

g2
−→ · · ·

hn−1
←− H∗(Kn) (7.4)

A module isomorphic to the above module in Eq. (7.4) is given in Eq. (7.5) where Ti = K̂i when
fi is forward and Ti = K̂i+1 when fi is backward. All maps are induced by inclusions.

H∗(K0) −→ H∗(T0)←− H∗(K1) −→ H∗(T1)←− H∗(K2) −→ · · · ←− H∗(Kn) (7.5)

The two persistence modules in Eq. (7.4) and in Eq. (7.5) are isomorphic because all vertical maps
in the diagram below are isomorphisms and all squares commute by Proposition 3.

H∗(K0)
g0 //

=

��

H∗(S 0)

'

��

H∗(K1)
h0oo g1 //

=

��

H∗(S 1)

'

��

H∗(K2)
h1oo g2 //

=

��

. H∗(Kn)oo

=

��
H∗(K0) // H∗(T0) H∗(K1)oo // H∗(T1) oo H∗(K2) // H∗(Kn)oo

Figure 7.5: Modules in Eq. 7.4 and 7.5 are isomorphic.

In view of the module in Eq. (7.5), we convert the tower K in Eq. (7.2) to the zigzag filtration
below where Ti = K̂i when fi is forward and Ti = K̂i+1 when fi is backward:

F : K0 ↪→ T0 ←↩ K1 ↪→ T1 ←↩ K2 ↪→ · · · ←↩ Kn (7.6)

The zigzag filtration above is simplex-wise but does not begin with an empty complex. We can
expand K0 simplex-wise to convert the filtration to a simplex-wise filtration that begins with an
empty complex. Then, we can apply the zigzag algorithm in Section 7.1.3 to compute the barcode.

Theorem 4. The persistence diagram of K can be derived from that of the filtration F.

Example 1. Consider the tower in Eq. (7.7) where each map is an elementary collapse and the
persistence module induced by it in Eq. (7.8). This module can be expanded and its isomorphic
module is shown at the bottom of the commuting diagram in Figure 7.6.

K0
f0
−→ K1

f1
←− K2

f2
−→ · · ·

fn−1
−→ Kn (7.7)

H∗(K0)
f0∗
−→ H∗(K1)

f1∗
←− H∗(K2)

f2∗
−→ · · ·

fn−1∗
−→ H∗(Kn) (7.8)

We obtain the following zigzag filtration that corresponds to the module at the bottom of the
diagram in Figure 7.6. Hence, we can compute the barcode for the input tower in Eq. (7.7) from
this zigzag filtration.

K0 ↪→ K̂0 ←↩ K1 ↪→ K̂2 ←↩ K2 ↪→ · · · ←↩ Kn (7.9)

Remark 2. Notice that, when fi is an inclusion, we can eliminate introducing the middle column
in Figure 7.5 which will translate into eliminating some of the inclusions in the sequence in
Eq. (7.6). We introduced these extraneous inclusions just to make the expanded module generic
in the sense that its inclusions reverse the directions alternately.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 11

H∗(K0)
f0∗ //

=

��

H∗(K1) oo =

'

��

H∗(K1) = //

=

��

H∗(K1) oo
f1∗

'

��

H∗(K2)
f2∗ //

=

��

. oo
= H∗(Kn)

=

��
H∗(K0)

i0∗ // H∗(K̂0) oo ' H∗(K1) ' // H∗(K̂2) oo
i1∗ H∗(K2)

i2∗ // oo
' H∗(Kn)

Figure 7.6: Commuting diagram for the module in Eq. (7.8) and its isomorphic module.

7.3 Level set zigzag persistence

Now, we consider a special type of zigzag persistence stemming from a function over a topological
space. In standard persistence, growing sublevel sets of the function constitute the filtration over
which the persistence is defined. In level set zigzag persistence, we replace the sublevel sets with
level sets and interval sets and the maps going from the level sets to the adjacent interval sets give
rise to a zigzag filtration. To produce a zigzag filtration corresponding to a level set persistence,
we consider a PL-function on the underlying space of a simplicial complex and then convert a
zigzag sequence of subspaces (level and interval sets) into subcomplexes. This is similar to what
we did while considering the standard persistence for a PL function.

Before we focus on a PL function, let us consider a more general real-valued continuous
function f : X → R on a topological space X. We need a restriction on f that keeps all homology
groups being considered to be finite. For a real value s ∈ R and an interval I ⊆ R, we denote the
level set f −1(s) by X=s and the interval set f −1(I) by XI .

Definition 5 (Critical, regular value). An open interval I ⊆ R is called a regular interval if there
exist a topological space Y and a homeomorphism Φ : Y × I → XI so that f ◦ Φ is the projection
onto I and Φ extends to a continuous function Φ̄ : Y × Ī → XĪ where Ī is the closure of I. We
assume that f is of Morse type [5] meaning that each levelset X=s has finitely-generated homology
and there are finitely many values called critical a0 = −∞ < a1 < · · · < an < an+1 = +∞, so that
each interval (ai, ai+1) is a maximal interval that is regular. A value s ∈ (ai, ai+1) is then called a
regular value.

The original construction [5] of levelset zigzag persistence picks regular values s0, s1, . . . , sn

so that each si ∈ (ai, ai+1). Then, the levelset zigzag filtration of f is defined as follows:

X[s0,s1] ←↩ · · · ↪→ X[si−1,si] ←↩ X=si ↪→ X[si,si+1] ←↩ · · · ↪→ X[sn−1,sn]

This construction relies on a choice of regular values and there is no canonical choice. As we
work on simplicial complexes, different regular values can result in different complexes in the
diagram. Therefore, we adopt the following alternative definition of a levelset zigzag filtration X,
which does not rely on a choice of regular values:

X : X(a0,a2) ←↩ · · · ↪→ X(ai−1,ai+1) ←↩ X(ai,ai+1) ↪→ X(ai,ai+2) ←↩ · · · ↪→ X(an−1,an+1) (7.10)

The space of the type X(ai−1,ai+1) contains a critical value ai and hence is called a critical space.
For a similar reason a space of the type X(ai,ai+1) is called regular space which does not contain

12 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

a2 a3 a4

: · · ·

a1
X(a0,a2) X(a1,a2) X(a1,a3) X(a2,a3)

Figure 7.7: A torus with four critical values. The real-valued function is the height function over
the horizontal line. The first several subspaces in the levelset zigzag diagram are given and the
remaining ones are symmetric. Empty dot indicates that the point is not included.

any critical value. Considering the homology groups of the spaces, we get the zigzag persistence
module:

HpX : Hp(X(a0,a2))← · · · → Hp(X(ai−1,ai+1))← Hp(X(ai,ai+1))→ Hp(X(ai,ai+2))← · · · → Hp(X(an−1,an+1))

Note that X(ai,ai+1) deformation retracts to X=si and X(ai−1,ai+1) deformation retracts to X[si−1,si],
so the zigzag modules induced by the two diagrams are isomorphic, i.e., equivalent at the persis-
tent homology level. See Figure 7.7 for an example of a levelset zigzag filtration.

Generation of barcode for levelset zigzag. The interval decomposition of the module HpX

gives the barcode for the zigzag persistence. However, the endpoints of the bars may belong to
either the index of a critical or regular space. If it belongs to a critical space X(ai−1,ai+1), we map it
to the critical value ai. Otherwise, if it belongs to a regular space X(ai,ai+1), we map it to the regular
value si. After this conversion, still the bars do not end solely in critical values. We modify the
endpoints further. In keeping with the understanding that even the level set homology classes
do not change in the regular spaces, we convert an endpoint si to an adjacent critical value and
make the bar (interval module) open at that critical value. Precisely we modify the bars as (i)
[ai, a j] ⇔ [ai, a j], (ii) [ai, s j] ⇔ [ai, a j+1) (iii) [si, a j] ⇔ (ai, a j] (ii) [si, s j] ⇔ (ai, a j+1). The
intervals in (i)-(iv) are referred as closed-closed, closed-open, open-closed, and open-open bars
respectively. Our goal is to compute these four types of bars for a PL function where the space X
is taken as the underlying space of a simplicial complex K.

7.3.1 Simplicial level set zigzag filtration

We now turn to a simplicial version of the construction. For a given complex K, let X = |K| and
f : X → R be a PL-function defined by interpolating values on the vertices of K. We also assume
f to be generic, that is, no two vertices of K have the same function value.

Note that f can have critical values only at K’s vertices. We call these vertices critical and
call other vertices regular. Let v1, . . . , vn be all the critical vertices of f with values a1 < · · · < an,
and let a0 = −∞, an+1 = +∞ be two additional critical values. For two critical values ai < a j, let
X(i, j) := X(ai,a j) and K(i, j) be the complex

{
σ ∈ K | ∀ v ∈ σ, f (v) ∈ (ai, a j)

}
. Then, the space and

simplicial levelset zigzag filtration X and K of f are defined respectively as:

X : X(0,2) ←↩ · · · ↪→ X(i−1,i+1) ←↩ X(i,i+1) ↪→ X(i,i+2) ←↩ · · · ↪→ X(n−1,n+1) (7.11)

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 13

K : K(0,2) ←↩ · · · ↪→ K(i−1,i+1) ←↩ K(i,i+1) ↪→ K(i,i+2) ←↩ · · · ↪→ K(n−1,n+1) (7.12)

A complex of the form K(i,i+1) in the filtration is called a regular complex and a complex of the
form K(i,i+2) is called a critical complex. Note that while we can expect the space and simplicial

ai ai+1 ai ai+1

Figure 7.8: Simplicial zigzag
filtration is made equivalent
to space filtration by subdivi-
sion.

levelset zigzag filtrations for a finely tessellated complex to be
equivalent, this is not always the case. For example, in Figure 7.8,
let K′ be the complex on the left;

∣∣∣K′(i,i+1)

∣∣∣ (the blue parts) is not ho-
motopy equivalent to |K′|(ai,ai+1), and hence the simplicial levelset
zigzag filtration is not equivalent to the space one. We observe that
the non-equivalence is caused by the two central triangles which
contain more than one critical value. A subdivision of the two cen-
tral triangles in the complex K′′ on the right, where no triangles
contain more than one critical value, renders |K′′|(ai,ai+1) deforma-
tion retracting to

∣∣∣K′′(i,i+1)

∣∣∣. Based on the above observation, we
formulate the following property, which guarantees that the mod-
ule of the simplicial levelset zigzag filtration remain isomorphic
to that of the space one.

Definition 6. A complex K is called compatible with the levelsets of a PL function f : |K| → R if
for every simplex σ of K and its convex hull |σ|, function values of points in |σ| contain at most
one critical value of f .

Given a PL-function f on a complex K, one can make K compatible with the level sets of f
by subdividing K with barycentric subdivisions; see e.g. [6].

Proposition 5. Let K be compatible with the levelsets of f , and let X = |K|; one has that X(ai,a j)

deformation retracts to
∣∣∣K(i, j)

∣∣∣ for any two critical values ai < a j. Therefore, the zigzag modules
induced by the space and the simplicial levelset zigzag filtrations are isomorphic.

Our goal is to compute the four types of bars for the zigzag filtration X from its simplicial
version K. For this, we make K simplex-wise and call it F. First, F starts and ends with the same
original complexes in K. Second, whenever an inclusion in K is expanded so that one simplex is
added at a time, the addition follows the order of the simplices’ function values. Formally, for the
inclusion K(i,i+1) ↪→ K(i,i+2) in K, let u1 = vi+1, u2, . . . , uk be all the vertices with function values
in [ai+1, ai+2) such that f (u1) < f (u2) < · · · < f (uk); then, the lower stars of u1, . . . , uk are added
in sequence by F. Note that for each u j ∈

{
u1, . . . , uk

}
, we do not restrict how simplices in the

lower star of u j are added. For the inclusion K(i−1,i+1) ←↩ K(i,i+1) in K, everything is reversed, i.e.,
vertices are ordered in decreasing function values and upper stars are added. With this expansion,
the zigzag filtration K in Eq. (7.12) is converted to a filtration F shown below where a dashed
arrow indicates insertions of one or more simplices and a solid arrow indicates a single simplex
insertion. In particular, we indicate that the backward inclusion K(i−1,i+1) c↩ K(i,i+1) is expanded
into a simplex-wise filtration.

F : · · · ↪d K(i−1,i+1) ←↩ · · · ←↩ K`−1 ←↩ K` ←↩ · · · ←↩ K(i,i+1) ↪d K(i,i+2) c↩ · · · (7.13)

After expanding all forward and backward inclusions to make them simplex-wise, we obtain a
zigzag filtration whose complexes can be indexed by 0, 1, . . . , n as we assume next.

14 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

7.3.2 Barcode for level set zigzag filtration

One can compute the barcode for the zigzag filtration F in Eq. (7.13) that is derived from the
original zigzag filtration K in Eq. (7.12). There is one technicality that we need to take care
of. To apply the algorithm in Section 7.1.3, we need the input zigzag filtration to begin with an
empty complex. The filtration F as constructed from expanding K has the first complex K(0,2)
that is non-empty. However, one may expand K(0,2) simplex-wise and begin F with an empty
complex. We assume below this is the case for F.

The bars in the barcode for F do not necessarily coincide with the four types of bars for K
with endpoints only in critical values. However, we can read the bars for K from the bars of F.
For simplicity, let us write Dgmp(F) := Dgmp(HpF) obviating the distinction between a filtration
and its homology module.

First, assume that F is indexed as

F : ∅ = K0 ↔ K1 ↔ · · · ↔ Kn−1 ↔ Kn

This means that a complex K j, j > 0, is of the four categories, (i) it is a complex in the expansion
of the backward inclusion K(i−1,i+1) c↩ K(i,i+1), (ii) it is a complex in the expansion of the forward
inclusion K(i,i+1) ↪d K(i,i+2), (iii) it is a regular diagram complex K(i,i+1) for some i > 0, (iv) it
is a critical diagram complex K(i−1,i+1) for some i > 0. The types of complexes the endpoints of
a bar [b, d] for F are located determine the bars for K and hence X which can be of four types:
closed-closed [ai, a j], closed-open [ai, a j), open-closed (ai, a j], and open-open (ai, a j).

Let [b, d] be a bar for F. If both Kb and Kd appear in the expansion of a forward inclusion
K(i,i+1) ↪d K(i,i+2), we ignore the bar because it is an artificial bar created due to expanding the
filtration K into the filtration F. Similarly, we ignore the bar if both Kb and Kd appear in the
expansion of a backward inclusion K(i−1,i+1) c↩ K(i,i+1). We explain other cases below.
(Case 1.) Kb is either a regular complex K(i,i+1) or in the expansion of K(i−1,i+1) c↩ K(i,i+1): the
complex Kb is a subcomplex of the critical complex K(i−1,i+1) which stands for the critical value
ai. So, the end b is mapped to ai and made open because the class for the bar [b, d] does not exist
in K(i−1,i+1).
(Case 2.) Kb is either the critical complex K(i,i+2) or in the expansion of K(i,i+1) ↪d K(i,i+2): the
complex is a subcomplex of the critical complex K(i,i+2) which stands for the critical value ai+1.
So, the end b is mapped to ai+1 and is closed because the class for [b, d] is alive in K(i,i+2).
(Case 3.) Kd is the critical complex K(i−1,i+1) or is in the expansion of the backward inclusion
K(i−1,i+1) c↩ K(i,i+1): the complex is a subcomplex of the critical complex K(i−1,i+1) which stands
for the critical value ai. So, the end d is mapped to ai and made closed because the class for the
bar [b, d] exists in K(i−1,i+1).
(Case 4.) Kd is either the regular complex K(i,i+1) or in the expansion of K(i,i+1) ↪d K(i,i+2): the
complex is a subcomplex of the critical complex K(i,i+2) which stands for the critical value ai+1.
So, the end d is mapped to ai+1 and is open because the class for [b, d] is not alive in K(i,i+2).

7.3.3 Correspondence to sublevel set persistence

Standard persistence as we have seen already is defined by considering the sublevel sets of f , that
is, X[0,i] = f −1[s0, si] = f −1(−∞, si] where si ∈ (ai, ai+1) is a regular value. We get the following

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 15

sublevel set diagram:
X : X[0,0] → X[0,1] → · · · → X[0,n]

Then, considering f to be a PL function on X = |K|, we have already seen that X can be converted
to a simplicial filtration K shown below where K[0,i] = {σ ∈ K | f (σ) ≤ ai}. This filtration can
further be converted into a simplex-wise filtration which can be used for computing Dgm∗(K).

K : K[0,0] → K[0,1] → K[0,2] · · · → K[0,n]

The bars for this case have the form [ai, a j) where a j can be an+1 = ∞. Each such bar is closed at
the left endpoint because the homology class being born exists at K[0,i]. However, it is open at the
right endpoint because it does not exist at K[0, j].

One can see that there are two types of bars in the sublevel set persistence, one of the type
[ai, a j), j ≤ n, which is bounded on the right, and the other of the type [ai,∞) = [ai, an+1) which is
unbounded on the right. The unbounded bars are the infinite bars. They correspond to the essential
homology classes since Hp(K) �

⊕
i[ai,∞). The work of [3, 5] imply that both types of barcodes

of the standard persistence can be recovered from those of the level set zigzag persistence as the
theorem below states:

Theorem 6. Let K and K′ denote the filtrations for the sublevel sets and level sets respectively
induced by a continuous function f on a topological space with critical values a0, a1, · · · , an+1
where a0 = −∞ and an+1 = ∞. For every p ≥ 0,

1. [ai, a j), j , n + 1 is a bar for Dgmp(K) iff it is so for Dgmp(K′),

2. [ai, an+1) is a bar for Dgmp(K) iff either [ai, a j] is a closed-closed bar for Dgmp(K′) for
some a j > ai, or (a j, ai) is an open-open bar for Dgmp−1(K′) for some a j < ai.

7.3.4 Correspondence to extended persistence

There is another persistence considered in the literature under the name extended persistence [6],
and it turns out that there is a correspondence between extended persistence and level set per-
sistence. For a real-valued function f : X → R, let X[0,i] denote the sublevel set f −1[s0, si] as
before and X[i,n] denote the superlevel set f −1[si, sn]. Then, a persistence module that considers
the sublevel set filtration first and then juxtaposes it with a filtration of quotient spaces of X as
shown below gives the notion of extended persistence:

X : X[0,0] ↪→ · · · ↪→ X[0,n] ↪→ (X[0,n], X[n,n]) ↪→ · · · ↪→ (X[0,n], X[0,n])

Observe that each inclusion map between two quotient spaces induces a linear map in their relative
homology groups. One can read that the above sequence arises out of first growing the space to
the full space X[0,n] with sublevel sets and then shrinking it by quotienting with the superlevel sets.
Again, taking f : X → R as a PL function on X = |K|, we get the simplicial extended filtration
where K[0,i] = {σ ∈ K | f (σ) ≤ ai} and K[i,n] = {σ ∈ K | f (σ) ≥ ai}.

E : K[0,0] → · · · → K[0,n] → (K[0,n],K[n,n])→ · · · → (K[0,n],K[0,n])

16 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

The decomposition of the persistence module HpE arising out of E provides the bars in Dgm∗(E).
For the first part of the sequence, the endpoints of the bars are designated with respective function
values ai as before. For the second part, the birth or death point of a bar is designated as an+i if its
class either is born in (K[0,n],K[i,n]) or dies entering into (K[0,n],K[i,n]) respectively for 0 ≤ i ≤ n.
We leave the proof of the following theorem as an exercise; see also [5].

Theorem 7. Let K and E denote the simplicial level set zigzag filtration and the extended filtration
of a PL function f : |K| → R. Then, for every p ≥ 0,

1. [ai, a j) is a bar for Dgmp(K) iff it is a bar for Dgmp(E),

2. (ai, a j] is a bar for Dgmp(K) iff [an+ j, an+i) is a bar for Dgmp+1(E),

3. [ai, a j] is a bar for Dgmp(K) iff [ai, an+ j) is a bar for Dgmp(E),

4. (ai, a j) is a bar for Dgmp(K) iff [a j, an+i) is a bar for Dgmp+1(E).

Clearly, for two persistence modules HpE and HpE
′ arising out of two extended filtrations E

and E′, the stability of persistence diagrams holds, that is, db(DgmpE,DgmpE
′) = dI(HpE,HpE

′).

7.4 Notes and Exercises

The concept of zigzag modules obtained from a zigzag filtration by taking the homology groups
and linear maps induced by inclusions is closely related to quiver theory due to Gabriel [8] which
was brought to the attention of TDA community by Carlsson and de Silva [4]. They were the
first to propose the concept of zigzag persistence and its computation [4]. They observed that any
zigzag module can be decomposed into a set of other zigzag modules where the forward maps
are only injective and the backward maps are only surjective. Although they did not compute
this decomposition, they used its existence to design an algorithm for computing the interval
decomposition of a given zigzag module. Later, with Morozov, they used these concepts to present
an O(n3) algorithm for computing the persistence of a simplex-wise zigzag filtration with n arrows
[5]. Milosavljević et al. [10] improved the algorithm for any zigzag filtration with n arrows to
have a time complexity of O(nω + n2 log2 n), where ω ∈ [2, 2.373) is the exponent for matrix
multiplication. Maria and Oudot [9] presented a different algorithm where they showed how a
filtration of the last complex in the prefix of a zigzag filtration can help computing the persistence
incrementally. The algorithm in this chapter draws upon these approaches though is presented
quite differently. Indeed, adaptation of the presented approach on graphs led to recent near-linear
time algorithms for zigzag persistence on graphs [7].

Given a real valued function f : X → R on a topological space X, the level sets at the critical
and intermediate values give rise to a levelset zigzag filtration as shown in Section 7.3. Carlsson,
de Silva, and Morozov [5] introduced this set up and observed the decomposition of the zigzag
module into interval modules with open or closed ends. The four types of bars arising out of
this zigzag module give more information than the standard sublevel set persistence which only
outputs closed-open and infinite bars. It was observed in [3] that the open-open and closed-closed
bars indeed capture the infinite bars of the sublevel set persistence with an appropriate dimension
shift. Theorem 6 summarizes this connection. The extended persistence originally proposed for

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 17

surfaces [1] and later extended for filtrations [6] also computes all four types of bars, but they are
described differently using the persistence diagrams rather than open and closed ends.

Exercises

1. We defined four types of bars in the case of level set zigzag persistence for a topological
space. Characterize these four types of bars also in zigzag persistence given by a zigzag
filtration.

2. Do we get the same barcode if we run the zigzag persistence algorithm given in Sec-
tion 7.1.1 and the standard persistence algorithm on a filtration? If so, prove it. If not,
show the difference and suggest a modification to the zigzag persistence algorithm so that
the both output become the same.

3. Suppose that a persistence module {Vi
fi
→ Vi+1} is presented with the linear maps fi as

matrices whose columns and rows are fixed bases of Vi and Vi+1 respectively. Design an
algorithm to compute the barcode for the input module. Do the same when the input module
is a zigzag tower.

4. Consider a PL-function f : K → R.

(a) Design an algorithm to compute the barcode of − f from a level set zigzag filtration
of f .

(b) Show that f and − f produces the same closed-closed and open-open bars for the level
set zigzag filtration.

(c) In general, given a zigzag filtration F, consider the filtratoin F′ = −F in opposite
direction from right to left. What is the relation between the barcodes of these two
filtrations?

5. We computed persistence of zigzag towers by first converting it into a zigzag filtration and
then using the algorithm in section 7.1 to compute the bars. Design an algorithm that skips
the intermediate conversion to filtration.

6. Design an algorithm for computing the extended persistence from a given PL-function on
an input simplicial complex.

7. Prove Theorem 7.

18 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Bibliography

[1] Pankaj K. Agarwal, Herbert Edelsbrunner, John Harer, and Yusu Wang. Extreme elevation
on a 2-manifold. Discrete & Computational Geometry, 36(4):553–572, Dec 2006.

[2] Maurice Auslander. Representation theory of artin algebras ii. Communications in Algebra,
1(4):269–310, 1974.

[3] Dan Burghelea and Tamal K. Dey. Topological persistence for circle-valued maps. Discrete
& Computational Geometry, 50(1):69–98, Jul 2013.

[4] Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational
Mathematics, 10(4):367–405, Aug 2010.

[5] Gunnar Carlsson, Vin de Silva, and Dmitriy Morozov. Zigzag persistent homology and
real-valued functions. In Proc. 26th Annu. Sympos. Comput. Geom., pages 247–256, 2009.

[6] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
poincaré and lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103,
2009.

[7] Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. In
Proc. 37th Internat. Sympos. Comput. Geom. (SoCG), 2021.

[8] Peter Gabriel. Unzerlegbare darstellungen i. manuscripta mathematica, 6(1):71–103, Mar
1972.

[9] Clément Maria and Steve Y. Oudot. Zigzag persistence via reflections and transpositions. In
Proc. Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 181–199,
2015.

[10] Nikola Milosavljević, Dmitriy Morozov, and Primož Škraba. Zigzag persistent homology in
matrix multiplication time. In Proc. 27th Annu. Sympos. Comput. Geom., pages 216–225,
2011.

[11] Claus M. Ringel and Hiroyuki Tachikawa. Q-F3 rings. J. für die Reine und Angewandte
Mathematik, 272:49–72, 1975.

19

