Topological space(closed sets, closures)

Sunday, January 3, 2021 4:16 PM
Def (closed pat, closures): • Q is closed if T(Q is open.
• CLQ is the smallest closed pat
(ontaining Q S T.
In Example 1 {3,5,7} is closed because complement
$$\{0,1\}$$
 is open
 $(L \{0\} = \{0,3,7\}$
Example 2: All sets in the power pat are both open and closed
 $TI = \{u, v, v\}, 2^T = \{\dots, v\}, take \{v, w\}, T(\{v, w\} = \{v\})$
Example 3: $\{u, z, (u,z)\}$ is closed because $\{w, v, (\omega,z), (v,z)\}$ is open
 $\{u, (u,z)\}$ is neither open nor closed
 $(L(\{u, (u,z)\}) = \{u, z, \{u, z\}\})$

Topological space[Interior, connected, subspace)

Sunday, January 3, 2021 433PM
Def. Interior Int A is the union
$$\bigcup_{i} u_i$$
 where $\bigcup_{i} (A = 0)$ open
bnd $A = A \setminus Int A$
Example 1: Int $\{3, 5, 7\} = \{5\}$, bnd $\{3, 5, 7\} = \{3, 7\}$
Def. (connected): (Π, T) is disconnected if $\exists U, U \in T$ s.t.
 $\Pi = U \cup U$
 (Π, T) is connected if it is not desconnected
Example 1 is connected, subspace $\{0, 1, 5\}$ is disconnected
Example 3 is connected, subspace $\{(u, z), (u, z), (\omega, z)\}$ disconnected
Def. (subspace): $U \subseteq \Pi$, topology induced by $U = \{P \cap U: P \in T\}$
Example 1: $U = \{0, 1, 5\}$ $U = \{\{P\}, \{1\}, \{5\}, \{1, 5\}, \{0, 1\}, \{0, 1\}, \{0, 1, 5\}\}$

Topological space (Cover, compactness) Def. (Lover, Compactness): Open (closed) cover C for (T, T) is a collection of open (closed) sets S t. $T = \bigcup_{c \in C} C$. • IT is compact if every open C has C'CC where T= UC and C'finite CEC' (a)Fig(b): a closed cover: $C = \{\{u, (u, z)\}, \{u, z, (u, z)\}, \{u$ {Z, (u,z), (u,z), (w,z) } }