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Topic 12: Discrete Morse theory and persistence
Discrete Morse theory is a combinatorial version of the classical Morse theory. Invented by
Forman [10], the theory combines topology with the combinatorial structure of a cell complex.
Specifically, much like the fact that critical points of a smooth Morse function on a manifold de-
termines its topological entities such as homology groups and Euler Characteristics, an analogous
concept called critical simplices of a discrete Morse function also can determine similar structures
for the complex it is defined on. Gradient vectors associated with smooth Morse functions give
rise to integral lines and eventually the notion of stable and unstable manifolds [14]. Similarly,
a discrete Morse function defines discrete gradient vectors and V-paths analogous to the integral
lines. Using these V-paths, one can define the analogues of stable and unstable manifolds of the
critical simplices.

It turns out that an acyclic pairing between simplices and their faces so that every simplex
participates in at most one pair provides a discrete Morse function and conversely a discrete Morse
function defines such a pairing. This pairing termed as a Morse matching is a main building
block of the discrete Morse theory. In this chapter, we connect this matching with the pairing
obtained through persistence algorithm. Specifically, we present an algorithm for computing a
Morse matching and hence a discrete Morse vector field by connecting persistent pairs through
V-paths. This requires an operation called critical pair cancellation which may not succeed all
the time. However, for 1-complexes and simplicial 2-manifolds (pseudomanifolds), it always
succeeds. Section 12.1 and 12.2 are devoted to these results.

In Section 12.4, we apply our persistence based discrete Morse vector field to reconstruct
graphs from their noisy samples. Here we show that unstable manifolds of critical edges can
recover a graph with guarantees from a density data that captures the hidden graph reasonably
well. We provide two applications of using this graph reconstruction algorithm, one for road
reconstructions from GPS trajectories and satellite images and another for neuron reconstructions
from their images. Section 12.5 describes these applications.

12.1 Discrete Morse function

Following Forman [10] we define a discrete Morse function (henceforth called Morse function
in this chapter) as a function f : K → R on a simplicial complex K where for every p-simplex
σp ∈ K the following two conditions hold1:

• #{σp−1 |σp−1 is a facet of σp and f (σp−1) ≥ f (σp)} ≤ 1

• #{σp+1 |σp+1 is a coface of σp and f (σp+1) ≤ f (σp)} ≤ 1

The first condition says that at most one facet of a simplex σ has higher or equal function
value than f (σ) and the second condition says that at most one co-face of a simplex σ can have
lower or equal function value than f (σ). By a result of Chari [5], the two conditions imply that
the two sets above are disjoint, that is, if a pair (σp−1, σp) satisfies the first condition, there is no
pair (σp, σp+1) satisfying the second condition and vice versa. This means that a discrete Morse
function f defines a matching:

1Forman formulated discrete Morse function for more general cell complexes
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Definition 1 (Matching). A set of ordered pairs M = {(σ, τ)} is a matching in K if the following
conditions hold:

1. for any (σ, τ) ∈ M, σ is a facet of τ (recall a facet is a face of co-dimension 1), and

2. any simplex σ ∈ K can appear in at most one pair in M

Such a matching M defines two disjoint subsets L ⊆ K,U ⊆ K where there is a bijection µ : L→
U such that M = {(σ, µ(σ) | σ ∈ L}.

In Figure 12.1, we indicate a matching by putting an arrow from the lower dimensional sim-
plex to the higher dimensional simplex. Observe that the source of each arrow is a facet of the
target of the arrow.

Note however, the matching in K defined by a Morse function has an additional property of
acyclicity which we show next. Let us define a relation σi ≺ σi+1 if σi+1 = µ(σi) or σi+1 is a
facet of σi but σi , µ(σi+1).

Definition 2 (V-path and Morse matching). Given a matching M in K, for k > 0, a V-path π is a
sequence

π : σ0 ≺ σ1 ≺ · · ·σi−1 ≺ σi ≺ σi+1 · · · ≺ σk (12.1)

where σi , µ(σi−1) implies σi+1 = µ(σi). In other words, a V-path is an alternating sequence
of facets and cofaces thus alternating in dimensions where every consecutive pair also alternates
between matched and unmatched pairs. A V-path is cyclic if the first simplex σ0 is a facet of the
last simplex σk or σ0 = µ(σk) and the matching M is called cyclic if there is such a path in it.
Otherwise, M is called acyclic. An acyclic matching in K is called a Morse matching.

In Figure 12.1(left), the matching indicated by the arrows is not a Morse matching whereas
the matching in Figure 12.1(right) is a Morse matching. Observe that in a sequence like (12.1),
the function values on facets of the matched pairs strictly decreases. This observation leads to the
following fact.

Fact 1. The matching induced by a Morse function on K is acyclic, thus is a Morse matching.

We also have the following relation in the opposite direction.

Fact 2. A Morse matching M in K defines a Morse function on K.

Proof. First order those simplices which are in some pair of M. A simplex σp−1 is ordered
before σp if (σp−1, σp) ∈ M and it is ordered after σp if it is a facet of σp but (σp−1, σp) < M.
Such an ordering is possible because M is acyclic. Then, simply order the rest of the simplices
not in any pair of M according to their increasing dimensions. Assign the order numbers as the
function values of the simplices, which can easily be verified to satisfy the conditions (1) and (2)
of a discrete Morse function on K. �

Since a given Morse matching M in K can be associated with a Morse function f on K, we call
the simplices not covered by M the critical simplices of f . Let ci = ci(M) denote the number of i-
dimensional critical simplices. Recall that βi = βi(K) denotes the ith Betti number, the dimension
of the homology group Hi(K). Assume that ci, βi = 0 for i > p where K is p-dimensional. The
following result is due to Forman [10]. It is analogous to a theorem for smooth Morse function in
the smooth setting.
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Proposition 1. Given a Morse function f on K with its induced Morse matching M, let cis and
βis defined as above. We have:

• (weak Morse inequality)

(i) ci ≥ βi for all i ≥ 0.

(ii) cp − cp−1 + · · · ± c0 = βp − βp−1 + · · · ± β0 where K is p-dimensional.

• (strong Morse inequality)

ci − ci−1 + ci−2 − · · · ± c0 ≥ βi − βi−1 + βi−2 · · · ± β0 for all i ≥ 0.

The weak Morse inequality can be derived from the strong Morse inequality (Exercise 7)

12.1.1 Discrete Morse vector field
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Figure 12.1: Two DMVFs: (left) the matching is not Morse because the sequence a ≺ ab ≺ b ≺
bc ≺ c ≺ cd ≺ d ≺ da is cyclic; (right) the matching is Morse, and there is no cyclic sequence.

Morse matchings can be interpreted naturally as a discrete counterpart of a vector field.

Definition 3 (DMVF). A discrete Morse vector field (DMVF) V in a simplicial complex K is
a partition V = C t L t U of K where L is the set of facets paired with a unique coface in U
in a Morse matching M giving µ(L) = U and C is the set of unpaired simplices called critical
simplices. We also say that V is induced by matching M in this case.

We interpret each pair (σ, τ = µ(σ)) as a vector originating at σ and terminating at τ and
draw the vector by an arrow with tail in σ and head in τ; see Figures 12.1 and 12.2. The critical
simplices are treated as critical points of the vector field justifying their names. The vertex e and
edge ce in both left and right pictures in Figure 12.1 are critical whereas the vertex c is critical
only in the right picture and the edge b f is only critical in the left picture.

In analogy to the integral lines for smooth vector fields, we define the so called critical V-paths
for discrete Morse vector fields.

Definition 4 (Critical V-path). Given a DMVF V = CtLtU induced by a matching M, a V-path
π : σ0 ≺ σ1 ≺ · · ·σi−1 ≺ σi ≺ σi+1 · · · ≺ σk is critical in M if both σ0 and σk are critical.
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Observe that, σ0 and σk in the above definition are necessarily a p- and (p − 1)-simplex
respectively if the V-path alternates between p and (p − 1)-simplices. The V-path corresponding
to a critical V-path cannot be cyclic due to this observation. The critical triangle cda with any
of its edges in Figure 12.1(left) forms a V-path wheres the pair ce ≺ e forms a critical V-path in
Figure 12.1(right).

In a critical V-path π, the pairs (σ1, σ2), · · · , (σ2i−1, σ2i), · · · (σk−2, σk−1) are matched. We
can cancel the pairs of critical simplices (σ0, σk) by reversing the matched pairs.

Definition 5 (Cancellation). We say a pair of critical simplices (σ0, σk) is (Morse) cancellable
if there exists a unique critical V-path π : σ0 ≺ σ1 ≺ · · ·σi−1 ≺ σi ≺ σi+1 · · · ≺ σk. The pair
(σ0, σk) is cancelled if one modifies the matching by shifting the matched pairs by one position,
that is, by asserting that the pairs (σk, σk−1), · · · , (σ2i+1, σi), · · · , (σ1, σ0) are matched instead –
we refer to this as the Morse cancellation operation on (σ0, σk). Observe that a cancellation
essentially reverses the vectors in the V-path π and additionally converts critical simplices σ0 and
σk to be non-critical; see Figure 12.2.

Observe that a cancellation preserves the property of matching, that is, the new pairs together
with the undisturbed pairs indeed form a matching. Uniqueness of the critical V-path connecting
a pair of critical simplices ensures that the resulting new matching remains Morse. If there are
more than one such critical V-path, the new matching may become cyclic – for example, in Fig-
ure 12.2(c), the cancellation of one critical V-path between the triangle-edge pair creates a cyclic
V-path. The uniqueness of critical V-path is sufficient to ensure that such cyclic matching cannot
be produced. In particular, we have:

(a) (b) (c)

Figure 12.2: Critical vertices and edges are marked red; (a) before cancellation of edge-vertex
pair (v2, e2); (b) after cancellation, the path from e2 to v2 is inverted, giving rise to a critical V-
path from e1 to v1, making (v1, e1) now potentially cancellable; (c) the edge-triangle pair (e, t), if
cancelled, creates cycle as there are two V-paths between them.

Proposition 2. Given a Morse matching M, suppose we cancel a pair of critical simplices σ and
σ′ in a DMVF V via a critical V-path to obtain a new matching M′. Then M′ remains a Morse
matching if and only if this V-path is the only critical V-path connecting σ and σ′ in V (i.e, the
pair (σ,σ′) is cancellable as in Definition 5).

Proof. First, assume that there are two V-paths π and π′ originating at σ and ending at σ′. Since
π and π′ are distinct and have common simplices σ at the beginning and σ′ at the end, there are
simplices τ and τ′ where the two paths differ for the first time after τ and join again for the first
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time at τ′. Reversing one V-path, say π, will create a V-path from τ′ to τ. This sub-path along
with the V-path from τ to τ′ on π′ creates a cyclic V-path, thus proving the ’only if’ part.

Next, suppose that there is only a single V-path from σ to σ′. After reversing this path, we
claim that no cyclic V-path is created. For contradiction, assume that a cyclic V-path is created
as the result of reversal of π. Let the maximal sub-path of reveresd π on this cyclic path starts
at τ and ends at τ′. We have τ , τ′ because otherwise the original matching needs to be cyclic
in the first place. But, then the cyclic V-path has a sub-path from τ′ to τ that is not in π. Since
the reversed V-path π has a sub-path from τ to τ′, the original path has a sub-path from τ′ to τ.
It means that the DMVF V originally had two V-paths from σ to σ′, with one of them being π
while the other one containing a sub-path not in π. This forms a contradiction that there are no
distinct V-paths from σ to σ′. Hence the assumption that a cyclic V-path is created is wrong,
which completes the proof of the ’if’ part. �

12.2 Persistence based DMVF

Given a simplicial complex K, one can set up a trivial DMVF where every simplex is critical, that
is, V = K t ∅ t ∅. Then, one may use cancellations to build vector field further by constructing
more matchings. The key to the success of this approach is to identify pairs of critical simplices
that can be cancelled without creating cyclic paths. One way to do this is by taking advantage of
persistence pairs among simplices.

12.2.1 Persistence-guided cancellation

First, we consider the case of simplicial 1-complexes which consist of only vertices and edges.
Such a complex admits a DMVF obtained by cancelling the persistence pairs successively. Here
we consider pairs with finite persistence only. Recall that some of the creator simplices are never
paired with a destructor because the class created by them never dies. They are paired with ∞.
Such essential pairs are not considered in the following proposition.

Proposition 3. Let (v1, e1), (v2, e2), · · · , (vn, en) be the sequence of all non-essential persistence
pairs of vertices and edges sorted in increasing order of the appearance of the edges ei’s in
a filtration of a 1-complex K. Let V0 be the DMVF in K with all simplices being critical. Sup-
pose DMVF Vi−1 can be obtained by cancelling successively (v1, e1), (v2, e2), · · · (vi−1, ei−1). Then,
(vi, ei) can be cancelled in Vi−1 providing a DMVF Vi for all i ≥ 1.

Proof. Inductively assume that (i) Vi−1 is a DMVF obtained as claimed in the proposition and
(ii) any matched edge in Vi−1 is a paired edge in a persistence pair. We argue that these two
hypotheses hold for Vi proving the claim due to the hypothesis (i).

The base case for i = 1 is true trivially because V0 is a DMVF and there is no matched edge.
Inductively assume that Vi−1 satisfies the inductive hypothesis for i > 1. Consider the persis-
tence pair (vi, ei). First, we observe that a V-path ei = ei1 ≺ vi1 ≺ . . . ≺ ein ≺ vin = vi exists
in Vi−1. If not, starting from the two endpoints of ei, we attempt to follow the two V-paths and
let v, v′ , vi be the first two critical vertices encountered during this construction. Without loss
of generality, assume that v′ appears before v in the filtration. Then, the 0-dimensional class
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[v + v′] is born when v is introduced. It is destroyed by ei. It follows that (v, ei) is a persistence
pair contradicting that actually (vi, ei) is a persistence pair. For induction, consider the V-path
ei = ei1 ≺ vi1 ≺ . . . ≺ ein ≺ vin = vi in Vi−1 which is cancelled to create Vi. For Vi not to
be a DMVF, due to Proposition 2, we must have another distinct V-path from ei to vi in Vi−1,
ei = e j1 ≺ v j1 ≺ . . . ≺ e jn′ ≺ vin′ = vi. These two non-identical paths form a 1-cycle. Every edge
in this cycle except possibly ei are matched edges in Vi−1 and hence participates in a persistence
pair by the inductive hypothesis. Then, all edges in the 1-cycle participate in some persistence
pair because ei is also such an edge by assumption. But, this is impossible because in any 1-cycle
at least one edge has to remain unpaired in persistence. It follows that by cancelling (vi, ei), we
obtain a DMVF Vi satisfying the inductive hypothesis (i). Also, inductive hypothesis (ii) follows
because the new matched pairs in Vi involve edges that were already matched in Vi−1 and the edge
ei which participates in a persistence pair by assumption. �

The result above holds for vertex-edge pairing in any simplicial complex. Furthermore, using
dual graphs, it can be used for edge-triangle pairing in triangulations of 2-manifolds. Given a
simplicial 2-complex K whose underlying space is a 2-manifold without boundary, consider the
dual graph (1-complex) K∗ where each triangle t ∈ K becomes a vertex t∗ ∈ K∗ and two vertices
t∗1 and t∗2 are joined with an edge e∗ if triangles t1 and t2 share an edge e in K.

The following result connects the persistence of a filtration of K and its dual graph K∗.

Proposition 4. Let σ1, σ2, · · · , σn be a subsequence of a simplex-wise filtration F of K consisting
of only edges and triangles. A edge-triangle pair (σi, σ j) is a persistence pair for F if and only if
(σ∗j , σ

∗
i ) is a persistence pair for the filtration σ∗n, σ

∗
n−1, · · · , σ

∗
1 of the dual graph K∗.

Proof. Recall the following fact. An edge-triangle persistence pair (homology groups) produced
by the filtered boundary matrix D2 for filtration of K are exactly same as the triangle-edge per-
sistence pair (cohomology groups) obtained from the twisted (transposed and reversed) matrix
D∗2. The matrix D∗2 is exactly the filtered boundary matrix of a filtration of K∗ that reverses the
subsequence of triangle and edges where a triangle t becomes a vertex t∗ and an edge e becomes
an edge e∗. �

We can compute a DMVF V∗ for K∗ by cancelling all persistence pairs in non-decreasing
order of their persistence. By duality, this also produces a DMVF V for the 2-manifold K. The
action of cancelling a vertex-edge pair in K∗ can be translated into a cancellation of an edge-
triangle pair in K. Combining Propositions 3 and 4, we obtain the following result.

Theorem 5. Let K be a simplicial 2-complex whose underlying space is a 2-manifold without
boundary and F be a simplex-wise filtration of K. Starting from the trivial DMVF where each
simplex is critical, one can obtain a DMVF in K by cancelling the vertex-edge and edge-triangle
persistence pairs given by F.

In general, by duality one can apply the above theorem to cancel all persistence pairs be-
tween (d − 1)-simplices and d-simplices in a filtration of a simplicial d-complex where each
(d − 1)-simplex has at most two d-simplices as cofaces. This includes simplicial d-manifolds
with boundary. For this extension, one has to introduce a ‘dummy’ vertex in the dual graph that
connects to all dual vertices of d-simplices incident to a boundary (d − 1)-simplex. We leave it as
an exercise (Exercise 8).
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Unfortunately, it does not extend any further. In particular, the result in Theorem 5 does not
extend to arbitrary simplicial 2-complexes and hence arbitrary simplicial complexes. The main
difficulty arises because such a complex does not admit a dual graph in general. Indeed, there
are counterexamples which exhibit that every persistence pair for a filtration of a simplicial 2-
complex cannot be cancelled leading to a DMVF. The following Dunce hat example exhibits this
obstruction.

Dunce hat. Consider a 2-manifold with boundary which is a cone with apex v and the boundary
circle c. Let u be a point on c. Modify the cone by identifying the line segment uv with the
circle c. Because of the similarity, the space obtained by this identification is called the Dunce
hat. Consider a triangulation K of the Dunce hat. Notice that Dunce hat and hence |K| is not a
2-manifold. The edges discretizing uv in K have three triangles incident to them. We show that
there is no DMVF without any critical edge and triangle for K. The complex K is known to have
βi(K) = 0 for all i > 0 and has two or more triangles adjoining every edge in it. For any filtration
of K, there cannot be any edge or triangle that remains unpaired because otherwise that would
contradict that β1(K) = 0 and β2(K) = 0. If a DMVF V were possible to be created by cancelling
persistence pairs, there would be a finite maximal V-path that cannot be extended any further.
Consider such a path π starting at a simplex σ. If σ is a triangle, the edge µ−1(σ) matched with
it can be added before it to extend π. If σ is an edge, there is a triangle adjoining σ not in the
V-path because at least two triangles adjoin e and the V-path starting at e cannot be cyclic. We
can add that triangle to extend π. In both cases, we contradict that π is maximal.

12.2.2 Algorithms

The above results naturally suggest an algorithm for computing a persistence based DMVF for
a simplicial 2-manifold K. We compute the persistence pairs on a chosen filtration F of K and
then cancel them successively as Theorem 5 suggests. Both of these tasks can be combined by
modifying the well known Kruskal’s algorithm for computing minimum spanning tree of a graph.

Consider a graph G = (U, E) which can be either the 1-skeleton of a complex K or the dual
graph K∗ if K is a simplicial 2-manifold. Assume that u1, u2, . . . , uk and e1, e2, . . . , e` be an
ordered sequence of vertices and edges in G. For minimum spanning tree, the sequence of edges
are taken in non-decreasing order of their weights. Here we describe the algorithm by assuming
any order. Kruskal’s algorithm maintains a spanning forest of the vertex set. It brings one edge
e at a time in the given order either to join two trees in the current forest or to discover that the
edge makes a cycle and hence does not belong to the spanning forest. If the two endpoints of
e belong to two different trees in the forest, then it joins those two trees. Otherwise, e connects
two vertices in the same tree creating a cycle. The main computation involves of determining
if two vertices of an edge belong to the same tree or not. This can be done by union-find data
structure which maintains the set of vertices of a tree in a single set and two sets are united if
an edge joins the two respective trees. This is similar to FindSet and Union operations in the
algorithm ZeroPerDG described previously. All such find and union operations can be done in
O(k + `α(`)) time assuming there are k vertices and ` edges in the graph which dominates the
overall complexity.

We can incorporate the persistence computation and Morse cancellations simultaneously in
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the above algorithm with some simple modifications. We process the vertices and edges in their
order of the input filtration. Usually, the filtration F = F f is given by a simplex-wise monotone
function f as described previously. We compute the persistence Pers (e) of an edge e as Pers (e) =

| f (e) − f (r)| if e pairs with the vertex r and∞ otherwise.
For a vertex u in the filtration F f , we do not do anything other than creating a new set con-

taining u only. When an edge e = (u, u′) comes in, we check if u and u′ belong to the same
tree by using the union-find data structure. If they do, the edge e is designated as a creator for
persistence and as a critical edge in DMVF that is being built on G. Otherwise, we compute
Pers (e) after finding the persistence pair for e and at the same time cancel e with its pair in
the DMVF as follows. Assume inductively that the current DMVF matches every vertex other
than the roots of the trees to one of its adjacent edge as follows. For a leaf vertex v, con-
sider the path v = v1, e1, . . . , ek−1, vk = r from v to the root r which consist of matched pairs
(v1, e1), . . . , (vk−1, ek−1) and the critical vertex r. For the edge e = (u, u′), let the roots of the
two trees containing u and u′ be r and r′ respectively. Assume without loss of generality that
r succeeds r′ in the input filtration. Then, e pairs with r in persistence because e joins the two
components created by r and r′ between which r comes later in the filtration. We cancel the per-
sistence pair (r, e) by shifting the matched pairs on the path from u to r as stated in Definition 5.
The root of the joined tree becomes r′. Cancelling (r, e) maintains the invariant that every path
from the leaf to the root of the new tree remains a V-path. See Figure 12.3 for an illustration.

Algorithm 1 PersDMVF(G, F f )
1: Let G = (U, E) and F be the input filtration of its n vertices and edges.
2: T := {∅}; V := ∅ t ∅ t {(U ∪ E)}; Initialize U := U;
3: for all i = 1, . . . , n do
4: if σi ∈ F f is a vertex u then
5: Create a tree T rooted at u; T := T ∪ {T };
6: else if σi ∈ F is an edge e = (u, u′) then
7: if t :=FindSet(u)= t′ :=FindSet(u′) then
8: designate e as creator and critical in V; Pers (e) := ∞
9: else

10: Union(t,t′) updating U

11: Let Tu and Tu′ be trees containing u and u′;
12: Find V-paths πu from u to root r and πu′ from u′ to r′ in Tu and Tu′ respectively;
13: Let r succeed r′ in F; Cancel (e, r) considering the V-path πu and update DMVF V;

Pers (e) := | f (e) − f (r)|;
14: Join(Tu,Tu′) in T;
15: end if
16: end if
17: end for
18: Output V and persistence pairs with persistence values

The costly step in algorithm PersDMVF is the cancellation step which takes O(n) time and
thus incurs a running time O(n2) in total. However, we observe that all matchings in the final
DMVF are made between a node v and the edge e that connects v to its parent parent(v) in the
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Figure 12.3: Illustration for Algorithm PersDMVF: destroyer edge e = (u, u′) is joining two trees
Tu and Tu′ with roots r and r′ respectively. The pair (r, e) is cancelled reversing the arrows on
edges marked red; edge e′ in the right picture is a creator and does not make any change in the
forest.

Algorithm 2 SimplePersDMVF(G, F f )

Input:
A graph G and a filtration F f on its n vertices and edges

Output:
A DMVF V and persistence pairs of F f which are cancelled for creating V

1: Let G = (U, E) and F f be the input filtration of its n vertices and edges.
2: T := {∅}; V := ∅; Initialize U := U;
3: for all i = 1, . . . , n do
4: if σi ∈ F f is a vertex u then
5: Create a tree T rooted at u; T := T ∪ {T };
6: else if σi ∈ F is an edge e = (u, u′) then
7: if t :=FindSet(u)= t′ :=FindSet(u′) then
8: designate e as creator and critical in V; Pers (e) := ∞
9: else

10: Union(t,t′) updating U

11: Let Tu and Tu′ be trees containing u and u′ with roots r and r′;
12: Let r succeed r′ in F; Pers (e) := | f (e) − f (r)|;
13: Join(Tu,Tu′) in T with edge e;
14: end if
15: end if
16: end for
17: for each tree T ∈ T do
18: for each node v in T do
19: e := (v, parent(v)), V := V t (v, e)
20: end for
21: Put the root of T as a critical vertex in V;
22: end for
23: Output V and persistence pairs with persistence values
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respective rooted tree and the root remains critical. All non-tree edges remain critical. Thus, we
can eliminate the cancellation step in PersDMVF and after computing the final forest we can
determine all matched pairs by traversing the trees upward from the leaves to the roots while
matching a vertex with the edge visited next in this upward traversal. This matching takes O(n)
time. Accounting for the union-find operations, all other steps in PersDMVF take O(nα(n)) time
in total. The simplified algorithm SimplePersDMVF incorporates these changes. We have the
following result.

Theorem 6. Given a simplicial 1-complex or a simplicial 2-manifold K with n simplices, one can
compute

1. a persistence based DMVF consistent with a given filtration in K in O(nα(n)) time;

2. a DMVF consistent with a given PL function on K in O(n log n) time.

Proof. We argue for all statements in the theorem when K is a 1-complex. By considering the
dual graph K∗, and combining Propositions 3 and Proposition 4, the arguments also hold for K
when it is a simplicial 2-manifold. The complexity analysis of the algorithm SimplePersDMVF
establishes the first statement. For the second statement, given the function values at the vertices
of K, we can compute a simplex-wsie lower star filtration in O(n log n) time after sorting these
function values. A subsequent application of SimplePersDMVF on this lower star filtration pro-
vides us the desired DMVF. �

We can modify SimplePersDMVF slightly to take into account a threshold δ for persistence,
that is, we can cancel pairs only with persistence up to δ. Interestingly, we do not need to compute
all persistence pairs to determine which pairs qualify for the threshold. The new algorithm called
PartialPersDMVF takes δ as input and modifies step 14 of Algorithm 1 as:

• If Pers (e) ≤ δ then Join(Tu,Tu′) else designate e critical

Claim 1. PartialPersDMVF(F,δ) computes a DMVF obtained by cancelling persistence pairs
in non-decreasing order of persistence values which do not exceed the input threshold δ.

Let Vδ denote the resulting discrete gradient field after canceling all vertex-edge persistence
pairs with persistence at most δ.

Proposition 7. The following statements hold for the output T of procedure PartialPersDMVF
w.r.t any δ ≥ 0:

(i) For each tree Ti, its root ri is the only critical simplex in Vδ ∩ Ti. The collection of these
roots corresponds exactly to those vertices whose persistence is bigger than δ.

(ii) Any edge with Pers (e) > δ remains critical in Vδ and cannot be contained in T.
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12.3 Stable and unstable manifolds

In the book, we introduce the concept of smooth Morse functions. These are smooth functions f :
Rd → R satisfying certain conditions. We defined critical points of these functions and analyzed
topological structures using the neighborhoods of these critical points. Here, we introduce another
well known structure associated with Morse functions and then draw a parallel between these
smooth continuous structures to their discrete counterparts with the discrete Morse functions.

12.3.1 Morse theory revisited

For a point p ∈ Rd, recall that the gradient vector of f at a point p is ∇ f (p) = [ ∂ f
∂x1
· · ·

∂ f
∂xd

]T , which
represents the steepest ascending direction of f at p, with its magnitude being the rate of change.
An integral path of f is a maximal path π : (0, 1) → Rd where the tangent vector at each point
p of this path equals ∇ f (p), which is intuitively a flow path following the steepest ascending
direction at any point. Recall that a point p ∈ Rd is critical if its gradient vector vanishes, i.e,
∇ f (p) = [0 · · · 0]T . An integral path necessarily “starts” and “ends” at critical points of f ; that is,
limt→0 π(t) = p with ∇ f (p) = [0 · · · 0]T , and limt→1 π(t) = q with ∇ f (q) = [0 · · · 0]T . See Figure
12.4 where we show the graph of a function f : R2 → R, and there is an integral path from a
minimum v to a maximum t2 and also to a saddle point e2.

For a critical point p, the union of p and all the points from integral lines flowing into p is
referred to as the stable manifold of p. Similarly, for a critical point q, the union of q and all
the points on integral lines starting from q is called the unstable manifold of q. The unstable
manifold of a minimum p intuitively corresponds the basin/valley around p in the terrain of f .
The 1-unstable manifold of an index (d − 1) saddle consist of flow paths connecting this saddle
to maxima– These curves intuitively capture “mountain ridges” of the terrain (graph of the func-
tion f ); see Figure 12.4 for an example. Symmetrically, the stable manifold of a maximum q
corresponds to the mountain around q. The 1-stable manifolds consist of a collection of curves
connecting minima to 1-saddles, corresponding intuitively to the “valley ridges”.

Now, we focus on a graph-reconstruction approach using Morse-theory. Suppose that a den-
sity field ρ : Ω → R on a domain Ω ⊆ Rd is given where ρ concentrates around a hidden
geometric graph G embedded in Rd. We want to reconstruct G from ρ. Intuitively, we wish to use
the 1-unstable manifolds of saddles (mountain ridges) of the density field ρ to capture the hidden
graph.

However, to implement this idea, we will use discrete Morse theory, which provides robust-
ness and simplicity due to its combinatorial nature. We will also see that the cancellations guided
by the persistence pairings could help us removing noise introduced both by discretization and
measurement errors. Below, we introduce some concept necessary for transitioning to the discrete
versions of (un)stable manifolds.

12.3.2 (Un)Stable manifolds in DMVF

The V-paths in a DMVF are analogues to the integral paths in the smooth setting. A V-path
π : σ0 ≺ σ1 ≺ · · ·σi−1 ≺ σi ≺ σi+1 · · · ≺ σk is a vertex-edge gradient path if σi alternate
between edges and vertices. Similarly, it is a edge-triangle gradient path if they alternate between
triangles and edges. Different from the smooth setting, a maximal V-path may not start or end at
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(a) (b)

Figure 12.4: (Un)stable manifolds for a smooth Morse function on left and its discrete version
(shown partially) on right. t1 and t2 are maxima (critical triangles in discrete Morse), v is a
minimum, e1 and e2 are saddles (critical edges in discrete Morse). The unstable manifold of e1
flows out of it to t1 and t2. On the other hand, its stable manifolds flows out of minima such as v
and come to it. These flows work in the opposite direction of ‘gravity’ because if we put a drop
of water at x it will flow to v. If we put it on the other side of the mountain ridge it will flow to
other minimum. Notice this reversal of flow direction from the smooth case to the discrete case.

critical simplices. However, those that do (i.e, when σ0 and σk are critical simplices) are exactly
the critical V-paths. These paths are discrete analogues of maximal integral paths in the smooth
setting which “start” and “end” at critical points. One can think of critical k-simplices in the
discrete Morse setting as index-k critical points in the smooth setting. For example, for a function
on R2, critical 0-, 1- and 2-simplices in the discrete Morse setting correspond to minima, saddles
and maxima in the smooth setting, respectively.

There is one more caveat that one should be aware of. The direction of the integral paths
and the V-paths run in the opposite direction by definition: In the smooth setting, function values
increase along an integral path, while in the discrete setting, it decreases along a V-path. This
means that the stable and unstable manifolds reverses their roles in the two settings. For a critical
edge e, we define its stable manifold to be the union of edge-triangle gradient paths that ends
at e. Its unstable manifold is defined to be the union of vertex-edge gradient paths that begins
with e. In the graph reconstruction approach presented below, we use “mountain ridges” for the
reconstruction. We have seen that these are 1-unstable manifolds of saddles in the smooth setting
and hence correspond to 1-stable manifolds in the discrete gradient fields consisting of triangle-
edge paths. Notice that these mountain ridges on a triangulation of d-manifold correspond to
a V-path alternating between d and (d − 1) dimensional simplices. Computationally, however,
vertex-edge gradient paths are simpler to handle especially for the Morse cancellations below.
Hence in our algorithm below, we negate the density function ρ and consider the function −ρ. The
algorithm outputs a subset of the 1-unstable manifolds that are vertex-edge paths in the discrete
setting as the recovered hidden graph.

With the above set up, we have an input function f : V(K) → R defined at the vertices V(K)
of a complex K whose linear extension leads to a PL function still denoted by f : |K| → R. For
computing persistence, we use the lower-star filtration F f of f and its simplex-wise version.
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12.4 Graph reconstruction

Suppose we have a domain Ω (which will be a cube in Rd) and a density function ρ : Ω → R
that “concentrates” around a hidden geometric graph G ⊂ Ω. In the discrete setting, our input
will be a triangulation K of Ω and a density function given as a PL-function ρ : |K| → R. The
algorithm can be easily modified to take a cell complex as input. Our goal is to compute a graph
Ĝ approximating the hidden graph G.

12.4.1 Algorithm

Intuitively, we wish to use “mountain ridges” of the density field to approximate the hidden graph
as Figure 12.6 shows. We compute these ridges as the 1-stable manifolds (“valley ridges") of
f = −ρ, the negation of the density function. In the discrete setting, these become 1-unstable
manifolds consisting of vertex-edge gradient paths in an appropriate DMVF. We compute this
DMVF by cancelling vertex-edge persistence pairs whose persistence is at most a threshold δ.
The rational behind this choice is that the small undulations in a 1-unstable manifold caused by
noise and discretization need to be ignored by cancellation. The procedure PartialPersDMVF
described earlier in Section 12.2.2 achieves this goal. Finally, the union of the 1-unstable mani-
folds of all remaining high-persistence critical edges is taken as the output graph Ĝ, as outlined
in Procedure in CollectG.

Algorithm 3 MorseRecon(K, ρ, δ)

Input:
A 2-complex K, a vertex function ρ on K, a threshold δ

Output:
A graph

1: Let F be a simplex-wise lower star filtration of K w.r.t. f = −ρ.
2: Compute persistence Pers (e) for every edge e for the filtration F.
3: Let K1 be the 1-skeleton of K and F1 be F restricted to vertices and edges only
4: Let T be the forest computed by PartialPersDMVF(K1,F1,δ)
5: CollectG(K1,T, Pers (·), δ)

Since we only need 1-unstable manifolds, K is assumed to be a 2-complex. Notice that
one only needs to cancel vertex-edge pairs – this is because only vertex-edge gradient vectors
contribute to the 1-unstable manifolds, and also new vertex-edge vectors can only be generated
while canceling other vertex-edge pairs.

Let T1,T2, . . . ,Tk be the set of trees returned by PartialPersDMVF. The routine CollectG
outputs the 1-unstable manifold of every edge e = (u, v) with Pers (e) > δ, which is simply the
union of e and the unique paths from u and v to root of the tree containing them respectively.

Notice that we still need to compute the persistence for all edges. If it were only for those
edges that pair with vertices, we could have eliminated step 2 in MorseRecon and computed the
persistence of these edges in PartialPersDMVF in almost linear time (Theorem 6). However, to
compute persistence for edges that pair with triangles, we have to use the standard persistence
algorithm whose complexity again depends on the complex K. For example, if K is a simplicial
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Algorithm 4 CollectG(K1,T, Pers (·), δ)

Input:
A 1-skeleton K1, a forest T ⊆ K1, persistence values for edges in K1, a threshold δ

Output:
A graph

1: Ĝ := ∅
2: for every edge e = (u, v) ∈ K1 \ T do
3: if Pers (e) > δ then
4: Let π(u) and π(v) be the two paths from u and v to the roots respectively;
5: Set Ĝ := Ĝ ∪ π(u) ∪ π(v) ∪ {e}
6: end if
7: end for
8: Return Ĝ

2-manifold, this can run in O(n log n) time; but this time complexity does not hold for general
2-complex K. To take into account this dependability of the time complexity on the type of K, we
simply denote the time for computing persistence with Pert(K) in the following theorem.

Theorem 8. The time complexity of our Algorithm MorseRecon is O(Pert(K)), where Pert(K) is
the time to compute persistence pairings for K.

We remark that, for K with n vertices and edges, collecting all 1-unstable manifolds takes
O(n) time if one avoids revisiting edges while tracing paths. This O(n) term is subsumed by
Pert(K) because there are at least n/2 such pairs.

Notice that, Proposition 7(i) implies that for each Ti, any V-path of Vδ starting at a vertex
or an edge in Ti terminates at its root ri. See figure 12.3 for an example. Hence for any vertex
v ∈ Ti, the path π(v) computed in procedure CollectG is the unique V-path starting at v. This
immediately leads to the following result:

Corollary 9. For each critical edge e = (u, v) with Pers (e) ≥ δ, π(u) ∪ π(v) ∪ {e} as computed in
procedure CollectG is the 1-unstable manifold of e in Vδ.

12.4.2 Noise model

To establish theoretical guarantees for the graph reconstructed by Algorithm MorseRecon, we
assume a noise model for the input. We first describe the noise model in the continuous setting
where the domain is k-dimensional unit cube Ω = [0, 1]k. We then explain the setup in the discrete
setting when the input is a triangulation K of Ω.

Given a connected “true graph” G ⊂ Ω, consider a ω-neighborhood Gω ⊆ Ω, meaning that (i)
G ⊆ Gω, and (ii) for any x ∈ Gω, d(x,G) ≤ ω (i.e, Gω is sandwiched between G and its ω-offset).
Given Gω, we use cl(Gω) to denote the closure of its complement cl(Gω) = cl(Ω\Gω). Figure 12.5
illustrates the noise model in the discrete setting, showing G (red graph) with its ω-neighborhood
Gω (yellow).

Definition 6 ((β, ν, ω)-approximation). A density function ρ : Ω→ R is a (β, ν, ω)-approximation
of a connected graph G if the following holds:
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Figure 12.5: Noise model for graph reconstruction.

C-1 There is a ω-neighborhood Gω of G such that Gω deformation retracts to G.

C-2 ρ(x) ∈ [β, β + ν] for x ∈ Gω; and ρ(x) ∈ [0, ν] otherwise. Furthermore, β > 2ν.

Intuitively, this noise model requires that the density ρ concentrates around the true graph G in
the sense that the density is significantly higher inside Gω than outside; and the density fluctuation
inside or outside Gω is small compared to the density value in Gω (condition C-2). Condition C-1
says that the neighborhood has the same topology of the hidden graph. Such a density field could
for example be generated as follows: Imagine that there is an ideal density field fG : Ω → R
where fG(x) = β for x ∈ Gω and 0 otherwise. There is a noisy perturbation g : Ω→ R whose size
is always bounded by g(x) ∈ [0, ν] for any x ∈ Ω. The observed density field ρ = fG + g is an
(β, ν, ω)-approximation of G.

In the discrete setting when we have a triangulation K of Ω, we define a ω-neighborhood Gω

to be a subcomplex of K, i.e, Gω ⊆ K, such that (i) G is contained in the underlying space of Gω

and (ii) for any vertex v ∈ V(Gω), d(v,G) ≤ ω. The complex cl(Gω) ⊆ K is simply the smallest
subcomplex of K that contains all simplices from K \ Gω (i.e, all simplices not in Gω and their
faces). A (β, ν, ω)-approximation of G is extended to this setting by a PL-function ρ : |K| → R
while requiring that the underlying space of Gω deformation retracts to G as in (C-1), and density
conditions in (C-2) are satisfied at vertices of K.

We remark that the noise model is rather limited – In particular, it does not allow significant
non-uniform density distribution. However, this is the only case that theoretical guarantees are
known at the moment for a discrete Morse based reconstruction framework. In practice, the
algorithm has often been applied to non-uniform density distributions.

12.4.3 Theoretical guarantees

In this subsection, we prove results that are applicable to hypercube domains of any dimensions.
Recall that Vδ is the discrete gradient field after the cancellation process with threshold δ, where
we perform cancellation for vertex-edge persistence pairs generated by a simplex-wise filtration
induced by the PL-function f = −ρ that negates the density PL-function. At this point, all
positive edges, i.e, those not paired with vertices, remain critical in Vδ. Some negative edges,
i.e, those paired with vertices also remain critical in Vδ – these are exactly the negative edges with



16 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

persistence bigger than δ. CollectG only takes the 1-unstable manifolds of those critical edges
(positive or negative) with persistence bigger than δ; so those edges whose persistence is at most
δ are ignored.

Input assumption. Let ρ be an input density field which is a (β, ν, ω)-approximation of a con-
nected graph G, and δ ∈ [ν, β − ν).

Under the above input assumption, let Ĝ be the output of algorithm MorseRecon(K, ρ, δ). The
proof of the following result can be found in [8].

Proposition 10. Under the input assumption, we have:

(i) There is a single critical vertex left after MorseRecon returns, which is in Gω.

(ii) Every critical edge considered by CollecG forms a persistence pair with a triangle.

(iii) Every critical edge considered by CollectG is in Gω.

Theorem 11. Under the input assumption, the output graph satisfies Ĝ ⊆ Gω.

Proof. Recall that the output graph Ĝ consists of the union of 1-unstable manifolds of all the
edges e∗1, . . . , e

∗
g with persistence larger than δ – by Propositions 10 (ii) and (iii), they are all

positive (paired with triangles), and contained inside Gω. Below we show that other simplicies in
their 1-unstable manifolds are also contained in Gω.

Take any i ∈ [1, g] and consider e∗i = (u, v). Without loss of generality, consider the critical
V-path π : e∗i ≺ (u = u1) ≺ e1 ≺ u2 ≺ . . . ≺ es ≺ us+1. By definition us+1 is a critical vertex and is
necessarily the global minimum v0 for the density field ρ, which is also contained inside Gω. We
now argue that all simpliecs in the path π lie inside Gω. In fact, we argue a stronger statement:
first, we say that a gradient vector (v, e) is crossing if v ∈ Gω and e < Gω (i.e, e ∈ cl(Gω)). Since
v is an endpoint of e, this means that the other endpoint of e must lie in K \Gω.

Claim 2. During the cancellation with threshold δ in the algorithm MorseRecon, no crossing
gradient vector is ever produced.

Proof. Suppose the claim is not true. Then, let (v, e) be the first crossing gradient vector ever
produced during the cancellation process. Since we start with a trivial discrete gradient vector
field, the creation of (v, e) can only be caused by reversing of some gradient path π′ connecting
two critical simplices v′ and e′ while we are performing cancellation for the persistence pair
(v′, e′). Obviously, Pers (e′) ≤ δ because otherwise cancellation would not have been performed.
On the other hand, due to our (β, ν, ω)-noise model and the choice of δ, it must be that either both
v′, e′ ∈ Gω or both v′, e′ ∈ K \ Gω – as otherwise, the persistence of this pair will be larger than
β − ν > δ.

Now consider the V-path π′ connecting e′ and v′ in the current discrete gradient vector field
V ′. The path π′ begins and ends with simplices that are either both in Gω or both are outside
Gω and also it has simplices both inside and outside Gω. It follows that the path π′ contains a
gradient vector (v′′, e′′) going in the opposite direction crossing inside/outside, that is, v′′ ∈ Gω

and e′′ < Gω. In other words, it must contain a crossing gradient vector. This however contradicts
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our assumption that (v, e) is the first crossing gradient vector. Hence, the assumption is wrong and
no crossing gradient vector can ever be created. �

As there is no crossing gradient vector during and after cancellation, it follows that π, which is
one piece of the 1-unstable manifold of the critical edge e∗i , has to be contained inside Gω. The
same argument works for the other piece of 1-unstable manifold of e∗i which starts from the other
endpoint of e∗i . Since this holds for any i ∈ [1, g], the theorem follows. �

The previous theorem shows that Ĝ is geometrically close to G. Next we show that they are
also close in topology.

Proposition 12. Under the input assumption, Ĝ is homotopy equivalent to G.

Proof. First we show that Ĝ is connected. Then, we show that Ĝ has the same first Betti number
as that of G which implies the claim as any two connected graphs in Rk with the same first
Betti number are homotopy equivalent. Suppose that Ĝ has at least two components. These
two components should come from two trees in the forest computed by PartialPersDMVF. The
roots, say r and r′, of these two trees must reside in Gω due to Claim 2 and Proposition 10(iii).
Furthermore, the supporting complex of Gω is connected because it contains the connected graph
G. It follows that there is a path connecting r and r′ within Gω. All vertices and edges in Gω

appear earlier than other vertices and edges in the filtration that PartialPersDMVF works on.
This two facts mean that the first edge which connects the two trees rooted at r and r′ resides
in Gω. This edge has a persistence less than δ and should be included in the reconstruction
by MorseRecon. It follows that CollectG returns 1-unstable manifolds of edges ending at a
common root of the tree containing both r and r′. In other words, Ĝ cannot have two components
as assumed.

The underlying space of ω-neighborhood Gω of G deformation retracts to G by definition.
Observe that, by our noise model, Gω is a sublevel set in the filtration that determines the per-
sistence pairs. This sublevel set being homotopy equivalent to G must contain exactly g positive
edges where g is the first Betti number of G. Each of these positive edges pairs with a triangle in
Gω. Therefore, Pers (e) > δ for each of the g positive edges in Gω. By our earlier results, these
are exactly the edges that will be considered by procedure CollectG. Our algorithm constructs Ĝ
by adding these g positive edges to the spanning tree each of which adds a new cycle. Thus, Ĝ
has first Betti number g as well, thus proving the proposition. �

We have already proved that Ĝ is contained in Gω. This fact along with Proposition 12 can be
used to argue that any deformation retraction taking (underlying space) Gω to G also takes Ĝ to a
subset G′ ⊆ G where G′ and G have the same first Betti number. In what follows, we use Gω to
denote also its underlying space.

Theorem 13. Let H : Gω × [0, 1] → Gω be any deformation retraction so that H(Gω, 1) = G.
Then, the restriction H|Ĝ : Ĝ× [0, 1]→ Gω is a homotopy from the embedding Ĝ to G′ ⊆ G where
G and G′ have the same first Betti number.

Proof. The fact that H|Ĝ(·, `) is continuous for any ` ∈ [0, 1] is obvious from the continuity of H.
Only thing that needs to be shown is that G′ := H|Ĝ(Ĝ, 1) has the same first Betti number as that of
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G. We observe that a cycle in Ĝ created by a positive edge e along with the paths to the root of the
spanning tree is also non-trivial in Gω because this is a cycle created by adding the edge e during
persistence filtration and the cycle created by the edge e is not destroyed in Gω. Therefore, a cycle
basis for H1(Ĝ) is also a homology basis for H1(Gω). Since the map H(·, 1) : Gω → G is a homo-
topy equivalence, it induces an isomorphism in the respective homology groups; in particular, a
basis in H1(Gω) is mapped bijectively to a basis in H1(G). Therefore, the image G′ = H|Ĝ(Ĝ, 1)
must have a basis of cardinality g = β1(Ĝ) = β1(Gω) = β1(G) proving that β1(G′) = β1(G). �

12.5 Applications

12.5.1 Road network

Robust and efficient automatic road network reconstruction from GPS traces and satelite images
is an important task in GIS data analysis and applications. The Morse-based approach can help
reconstructing the road network in both cases in a conceptually simple and clean manner. The
framework provides a meaningful and robust way to remove noise because it is based on the
concept of persistent homology. Intuitively, reconstruction of a road network from a noisy data
is tantamount to reconstructing a graph from a noisy function on a 2D domain. One needs to
eliminate noise and at the same time preserve the signal. Persistent homology and discrete Morse
theory help address both of these aspects. We can simply use the graph reconstruction algorithm
detailed in the previous section for this road network recovery.

GPS trajectories. Here the input is a set of GPS traces, and the goal is to reconstruct the under-
line road network automatically from these traces. The input set of GPS traces can be converted
into a density map ρ : Ω → R defined on the planar domain Ω = [0, 1] × [0, 1]. We then use
our graph reconstruction algorithm MorseRecon to recover the “mountain ridges" of the density
field; see Figure 12.6.

In Figure 12.7, we show reconstructed road network after improving the discrete-Morse based
output graphs with an editing strategy [7]. After the automatic reconstruction, the user can observe
the missing branches and can recover them by artificially making a vertex near the tip of each such
branch a minimum. This forces a 1-unstable manifold from a saddle edge to each of these minima.
Similarly, if a distinct loop in the network is missing, the user can artificially make a triangle in
the center of the loop a maximum which forces the loop to be detected.

Satellite images. In this case, we combine the Morse based graph reconstruction with a neural
network framework to recover the road network from input satellite images. First, we feed the
grayscale values of the input satellite image as a density function to MorseRecon. The output
graphs from a set of images are used to train a convolutional neural network CNN, which output
an image aiming to capture only the foreground (roads) in the satellite images. After training this
CNN, we feed the original satellite images to it to obtain a set of hopefully “cleaner" images.
These cleaned images are again fed to MorseRecon to output a graph which can again be used
to further train the CNN. Repeated use of this reconstruct-and-train step clean the noise consider-
ably. In Figure ?? (f) from Chapter Prelude, we show an example of the output of this strategy.
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Figure 12.6: Road network reconstruction [22]: (Left) Input GPS traces. (Right) Terrain cor-
responding to the graph of the density function computed from input GPS traces; Black lines
are the output of algorithm MorseRecon, which captures the ’mountain ridges’ of the terrain,
corresponding to the reconstructed road-network. The upper right is a top view of the terrain.

Figure 12.7: Road network reconstruction with editing [7]: (Left) Red points (minima) are added,
red branches are newly reconstructed for the Athens map (black curves are original reconstruction,
blue curves are input GPS traces). (Middle) We also add blue triangles as maxima to capture many
missing loops. (Right) Upper: An example to show that adding extra triangles as maxima will
capture more loops. Bottom: Berlin with adding both branches and loops.

Notice that this strategy eliminates the need for curating the satellite images manually for creating
training samples.

12.5.2 Neuron network

To understand neuronal circuitry in the brain, a first step is often to reconstruct the neuronal cell
morphology and cell connectivity from microscopic neuroanatomical image data. Earlier work
often focuses on single neuron reconstruction from high resolution images of specific region in the
brain. With the advancement of imaging techniques, whole braining imaging data are becoming
more and more common. Robust and efficient methods that can segment and reconstruct neurons
and/or connectivities from such images are highly desirable.

The discrete Morse based graph reconstruction algorithms have been applied to both fronts.
Neuron cells have tree morphology and can commonly be modeled as a rooted tree, where the root
of the tree locates in the soma (cell body) of the neuron. In Figure 12.8, we show the reconstructed



20 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Input image Reconstructed neurons

Figure 12.8: Discrete Morse based neuron morphology reconstruction from [21].

neuron morphology by applying the discrete Morse algorithm directly to an Olfactory Projection
Fibers data set (specifically, OP-2 data set) from the DIADEM challenge [17]. Specifically, the
input is an image stack acquired by 2-channel confocal microscopy method. In the approach
proposed in [21], after some preprocessing, the discrete Morse based algorithm is applied to
the 3D volumetric data to construct a graph skeleton. A tree-extraction based algorithm is then
applied to extract a tree structure from the graph output.

Figure 12.9: The DM++ framework proposed by [1], which combines both the DM output with
standard neural-network based output together via a Siamese neural network stack so as to use
these two inputs to augment each other and obtain better connected final segmentation. Image
courtesy of [1].

The discrete Morse based graph reconstruction algorithm can also be used in a more sophis-
ticated manner to handle more challenging data. Indeed, a new neural network framework is pro-
posed in [1] to combine the reconstructed Morse graph as topological prior with a UNet [18] like
neural network architecture for cell process segmentation from various neuroanatomical image
data. Intuitively, while UNet has been quite successful in image segmentation, such approaches
lack a global view (e.g, connectivity) of the structure behind the segmented signal. Consequen-
tially, the output can contain broken pieces for noisy images, and features such as junction nodes
in input signal can be particularly challenging to recover. On the other hand, while DM-based
graph reconstruction algorithm is particularly effective in capturing global graph structures, it
may produce many false positives. The framework proposed in [1], called DM++ uses output
from discrete Morse as a separate channel of input, and co-train it together with the output of a
specific UNet-like architecture called ALBU [4] so as to use these two input to complement each
other. See Figure 12.9. In particular, UNet otuput helps to remove false positives from discrete
Morse output, while the Morse graph output helps to obtain better connectivity.
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12.6 Notes and Exercises

Forman [10] developed the discrete analogue of the classical Morse theory in mathematics. This
analogy is exemplified by the following fact. Let Cp denote the p-th chain group formed by the
p-dimensional critical cells in a discrete Morse vector field. It means that Cp is a free Abelian
group with critical p-cells forming a basis assuming Z2-additions. For a critical cell cp, define
the boundary operator ∂pcp = Σi(mp mod 2)ci

p−1 where ci
p is a critical (p − 1)-cell reachable

by mp number of V-paths from cp. Extending the boundary operator to the chains we get the
boundary homomorphism ∂p : Cp → Cp−1. One can verify that ∂p−1 ◦ ∂p = 0 (Exercise 9) thus
leading to a valid discrete Morse chain complex. Naturally, we get a homology group Hp from
this construction. It turns out that this homology group is isomorphic to the homology group of
the complex on which the DMVF is defined.

Several researchers brought the concept to the area of topological data analysis [2, 12, 13, 15].
King et al. [12] presented an algorithm to produce a discrete Morse function on a complex from
a given real-valued function on its vertices. Bauer et al. [2] showed that persistent pairs can
be cancelled in order of their persistence values for any simplicial 2-manifolds. They also gave
an O(n log n)-time algorithm for cancelling pairs that have persistence below a given threshold.
The cancellation algorithm and its analysis in this chapter follow this result though with a slightly
different presentation. This cancellation does not generalize to simplicial 2-complexes and beyond
as we have illustrated. Mischaikow and Nanda [15] proposed Morse cancellation as a tool to
simplify an input complex before computing persistence pairs. The combinatorial view of the
vector field given by the discrete Morse theory has recently been extended to dynamical systems,
see, e.g., [3, 16].

Starting with Lewiner et al. [13], several researchers proposed discrete Morse theory for ap-
plications in visualization and image processing. Gyulassy et al. [11], Delgado-Friedricks et
al. [6] and Robins et al. [20] used discrete Morse theory in conjunction with persistence based
cancellations for processing images and analyzing features for e.g., porous solids. Sousbie [19]
proposed using the theory for detecting filamentary structures in data for cosmic webs. These
work proposed using cancellations as long as they are permitted acknowledging the fact that all
cancellations in a 2- or 3-complex may not be possible. Wang et al. proposed to use discrete
Morse complexes to compute unstable 1-manifolds as an output for a road network from GPS
data [22]. Using unstable 1-manifolds in a discrete Morse complex defined on a triangulation
in R2 to capture the hidden road network was proposed in this paper. Ultimately, this proposed
approach was implemented with a simplified algorithm and a proof of guarantee in [8]. The mate-
rial in section 12.4 is taken from this paper. The application to road network reconstruction from
GPS trajectories and satellite images in section 12.5 appeared in [7] and [9] respectively. The
application to neuron imaging data is taken from [1, 21].

Exercises

1. A Hasse diagram of a simplicial complex K is a directed graph that has a vertex vσ for every
simplex σ in K and a directed edge from vσ to vσ′ if and only if σ′ is a codimension-1 face
of σ. Let M be a matching in K. Modify the Hasse diagram by reversing every edge that is
directed from vσ to vσ′ and (σ′, σ) is in the matching M. Show that M induces a DMVF if
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and only if the modified Hasse diagram does not have any directed cycle.

2. Let f be a Morse function defined on a simplicial complex K. We say K collapses to K′

if there is a simplex σ with a single coface σ′ and K′ = K \ {σ,σ′}. Let Ka ⊆ K be the
subcomplex where Ka = {σ | f (σ) ≤ a}. Show that there is a series of collapses (possibly
empty) that brings Ka to Kb for any b ≤ a if there is no critical simplex with function value
c where b < c < a.

3. Call a V-path extendible if it can be extended by a simplex at any of the two ends. Show
examples:

(a) A non-extendible V-path that is not critical.

(b) Show that every non-extendible V-path in a simplicial 2-manifold without boundary
must have at least one critical simplex.

4. Show that a discrete Morse function defines a Morse matching.

5. Let K be a simplicial Möbius strip with all its vertices on the boundary. Design a DMVF on
K so that there is only one critical edge and only one critical vertex and no critical triangle.

6. Prove that two V-paths that meet must have a common suffix.

7. Show the following:

(a) The strong Morse inequality implies the weak Morse inequality in Proposition 1.

(b) A matching which is not Morse may not satisfy Morse inequalities as in Proposition 1
but always satisfies the equality cp − cp−1 + · · · ± c0 = βp − βp−1 + · · · ± β0 for a
p-dimensional complex K.

8. Let K be a simplicial d-complex that has every (d − 1)-simplex incident to at most two
d-simplices. Extend Theorem 5 to prove that all persistent pairs between (d − 1)-simplices
and d-simplices arising from a filtration of K can be cancelled.

9. Prove ∂p−1 ◦ ∂p = 0 for the boundary operator defined for chain groups of critical cells as
described for disrete Morse chain complex in the notes above.
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