
Computational Topology for Data Analysis: Notes
from Book by

Tamal Krishna Dey
Department of Computer Science

Purdue University
West Lafayette, Indiana, USA 46907

Yusu Wang
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, California, USA 92093

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 1

Topic 10: Reeb Graphs
Topological persistence provides an avenue to study a function f : X → R on a space X. Reeb
graphs provide another avenue to do the same; although the summarizations produced by the two
differ in a fundamental way. Topological persistence produces barcodes as a simplified signa-
ture of the function. Reeb graphs instead provides a 1-dimensional (skeleton) structure which
represents a simplification of the input domain X while taking the function into account for this
simplification. Of course, one loses higher dimensional homological information in the Reeb
graphs, but at the same time, it offers a much lighter and computationally inexpensive transfor-
mation of the original space which can be used as a signature for tasks such as shape matching
and functional similarity. An example from [48] is given in Figure 10.1, where a multiresolutional
representation of the Reeb graph is used to match surface models.

Figure 10.1: (Left). A description function based on averaging geodesic distance is shown on
different models, together with some isocontours of this function. This function is robust w.r.t.
near-isometric deformation of shapes. (Right) The Reeb graph of the descriptor function (from
the left) is used to compare different shapes. Here, given a query shape (called “key"), the most
similar shapes from a database are shown on the right. Images taken from [48].

We define the Reeb graph and introduce some properties of it in Section 10.1. We also de-
scribe efficient algorithms to compute it for the piecewise-linear setting in Section 10.2. For
comparing Reeb graphs, we need to define distances among them. In Section 10.3, we present
two equivalent distance measures for the Reeb graphs and give a stability result of these distances
w.r.t. changes in the input function that define the Reeb graph. In particular, we note that a Reeb
graph can also be viewed as a graph equipped with a “height” function on it which is induced by
the original function f : X → R on the input domain. This height function provides a natural
metric on the Reeb graph, rendering a view of the Reeb graph as a specific metric graph. This
further leads to a distance measure for Reeb graphs based on the Gromov-Hausdorff distance
idea, which we present in Section 10.3. An alternative way to define distance for Reeb graph is
based the interleaving idea, which we will also introduce in Section 10.3. It turns out that these
two versions of distances for Reeb graphs are strongly equivalent, meaning that they are within a

2 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

constant factor of each other.

10.1 Reeb graph: Definitions and properties

Before we give a formal definition of a Reeb graph, let us recall some relevant definitions that
we introduced earlier. A topological space X is disconnected if there are two disjoint open sets
U and V so that X = U ∪ V . It is called connected otherwise. A connected component of X is a
maximal subset (subspace) that is connected. Given a continuous function f : X → R on a finitely
triangulable topological space X, for each a ∈ R, consider level set f −1(a) = {x ∈ X : f (x) = a} of
f . It is a subspace of X and we can talk about its connected components in this subspace topology.

Definition 1 (Reeb graph). We define an equivalence relation ∼ on X by asserting x ∼ y iff
f (x) = f (y) = α and x and y belong to the same connected component of the level set f −1(α).
Let [x] denote the equivalent class to which a point x ∈ X belongs to. The Reeb graph R f of
f : X → R is the quotient space X/∼, i.e., the set of equivalent classes equipped with the quotient
topology and let Φ : X → R f , x 7→ [x] be the quotient map.

Φ Φ Φ

Φ

Figure 10.2: The Reeb graph R f of the function f : X → R.

If the input is “nice”, for example, if f is a Morse function on a compact manifold, or a
PL-function on a compact polyhedron, then R f indeed has the structure of a finite 1-dimensional
regular CW complex which is a graph, and this is why it is commonly called a Reeb graph. In
particular, from now on, we tacitly assume that the input function f : X → R is level-set tame,
meaning that (i) each level set f −1(a) has finite number of components, and each component is
path connected1; and (2) f is of Morse type as introduced before. It is known that Morse functions
on a compact smooth manifold and PL-functions on finite simplicial complexes are both level-set
tame.

A level set may consist of several connected components, each of which is called a contour.
Intuitively, the Reeb graph R f is obtained by collapsing contours (connected components) in each
level set f −1(a) continuously. In particular, as we vary a, R f tracks the the changes (e.g, creation,
deletion, splitting and merging) of connected components in the level sets f −1(a), and thus is a
meaningful topological summary of f : X → R.

1A topological space T is path connected if any two points x, y ∈ T can be joined by a path, i.e. there exists a
continuous map f : [0, 1]→ T of the segment [0, 1] ⊂ R onto T so that f (0) = x and f (1) = y.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 3

As the function f is constant on each contour in a level set, f : X → R also induces a
continuous function f̃ : R f → R defined as f̃ (z) = f (x) for any preimage x ∈ Φ−1(z) of z. To
simplify notation, we often write f (z) instead of f̃ (z) for z ∈ R f when there is no ambiguity,
and use f̃ mostly to emphasize the different domains of the functions. In all illustrations of
this chapter, we plot the Reeb graph with the vertical coordinate of a point z to be the function
value f (z).

Critical points. As we describe above, the Reeb graph can be viewed as the underlying space of
a 1-dimensional cell complex, where there is also a function f̃ : R f → R defined on R f . We can
further assume that the function f̃ is monotone along each 1-cell of R f – if not, we simply insert
a new node where this condition fails, and the tameness of f : X → R guarantees that we only
need to add finite number of nodes. Hence we can view the Reeb graph as the underlying space of
a 1-dimensional simplicial complex (graph) (V, E) associated with a function f̃ that is monotone
along each edge e ∈ E. Note that we can further insert more nodes into an edge in E, breaking
it into multiple edges; see, e.g., the augmented Reeb graph in Figure 10.4 (c). We now continue
with this general view of the Reeb graph, whose underlying space is a graph equipped with a
function f̃ that is monotone along each edge. We can then talk about the induced critical points
(see the book). An alternative (and simpler) way to describe such critical points are as follows:
Given a node x ∈ V in the vertex set V := V(R f) of the Reeb graph R f , we use the term up-degree
(resp. down-degree) of x to denote the number of edges incident to x that have higher (resp. lower)
values of f̃ than x. A node is regular if both of its up-degree and down-degree equal to 1, and
critical otherwise. A critical point is a minimum (maximum) if it has down-degree 0 (up-degree
0), and a down-fork (up-fork) if it has down-degree (up-degree) larger than 1. A critical point can
be degenerate, having more than one types of criticality: e.g., a point with down-degree 0 and
up-degree 2 is both a minimum and an up-fork.

Note that because of the monotonicity of f̃ at regular points, the Reeb graph together with its
associated function is completely described, up to homeomorphisms preserving the function, by
the function values on the critical points.

Now imagine that one sweeps the domain X in increasing order of f values, and tracks the
changes in the connected components during this process. New components appear (down-degree
0 nodes), existing components vanish (up-degree 0), or components merge or split (down/up-
forks). The Reeb graph R f encodes such changes thereby making it a simple but meaningful
topological summary of the function f : X → R. However, it only tracks the connected compo-
nents in the level set, thus cannot capture complete information about f . Nevertheless, it reflects
certain aspects about both the domain X itself and the function f defined on it, which we describe
in Section 10.2.3.

Variants of Reeb graphs. Treating a Reeb graph as a simplicial 1-complex, we can talk about
1-cycles (loops) in it. A loop-free Reeb graph is also called a contour tree, which itself has found
many applications in computer graphics and visualization. Instead of tracking the connected com-
ponents within a level set, one can also track them within the sublevel set while sweeping X in
increasing f values, or track them within the superlevel set while sweeping X in decreasing f
vales. The resulting topological summaries are called the merge tree and the split tree, respec-
tively. See the precise definition below and examples in Figure 10.3.

4 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

f X f f f

(a) Input scalar field (b) Reeb graph (c) Merge tree Split tree

Figure 10.3: Examples of the Reeb graph, the merge tree and the split tree of an input scalar field.

Definition 2. Define x ∼M y if and only if f (x) = f (y) = a and x is connected to y within the
sublevel set f −1((−∞, a]). Then the quotient space TM = X/ ∼M is the merge tree w.r.t. f .

Alternatively, if we define x ∼S y if and only if f (x) = f (y) = a and x is connected to y within
the superlevel set f −1([a,+∞)), then the quotient space TS = X/ ∼S is the split tree w.r.t. f .

Indeed, for level-set tame functions we consider, TM and TS are both finite trees. If R f is
loop-free (thus a tree), then this contour tree is uniquely decided by, and can be computed from,
the merge and split trees of f .

Finally, instead of real-valued functions, one can define a similar quotient space X/ ∼ for a
continuous map f : X → Z to a general metric space (e.g, Z = Rd), where ∼ is the equivalence
relation x ∼ y iff f (x) = f (y) = a and x is connected to y within the levelset f −1(a). The resulting
structure is called Reeb space. See the book where we consider this generalization in the context
of another structure called mapper.

10.2 Algorithms in the PL-setting

Piecewise-linear setting. Consider a simplicial complex K and a PL-function f : |K| → R on
it. Since R f depends only on the connectivity of each level set, for a generic function f (where no
two vertices have the same function value), the Reeb graph of f depends only on the 2-skeleton
of K. From now on, we assume that f is generic and K = (V, E,T) is a simplicial 2-complex
with vertex set V , edge set E and triangle set T . Let nv, ne and nt denote the size of V , E, and T ,
respectively, and let m = nv + ne + nt. We sketch algorithms to compute the Reeb graph for the
PL-function f . Sometimes, they output the so-called augmented Reeb graph, which is essentially
a refinement of the Reeb graph R f with certain additional degree-2 vertices inserted in arcs of R f .

Definition 3 (Augmented Reeb). Given a PL-function f : |K| → R defined on a simplicial
complex K = (V, E,T), let R f be its Reeb graph and Φ f : |K| → R f (K) be the associated quotient
map. The augmented Reeb graph of f : |K| → R, denoted by R̂ f , is obtained by inserting each
point in Φ f (V) := {Φ f (v) | v ∈ V} as graph nodes to R f (if it is not already in).

For a PL-function, each critical point of the Reeb graph R f (w.r.t. f̃ : R f → R induced by
f) are necessarily the image of some vertex in K, and thus the critical points form a subset of
points in Φ f (V). The augmented Reeb graph R̂ f then includes all remaining points in Φ f (V) as
(degree-2) graph nodes. See Figure 10.4 for an example, where as a convention, we plot a node
Φ f (v) at the same height (function value) as v.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 5

p

q

r

w

Φf(p)

Φf(w)

Φf(p)

Φf(q)

Φf(r)

Φf(w)

(a) (b) (c)

Figure 10.4: (a) A simplicial complex K. The set of 2-simpices of K include 4rpq,4rpw,4rqw,
as well as the two pink-colored triangles incident to p and to w, respectively. (b) Reeb graph of
the height function on |K|. (c) Its augmented Reeb graph.

We now sketch the main ideas behind two algorithms that compute the Reeb graph for a
PL-function with the best time complexity, one deterministic and the other randomized.

10.2.1 A O(m log m) time algorithm via dynamic graph connectivity

Here we describe an O(m log m)-time algorithm [51] for computing the Reeb graph of a PL-
function f : |K| → R, whose time complexity is the best among all existing algorithms for Reeb
graph computation. We assume for simplicity that no two vertices in V share the same f -value.

v

f

a

Ga

b

Gb

Figure 10.5: As one sweeps past v, the combinatorial structure of the pre-image graph changes.
Ga has 3 connected components (one of which contains a single point only), while Gb has only 2
components.

As K = (V, E,T) is a 2-dimensional simplicial complex, the level set f −1(a) for any function
value a consists of nodes (intersection of the level set f −1(a) with edges in E) and edges (inter-
section of the level set f −1(a) with some triangles in T). This can be viewed as yet another graph,
which we denote by Ga = (Wa, Fa) and refer to as the pre-image graph, where each vertex in Wa

corresponds to some edge in E. Each edge in Fa connects two vertices in Wa and thus can be
associated to a pair of edges in E adjoining a certain triangle in T . See Figure 10.5 for an exam-
ple. Obviously, connected components in Ga correspond to connected components in f −1(a), and
under the quotient map Φ, each component is mapped to a single point in the Reeb graph R f .

A natural idea to construct the Reeb graph R f of f : |K| → R is to sweep the domain K
with increasing value of a, track the connected components in Ga during the course, and record
the changes (merging or splitting of components, or creation and removal of components) in the
resulting Reeb graph.

6 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Furthermore, as f is a PL-function, the combinatorial structure of Ga can only change when
we sweep past a vertex v ∈ V . When that happens, only edges / triangles from K incident to v
can incur changes in Ga. See Figure 10.5. Let sv denote the total number of simplicies incident
on v. It is easy to see that as one sweeps through the vertex v, only O(sv) number of insertions
and deletions are needed to update the pre-image graph Ga. To be able to build the Reeb graph
R f , we simply need to maintain the connectivity of Ga as we sweep. Assuming we have a data
structure to achieve this, the high level framework of the sweep algorithm is then summarized in
Algorithm 1:Reeb-SweepAlg.

Algorithm 1 Reeb-SweepAlg(K, f)
1: Sort vertices in V = {v1, . . . , vnv} in increasing f -values;
2: Initialize the Reeb graph R and the pre-image grpah Ga to be the empty;
3: for i = 1 to nv do
4: Lc = LowerComps(vi)
5: UpdatePreimage(vi); //Update the pre-image graph Ga;
6: Uc = UpperComps(vi))
7: UpdateReebgraph(R, Lc, Uc, vi);
8: end for
9: Output R as the Reeb graph

In particular, suppose we have a data structure, denoted by DynSF, that maintains a spanning
forest of the pre-image graph at any moment. Each connected component in the pre-image graph
will be associated with a vertex from V , called representative vertex of this component, which
indicates that this component is created when passing through v. We assume that the data structure
DynSF provides the following operations: First, recall that a graph node ea in the pre-image graph
Ga = (Wa, Fa) in fact corresponds to an edge e ∈ K, and ea is the intersection of e with the levelset
f −1(a).

• Find(e): which given an edge e ∈ E, returns the representative vertex of the component in
the current pre-image graph Ga containing the node ea in Wa generated by e.

• Insert(e, e′), Delete(e, e′): which insert an edge (ea, e′a) into Ga, or delete (ea, e′a) from Ga,
while still maintaining a spanning forest for Ga under these operations.

Using these operations, the pseudo-codes for the subroutines involved in Reeb-SweepAlg()
are given below. (The routine UpperComps(v) is symmetric to LowerComps(v) and thus omitted.)
These codes assume that edges of K not intersecting the levelsets are still in the pre-image graphs
as isolated nodes; hence there is no need to add or remove isolated nodes.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 7

Algorithm 2 LowerComps(v)
1: Lc = empty list;
2: for all edges e in the lower-star of v do
3: c = DynSF.Find(e);
4: if c is not marked ‘listed’ then
5: Lc.add(c); abd mark c as ’listed’
6: end if
7: end for

Algorithm 3 UpdateReebGraph(R, Lc, Rc, v)
1: Create a new node v̂ in R corresponding to v;
2: Assign node v̂ to each component in Uc;
3: Create an arc in R between v̂ to the Reeb

graph node corresponding to the representa-
tive vertex of each c in Lc;

4: Return updated Reeb graph R

Algorithm 4 UpdatePreImage(v)
1: for all triangles uvw incident on v do
2: // w.l.o.g, assume f (u) < f (w)
3: if f (v) < f (u) then
4: DynSF.Insert(vu, vw);
5: else
6: if f (v) > f (w) then
7: DynSF.Delete(vu, vw);
8: else
9: DynSF.Delete(uv, uw);

10: DynSF.Insert(vw, uw);
11: end if
12: end if
13: end for

Time complexity analysis. Suppose the input simplicial 2-complex K = (V, E,T) has n number
of vertices and m total number of simplices. Sorting the vertices takes O(n log n) time. Then steps
4 to 7 of Algorithm Reeb-SweepAlg performs O(m) number of Find, Insert and Delete operations
using the data structure DynSF.

One could use state-of-the-art data structure for dynamic graph connectivity as DynSF –
indeed, this is the approach of [31]. However, note that this is an offline version of the dy-
namic graph connectivity problem, as all insertion / deletion operations are known (or can be
pre-computed). To this end, we assign each edge in the pre-image graph a weight, which is the
time (f -function value) it will be deleted from the pre-image graph Ga. We then maintain a max-
imum spanning forest of Ga during the sweeping to maintain connectivity. In general, a deletion
of a maximum-spanning tree edge (u, v) can incur expensive search in the pre-image graph for
a replacement edge (as u and v may still be connected). However, given the specific way edge
weights are assigned, in this case, if a maximum spanning tree edge is to be deleted, it will simply
break the tree in the maximum spanning forest containing this edge, and no replacement edge
needs to be identified. One can use a standard dynamic tree data structure, such as the Link-Cut
trees [57], to maintain the maximum spanning forest efficient in O(log m) (amortized) time for
each find / insertion / deletion operation. Putting everything together, it takes O(m log m) time
to maintain the Reeb graph through the sweep. Note that we can easily modify this algorithm to
update the augmented Reeb graph in the same time complexity.

Theorem 1. Given a PL-function f : |K| → R, let m denote the total size of the 2-skeleton of K.
One can compute the (augmented) Reeb graph R f of f in O(m log m) time.

8 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

10.2.2 A randomized algorithm with O(m log m) expected time

In this section we describe a randomized algorithm [46] whose expected time complexity matches
the previous algorithm. However, it uses a strategy different from sweeping: Intuitively, it directly
models the effect of the quotient map Φ, but does so in a randomized manner so as to obtain a
good (expected) running time.

v1

v2

v7

v3
v6

v4

v8
v5

v1

v2

v7

v3
v6

v4

v8
v5

v1

v2

v7

v3
v6

v4

v8
v5

v1

v2

v7

v3
v6

v4

v8
v5

v1

v2

v7

v3
v6

v4

v8
v5

v1

v2

v7

v3
v6

v4

v8
v5

(a) (b) (c) (d) (e) (f)

Figure 10.6: The vertices are randomly ordered. Starting from the initial simplicial complex in
(a), the algorithm performs vertex-collapse for vertices in this random order, as shown in (b) – (f).

In general, given f : X → R and associated quotient map Φ : X → R f , each connected
component (contour) C within a level set f −1(a) is mapped (collapsed) to a single point Φ(C)
in R f . For the case where X = |K| and f is piecewise-linear over simplices in K, the image of
the collection of contours passing through every vertex in V decides the nodes in the augmented
Reeb graph R̂, and intuitively contains sufficient information for constructing R̂. The high-level
algorithm to compute the augmented Reeb graph R̂ is given in Algorithm 5:Reeb-RandomAlg.
See Figure 10.6 for an illustration of the algorithm.

Algorithm 5 Reeb-RandomAlg(K, f)

Input:
A simplicial 2-complex K and a vertex function f : V(K)→ R

Output:
The augmented Reeb graph of the PL-function induced by f

1: Let V = {v1, . . . , vnv} be a random permutation of vertices in V
2: Set K0 = K and f0 = f
3: for i = 1 to nv do
4: Collapse the contour of fi−1 : |Ki−1| → R passing through (incident to) vi and obtain

complex Ki

5: fi : |Ki| → R is the PL-function on Ki induced from fi−1
6: end for
7: Output the final complex Knv as the augmented Reeb graph

In particular, algorithm Reeb-RandomAlg starts with function f0 = f defined on the original
simplicial complex K0 = K. Take a random permutation of all vertices in V = V(K). At the
beginning of the i-th iteration, it maintains a PL-function fi−1 : |Ki−1| → R over a partially
collapsed simplicial complex Ki−1 whose augmented Reeb graph is the same as that of f . It
then “collapses" the contour of fi−1 passing through vertex vi and obtains a new PL-function
fi : |Ki| → R over a further collapsed simplicial complex Ki that maintains the augmented Reeb
graph.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 9

q q q

p2

p1

xy
q

p2

p1

e2

e1

e3
e2

e1

(a) (b) (c)

q

p2

p1

r

r1

r2

q (=q′)

p2

p1

r

q

p2

p1

r

q

p2

p1

r

q′
e1

e2
e3 e4

e5 e5

e4

e1

e2 e6

(d) (e)

Figure 10.7: The function f is the height function. The contour incident to point q for the complex
in (a) is collapsed, resulting a new complex in (b); (c) the collapse of the contour within a single
triangle incident to q, and (e) an example where this triangle is bordering another triangle.

The key is to implement this “collapse" step (lines 4-5). To see the effect of collapsing the
contour incident to a vertex, see Figure 10.7 (a) and (b). To see how the collapse is achieved,
first consider the triangle qp1 p2 incident to vertex q as in Figure 10.7 (c), and assume that q is
the mid-vertex of this triangle, that is, its height value ranks second among the three vertices of
the triangle. Intuitively, we need to map each horizontal segment (part of a contour at different
height) to the corresponding point along the edges qp1 and qp2. If there are multiple triangles
incident to q with q being the mid-vertex of them, then we perform this operation to each of them.
If this triangle incident to q that we are collapsing has one or more triangles sharing the edge
p1 p2 as shown in (d), then for each such incident triangle, we need to process it appropriately. In
particular, see one such triangle (p1, p2, r) in (e), then, as q′ is sent to q, the dotted edge rq′ now
becomes edge rq in the last picture. Thus the triangle rp1 p2 is now split into two new triangles
qrp1 and qrp2. In this case, it is easy to see that at most one of the new triangles will have q as
the mid-vertex. We collapse this triangle and continue the process until no more triangle incident
to q having q as the mid-vertex is left (Figure 10.7 (b)). At this point, the entire contour passing
through q is collapsed into a single point, and lines 4-5 of the algorithm are finished.

After processing each vertex in the way described above, the algorithm Reeb-RandomAlg in
the end computes the final complex Knv in line 7. It is necessarily a simplicial 1-complex because
no vertex can be the mid-vertex of any triangle, implying that there is no triangle left. It is easy
to see that by construction, Knv is the augmented Reeb graph w.r.t. f : |K| → R.

Time complexity. For each vertex v, the time complexity of the collapse is proportional to the
number of triangles Tv intersected by the contour Cv passing through v. In the worst case, Tv = |nt|,
giving rise to O(nvnt) worst case running time of Algorithm 5. This worst case time complexity
turns out to be tight. However, if one processes the vertices in a random order, then the worst case

10 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

behavior is unlikely to happen, and the expected running time can be proven to be O(m log nv) =

O(m log m). Essentially, one argues that an original triangle from the input simplicial complex
is split only O(log nv) = O(log m) expected number of times thus creating O(log m) expected
number of intermediate triangles which takes O(log m) expected time to collapse. The argument
is in spirit similar to the analysis of path length in a randomly built binary search tree [20].

Theorem 2. Given a PL-function f : |K| → R defined on a simpicial complex K whose 2-skeleton
has size m, Algorithm 5 computes the (augmented) Reeb graph in O(m log m) expected time.

10.2.3 Homology groups of Reeb graphs

Homology groups for a graph may have non-trivial ranks only in dimension zero and one. There-
fore, for a Reeb graph R f , we only need to consider H0(R f) and H1(R f). In particular, their rank
β0(R f) and β1(R f) are simply the number of connected components and the number of indepen-
dent loops in R f respectively.

Fact 1. For a tame function f : X → R, β0(X) = β0(R f) and β1(X) ≥ β1(R f).

That β0(X) = β0(R f) in the above statement comes from the fact that R f is the quotient space
X/ ∼ and each equivalent class itself is connected (it is a connected component in some level
set). The relation on β1 can be proven directly, and it is also a by-product of Theorem 4 below
(combined with Fact 2). The above statement also implies that if X is simply connected, then R f

is loop-free.
For the case where X is a 2-manifold, more information about X can be recovered from the

Reeb graph of a Morse function defined on it.

Theorem 3 ([19]). Let f : X → R be a Morse function defined on a connected and compact
2-manifold of genus g. Then:

(i) if X is orientable, then β1(R f) = g; and

(ii) if X is non-orientable, then β1(R f) ≤ g/2.

We now present a result that characterizes H1(R f) w.r.t. H1(X) in a more precise manner,
which also generalizes Theorem 3.

Horizontal and vertical homology. Given a continuous function f , let X=a := f −1(a) and XI :=
f −1(I) denote its level set and interval set as before for a ∈ R and for an open or closed interval
I ⊆ R respectively. We first define the so-called horizontal and vertical homology groups with
respect to f .

A p-th homology class h ∈ Hp(X) is horizontal if there exists a finite set of values {ai ∈ R}i∈A,
where A is a finite index set, such that h has a pre-image under the map Hp(

⋃
i∈A X=ai) → Hp(X)

induced by inclusion. The set of horizontal homology classes form a subgroup Hp(X) of Hp(X)
since the trivial homology class is horizontal, and the addition of any two horizontal homology
class is still horizontal. We call this subgroup Hp(X) the horizontal homology group of X with
respect to f . The vertical homology group of X with respect to f is then defined as:

Ȟp(X) := Hp(X)/Hp(X), the quotient of Hp(X) with Hp(X).

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 11

The coset ω + Hp(X) for every class ω ∈ Hp(X) provides an equivalence class in Ȟp(X). We call
h a vertical homology class if h + Hp(X) is not identity in Ȟp(X). In other words, h < Hp(X). Two
homology classes h1 and h2 are vertically homologous if h1 ∈ h2 + Hp(X).

Fact 2. By definition, rank (Hp(X)) = rank (Hp(X)) + rank (Ȟp(X)).

Let I be a closed interval of R. We define the height of I = [a, b] to be height(I) = |b − a|;
note that the height could be 0. Given a homology class h ∈ Hp(X) and an interval I, we say that
h is supported by I if h ∈ (i∗) where i∗ : Hp(XI) → Hp(X) is the homomorphism induced by the
canonical inclusion XI ↪→ X. In other words, XI contains a p-cycle γ from the homology class h.
We define the height of a homology class h ∈ Hp(X) to be

height(h) = inf
I supports h

height(I).

Isomorphism between Ȟ1(X) and H1(R f). The surjection Φ : X → R f (X) induces a chain map
Φ# from the 1-dimensional singular chain group of X to the 1-dimensional singular chain group of
R f (X) which eventually induces a homomorphism Φ∗ : H1(X) → H1(R f (X)). For the horizontal
subgroup H1(X), we have that Φ∗(H1(X)) = {0} ⊆ H1(R f (X)). Hence Φ∗ induces a well-defined
homomorphism between the quotient groups

Φ̌ : Ȟ1(X) =
H1(X)

H1(X)
→

H1(R f (X))

H1(R f (X))
= H1(R f (X)).

The right equality above follows from that H1(R f (X)) = {0}, which holds because every level set
of R f (X) consists only of a finite set of disjoint points due to the levelset-tameness of function
f : X →. It turns out that Φ̌ is an isomorphism – Intuitively, this is not surprising as Φ maps each
contour in the level set to a single point, which in turn also collapses every horizontal cycle.

Theorem 4. Given a level-set tame function f : X → R, let Φ̌ : Ȟ1(X) → H1(R f (X)) be the
homomorphism induced by the surjection Φ : X → R f (X) as defined above. Then the map
Φ̌ is an isomorphism. Furthermore, for any vertical homology class h ∈ Ȟ1(X), we have that
height(h) = height(Φ̌(h)).

Persistent homology for f : R f → R. We have discussed earlier that the Reeb graph of a
level-set tame function f : X → R can be represented by a graph whose edges have monotone
function values. Then, the function f : R f → R can be treated as a PL-function on the simplicial
1-complex R f . This gives rise to the standard setting where a PL-function f is defined on a sim-
plicial 1-complex R f whose persistence is to be computed. We can apply algorithm ZeroPerDg
from the book to compute the 0-th persistence diagram Dgm0(f). For computing one dimensional
persistence diagram Dgm1(f), one can modify this algorithm slightly by registering the function
values of the edges that create cycles. These are edges that connect vertices in the same com-
ponent. The function values of these edges are the birth points of the 1-cycles that never die.
This algorithm takes O(n log n + mα(n)) time where m and n are the number of vertices and edges
respectively in R f .

12 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

We can also compute the levelset zigzag persistence of f using the zigzag persistence algo-
rithm as we described before. Only the zeroth persistence diagram Dgm0(f) is nontrivial in this
case. We can read the zeroth persistence diagram for the standard persistence using Theorem ??
from this level set persistence diagram. Furthermore, for every infinite bar [ai,∞) in the standard
one dimensional persistence diagram, we can get the pairing (a j, ai) (open-open bar) in the zeroth
levelset diagram Dgm0(f).

Reeb graphs can be a useful tool to compute the zeroth level set zigzag persistence diagram
of a function on a topological space. Let f : X → R be a continuous function whose zeroth
persistence diagram we want to compute. We already observed that the function f induces a
continuous function on the Reeb graph R f . To distinguish the two domains more explicitly, we
denote the former function f X and the latter as f R. The following observation helps computing the
zeroth levelset zigzag persistence diagram Dgm0(f X) because computationally it is much harder
to process a space, say the underlying space of a simplicial complex than only a graph (simplicial
1-complex).

Proposition 5. Dgm0(f X) = Dgm0(f R) where the diagrams are for the zeroth levelset zigzag
persistence.

The result follows from the following observation. Consider the levelset zigzag filtrations FX

and FR for the two functions.

FX : X(a0,a2) ←↩ · · · ↪→ X(ai−1,ai+1) ←↩ X(ai,ai+1) ↪→ X(ai,ai+2) ←↩ · · · ↪→ X(an−1,an+1)

FR : R f (a0,a2) ←↩ · · · ↪→ R f (ai−1,ai+1) ←↩ R f (ai,ai+1) ↪→ R f (ai,ai+2) ←↩ · · · ↪→ R f (an−1,an+1)

Using notation for interval sets X j
i = X(ai,a j) and j

i = R f (ai,a j)
, we have the following commu-

tative diagram between the 0-th level set zigzag persistence modules.

H0F
X : H0(X0

0) // H0(X1
0) H0(X1

1) · · ·oo // H0(Xn
n−1) H0(Xn

n)oo

H0F
R : H0(0

0) // H0(1
0) H0(1

1) · · ·oo // H0(n
n−1) H0(n

n)oo

All vertical maps are isomorphism because the number of components in Xi
j is exactly equal to

the number of components in the quotient space i
j = Xi

j/ ∼which is used to define the Reeb graph.
All horizontal maps are induced by inclusions. It follows that every square in the above diagram
commutes. Therefore the above two modules are isomorphic.

10.3 Distance for Reeb graphs

Several distance measures have been proposed for Reeb graphs. In this section, we introduce two
distances, one based on a natural interleaving idea, and the other based on the Gromov-Hausdorff
distance idea. It has been shown that these two distance measures are strongly equivalent, that is,
they are within a constant factor of each other for general Reeb graphs. For the special case of
merge trees, the two distance measures are exactly the same.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 13

So far, we have used R f to denote the Reeb graph of a function f . For notational convenience,
in the following we use a different notation F for R f . Suppose we are given two Reeb graphs F
and G with the functions f : F → R and g : G → R associated to them. To emphasize the
associated functions we write (F, f) and (G, g) in place of F and G when convenient. Again, we
assume that each Reeb graph is a finite simplicial 1-complex and the function is strictly monotone
on each edges. Our goal is to develop a concept of distance d(F,G) between them. Intuitively, if
two Reeb graphs are “the same”, then they are isomorphic and the function value of each point is
also preserved under the isomorphism. If two Reeb graphs are not the same, we aim to measure
how far it deviates from being “isomorphic". The two distances we introduce below both follow
this intuition, but measures the “deviation” differently.

10.3.1 Interleaving distance

We borrow the idea of interleaving between persistence modules to define a distance between
Reeb graphs. Roughly speaking, instead of requiring that there is an isomorphism between the two
Reeb graphs, which would give rise to a pair of maps between them, φ : F→ G and φ−1 : G→ F
that is function preserving, we look for the existence of a pair of “compatible” maps between
appropriately “thickened" versions of F and G and the distance is measured by the minimum
amount of the “thickening" needed. We make this more precise below. Given any space X, set
Xε := X × [−ε, ε].

Definition 4. Given a Reeb graph (F, f), its ε-smoothing, denoted by Sε(F, f), is the Reeb graph
of the function fε : Fε → R where fε(x, t) = f (x) + t, t ∈ [−ε, ε]. In other words, Sε(F, f) =

Fε/ ∼ fε , where ∼ fε denotes the equivalence relation where x ∼ fε y iff x, y ∈ Fε are from the same
contour of fε.

f

2ε

Figure 10.8: From left to right, we have the Reeb graph (F, f), its ε-thicking (Fε, fε), and the
Reeb graph Sε(F, f) of fε : Fε → R.

See Figure 10.8 for an example. As Sε(F, f) is the quotient space Fε/ ∼ fε , we use [x, t],
x ∈ F, t ∈ [−ε, ε], to denote a point in Sε(F, f), which is the equivalent class of (x, t) ∈ Fε
under the equivalence relation ∼ fε . Also note that there is a natural “quotiented-inclusion” map
ι : (F, f)→ Sε(F, f) defined as ι(x) = [x, 0], for any x ∈ F.

Suppose we have two Reeb graphs (A, fa) and (B, fb). A map µ : (A, fa) → (B, fb) between
them is function-preserving if fa(x) = fb(µ(x)) for each x ∈ A. A function-preserving map µ be-
tween (A, fa) and Sε(B, fb) induces a function-preserving map µε between Sε(A, fa) and S2ε(B, fb)
as follows:

µε : Sε(A, fa)→ S2ε(B, fb), s. t, [x, t] 7→ [µ(x), t].

14 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Now consider the “quotiented-inclusion” map ι introduced earlier, and suppose we also have a
pair of function-preserving maps φ : (F, f) → Sε(G, g) and ψ : (G, g) → Sε(F, f). Using the
above construction, we then obtain the following maps:

ιε : Sε(F, f)→ S2ε(F, f), [x, t] 7→ [x, t],

φε : Sε(F, f)→ S2ε(G, g), [x, t] 7→ [φ(x), t]

ψε : Sε(G, g)→ S2ε(F, f), [y, t] 7→ [ψ(y), t]

Definition 5 (Reeb graph interleaving). A pair of continuous maps φ : (F, f) → Sε(G, g) and
ψ : (G, g) → Sε(F, f) are ε-interleaved if (i) both of them are function preserving, and (ii) the
following diagram commutes:

(F, f) ι //

φ

$$

Sε(F, f)
ιε //

φε

&&

S2ε(F, f)

(G, g) ι
//

ψ

::

Sε(G, g) ιε
//

ψε

88

S2ε(G, g).

One can recognize that the above requirements of commutativity mirror the rectangular and
triangular commutativity in case of persistence modules. It is easy to verify the rectangular com-
mutativity, that is, to verify that the following diagram (and its symmetric version involving maps
ψ and ψε) commutes.

(F, f) ι //

φ $$

Sε(F, f)
φε

&&
Sε(G, g)

ιε //// S2ε(G, g)

Rectangular commutativity however does not embody the interaction between maps φ and ψ. The
key technicality lies in verifying the triangular commutativity, that is, φ and ψ make the diagram
below (and its symmetric version) commute:

Sε(F, f)
φε

&&
(G, g) ι

//
ψ

::

Sε(G, g) ιε
// S2ε(G, g).

For sufficiently large ε, Sε(A, fa) for any Reeb graph becomes a single segment with monotone
function values on it. Hence one can always find maps φ and ψ that are ε-interleaved for suf-
ficiently large ε. On the other hand, if ε = 0, then this implies ψ = φ−1. Hence the smallest
ε accommodating ε-interleaved maps indicates how far the input Reeb graphs are from being
identical. This forms the intuition behind defining the following distance between Reeb graphs.

Definition 6 (Interleaving distance). Given two Reeb graphs (F, f) and (G, g), the interleaving
distance between them is defined as:

dI(F,G) = inf{ε | there exists a pair of ε-interleaved maps between (F, f) and (G, g) }. (10.1)

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 15

10.3.2 Functional distortion distance

We now define another distance between Reeb graphs called functional distortion distance which
takes a metric space perspective. It views a Reeb graph as an appropriate metric space, and
measures the distance between two Reeb graphs via a construction used for defining Gromov-
Hausdorff distances.

Definition 7 (Function-induced metric). Given a path π from u to v in a Reeb graph (A, fa), the
height of π is defined as

height(π) = max
x∈π

fa(x) −min
x∈π

fa(x).

Let Π(u, v) denote the set of all paths between two points u, v ∈ A. The function-induced metric
d fa : A × A→ R on A induced by fa is defined as

d fa(u, v) = min
π∈Π(u,v)

height(π).

In other words, d fa(u, v) is the minimum length of any closed interval I ⊂ R such that u and v
are in the same path component of f −1

a (I). It is easy to verify for a finite Reeb graph, the function-
induced distance d fa is indeed a proper metric on it, and hence we can view the Reeb graph (A, fa)
as a metric space (A, d fa).

Definition 8 (Functional distortion distance). Given two Reeb graphs (F, f) and (G, g), and a pair
of continuous maps Φ : F→ G and Ψ : G→ F, set

C(Φ,Ψ) = {(x, y) ∈ F × G | Φ(x) = y, or x = Ψ(y)}

and
D(Φ,Ψ) = sup

(x,y),(x′,y′)∈C(Φ,Ψ)

1
2

∣∣∣d f (x, x′) − dg(y, y′)
∣∣∣ .

The functional distortion distance between (F, f) and (G, g) is defined as:

dFD(F,G) = inf
Φ,Ψ

max{ D(Φ,Ψ), ‖ f − g ◦ Φ‖∞, ‖g − f ◦ Ψ‖∞ }. (10.2)

Note that the maps Φ and Ψ are not required to preserve function values; however the terms
‖ f − g ◦ Φ‖∞ and ‖g − f ◦ Ψ‖∞ bound the difference in function values under the maps Φ and
Ψ. If we ignore these two terms ‖ f − g ◦ Φ‖∞ and ‖g − f ◦ Ψ‖∞, and if we do not assume that Φ

and Ψ have to be continuous, then dFD is the simply the Gromov-Hausdorff distance between the
metric spaces (F, d f) and (G, dg) [44]. The above definition is thus a function-adapted version of
the continuous Gromov-Hausdorff distance 2.

2if one removes the requirement of continuity on Φ and Ψ, the resulting functional distortion distance takes values
within a constant factor of dFD we defined.

16 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Properties of the distances. It turns out that the two distances we introduced are strongly equiv-
alent.

Theorem 6 (Bi-Lipschitz equivalence). dFD ≤ 3dI ≤ 3dFD.

Furthermore, it is known that for Reeb graphs R f ,Rg derived from two “nice” functions f , g :
X → R defined on the same domain X, both distances are stable [22, 4].

Definition 9 (Stable distance). Given f , g : X → R, let (R f , f̃) and (Rg, g̃) be the Reeb graph of
f and g, respectively. We say that a Reeb graph distance dR is stable if

dR
(
(R f , f̃), (Rg, g̃)

)
≤ ‖ f − g‖∞.

Finally, it is also known that these distances are bounded from below (up to a constant factor)
by the bottleneck distance between the persistence diagrams associated to the two input Reeb
graphs. In particular, given (F, f) (and similarly for (G, g)), consider the 0-th persistence diagram
Dgm0(f) induced by the levelset zigzag-filtration of f as in previous section. We consider only
the 0-th persistence homology as each level set f −1(a) consists of only a finite set of points. We
have the following result (see Theorem 3.2 of [8]).

Theorem 7. db(Dgm0(f),Dgm0(g)) ≤ 2dI(R f ,Rg) ≤ 2dFD(R f ,Rg).

Universal Reeb graph distance. We introduced two Reeb graph distances above. There are
other possible distances for Reeb graphs, such as the edit distance originally developed for Reeb
graphs induced by functions on curves and surfaces. All these distances are stable, which is an im-
portant property to have. The following concept allows one to identify the most “discriminative"
Reeb graph distance among all stable distances.

Definition 10. A Reeb graph distance dU is universal if and only if (i) dU is stable; and (ii) for
any other stable Reeb graph distance dS , we have dS ≤ dU .

It has been shown that neither the interleaving distance nor the functional distortion distance
is universal. On the other hand, for Reeb graphs of piecewise-linear functions defined on com-
pact triangulable spaces, such universal Reeb graph distance indeed exists. In particular, one
can construct a universal Reeb graph distance via a pullback idea to a common space; see [62].
The authors of [62] propose two further edit-like distances for Reeb graphs, both of which are
universal.

Computation. Unfortunately, except for the bottleneck distance db, the computation of any of
the distances mentioned above is at least as hard as graph isomorphism. In fact, even for merge
trees (which are simpler variant of the Reeb graph, described in Definition 2 at the end of Section
10.1), it is NP-hard to compute the interleaving distance between them [3]. But for this special
case, a fixed-parameter tractable algorithm exists [60].

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 17

10.4 Notes and Exercises

The Reeb graph was originally introduced for Morse functions [54]. It was naturally extended
to more general spaces as it does not rely on smooth / differential structures. This graph, as
a summary of a scalar field, has found many applications in graphics, visualization and more
recently in data analysis; see e.g. [6, 7, 14, 24, 38, 47, 48, 56, 58, 61, 63]. Its loop free version,
the contour tree, has many applications of its own. Properties of the Reeb graph has been studied
in [19, 28, 33]. The concept of Reeb space was introduced in [34].

An O(m log m) algorithm to compute the Reeb graph of a function on a triangulation of a
2-manifold is given in [19], where m is the size of the triangulation: In particular, it follows a
similar high level framework as in Reeb-SweepAlg() described Algorithm 1. For the case where
K represents the triangulation of a 2-manifold, the pre-image graph Ga has a simpler structure (a
collection of disjoint loops for a generic a value). Hence the connectivity of Gas can be maintained
efficiently in O(log nv) time, rendering an O(m log nv) = O(m log m) time algorithm to compute
the Reeb graph [19]. Several subsequent algorithms are proposed to handle more general cases;
e.g, [30, 31, 52, 59]. The best existing algorithm for computing the Reeb graph of a PL-function
defined on a simplicial complex, as described in Section 10.2.1, was proposed by Parsa in [51].
The randomized algorithm with the same time complex (in expectation) described in Section
10.2.2 was given in [46]. The loop-free version of the Reeb graph, namely, the contour tree, can
be computed much more efficiently in O(n log n) time, where n is the total number of vertices and
edges in the input simplicial complex domain [12]. As a by-product, this algorithm also computes
both the merge tree and split tree of the input PL-function within the same time complexity.

The concepts of horizontal and vertical homology groups were originally introduced in [18]
for any dimensions. The specific connection of the 1-dimensional case to the Reeb graphs (e.g.,
Theorem 4) was described in [28]. The discussion of persistent homology for f : R f → R follows
from [23]. The 0-th level set zigzag persistence (or equivalently, the 0-th and 1-st extended
persistence) for the Reeb graph can be computed in O(n log n) time using the mergeable tree
algorithm of [39].

The interleaving distance of merge trees was originally introduced by Morozov et al. in [50].
The interleaving distance for the Reeb graphs is more complicated, and was introduced by de
Silva et al. [22]. There is also an equivalent cosheave-theoretical way of defining the interleaving
distance. Its description involves the sheaf theory [21]. The functional distortion distance for Reeb
graphs was originally introduced in [4], and its relation to interleaving distance was studied in [5].
The lower-bound in Theorem 7 was proven in [8]; while some weaker bounds were earlier given in
[9, 5]. An interesting distance between Reeb graphs can be defined by mapping its levelset zigzag
persistence module to a 2-parameter persistence module. See the Notes in Chapter 12 of the book
for more details. The edit distance for Reeb graphs induced by functions on curves or surfaces
has been proposed in [35, 36]. Finally, the universality of Reeb graph distance and universal
(edit-like) distance for Reeb graphs was proposed and studied in [62]. It remains an interesting
open question whether the interleaving distance (and thus functional distortion distance) is within
a constant factor of the universal Reeb graph distance.

18 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Exercise

1. Suppose we are given a triangulation K of a 2-dimensional square. Let f : |K| → R be a
PL-function on K induced by a vertex function f |V : V(K) → R. Assume that all vertices
have distinct function values.

(1.a) Given a value a ∈ R, describe the topology of the contour f −1(a).

(1.b) As we vary a continuously from −∞ to +∞, show that the connectivity of f −1(a) can
only change when a equals f (v) for some v ∈ V(K).

(1.c) Enumerate all cases of topological changes of contours when a passes through f (v)
for some v ∈ V .

2. Given a finite simplicial complex K and a PL-function f induced by f |V : V(K) → R, let
R f be the Reeb graph w.r.t. f . Suppose we add a new simplex σ of dimension 1 or 2 to
K, and let K′ be the new simplicial complex. Describe how to obtain the new Reeb graph
R f (K′) from R f (K).

3. Given a finite simplicial complex K, let nd denote the number of d-dimensional simplices in
K. Let f be a PL-function on K induced by f : V(K) → R, and assume that all n0 vertices
in V(K) are already sorted in non-decreasing order of f . Describe an algorithm to compute
the merge tree for K w.r.t. f , and give the time complexity of your algorithm. (Make your
algorithm as efficient as possible.)

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 19

Topic 11: Topological Analysis of Graphs

In this chapter, we present some examples of topological tools that help analyze or summarize
graphs. In the previous chapter, we already discussed one specific type of graph, the Reeb graph,
obtained by quotienting a space with the connected components of levelsets of a given function.
Abstractly, a Reeb graph can also be considered as a graph equipped with a height function. In this
chapter, we focus on general graphs. Structures such as cliques in a graph correspond to simplices
as we have seen in Vietoris-Rips complexes. They can help summarizing or characterizing graph
data. See Figure 10.9 for an example [55], where a directed graph is used to model the synaptic
network of neurons built by taking neurons as the vertices and the synaptic connections directed
from pre- to postsynaptic neurons as the directed edges. It is observed that there are unusually

Figure 10.9: (A) shows examples of two directed cliques (simplices) formed in the synaptic
network. (B) shows the number of p-simplices for different types of graphs, where “Bio-M"
is the synaptic network from reconstructed neurons. Note that this neuronal network has far more
directed cliques than other biological or random graphs. (C) shows that the count of directed
cliques further differ depending on which layers neurons reside. Image taken from [55].

high number of directed cliques (viewed as a simplex as we show in Section 10.7.1) in such
networks, compared to other biological networks or random graphs, see Figure 10.9. Topological
analysis such as the one described in Section 10.7 can facilitate such applications.

Specifically, Sections 10.5 and 10.6 focus on topological analysis of undirected graphs. We
present topological approaches to summarize undirected graphs as well as to compare them. In
Section 10.7, we discuss how to obtain topological invariant of directed graphs. In particular,
we describe two ways to define homology for directed graphs. The first is by constructing an
appropriate simplicial complex over an input directed graph and then taking the corresponding
simplicial homology (Section 10.7.1). The second approach is the so-called path homology for
directed graphs, which is not rooted in a simplicial homology. Rather, it is based on constructing
a specific chain complex directly from directed paths in the input graph, and defining a homology

20 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

group using the boundary operators associated to the resulting chain complex (Section 10.7.2).
It turns out that both path homology and the persistent version of it can be computed via a sim-
ilar matrix reduction algorithm as the standard persistence algorithm (for simplicial complexes)
though with some key differences. We describe this algorithm in Section 10.7.3, and mention an
improved algorithm for the 1-st homology.

10.5 Topological summaries for graphs

We have seen graphs in various contexts so far. Here we consolidate some of the persistence
results specifically suited for graphs. Sometimes graphs appear as abstract objects devoid of any
geometry where they are described only combinatorially. At other times, graphs are equipped with
a function or a metric. Reeb graphs studied in the previous chapter fall into this latter category. We
present results specifically developed for different viewpoints on graphs. Nevertheless, (weighted
or unweighted) combinatorial graphs can also be viewed as metric graphs, by associating with it
an appropriate shortest path metric (see Section 10.5.2).

10.5.1 Combinatorial graphs

A graph G is combinatorially presented as a pair G = (V, E), where V is a set called nodes/vertices
of G and E ⊆ V ×V is a set of pairs of vertices called edges of G. We now introduce two common
ways to obtain a persistence-based topological summary for G.

Graphs viewed as a simplicial 1-complex. We can view G as a simplicial 1-complex with
V and E being the set of 0-simplicies and 1-simplices respectively. Using tools developed for
persistence, we can then summarize G w.r.t. a given PL-function f : |G| → R by the persistence
diagram Dgm f . This is what was done in Section 10.2.3 in the previous chapter while describing
persistent homology for Reeb graphs. In practice, the chosen PL-functions are sometimes called
descriptor functions. For example, we can choose f : |G| → R to be given by a vertex function
called the degree-function, where f (v) equals the degree of the graph node v in G. Some other
choices for the descriptor function include the heat-kernel signature function [13] and the Ollivier
Ricci curvature of graphs [64]. Note that, under this view, given that the domain is a simplicial
1-complex, there is only zeroth and 1-st persistent homology to consider.

Clique complex view. Given a graph G = (V, E), its induced clique complex, also called the
flag complex, is defined as follows.

Definition 11 (Clique complex). Given a graph G = (V, E), a clique simplex σ of dimension k is

σ = {vi0 , . . . , vik } where either k = 0 or for any j , j′ ∈ [0, k], (vi j , vi j′) ∈ E.

By definition, every face of a clique simplex is also a clique simplex. Therefore, the collection of
all clique simplices form a simplicial complex CG called the clique complex of G. In other words,
the vertices of any (k + 1)-clique in G spans a k-simplex in CG.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 21

Given a weighted graph G = (V, E, ω) with ω : E → R, let Ga denote the subgraph of G
spanned by all edges with weight at most a; that is, Ga = (Va, Ea) where Ea = {(u, v) | ω(u, v) ≤ a}
and Va is the vertex set adjoining Ea. Let CGa be the clique complex induced by Ga. It is easy
to see that CGa ⊆ CGb for any a ≤ b. Assuming all edges E = {e1, . . . , em} are sorted in non-
decreasing order of their weights and setting ai = ω(ei), we thus obtain the following clique-
complex filtration:

CGa1 ⊆ CGa2 ⊆ · · · ⊆ CGam .

The persistent homology induced by the clique-complex filtration can be used to summarize the
weighted graph G = (V, E, ω). Here one can consider the k-th homology groups for k upto |V | −1.

10.5.2 Graphs viewed as metric spaces

A finite metric graph is a metric space (|G|, dG) where the space is the underlying space of a
finite graph G, equipped with a length metric dG [11]. We have already seen metric graphs in the
previous chapter where Reeb graphs are equipped with a function induced metric (Definition 7).
We can also obtain a metric graph from a (positively) weighted combinatorial graph.

Given a graph G = (V, E, ω) where the weight of each edge is positive3, we can view it as a
metric graph (|G|, dG) obtained by gluing a set of length segments (edges), where intuitively dG is
the shortest path metric on |G| induced by edge lengths ω(e)s.

Fact 3. A positively weighted graph G = (V, E, ω) induces a metric graph (|G|, dG).

Indeed, let |G| be the underlying space of G, viewing G as a simplicial 1-complex. For every
edge e ∈ E, consider the arclength parameterization e : [0, ω(e)] → |e|, and define dG(x, y) =

|e−1(y) − e−1(x)| for every pair x, y ∈ |e|. The length of any path π(u, v) between two points
u, v ∈ |G| is the sum of the lengths of the restrictions of π to edges in G. The distance dG(u, v)
between any two points u, v ∈ |G| is the minimum length of any path connecting u to v in |G|
which is a metric. The metric space (|G|, dG) is the metric graph of G.

Intrinsic Čech and Vietoris-Rips filtrations. Given a metric graph (|G|, dG), let Bo
|G|(x; r) :=

{y ∈ |G| | dG(x, y) < r} denote the radius-r open metric ball centered at x ∈ |G|. Recall that4, the
intrinsic Čech complex Cr(|G|) and intrinsic Vietoris-Rips complex VRr(|G|) are defined as:

Cr(|G|) :=
{
{x0, . . . , xp} |

⋂
i∈[0,p]

Bo
|G|(xi; r) , ∅

}
;

VRr(|G|) :=
{
{x0, . . . , xp} | dG(xi, x j) < 2r for any i , j ∈ [0, p]

}
.

Remark 1. We note that alternatively, G = (V, E, ω) can also be viewed as a discrete metric
space (V, d̂) where d̂ : V × V → R+ ∪ {0} is the restriction of dG to graph nodes V of G. We can
thus build discrete intrinsic Čech or Vietoris-Rips complexes spanned by only vertices in G. If G
is a complete graph, then the discrete Vietoris-Rips complex at scale r is equivalent to the clique
complex for Gr as introduced in Section 10.5.1. Most of our discussions below have analogous
results for the discrete case.

3If G is unweighted, then ω : E → R is the constant function ω(e) = 1 for any e ∈ E.
4Note that here we use open metric balls instead of closed metric balls to define the Čech and Rips complexes, so

that the theoretical result in Theorem 8 is cleaner to state.

22 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

We now consider the intrinsic Čech filtration C := {Cr}r∈R and intrinsic Vietoris-Rips filtra-
tion R := {VRr}r∈R, and their induced persistence modules HpC := {Hp(Cr)}r∈R and HpR :=
{Hp(VRr)}r∈R. We have (see [15]):

Fact 4. Given a finite metric graph (|G|, dG) induced by G = (V, E, ω), the persistence modules
HpC and HpR are both q-tame.

Hence both the intrinsic Čech and intrinsic Vietoris-Rips filtrations induce well-defined per-
sistence diagrams, which can be used as summaries (signatures) for the input graph G = (V, E, ω).

In what follows, we present some results on the homotopy types of these simplicial complexes,
as well as their induced persistent homology.

Topology of Čech and Vietoris-Rips complexes. Interestingly, the intrinsic Čech and Vietoris-
Rips complexes induced by a metric graph may have non-trivial high-dimensional homology
groups. The following results from [1] provide a precise characterization of the homotopy groups
of these complexes for a metric graph whose underlying space is a circle. Specifically, let S1

denote the circle of unit circumference which is assumed for simplicity. The results below can be
extended to a circle of any length by appropriate scaling. Let Sd denote the d-dimensional sphere.

Theorem 8. Let 0 < r < 1
2 . There are homotopy equivalences: for ` = 0, 1, . . . ,

Cr(S1) ' S2`+1 i f
`

2(` + 1)
< r ≤

` + 1
2(` + 2)

; and

VRr/2(S1) ' S2`+1 i f
`

2` + 1
<

r
2
≤

` + 1
2` + 3

.

We remark that if one uses the closed ball to define these complexes, then the statements are
similar and but with some additional technicalities; see [1].

Much less is known for more general metric graphs. Below we present two sets of results:
Theorem 9 characterizes the intrinsic Vietoris-Rips complexes for a certain family of metric
graphs [2]; while Theorem 10 characterizes only the 1-st persistent homology induced by the
intrinsic Čech complexes, but for any finite metric graph [37]. Recall that H̃p denotes the p-th
reduced homology group.

Theorem 9. Let G be a finite metric graph, with each edge of length one, that can be obtained
from a vertex by iteratively attaching (i) an edge along a vertex or (ii) a k-cycle graph along a
vertex or a single edge for k > 2 (see, e.g., Figure 10.10). Then we have that H̃p(VR(G; r)) ≈
⊕n

i=1H̃p(VR(Cki ; r)) where ⊕ stands for the direct sum, n is the number of times operation (ii) is
performed, and Cki is a loop of ki edges (and thus Cki is of length ki) which was attached in the
ith time that operation (ii) is performed.

The above theorem can be relaxed to allow for different edge lengths though one needs to
define the “gluing” more carefully in that case. See [2] for details. Graphs described in Theorem
9 are intuitively generated by iteratively gluing a simple loop along a “short” simple path in the
existing graph. Note that the above theorem implies that the Vietoris-Rips complex for a metric
tree has isomorphic reduced homology groups as a point.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 23

C4

v

u w

C6

Figure 10.10: A 4-cycle C4 is attached to the base graph along vertex v; whlie a 6-cycle C6 is
attached to the base graph along edge (u,w).

Persistent homology induced by Čech complexes. Instead of a fixed scale, Theorem 10 below
provides a complete characterization for the 1-st persistent homology of intrinsic Čech complex
filtration of a general finite metric graph. To present the result, we recall the concept of the
shortest cycle basis (optimal generators) for H1(G) while treating G = (V, E, ω) as a simplicial
1-complex. Specifically, in our setting, given any 1-cycle γ = ei1 + ei2 + · + eis , define the length
of γ to be length(γ) =

∑s
j=1 ω(ei j). A cycle basis of G refers to a set of g 1-cycles Γ = {γ1, . . . , γg}

that form a basis for the 1-dimensional cycle group Z1(G). Notice that we can replace H1(G) with
the cycle group Z1(G) because the two are isomorphic in case of graphs. Given a cycle basis Γ,
its length-sequence is the sequence of lengths of elements in the basis in non-decreasing order.
A cycle basis of G is a shortest cycle basis if its length-sequence is lexicographically minimal
among all cycle basis of G.

Theorem 10. Let G = (V, E, ω) be a finite graph with positive weight function ω : E → R. Let
{γ1, . . . , γg} be a shortest cycle basis of G where g = rank (Z1(G)), and for each i = 1, . . . , g, let
`i = length(γi). Then, the 1-st persistence diagram Dgm1C induced by the intrinsic Čech filtration
C := {Cr(|G|)}r∈R on the metric graph (|G|, dG) consists of the following set of points on the y-axis:

Dgm1C = {(0,
`i

4
) | 1 ≤ i ≤ g}.

Unfortunately, no such characterization is available for high-dimensional cases. Some partial
results on the higher-dimensional persistent homology induced by intrinsic Čech filtration are
given in [26].

10.6 Graph comparison

The topological invariants described in the previous section can be used as signatures to compare
graphs. For example, given two graphs G1 = (V1, E1, ω1) and G2 = (V2, E2, ω2) with positive
weight functions, let C(G1) and C(G2) denote the intrinsic Čech filtrations for (|G1|, dG1) and
(|G2|, dG2), respectively. We can then define dIC(G1,G2) = db(Dgm1C(G1),Dgm1C(G2)) and
dIC gives rise to a pseudo-distance (a metric for which the first axiom may hold only with ‘if’
condition) for the family of finite graphs with positive weights. Furthermore, this pseudo-distance
is stable w.r.t. the Gromov-Hausdorff distance.

24 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Persistence-distortion distance. In what follows, we introduce another pseudo-distance for
metric graphs, called the persistence distortion distance, which, instead of mapping the entire
graph into a single persistence diagram, maps each point in the graph to such a summary.

First, given a finite metric graph (|G|, dG), for any point s ∈ |G|, consider the shortest path
distance function fs : |G| → R defined as: x 7→ dG(x, s). Let

Ps := Dgm0 fs, the 0-th persistence diagram induced by the function fs. (10.3)

Let G and D denote the space of finite metric graphs, and the space of finite persistence diagrams,
respectively; and let 2D denote the space of all subsets of D. We define:

φ : G→ 2D where for any |G| ∈ G, φ(|G|) 7→ { Ps | s ∈ |G| }. (10.4)

In other words, φ maps a metric graph |G| to a set of (infinitely many) points φ(|G|) in the space of
persistence diagrams D. The image φ(|G|) is another graph in the space of persistence diagrams
though this map is not injective.

Now let (|G1|, dG1) and (|G2|, dG2) denote the metric graphs induced by finite graphs G1 =

(V1, E1, ω1) and G2 = (V2, E2, ω2) with positive edge weights.

Definition 12 (Persistence distortion distance). The persistence-distortion distance between (|G1|, dG1)
and (|G2|, dG2), denoted by dPD(G1,G2), is the Hausdorff distance dH(φ(|G1|), φ(|G2|) between the
two image sets φ(|G1|) and φ(|G2|) in the space of persistence diagrams (D, db) equipped with the
bottleneck distance db. In other words, setting A := φ(|G1|) and B := φ(|G2|), we have

dPD(G1,G2) := dH
(
φ(|G1|), φ(|G2|)

)
= max

{
max
P∈A

min
Q∈B

db(P,Q); max
Q∈B

min
P∈A

db(P,Q)
}
.

The persistence distortion dPD is a pseudo-metric. It can be computed in polynomial time for
finite input graphs. It is stable w.r.t. the Gromov-Hausdorff distance between the two input metric
graphs.

Theorem 11. dPD(G1,G2) ≤ 6dGH(|G1|, |G2|).

One can also define a discrete persistence distortion distance d̂PD = dH(φ̂(G1), φ̂(G2)), where
φ̂(G) := {Ps | s ∈ V} for a graph G = (V, E, ω). Both the persistence distortion distance and its
discrete variant can be computed in time polynomial in the size (number of vertices and edges) of
the combinatorial graphs G1 and G2 generating the metric graphs |G1| and |G2| respectively.

10.7 Topological invariants for directed graphs

In this section, we assume that we are given a directed graph G = (V, ~E, ω) where ~E ⊆ V×V is the
directed edge set, and ω : ~E → R is the edge weight function (if the input graph is unweighted,
we assume that all weights equal to 1). Each directed edge (u, v) is an ordered pair, and thus edge
(u, v) , (v, u). For simplicity, we assume that there is no self-loop (v, v) in ~E, and also there is at
most one directed edge between an ordered pair of nodes. Given a node v ∈ V , its in-degree is
indeg(v) = |{u | (u, v) ∈ ~E}|, and its out-degree is outdeg(v) = |{u | (v, u) ∈ ~E}|.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 25

10.7.1 Simplicial complexes for directed graphs

Treating a directed graph as an asymmetric network (as it may be that ω(u, v) , ω(v, u)), one can
extend ideas in the previous section to this asymmetric setting. We give two examples below:
both cases lead to simplicial complexes from an input directed graph (weighted or unweighted),
and one can then compute (persistent) homological information of (filtrations of) this simplicial
complex as summaries of input directed graphs.

a

a

c

c

b

b

d

a

b

c

d

f

e

g

a

b

c

d

f

e

g

(a) (b)

Figure 10.11: (a) a 3-clique and a 4-clique with the blue point being its source and the red point
being its sink. (b) A directed graph (left) and its directed clique complex (right). The set of
triangles in this complex are: {bce, ced, ed f }. There is no higher dimensional simplices. Note
that if the edge (b, d) is also in the directed graph in (b), then the tetrahedron bcde will be in its
corresponding directed clique complex.

Directed clique complex. A node in a directed graph is a source node if it has in-degree 0; and
it is a sink node if it has out-degree 0. A graph ({v1, . . . , vk}, E′) is a directed k-clique if (i) there
are

(
k
2

)
edges in E′, and (ii) it has a unique source node, as well as a unique sink node. See 10.11

(a) for examples. A set of vertices {vi1 , . . . , vik } spans a directed clique in G = (V, ~E) if there is a
subset of edges of E′ ⊆ ~E such that ({vi1 , . . . , vik }, E

′) is a directed k-clique. It is easy to see that
given a directed clique, any subset of its vertices also form a directed clique (Exercise ??).

Definition 13 (Directed clique complex). Given a directed graph G = (V, ~E), the directed clique
complex induced by G is a simplicial complex K defined as

Ĉ(G) := {σ = {vi1 , . . . , iik } | {vi1 , . . . , iik } spans a directed k clique in G}.

See Figure 10.11 (b) for a simple example. Now given a weighted directed graph G =

(V, ~E, ω), for any scale a, let Ga be the subgraph of G spanned by all directed edges whose weight
is at most a. Assuming all edges e1, . . . , em, m = |~E|, are sorted by their weights in a non-
decreasing order, set ai = ω(ei). Similar to the clique complex filtration for undirected graphs
introduced in Section 10.5.1, this gives rise to the following filtration of simplicial complexes
induced by the directed clique complexes:

Ĉ(Ga1) ⊆ Ĉ(Ga2) ⊆ · · · ⊆ Ĉ(Gam).

One can then use the persistence diagram induced by the above filtration as a topological invariant
for the input directed graph G.

26 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Definition 14 (Dowker complex). Given a weighted directed graph G = (V, ~E, ω) and a threshold
δ, the Dowker δ-sink complex is the following simplicial complex:

Dsi
δ (G) := {σ = {vi0 , . . . , vid } | there exists v ∈ V so that ω(vi j , v) ≤ δ for any j ∈ [0, d]}. (10.5)

In the above definition, v is called a δ-sink for the simplex σ. In the right example of Figure
10.11 (a), assume all edges have weight 1. If we now remove edge (b, d), then abd is not a 3-
clique any more in Gδ=1. However, abd still forms a 2-simplex in the Dowker sink complex Dsi

1
with sink c.

In general, as δ increases, we obtain a sequence of Dowker complexes connected by inclu-
sions, called the Dowker sink filtration Dsi(G) = {Dsi

δ ↪→ Dsi
δ′}δ≤δ′ .

Alternatively, one can define the Dowker δ-source complex in a symmetric manner:

Dso
δ (G) := {σ = {vi0 , . . . , vid } | there exists v ∈ V so that ω(v, vi j) ≤ δ for any j ∈ [0, d]} (10.6)

resulting in a Dowker source filtration Dso(G) = {Dso
δ ↪→ Dso

δ′ }δ≤δ′ . It turns out that by the duality
theorem of Dowker [32], the two Dowker complexes have isomorphic homology groups. It can
be further shown that the choice of Dowker complexes does not matter when persistent homology
is considered [16].

Theorem 12 (Dowker Duality). Given a directed graph G = (V, ~E, ω), for any threshold δ ∈ R
and dimension p ≥ 0, we have Hp(Dsi

δ) � Hp(Dso
δ). Furthermore, the persistence modules induced

by the Dowker sink and the Dowker source filtrations are isomorphic as well, that is,

Dgmp D
si = Dgmp D

so, for any p ≥ 0.

10.7.2 Path (persistent) homology for directed graphs

In this subsection, we introduce the so-called path homology, which is different from the simpli-
cial homology that we defined for clique complex and Dowker complex. Instead of constructing a
simplicial complex from an input directed graph and considering its simplicial homology group,
here, we use the directed graph to define a chain complex directly. The resulting path homol-
ogy group has interesting mathematical structures behind, e.g., there is a concept of homotopy in
directed graphs under which the path homology is preserved, and it accommodates the Künneth
formula.

Note that in this chapter, we have assumed that a given directed graph G = (V, ~E) does not
contain self-loops (where a self-loop is an edge (u, u) from u to itself). For notational simplicity,
below we sometimes use index i to refer to vertex vi ∈ V = {v1, . . . , vn}.

Let k be a field with 0 and 1 being the additive and multiplicative identities respectively. We
use −a to denote the additive inverse of a in k. An elementary p-path on V is simply a sequence
vi0 , vi1 , · · · , vip of p + 1 of vertices of V , which we denote by evi0 ,vi1 ,...,vid

, or just ei0,i1,··· ,ip for
simplicity. Let Λp = Λp(G,k) denote the k-linear space of all linear combinations of elementary
p-paths with coefficients from k. The set {ei0,··· ,ip | i0, · · · , ip ∈ V} forms a basis for Λp. Each
element c of Λd is called a p-path or p-chain, and it can be written as

c =
∑

i0,··· ,ip∈V
ai0···ipei0···ip , where ai0···ip ∈ k.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 27

Similar to the case of simplicial complexes, we can define boundary map ∂p : Λp → Λp−1 as:

∂p ei0···ip =
∑

i0,··· ,ip∈V

(−1)kei0···î j···ip
, for any elementary p -path ei0···ip ,

where îk means the removal of index ik. The boundary of a p-path c =
∑

ai0···ip · ei0···ip , is thus
∂pc =

∑
ai0···ip · ∂pei0···ip . For convenience, we set Λ−1 = 0 and note that Λ0 is the set of k-linear

combinations of vertices in V . It is easy to show that ∂p−1 ·∂p = 0, for any p > 0. In what follows,
we often omit the dimension p from ∂p when it is clear from the context.

Next, we restrict the consideration to real paths in directed graphs formed by consecutive
directed edges. Specifically, given a directed graph G = (V, ~E), call an elementary p-path ei0,··· ,ip

allowed if there is an edge from ik to ik+1 for all k ∈ [0, p − 1]. Define Ap as the space spanned
by all allowed elementary p-paths, that is, Ap := span{ei0···ip : ei0···ip is allowed}. An elementary
p-path i0 · · · ip is called regular if ik , ik+1 for all k, and is irregular otherwise. Clearly, every
allowed path is regular since there is no self-loop. However, applying the boundary map ∂ to Λp

may create irregular paths. For example, ∂euvu = evu − euu + euv is irregular because of the term
euu. To deal with this case, the term containing consecutive repeated vertices is taken as 0. Thus,
for the previous example, we have ∂euvu = evu − 0 + euv = evu + euv. The boundary map ∂ on
Ap is now taken to be the boundary map for Λp restricted on Ap with this modification, where
all terms with consecutive repeated vertiecs created by the boundary map ∂ are replaced with 0’s.
For simplicity, we still use the same symbol ∂ to represent this modified boundary map on the
space of allowed paths.

After restricting the boundary operator to the space of allowed paths Aps, the inclusion that
∂Ap ⊂ Ap−1 may not hold; that is, the boundary of an allowed p-path is not necessarily an
allowed (p − 1)-path. To this end, we adopt a stronger notion of allowed paths: an allowed path
c is ∂-invariant if ∂c is also allowed. Let Ωp := {c ∈ Ap | ∂c ∈ Ap−1} be the space generated by
all ∂-invariant p-paths. Note that ∂Ωp ⊂ Ωp−1 (as ∂2 = 0). This gives rise to the following chain
complex of ∂-invariant allowed paths:

· · ·Ωp
∂
−→ Ωp−1

∂
−→ · · ·Ω1

∂
−→ Ω0

∂
−→ 0.

We can now define the homology groups of this chain complex.

Definition 15 (Path homology). The p-th cycle group is defined as Zp = ker ∂|Ωp , and elements
in Zp are called p-cycles. The p-th boundary group is defined as Bp = Im ∂|Ωp+1 , with elements of
Bp called p-boundary cycles (or simply p-boundaries). The p-th path homology group is defined
as Hp(G,k) = Zp/Bp.

v1

v5

v6

v2

v3

v4

Figure 10.12: A directed graph G.

28 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Examples. Consider the directed graph in Figure 10.12, and assume that the coefficient field
k , Z2: Examples of elementary 1-path include: e12, e24, e13, e14, and so on. However, e13
and e14 are not an allowed 1-path. More examples of allowed 1-path include: e12 + e46, e12 + e31,
e46 +e65 +e45 and e46 +e65−e45. Note that any allowed 1-path is also ∂-invariant; that is, Ω1 = A1,
as all 0-paths are allowed. Observe that ∂(e46 + e65 + e45) = e6 − e4 + e5 − e6 + e5 − e4 = 2e5 − 2e4,
which is not 0 (unless the coefficient field k = Z2). However, ∂(e46 + e65 − e45) = 0, meaning that
e46 + e65 − e45 ∈ Z1. Other 1-cycle examples include

e12 + e23 + e31, e24 + e45 − e23 − e35, and e12 + e24 + e45 − e53 + e31 ∈ Z1

Examples of elementary 2-paths include: e123, e245, e256 and e465. However, e256 is not al-
lowed. Consider the allowed 2-path e245, its boundary ∂e245 = e45− e25 + e24 is not allowed as e25
is not allowed. Hence the allowed 2-path e245 is not ∂-invariant; similarly, we can see that neither
e235 nor e123 is in Ω2. It is easy to check that e465 ∈ Ω2 as ∂e465 = e65 − e45 + e46. Also note that
while neither e235 nor e245 is in Ω2, the allowed 2-path e245 − e235 is ∂-invariant as

∂(e245 − e235) = e45 − e25 + e24 − e35 + e25 − e23 = e45 + e24 − e35 − e23 ∈ A1.

This example suggests that elementary ∂-invariant p-paths do not necessarily form a basis for Ωp

– this is rather different from the case of simplicial complex, where the set of p-simplices form a
basis for the p-th chain group.

The above discussion also suggests that e46 + e65 − e45, e24 + e45 − e23 − e35 ∈ B1.
For this example,

{e12 + e23 + e31, e46 + e65 − e45, e24 + e45 − e23 − e35} is a basis for the 1-cycle group Z1;

{e46 + e65 − e45, e24 + e45 − e23 − e35} is a basis for the 1-boundary group B1; while

{e245 − e235, e465} is a basis for the space of ∂-invariant 2-paths Ω2.

Persistent path homology for directed graphs. Given a weighted directed graph G = (V, ~E, ω),
let Ga denote the subgraph of G containing all directed edges with weight at most a. This gives
rise to a filtration of graphs G : {Ga ↪→ Gb}a≤b. Let Hp(Ga) denote the p-th path homology
induced by graph Ga. It can be shown [17] that the inclusion Ga ↪→ Gb induces a well-defined
homormorphism ξa,b

p : Hp(Ga) → Hp(Gb), and the sequence G : {Ga ↪→ Gb}a≤b leads to a
persistence module HpG : {Hp(Ga)→ Hp(Gb)}a≤b.

10.7.3 Computation of (persistent) path homology

The example in the previous section (recall Figure 10.12) illustrates the challenge of computing
path homology induced by a directed graph G when compared to the case of simplicial homology.
In particular, the set of elementary allowed d-paths may no longer form a basis for the space of
the ∂-invariant d-paths Ωd: Indeed, recall that {e465, e245 − e235} form a basis for Ω2, yet, neither
e245 nor e235 belongs to Ω2.

We now present an algorithm to compute the persistent path homology of a given weighted
directed graph G = (V, ~E, ω). Note that as a byproduct, this algorithm can also compute the path
homology of a directed graph.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 29

Given a p-path τ, its allowed-time is set to be the smallest value (weight) a when it belongs
to Ap(Ga); and we denote it by at(τ) = a. Let Ap = {τ1, . . . , τt} denote the set of elementary
allowed p-paths, sorted by their allowed-times in a non-decreasing order. Similarly, set Ap−1 =

{σ1, . . . , σs} to be the sequence of elementary allowed (p − 1)-paths sorted by their allowed-
times in a non-decreasing order. Let a1 < a2 < · · · < at̂ be the sequence of distinct allowed-
times of elementary p-paths in Ap in increasing orders. Obviously, t̂ ≤ t = |Ap|. Similarly, set
b1 < b2 < · · · < bŝ be the sequence of distinct allowed-times for (p − 1)-paths in Ap−1 sorted in
increasing order.

Note that Ap (resp. Ap−1) forms a basis for Ap(G) (resp. Ap−1(G)). In fact, for any i, set
Aai

p := {τ j | at(τ j) ≤ ai}. It is easy to see that Aai
p equals {τ1, . . . , τρi}, where

ρi ∈ [1, t] is the largest index of any elementary p-path whose allowed-time is at most ai;
(10.7)

and Aai
p forms a basis for Ap(Gai). Note that the cardinality of Aai

p \Aai−1
p could be larger than 1 and

that is why ρi is not necessarily equal to i. A symmetric statement holds for Ab j

p−1 and Ap−1(Gb j).
From now on, we fix a dimension p. On the high level, the algorithm for computing the p-

th persistent path homology has the following three steps, which looks similar to the algorithm
that computes standard persistent homology for simplicial complexes. However, there are key
differences in the implementation of these steps.

Step 1. Set up a “boundary matrix" M = Mp.

Step 2. Perform left-to-right matrix reduction to transform M to a reduced form M̂.

Step 3. Construct the persistence diagram from the reduced matrix M̂.

The details of these steps are given as follows.

Description of Step 1. The columns of M correspond to Ap, ordered by their allowed-times.
We would like colM[i] = ∂τi. However, the boundary of an allowed path may not be allowed.
Hence the rows of the matrix need to correspond to not only the elementary allowed (p− 1)-paths
in Ap−1 (ordered by their allowed-times), but also any elementary (non-allowed) (p − 1)-path
that appears in the boundary of any τ j ∈ Ap: we assign the allowed-times for such paths to
be +∞. The rows of M are ordered in non-decreasing allowed-times from top to bottom. Let
Âp−1 = {σ1, . . . , σs, σs+1, . . . , σ`} be the final set of elementary (p − 1)-paths corresponding to
rows of M. Note that the first s elements are from Ap−1, while those in {σs+1, . . . , σ`} are not-
allowed, and have allowed-time +∞. See an example in Figure 10.13 (a) and (b).

The matrix M represents the boundary operator ∂p restricted to Ap. In other words, the i-
th column of M, denoted by colM[i], contains the boundary of τi, represented using the basis
elements in Âp−1; that is, ∂pτi =

∑`
j=1 colM[i][j]σ j. From a vector representation point of view,

we will also simply say that ∂pτi = colM[i]. The allowed time for the (p − 1)-path represented
by a column vector C is simply the allowed time at(σ j) associated to the lowest-id j = lowId(C)
in this vector. It is important to note that the rows of M are ordered in increasing indices from top
down. Hence lowId of a column means the largest index in Âp−1 for which this column contains
a non-zero entry. We further associate a p-path γi with the ith column of M for each i ∈ [1, t],

30 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

with the property ∂pγi = colM[i]. At the beginning of the algorithm, γi is initialized to be τi and
later updated through the reduction process in (Step 2) below.

a

b c

d

1 2

3 4

10

G

e

5

eab
ecb
ead
eed
ece
ebd

1
0
−1
0
0
1

0
1
0
0
0
1

ecd
eced eabd ecbd

0
0
0
1
1

−1
0

0 −1

eab
ecb
ead
eed
ece
ebd

1
0
−1
0
0
1

1
1

0
ecd

eced eabd ecbd

0
0
0
1
1

−1
0

0 0

−1

−1
−1

(a) graph G (b) original boundary matrix M (c) reduced matrix M̂

Figure 10.13: The input is the weighted directed graph in (a). Its 1-dimensional boundary matrix
M as constructed in (Step 1) is shown in (b). Note that at(ecd) = +∞ (so ecd < A1(G)). For
each edge (i.e, elementary allowed 1-path) in G, its allowed-time is simply its weight. There are
only three elementary allowed 2-paths, and their allowed-times are: at(eced) = 5, at(eabd) = 10
and at(ecbd) = 10. (c) shows the reduced matrix. From this matrix, we can deduce that the 1-
th persistence diagram (for path homoloyg) includes two points: (10, 10) and (5, 10) (generated
by the second and third columns). Note that for the first column (corresponding to eced), as
at(colM̂[1]) = ∞; hence the corresponding γ1 is not ∂-invariant.

Description of Step 2. We now perform the standard left-to-right matrix reduction to M, where
the only allowed operation is to add a column to some column on its right. We convert M to its
reduced form M̂ (recall Definition from earlier topic); and through this process, we also update γi

accordingly so that at any moment, ∂pγi = colM′[i] where M′ is the updated boundary matrix at
that point. In particular, if we add column j to column i > j, then we will update γi = γi + γ j.
We note that other than the additional maintenance of γs, this reduction step of M is the same as
the reduction in MatPersistence presented earlier. The following claim follows easily from that
there are only left-to-right column additions, and that the allowed-times of γis are initially sorted
in non-decreasing order.

Claim 1. For any i ∈ [1, t], the allowed-time of γi remains the same through any sequence of
left-to-right column additions.

Let Ωi
p denote the space of ∂-invariant p-paths w.r.t Gai ; that is, Ωi

p = Ωp(Gai). Given a p-path
τ, let ent(τ) be its entry-time, which is the smallest value a such that τ ∈ Ωp(Ga). It is easy to see
that for any p-path τ, we have that

ent(τ) = max{at(τ), at(∂pτ)}. (10.8)

Recall that each column vector colM̂[i] is in fact the vector representation of a (p − 1)-path
(with respect to basis elements in Â = {σ1, . . . , σ`}). Also, the allowed time for a column colM̂[i]
is given by at(colM̂[i]) = at(σh) where h = lowId(colM̂[i]).

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 31

Claim 2. Given a reduced matrix M̂, let C =
∑t

i=1 cicolM̂[i] be a (p − 1)-path. Let colM̂[j] be
the column with lowest (i.e, largest) lowId among all columns colM̂[i]s such that ci , 0, and set
h = lowId(colM̂[j]). It then follows that at(C) = at(σh).

Now for the reduced matrix M̂, given any i ∈ [1, t̂], we set ρi to be the largest index j ∈ [1, t]
such that at(γ j) ≤ ai. By Claim 1, each column j has a fixed allowed time associated to the
p-path γ j associated to it, which stays invariant through the reduction process. So this quantity
ρi is well defined, consistent with what we defined earlier in Eqn (10.7), and remains invariant
through the reduction process. Set:

Γi := {γ1, . . . , γρi},

Ii := { j ≤ ρi | at(colM̂[j]) ≤ ai }, and

Σi := {γ j | ent(γ j) ≤ ai} = {γ j | j ∈ Ii}.

Theorem 13. For any k ∈ [1, t̂], Γk forms a basis for Ak
p := A(Gak); while Σk forms a basis for

Ωk
p = Ωp(Gak).

Proof. That Γk forms a basis for Ak
p follows easily from the facts that originally, {τ1, . . . , τρk }

form a basis for Ak
p, and the left-to-right column additions maintain this. In what follows, we

prove that Σk forms a basis for Ωk
p. First, note that all elements in Σk represent paths in Ωk

p and
they are linearly independent by construction (as their lowest ids are distinct). So we only need
to show that any element in Ωk

p can be represented by a linear combination of vectors in Σk.
Let ξk denote the largest index j ∈ [1, s] such that at(σ j) ≤ ak. In other words, an equivalent

formulation for Ik is that Ik = { j ≤ ρk | lowId(colM̂[j]) ≤ ξk}.
Now consider any γ ∈ Ωk

p ⊆ Ak
p. As Γk forms a basis for Ak

p, we have that

γ =

ρk∑
i=1

ciγi and ∂γ =

ρk∑
i=1

ci∂γi =

ρk∑
i=1

cicolM̂[i].

As γ ∈ Ωk
p and ent(γ) = max{at(γ), at(∂γ)} (see Eqn (10.8)), we have at(γ) ≤ ak and at(∂γ) ≤

ak. By Claim 2, it follows that for any j ∈ [1, ρk] with c j , 0, its lowId satisfies lowId(colM̂[j]) ≤
ξk. Hence each such index j with c j , 0 must belong to Ik, and as a result, γ can be written as
a linear combination of p-paths in Σk. Combined with that all vectors in Σk are in Ωk

p and are
linearly independent, it follows that Σk forms a basis for Ωk

p. �

Corollary 14. Set Jk := { j ∈ Ik | colM̂[j] is all zeros}. Further we set Zk := {γ j | j ∈ Jk};
and Bk := {colM̂[j] | j ∈ Ik \ Jk}. Then (i) Zk forms a basis for the p-dimensional cycle group
Zp(Gak); and (ii) Bk forms a basis for the (p − 1)-dimensional boundary group Bp−1(Gak).

Proof. Let ∂̂p denote the restriction of ∂p over Ωp. Recall that Zp = Ker∂̂p, while Bp−1 = Im∂̂p.
Easy to see that by construction of Zk, we have Zk ⊆ Span(Zk) ⊆ Zp(Gak). Since all Γis are
linearly independent, we thus have that vectors in Zk are linearly independent. It then follows that
|Zk| ≤ rank (Zp(Gak)) where |Zk| stands for the cardinality of Zk.

Similarly, as the matrix M̂ is reduced, all non-zero columns of M̂ are linearly independent,
and thus vectors in Bk are linearly indepdent. Furthermore, by Theorem 13, each vector in Bk is in

32 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Bp−1(Gak) (as it is the boundary of a p-path from Ωk
p). Hence we have that Span(Bk) ⊆ Bp−1(Gak),

and |Bk| ≤ rank (Bp−1(Gak)).
On the other hand, let ∂̂p|Ωk

p
denote the restriction of ∂̂p to only Ωk

p ⊆ Ωp. Note that by Rank
Nullity Theorem,

|Σk
p| = rank (Ωk

p) = rank (ker(∂̂p|Ωk
p
)) + rank ((∂̂p|Ωk

p
)) = rank (Zp(Gak)) + rank (Bp−1(Gak)).

As rank (Σk
p) = |Zk| + |Bk|, and combining the above equation with the inequalities obtained

in the previous paragraphs, it follows that it must be that |Zk| = rank (Zp(Gak)) and |Bk| =

rank (Bp−1(Gak)). The claim then follows. �

Description of Step 3: constructing persistence diagram from the reduced matrix M̂. Given
a weighted directed graph G = (V, ~E, ω), for each dimension p ≥ 0, construct the boundary
matrix Mp+1 as described above. Perform the left-to-right column reduction to Mp+1 to obtain a
reduced form M̂ = M̂p+1. The p-th persistence diagram DgmpG where G : {Ga ↪→ Gb}a≤b can be
computed as follows.

Let µa,b
p denote the persistence pairing function: that is, the persistence point (a, b) is in

DgmpG with multiplicity µa,b
p if and only if µa,b

p > 0. At the beginning, µa,b
p is initialized to

be 0 for all a, b ∈ R. We then inspect every non-zero column colM̂[i], and take the following
actions.

• If at(colM̂[i]) , ∞, then we increase the pairing function µat(colM̂[i]),ent(γi) by 1. Observe
that, at(colM̂[i]) ≤ ent(γi) because

ent(γi) = max{at(γi), at(∂γi)} = max{at(τi), at(colM̂[i])},

where γi is the allowed elementary (p + 1)-path corresponding to this column.

• Otherwise, the path γi corresponds to this column is not ∂-invariant (i.e, not in Ωp), and we
do nothing.

• Finally, consider the reduced matrix M̂p for the p-th boundary matrix Mp as constructed
above. Recall the construction of Jk as in Corollary 14. For any j ∈ Jk such that j is not
appearing as the lowest-id of any column in M̂p+1, we increase the pairing function µat(τ),∞

by 1, where τ is the elementary p-path corresponding to this column.

See Figure 10.13 for an example. Let Np denote the number of allowed elementary p-paths
in G: obviously, Np = O(np+1). However, as we see earlier, the number of rows of Mp+1 is not
necessarily bounded by Np; and we can only bound it by the number of elementary p-paths in G,
which we denote by N̂p. If we use the standard Gaussian elimination for the column reduction as
in the Algorithm MatPersistence, then the time complexity to compute the reduced matrix M̂p+1

is O(N̂2
pNp+1). One can further improve it using the fast matrix multiplication time.

We note that due to Theorem 13 and Corollary 14, the above algorithm is rather similar to the
matrix reduction for the standard persistent homology induced by simplicial complexes. However,
the example in Figure 10.13 shows the difference.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 33

Improved computation for 1-st persistent path homology. The time complexity can be im-
proved for computing the 0-th and 1-st persistent path homology. In particular, the 0-th persis-
tence path homology coincides with the 0-th persistence homology induced by the persistence of
clique complexes, and thus can be computed in O(mα(n) + n log n) time using the union-find data
structure, where n = |V | and m = |~E|.

bigon boundary triangle boundary quadrangle

Figure 10.14: Boundary bigon, triangle and quadrangle. Such boundary cycles generate all 1-
dimensional boundary cycles.

For the 1-dimensional case, it turns out that the boundary group has further structures. In
particular, the 1-dimensional boundary group is generated by only the specific forms of bigons,
triangles and quadrangles as shown in Figure 10.14. The 1-st persistent path homology can thus
be computed more efficiently by a different algorithm (from the above matrix reduction algo-
rithm) by enumerating certain family of boundary cycles of small cardinality which generates the
boundary group. In particular, the cardinality of this family depends on the so-called arboricity
a(G) of G: Ignoring the direction of edges in graph G (i.e., viewing it as an undirected graph),
its arboricity a(G) is the minimum number of edge-disjoint spanning forests into which G can be
decomposed [45]. An alternative definition of the arboricity is that:

a(G) = max
H is a subgraph of G

|E(H)|
|V(H)| − 1

. (10.9)

Without describing the algorithm developed in [25], we present its computational complexity
for the 1-st persistent path homology in the following theorem.

Theorem 15. Given a directed weighted graph G = (V, ~E,w) with n = |V |, m = |E|, and Np =

O(np+1) the number of allowed elementary p-paths, assume that the time to compute the rank of
a r × r matrix is rω. Let din(v) and dout(u) denote the in-degree and out-degree of a node v ∈ V,
and a(G) be the arboricity of G. Set K = min{a(G)m,

∑
(u,v)∈~E (din(u) + dout(u))}. Then we can

compute the p-th persistent path homology:

• in O(mα(n) + n log n) time when p = 0;

• in O(Kmω−1 + a(G)m) time when p = 1; and

In particular, the arboricity a(G) = O(1) for plannar graphs, thus it takes O(nω) time to
compute the 1-st persistent path homology for a planar directed graph G.

10.8 Notes and Exercises

The clique complex (also called the flag complex) is one of the most common ways to construct
a simplicial complex from a graph. Recent years have seen much work on using the topological

34 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

profiles associated with the clique complex for network analysis; e.g, one of the early applications
in [53]. Most materials covered in Section 10.5.2 come from [1, 2, 15]; note that [15] provides
a detailed exposition for the intrinsic Čech and Vietoris-Rips filtrations of general metric spaces
(beyond merely metric graphs). Theorem 9 comes as a corollary of Proposition 4 in [2], which is
a stronger result than this theorem: In particular, Proposition 4 of [2] characterizes the homotopy
type of the family of graphs described in Theorem 9.

The comparison of graphs via persistence distortion was proposed in [27].
Topological analysis for directed graphs and asymmetric networks is more recent. Neverthe-

less, the clique complex for directed graphs has already found applications in practical domains;
e.g, [29, 49, 55]. The path homology was originally proposed in [40], and further studied and
developed in [41, 42, 43] and the persistent version is proposed and studied in [17]. Note that as
mentioned earlier, the path homology is not a simplicial homology, nevertheless, we have shown
in this chapter that there is still a matrix reduction algorithm to compute it for any dimensions,
with the same time complexity for computing the homology for simplicial complexes. The path
homology also has a rich mathematical structure: There is a concept of homotopy theory for di-
graphs under which the path homology is preserved [41], and it is also dual to the cohomology
theory of diagrams introduced in [42]. Note that in this chapter, we have assumed that the input
directed graph does not have self-loops. Additional care is needed to handle such loops.

The matrix reduction algorithm for computing the persistent path homology that we described
in Section 10.7.3 is based on the work in [17]. The algorithm of [17] assumes that the input graph
is a complete and weighted directed graph; or equivalently, is a finite set V with a weight function
w : V × V → R that may be asymmetric. We modify it so that the algorithm works with an
arbitrary weighted graph. Finally, a hypergraph G = (V, E) consists of a finite set of nodes V , and
a collection E ⊆ 2V of subsets of V , each such subset called a hyper-edge. (In other words, a graph
is a hypergraph where every hyper-edge has cardinality 2.) We remark that the idea behind path
homology has also been extended to defining the so-called embedded homology for hypergraphs
[10].

Exercise

a

b c

d

2 3

6 5

4

G

e

1 a

b c

d

1 2

3 4

10

G

e

5

(a) (b)

Figure 10.15: (a) graph for Exercise 4. (b) graph for Exercise 5. Edge weights are marked.

1. Consider a metric tree (|T |, dT) induced by a weighted finite tree T = (V, E,w). Suppose the
largest edge weight is w0 > 0. Consider the discrete intrinsic Čech complex Cr(V) spanned

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 35

by vertices in V . That is, let B|T |(x; r) := {y ∈ |T | | dT (x, y) < r} denote the open radius-r
ball around a point x. Then, we have

Cr(V) := {〈v0, . . . , vp〉 | vi ∈ V, for i ∈ [0, p], and
⋂

i∈[0,p]

BT (vi; r) , ∅}.

Prove that for any r > w0, Cr(V) is homotopy equivalent to a point.

2. Consider a finite graph G=(V,E) with unit edge length, and its induced metric dG on it. For
a base point v ∈ V , let fv : |G| → R be the shortest path distance function to v; that is, for
any x ∈ |G|, fv(x) = dG(x, v).

(2.a) Characterize the maxima of this function fv.

(2.b) Show that the total number of critical values of fv is bounded from above by O(n+m).

(2.c) Show that this shortest path distance function can be described by O(n + m) functions
whose total descriptive complexity is O(n + m).

3. Consider a finite metric graph G = (V, E,w). Recall for each basepoint s ∈ |G|, it is mapped
to the persitsence diagram Ps as in Eqn (10.3) (which is a point in the space of persistence
diagrams). Show that this map is 1-Liptschiz w.r.t. the bottleneck metric on the space of
persistence diagrams; that is, db(Ps,Pt) ≤ dG(s, t) for any two s, t ∈ |G|.

4. Consider the graph in Figure 10.15 (a). Compute the 0-th and 1-st persistence diagrams for
the filtrations induced by (i) the directed clique complexes; (ii) the Dowker-sink complexes;
and (iii) the Dowker-source complexes.

5. Consider the graph in Figure 10.15 (b). Compute the 1-st persistence diagram for the
filtrations (i) induced by directed clique complexes; and (ii) induced by path homology.

6. Given an example of a graph which is a 2-boundary w.r.t. path homology, but is not a
boundary cycle w.r.t. directed clique complex.

36 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Bibliography

[1] M. Adamaszek and H. Adams. The Vietoris-Rips complexes of a circle. Pacific Journal of
Mathematics, 290:1–40, 2017.

[2] Michal Adamaszek, Henry Adams, Ellen Gasparovic, Maria Gommel, Emilie Purvine,
Radmila Sazdanovic, Bei Wang, Yusu Wang, and Lori Ziegelmeier. On homotopy types
of Vietoris–Rips complexes of metric gluings. J Appl. and Comput. Topology, 2020.
https://doi.org/10.1007/s41468-020-00054-y.

[3] Pankaj K. Agarwal, Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos, and Yusu Wang.
Computing the Gromov-Hausdorff distance for metric trees. ACM Trans. Algorithms,
14(2):24:1–24:20, 2018.

[4] Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance bewteen Reeb graphs. In
Proc. 30th Annu. Sympos. Comput. Geom. (SoCG), pages 464–473, 2014. See the full
version at arXiv:1307.2839.

[5] Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong equivalence of the interleaving and
functional distortion metrics for Reeb graphs. In Proc. 31rd Annu. Sympos. Comput. Geom.
(SoCG), pages 461–475, 2015.

[6] Silvia Biasotti, Bianca Falcidieno, and Michela Spagnuolo. Extended Reeb graphs for sur-
face understanding and description. In Proc. 9th Internat. Conf. Discrete Geom. for Com-
puter Imagery, pages 185–197, 2000.

[7] Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca Falcidieno. Reeb graphs for
shape analysis and applications. Theor. Comput. Sci., 392(1-3):5–22, 2008.

[8] Håvard Bjerkevik. Stability of higher-dimensional interval decomposable persistence mod-
ules. arXiv preprint arXiv:1609.02086, 2020.

[9] M. Botnan and M. Lesnick. Algebraic stability of zigzag persistence modules. Algebraic &
geometric topology, 18:3133–3204, 2018.

[10] Stephane Bressan, Jingyan Li, Shiquan Ren, and Jie Wu. The embedded homology of
hypergraphs and applications. Asian Journal of Mathematics, 23(3):479–500, 2019.

[11] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry. volume 33 of AMS
Graduate Studies in Math. American Mathematics Society, 2001.

37

38 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

[12] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
Comput. Geom, 24(2):75–94, 2003.

[13] M. Carriere, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda. Perslay: a neural
network layer for persistence diagrams and new graph topological signatures. In 23rd Intl.
Conf. Artificial Intelligence and Statistics (AISTATS), 2020. to appear.

[14] F. Chazal, R. Huang, and J. Sun. Gromov–Hausdorff approximation of filamentary structures
using Reeb-type graphs. Discrete Comput. Geom., 53:621––649, 2015.

[15] Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability for geometric com-
plexes. Geometriae Dedicata, 173(1):193–214, Dec 2014.

[16] Samir Chowdhury and Facundo Mémoli. Persistent homology of asymmetric networks: An
approach based on dowker filtrations, 2018. arXiv:1608.05432.

[17] Samir Chowdhury and Facundo Mémoli. Persistent path homology of directed networks.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1152–1169. SIAM, 2018.

[18] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
poincaré and lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103,
2009.

[19] Kree Cole-McLaughlin, Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio
Pascucci. Loops in Reeb graphs of 2-manifolds. Discrete & Computational Geometry,
32(2):231–244, 2004.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[21] Justin Curry. Sheaves, cosheaves and applications, 2014.

[22] Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified reeb graphs. Discrete &
Computational Geometry, 55(4):854–906, Jun 2016.

[23] Tamal K. Dey. Computing height persistence and homology generators in R3 efficiently. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 2649–2662, 2019.

[24] Tamal K. Dey, Fengtao Fan, and Yusu Wang. An efficient computation of handle and tunnel
loops via reeb graphs. ACM Trans. Graph., 32(4):32, 2013.

[25] Tamal K. Dey, Tianqi Li, and Yusu Wang. An efficient algorithm for 1-dimensional (persis-
tent) path homology. pages 36:1–36:15, 2020.

[26] Tamal K. Dey, Facundo Mémoli, and Yusu Wang. Topological analysis of nerves, reeb
spaces, mappers, and multiscale mappers. In 33rd International Symposium on Computa-
tional Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia, pages 36:1–36:16, 2017.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 39

[27] Tamal K. Dey, Dayu Shi, and Yusu Wang. Comparing graphs via persistence distortion. In
Proc. 31rd Annu. Sympos. Comput. Geom. (SoCG), pages 491–506, 2015.

[28] Tamal K. Dey and Yusu Wang. Reeb graphs: Approximation and persistence. Discrete
Comput. Geom., 49(1):46–73, 2013.

[29] Pawel Dlotko, Kathryn Hess, Ran Levi, Max Nolte, Michael Reimann, Martina Scolamiero,
Katharine Turner, Eilif Muller, and Henry Markram. Topological analysis of the connectome
of digital reconstructions of neural microcircuits. arXiv preprint arXiv:1601.01580, 2016.

[30] Harish Doraiswamy and Vijay Natarajan. Efficient output-sensitive construction of Reeb
graphs. In Proc. 19th Internat. Sym. Alg. and Comput., pages 556–567, 2008.

[31] Harish Doraiswamy and Vijay Natarajan. Efficient algorithms for computing Reeb graphs.
Computational Geometry: Theory and Applications, 42:606–616, 2009.

[32] C. H. Dowker. Homology groups of relations. Annals of Maths, 56:84––95, 1952.

[33] H. Edelsbrunner and J. Harer. Persistent homology — a survey. In J. E. Goodman, J. Pach,
and R. Pollack, editors, Surveys on Discrete and Computational Geometry. Twenty Years
Later, pages 257–282. Amer. Math. Soc., Providence, Rhode Island, 2008. Contemporary
Mathematics 453.

[34] Herbert Edelsbrunner, John Harer, and Amit K. Patel. Reeb spaces of piecewise linear
mappings. In ACM Sympos. Comput. Geom. (SoCG), pages 242–250, 2008.

[35] Barbara Di Fabio and Claudia Landi. Reeb graphs of curves are stable under function per-
turbations. Mathematical Methods in Applied Sciences, 35:1456–1471, 2012.

[36] Barbara Di Fabio and Claudia Landi. The edit distance for Reeb graphs of surfaces. Discrete
Comput. Geom., 55:423—-461, 2016.

[37] E. Gasparovic, M. Gommel, E. Purvine, R. Sazdanovic, B. Wang, Y. Wang, and
L. Ziegelmeier. The relationship between the intrinsic Čech and persistence distortion dis-
tances for metric graphs. Journal of Computational Geometry (JoCG), 10(1), 2019. DOI:
https://doi.org/10.20382/jocg.v10i1a16.

[38] X. Ge, I. Safa, M. Belkin, and Y. Wang. Data skeletonization via Reeb graphs. In Proc. 25th
Annu. Conf. Neural Information Processing Systems (NIPS), pages 837–845, 2011.

[39] Loukas Georgiadis, Robert Endre Tarjan, and Renato Fonseca F. Werneck. Design of data
structures for mergeable trees. In Proc. 17th ACM-SIAM Sympos. Discrete Algorithms,
pages 394–403, 2006.

[40] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Homologies of path
complexes and digraphs. arXiv preprint arXiv:1207.2834, 2012.

[41] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Homotopy theory
for digraphs. arXiv preprint arXiv:1407.0234, 2014.

40 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

[42] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Cohomology of
digraphs and (undirected) graphs. Asian J. Math, 19(5):887–931, 2015.

[43] Alexander Grigor’yan, Yuri Muranov, and Shing-Tung Yau. Homologies of digraphs and
künneth formulas. Communications in Analysis and Geometry, 25(5):969–1018, 2017.

[44] Mikhail Gromov. Groups of polynomial growth and expanding maps (with an appendix by
Jacques Tits). Publications Mathématiques de I’Institut des Hautes Études Scientifiques,
53(1):53–78, 1981.

[45] F. Harary. Graph Theory. Addison Wesley series in mathematics. Addison-Wesley, 1971.

[46] W. Harvey, R. Wenger, and Y. Wang. A randomized o(m log m) time algorithm for com-
puting Reeb graph of arbitrary simplicial complexes. In Proc. 25th Annu. ACM Sympos.
Compu. Geom., pages 267–276, 2010.

[47] Franck Hétroy and Dominique Attali. Topological quadrangulations of closed triangulated
surfaces using the Reeb graph. Graph. Models, 65(1-3):131–148, 2003.

[48] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L Kunii. Topology
matching for fully automatic similarity estimation of 3d shapes. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pages 203–212. ACM,
2001.

[49] Paolo Masulli and Alessandro EP Villa. The topology of the directed clique complex as a
network invariant. SpringerPlus, 5(1):388, 2016.

[50] Dmitriy Morozov, Kenes Beketayev, and Gunther H. Weber. Interleaving distance between
merge trees. In Workshop on Topological Methods in Data Analysis and Visualization:
Theory, Algorithms and Applications, 2013.

[51] Salman Parsa. A deterministic O(m log m) time algorithm for the Reeb graph. Discrete &
Computational Geometry, 49(4):864–878, Jun 2013.

[52] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas. Robust
on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph., 26(3):58,
2007.

[53] Giovanni Petri, Martina Scolamiero, Irene Donato, and Francesco Vaccarino. Topological
strata of weighted complex networks. PLOS ONE, 8:1–8, 06 2013.

[54] Geoge Reeb. Sur les points singuliers d’une forme de Pfaff complètement intégrable ou
d’une fonction numérique. Comptes Rendus Hebdomadaires des Séances de l’Académie
des Sciences, 222:847–849, 1946.

[55] Michael W Reimann, Max Nolte, Martina Scolamiero, Katharine Turner, Rodrigo Perin,
Giuseppe Chindemi, Paweł Dłotko, Ran Levi, Kathryn Hess, and Henry Markram. Cliques
of neurons bound into cavities provide a missing link between structure and function. Fron-
tiers in computational neuroscience, 11:48, 2017.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 41

[56] Yoshihisa Shinagawa, Tosiyasu L. Kunii, and Yannick L. Kergosien. Surface coding based
on morse theory. IEEE Comput. Graph. Appl., 11(5):66–78, 1991.

[57] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, June 1983.

[58] Julien Tierny. Reeb graph based 3D shape modeling and applications. PhD thesis, Univer-
site des Sciences et Technologies de Lille, 2008.

[59] Julien Tierny, Attila Gyulassy, Eddie Simon, and Valerio Pascucci. Loop surgery for vol-
umetric meshes: Reeb graphs reduced to contour trees. IEEE Trans. Vis. Comput. Graph.,
15(6):1177–1184, 2009.

[60] Elena Farahbakhsh Touli and Yusu Wang. FPT-algorithms for computing gromov-hausdorff
and interleaving distances between trees. CoRR, abs/1811.02425, 2018. A conference ver-
sion appeared in European Symposium on Algorithms (ESA) 2019.

[61] Tony Tung and Francis Schmitt. The augmented multiresolution Reeb graph approach for
content-based retrieval of 3d shapes. Internat. J. Shape Modeling, 11(1):91–120, 2005.

[62] Claudia Landi Ulrich Bauer and Facundo Mémoli. The Reeb graph edit distance is universal,
2020.

[63] Zoë Wood, Hugues Hoppe, Mathieu Desbrun, and Peter Schröder. Removing excess topol-
ogy from isosurfaces. ACM Trans. Graph., 23(2):190–208, 2004.

[64] Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and ap-
plications for graph classification. In 33rd Annu. Conf. Neural Inf. Processing Systems
(NeuRIPS), pages 9855–9866, 2019.

