Topological space(quotient space)

Sunday, January 3, 2021 7:39 PM

Topological space (Metric space) Sunday, January 3, 2021 7:57 PM

Def. (Metric):
$$(T, d)$$
, $d: T \times T \rightarrow \mathbb{R}$
(identity) $\cdot d(P, q) = 0$ iff $p = q$ $\forall p \in T$
(symmetry) $\cdot d(P, q) = d(q, p) \forall P, q \in T$
(Triongular) $\cdot d(P, q) \leq d(P, r) \dagger d(r, q) \forall P, q, r \in T$
 $\cdot \text{ Given Here axioms}, d(z, z) \geq 0 \forall x, z \in T.$ (prove)
 $\cdot \text{ Exampleo: in } \mathbb{R}^2 : d_2(x, z) = \overline{(x, -y_1)^2 + (x_2 \cdot z_2)^2}$
 $d_1(x, y) = |x_1 - y_1| + |x_2 - y_2|$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$
 $d_{20}(x, y) = \max \{ |x_1 - y_1| + |x_2 - y_2| \}$

Examples: Euclidean space
$$\mathbb{R}^{k}$$

 $\mathbb{B}_{0}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1\} d-ball (open)$
 $\mathbb{S}_{0}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} = 1\} d-sphere$
 $\mathbb{S}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} \leq 1\} d-ball (closed)$
 $\mathbb{B}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} \leq 1\} d-ball (closed)$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} \leq 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^{d} \mid \|x\|_{2} < 1, x_{d} \ge 0\} \text{ Half } d-bdl$
 $\mathbb{H}^{d} = \{x \in \mathbb{R}^$

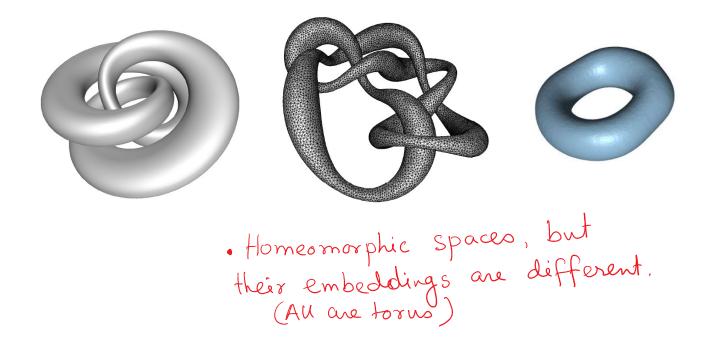
 Maps

 Monday, January 4, 2021
 9:48 AM

Def (continuous): f: T-> U is continuous if
for every open
$$a \leq U$$
, f(a) is open.
first first a first continuous
F(a) not open
Def (homeomorphism): $h: T = U$ is a homeomorphism if
this bijective, continuous
to continuous
to continuous
to continuous
to C & A I A U are homeomorphic
of 3 a homeomorphism
h: T > U
If T & U are compact metric spaces, then it is
Dufficient that h is continuous because
h? in that case is necessarily continuous.
Def (homotopy): g: X > U, h: X > U are homeotopy s.t
the first first x x[0] = U called homotopy s.t
the first first first first first first first first first
that h is continuous because
h? in that case is necessarily continuous.
Def (homotopy): g: X > U, h: X > U are homeotopy s.t
the first first first first first first first first
the first
first first

Topic 1 Basics Page 3

Def (Deformation retract):
$$U \subseteq || b a deformationretract of T if J homotopy H: T × [0,1] → U with· H(T,0) = identity on T· H(T,1) = retract $r: T \rightarrow U$, $r(r) = x$ if $z \in U$
· H(T,t)(x) = x if $z \in W$.$$



Manifolds

Tuesday, January 5, 2021 10:10 AM

Def. (Manifold): M'is a manifold if every ze M has a neighborhood homeomorphic to B. or H.^m. mis the dimension of M called <u>m-manifold-open ball</u> Half ball Möbius band (Torus Double torus Def (Interior, boundary): points in M with neighborhood of open balls constitute Int M. BdM=M \Int M. BdM consists of points with neighborhood of IHM $B d B^2$ closed 2-ball Int B^2 Orientablety: One can "Orient" the manifold to define two "distinct" sides. Möbius band is non-orientable. · All Compact 2-manifolds without boundary in IR3 are orientable. · Compact 2-manifolds without boundary that are non-orientable embed in IR4.

Klein bottle (non-orientable Def (Genus): All 2-mahifolds are also called Surfaces. . Every 2-manifold can be cut open into a disc. · Min # loops a surface need to be cut to make it a disc equals twice ils genus. · Every genus 9 surface (orientable without boundary) can be represented with a rectangle of sides 29, culled its polygonal schema. · Every Surface (orientable, without boundary) is a geners g-surface. For g=0, it is sphere, otherwise g-tori. 1-torus 2-sphere 2-tori

3-tori