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Topic 4: Topological persistence

Suppose we have a noisy point set (data) P sampled from a space, say a curve in R2 as in
Figure 4.2. Our goal is to get the information that the sampled space had two loops, one bigger
and more prominent than the other. The notion of persistence captures this information. Consider
the distance function r : R2 → R defined over R2 where r(x) equals d(x, P), that is, the minimum
distance of x to the points in P. Now let us look at the sublevel sets of r, that is, r−1[−∞, a] for
some a ∈ R+ ∪ {0}. These sublevel sets are union of closed balls of radius a centering the points.

We can observe from Figure 4.2 that if we increase a starting from zero, we come across
different holes surrounded by the union of these balls which ultimately get filled up at different
times. However, the two holes corresponding to the original two loops persist longer than the
others. We can abstract out this observation by looking at how long a feature (homological class)
survives when we scan over the increasing sublevel sets. This weeds out the ‘false’ features
(noise) from the true ones. The notion of persistent homology formalizes this idea – It takes a
function defined on a topological space and quantizes the changes in homology classes as the
sublevel sets grow with increasing value of the function.

There are two predominant scenarios where persistence appears though in slightly different
contexts. One is when the function is defined on a topological space which requires considering
singular homology groups of the sublevel sets. The other is when the function is defined on a
simplicial complex and the sequence of sublevel sets are implicitly given by a nested sequence
of subcomplexes called a filtration. This involves simplicial homology. Section 4.1 introduces
persistence in both of these contexts though we focus mainly on the simplicial setting which is
availed most commonly for computational purposes.

The birth and death of homological classes give rise to intervals during which a class remains
alive. These intervals together called a barcode summarize the topological persistence of a filtra-
tion. An equivalent notion called persistence diagrams plots the intervals as points in the extended
plane R̄2 := (R ∪ {±∞})2; specifically, the birth and death constitutes the x- and y-coordinates of
a point. The stability of the persistence diagrams over the perturbation of the functions giving
rise to filtrations is an important result that makes topological persistence robust against noise.
When filtrations are given without any explicit mention of a function, we can still talk about the
stability of the persistence diagrams with respect to the so-called interleaving distance between
the induced persistence modules. Sections 4.2 and 4.3 are devoted to these concepts.

4.1 Filtrations and persistence

At the core of topological persistence is the notion of filtrations which can arise in the context of
topological spaces or simplicial complexes.

4.1.1 Space filtration

Consider a real-valued function f : T→ R defined on a topological space T. Let Ta = f −1(−∞, a]
denote the sublevel set for the function value a. Certainly, we have inclusions:

Ta ⊆ Tb for a ≤ b.
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Now consider a sequence of distinct values a1 < a2 < . . . , < an which are often chosen to be
critical values where the homology group of the sublevel sets change as illustrated in Figure 4.1.
Considering the sublevel sets at these values and a dummy value a0 = −∞ with Ta0 = ∅, we
obtain a nested sequence of subspaces of T connected by inclusions which gives a filtration F f :

F f : ∅ = Ta0 ↪→ Ta1 ↪→ Ta2 ↪→ · · · ↪→ Tan . (4.1)

Figure 4.1 shows an example of the inclusions of the sublevel sets. The inclusions in a filtration
induce linear maps in the singular homology groups of the subspaces involved. So, if ι : Tai →

Ta j , i ≤ j, denotes the inclusion map x 7→ x, we have an induced homomorphism

hi, j
p = ι∗ : Hp(Tai)→ Hp(Ta j) (4.2)

for all p and 0 ≤ i ≤ j ≤ n. Therefore, we have a sequence of homomorphisms induced by
inclusions forming what we call a homology module:

0 = Hp(Ta0)→ Hp(Ta1)→ Hp(Ta2)→ · · · → Hp(Tan).

(b) (c) (d) (e)

a1 a2 a3 a2a1 a3 a5a1 a2 a1 a2 a3 a4 a4a1

(a)

Figure 4.1: Persistence of a function on a topological space that has five critical values: (a) Ta1 :
only a new class in H0 is created, (b) Ta2 : two new independent classes in H1 are created, (c) Ta3 :
one of the two classes in H1 dies, (d) Ta4 : the single remaining class in H1 dies, (e) Ta5 : a new
class in H2 is created.

The homomorphism hi, j
p takes the homology classes of the sublevel set Tai to those of the

sublevel sets of Ta j . Some of these classes may die or get merged with other classes while the
others survive. The image Im hi, j

p contains this information.
The inclusions of sublevel sets give rise to persistence also in the context of point clouds, a

common input form in data analysis.

Point cloud. For a point set P in a metric space (M, d), we define the distance function f : M →
R, x 7→ d(x, p) where p ∈ argminq∈P d(x, q). Observe that the sublevel sets f −1(−∞, a] are the
union of closed metric balls of radius a centering points in P. Now we have exactly the same
setting as we described for general topological spaces above where T is replaced by the union of
metric balls that grows with increasing value of a. Figure 4.2 illustrates an example where M is
the Euclidean space R2.
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Figure 4.2: Noisy sample of a curve with two loops and the growing sublevel sets of the distance
function to the sample points: The larger loop appearing as the bigger hole in the complement of
the union of balls persists longer than the same for the smaller loop while other spurious holes
persist even shorter.

4.1.2 Simplicial filtrations and persistence

Persistence on topological spaces involve computing singular homology groups for sublevel sets.
Computationally, this is cumbersome. So, we take refuge in the discrete analogue of the topolog-
ical persistence. This involves two important adaptations: first, the topological space is replaced
with a simplicial complex; second, singular homology groups are replaced with simplicial homol-
ogy groups. This means that the topological space T considered before is replaced with one of its
triangulations as Figure 4.3 illustrates. For point cloud data, the union of balls can be replaced
by their nerve, the Čech complex or its cousin Vietoris-Rips complex introduced earlier. Fig-
ure 4.4 illustrates this conversion for example in Figure 4.2. Of course, these replacements need
to preserve the original persistence in some sense, which is addressed by the notion of stability of
persistence in Section 4.3.

The nested sequence of topological spaces that arise with growing sublevel sets translates into
a nested sequence of simplicial complexes in the discrete analogue. This brings in the concept of
filtration of simplicial complexes that allows defining the persistence using simplicial homology
groups.

Definition 1 (Simplicial filtration). A filtration F = F(K) of a simplicial complex K is a nested
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(b) (c) (d) (e)

a2a1 a3 a5a1 a2 a4a1

(a)

a2a1 a3 a4a2a1 a3

Figure 4.3: Persistence of the piecewise linear version of the function on a triangulation of the
topological space considered in Figure 4.1.

sequence of its subcomplexes

F : ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

F is called simplex-wise if Ki \Ki−1 is either empty or a single simplex for every i ∈ [1, n]. Notice
that the possibility of difference being empty allows two consecutive complexes to be the same.

Simplicial filtrations can appear in various contexts.

(a)
(b)

(c) (d)

Figure 4.4: Čech complex of the union of balls considered in Figure 4.2. Homology classes in
H1 are being born and die as the union grows. The two most prominent holes appear as two most
persistent homology classes in H1. Other classes appear and disappear quickly with relatively
much shorter persistence.



Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 5

Simplex-wise monotone function. Consider a simplicial complex K and a (simplex-wise) func-
tion f : K → R on it. We call the function f simplex-wise monotone if for every σ′ ⊆ σ, we have
f (σ′) ≤ f (σ). This property ensures that the sublevel sets f −1(−∞, a] are subcomplexes of K for
every a ∈ R. Denoting Ki = f −1(−∞, ai] and a dummy value a0 = −∞, we get a filtration:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

Vertex function. In this case, a vertex function f : V(K)→ R is defined on the vertex set V(K)
of the complex K. We can construct a filtration F from such a function.

Lower/upper stars. Recall that we have already defined the star and link of a vertex v ∈ K
which intuitively captures the concept of local neighborhood of v in K. We infuse the infor-
mation about a vertex function f into these structures. First, we fix a total order on vertices
V = {v1, . . . , vn} of K so that their f -values are in non-decreasing order, that is, f (v1) ≤ f (v2) ≤
· · · ≤ f (vn). The lower-star of a vertex v ∈ V , denoted by Lst(v), is the set of simplices in St(v)
whose vertices except v appear before v in this order. The closed lower-star Lst(v) is the closure
of Lst(v) (i.e, consisting of simplices in Lst(v) and their faces). The lower-link Llk(v) is the set
of simplices in Lst(v) disjoint from v. Symmetrically, we can define the upper star Ust(v), closed
upper star Ust(v), and upper link Ulk(v), spanned by vertices in the star of v which appear after v
in the chosen order.

One gets a filtration using the lower stars of the vertices: K f (vi) in the following filtration
denotes all simplices in K spanned by vertices in {v1, . . . , vi}. Let v0 denote a dummy vertex with
f (v0) = −∞.

∅ = K f (v0) ⊆ K f (v1) ⊆ K f (v2) ⊆ · · · ⊆ K f (vn) = K

Observe that the K f (vi) \ K f (vi−1) = Lst(vi) in the above filtration, that is, each time we add the
lower star of the next vertex in the filtration. This filtration called the lower star filtration for f is
studied in the book in more details. A lower stat filtration can be made simplex-wise by adding
the simplices in a lower star in any order that puts a simplex after all of its faces. Figure 4.5 shows
a simplex-wise lower star filtration.

Alternatively, we may consider the vertices in non-increasing order of f values and obtain an
upper star filtration. For this we take K f (vi) to be all simplices that have vertices in {vi, vi+1, . . . , vn}.
Assuming a dummy vertex vn+1 with f (vn+1) = ∞, one gets a filtration

∅ = K f (vn+1) ⊆ K f (vn) ⊆ K f (vn−1) ⊆ · · · ⊆ K f (v1) = K

Observe that the K f (vi) \ K f (vi+1) = Ust(vi) in the above filtration, that is, each time we add the
upper star of the next vertex in the filtration. This filtration called the upper star filtration for f is
in some sense a symmetric version of the lower star filtration though they may provide different
persistence pairs. An upper stat filtration can also be made simplex-wise by adding the simplices
in an upper star in any order that puts a simplex after all of its faces. In this book, by default,
we will assume that the function values along a filtration in non-decreasing. This means that we
consider only lower filtrations by default.

Vertex functions are closely related to the so called piecewise linear functions (PL-functions).
A vertex function f : K → R defines a piecewise linear function (PL-function) on the underlying
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Figure 4.5: The sequence shows a lower-star filtration of K induced by a vertex function which is
a ‘height function’ that records the vertical height of a vertex increasing from bottom to top here.

space |K| of K which is obtained by linearly interpolating f over all simplices. On the other hand,
the restriction of a PL-function to vertices trivially provides a vertex function.

Definition 2 (PL-functions). Given a simplicial function K, a piecewise-linear(PL) function f̄ :
|K| → R is defined to be the linear extension of a vertex function f : V(K) → R defined on
vertices V(K) of K so that for every point x ∈ |K|, f̄ (x) =

∑k+1
i=1 αi f (vi) where σ = {v1, . . . , vk+1} is

the unique lowest dimensional simplex of dimension k ≥ 0 containing x and α1, . . . , αk+1 are the
barycentric coordinates of x in σ.

Fact 1. A PL-function f : |K| → R naturally provides a vertex function f : V(K) → R. A
simplex-wise lower star filtration for f is also a filtration for the simplex-wise monotonic function
f̄ : K → R where f̄ (σ) = maxv∈σ f (v). Similarly, a simplex-wise upper star filtration for f is also
a filtration for the simplex-wise monotonic function f̄ (σ) = maxv∈σ(− f (v)).

Observe that a given vertex function f : K → R induces a PL-function f̄ : |K| → R whose
persistence on the topological space |K| can be defined by taking sublevel sets at critical values
and then applying Definition 4. The relation of this persistence to the persistence of the lower star
filtration of K induced by f is studied in the book. Indeed, the persistence of f̄ can be read from
the persistence of f .

Finally, we note that any simplicial filtration F can naturally be induced by a function. We
introduce this association for unifying the definition of persistence pairing later in Definition 7.

Definition 3 (Filtration function). If a simplicial filtration F is obtained from a simplex-wise
monotone function or a vertex function f , then F is induced by f . Conversely, if F is given
without any explicit input function, we say F is induced by the simplex-wise monotone function
f where every simplex σ ∈ (Ki \ Ki−1) is given the value f (σ) = i.

Naturally, every simplicial filtration gives rise to a sequence of homomorphisms hi, j
p as in

Equation 4.2 induced by inclusions again forming a homology module

0 = Hp(K0)→ Hp(K1)→ · · · → Hp(Ki)→
hi, j

p
· · ·→ Hp(K j) · · · → Hp(Kn) = Hp(K).
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4.2 Persistence

In both cases of space and simplicial filtration F, we arrive at a homology module:

HpF : 0 = Hp(X0)→ Hp(X1)→ · · · → Hp(Xi)→
hi, j

p
· · ·→ Hp(X j) · · · → Hp(Xn) = Hp(X) (4.3)

where Xi = Tai if F is a space filtration of a topological space X = T or Xi = Ki if F is a simplicial
filtration of a simplicial complex X = K. Persistent homology groups for a homology module
are algebraic structures capturing the survival of the homology classes through this sequence.In
general, we will call homology modules as persistence modules in Section 4.3 recognizing that
we can replace homology groups with vector spaces.

Definition 4 (Persistent Betti number). The p-th persistent homology groups are the images of
the homomorphisms; Hi, j

p = im hi, j
p , for 0 ≤ i ≤ j ≤ n. The p-th persistent Betti numbers are the

dimensions βi, j
p = dim Hi, j

p of the vector spaces Hi, j
p .

The p-th persistent homology groups contain the important information of when a homology
class is born or when it dies. The issue of birth and death of a class becomes more subtle because
when a new class is born, many other classes that are sum of this new class and any other existing
class also are born. Similarly, when a class ceases to exist, many other classes also do so along
with it. Therefore, we need a mechanism to pair births and deaths canonically.

Observe that the non trivial elements of p-th persistent homology groups Hi, j
p consist of classes

that survive from Xi to X j, that is, the classes which do not get ‘quotient out’ by the boundaries in
X j. So, one can observe

Fact 2. Hi, j
p = Zp(Xi)/(Bp(X j) ∩ Zp(Xi)) and βi, j

p = dim Hi j
p .

We now formally state when a class is born or dies.

Definition 5 (Birth and death). A p-th homology class ξ ∈ Hp(Xa) is born at Xi, i ≤ a, if ξ ∈ Hi,a
p

but ξ < Hi−1,a
p . Similarly, a p-th homology class ξ ∈ Hp(Xa) dies entering X j, a < j, if ha, j−1

p (ξ) is
not zero (non-trivial) but ha, j

p (ξ) = 0.

Observe that not all classes that are born at Xi necessarily die entering X j though more than
one such may do so.

Fact 3. Let [c] ∈ Hp(X j−1) be a p-th homology class that dies entering X j. Then, it is born
at Xi if and only if there exists a sequence i1 ≤ i2 ≤ · · · ≤ ik = i for some k ≥ 1 so that (i)
0 , [ci`] ∈ Hp(X j−1) is born at Xi` for every ` ∈ {1, . . . , k} and (ii) [c] = [ci1] + · · · + [cik ].

One may interpret the above fact as follows. When a class dies, it may be thought of as a
merge of several classes including the trivial one among which the youngest one ([cik ]) determines
the birth point. This viewpoint is particularly helpful while pairing simplices in the persistence
algorithm (PairPersistence) presented later.

Notice that each Xi, i = 0, . . . , n, is associated with a value of the function f that induces
F. For a space filtration, we say f (Xi) = ai where Xi = Tai . For a simplicial filtration, we say
f (Xi) = ai where ai = f (σ) for any σ ∈ Xi when the filtration function (Definition 3) is simplex-
wise monotone. When it is a vertex function f , then we extend f to a simplex-wise monotone
function as defined in Fact 1.
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Hp(Xi−1) Hp(Xi) Hp(Xj−1) Hp(Xj)

[c]

Figure 4.6: A simplistic view of birth and death of classes: The class [c] is born at Xi since it
is not in the image of Hp(Xi−1). It dies entering X j since this is the first time its image becomes
trivial.

4.2.1 Persistence diagram

A visual representation of the persistent homology can be created by drawing a collection of
points in the plane; see Figure 4.7(left). Consider the extended plane R̄2 := (R ∪ {±∞})2 on
which we represent a birth at ai paired with the death at a j as a point (ai, a j). This pairing uses a
persistence pairing function µi j

p defined below. Strictly positive values of this function correspond
to points in the persistence diagram defined later. In what follows, to account for classes that never
die, we extend the induced module in Eqn.(4.3) on the right end by assuming that Hp(Xn+1) = 0.

Definition 6. For 0 < i < j ≤ n + 1, define

µ
i, j
p = (βi, j−1

p − β
i, j
p ) − (βi−1, j−1

p − β
i−1, j
p ). (4.4)

The first difference on the RHS counts the number of independent classes that are born at or
before Xi and die entering X j. The second difference counts the number of independent classes
that are born at or before Xi−1 and die entering X j. The difference between the two differences
thus counts the number of independent classes that are born at Xi and die entering X j. When
j = n + 1, µi,n+1

p counts the number of independent classes that are born at Xi and die entering
Xn+1. They remain alive till the end in the original filtration without extension, or we say that they
never die. To emphasize that classes which exist in Xn actually never die, we equate n + 1 with∞
and take an+1 = a∞ = ∞. Observe that, with this assumption, we have βi,n+1 = βi,∞ = 0 for every
i ≤ n.

Remark 1. The p-th homology classes in Hp(X j−1) that get born at Xi and die entering X j may not
form a vector space. Hence, we cannot talk about its dimension. In fact, definition of µi j

p , in some
sense, compensates for this limitation. This definition involves alternating sums of dimensions
(βi j’s) of vector spaces. The dimensions appearing with the negative signs lead to this anomaly.
However, one can express µi j

p as the dimension of a vector space which is a quotient of a subspace.

Definition 7 (Class persistence). For µi, j
p , 0, the persistence Pers ([c]) of a class [c] that is born

at Xi and dies at X j is defined as Pers ([c]) = a j − ai. When j = n + 1 = ∞, Pers ([c]) equals
an+1 − ai = ∞.

Notice that, values ais can be the index i when no explicit function is given (Definition 3). In
that case, persistence of a class sometimes referred as index persistence which is j − i.
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Definition 8 (Persistence diagram). The persistence diagram Dgmp(F) (also written Dgmp f ) of a
filtration induced by a function f is obtained by drawing a point (ai, a j) with non-zero multiplicity
µ

i j
p , i < j, on the extended plane where the diagonal ∆ : {(x, x)} is added with infinite multiplicity.

The addition of the diagonal is a technical necessity for results that we will see afterward.
A class born at ai and never dying is represented as a point (ai,∞) (point v in Figure 4.7) – we

call such point in the persistence diagram as essential persistent point, and their corresponding
homology classes as essential homology classes. Classes may have the same coordinates because
they may be born and die at the same time. This happens only when we allow mutiple homology
classes being created or destroyed at the same function value or filtration point. In general, this
also opens up the possibility of creating infinitely many birth-death pairs even if the filtration is
finite. To avoid such pathological cases, we always assume that the linear maps in the homology
modules have finite rank, a condition known as q-tameness in the literature [4].

There is also an alternative representation of persistence called barcode where each birth-
death pair (ai, a j) is represented by a line segment [ai, a j) called a bar which is open on the right.
The open end signifies that the class dying entering X j does not exist in X j. Points at infinity such
as (ai,∞) are represented with a ray [ai,∞) giving an infinite bar. See Figure 4.7(right).

birth

death

r

t

r̄

t̄

p

q

w
u

p
q

r
w
t

u

∞
v

v

Figure 4.7: Persistence diagram with non-diagonal points only in the positive quadrant and the
corresponding barcode.

Fact 4.

1. If a class has persistence s, then the point representing it will be at a Euclidean distance
s/
√

2 from the diagonal ∆

2. For sublevel set filtrations, all points (ai, a j) representing a class have ai ≤ a j, so they lie
on or above the diagonal.
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3. If mi denote the multiplicity of an essential point (ai,∞) in Dgmp(F), where F is a filtration
of X, one has Σimi = dim Hp(X), the p-th Betti number of X = Xn.

Here is one important fact relating persistent Betti numbers and persistence diagrams.

Theorem 1. For every pair of indices 0 ≤ k ≤ ` ≤ n and every p, the p-th persistent Betti number
satisfies βk,`

p =
∑

i≤k
∑

j>` µ
i, j
p .

Observe that βk,`
p is the number of points in the upper left quadrant of the corner (ak, a`). A

class that is born at Xi and dies enetering X j is counted for βk,`
p iff i ≤ k and j > `. The quadrant

is therefore closed on the right and open on the bottom.

Stability of persistence diagrams. A persistence diagram Dgmp(F f ), as a set of points in the
extended plane R̄2 := (R ∪ {±∞})2, summarizes certain topological information of a simplicial
complex (space) in relation to the function f that induces the filtration F f . However, this is
not useful in practice unless we can be certain that a slight change in f does not change this
diagram dramatically. In practice f is seldom measured accurately, and if its persistence diagram
can be approximated from a slightly perturbed version, it becomes useful. Fortunately, persistence
diagrams are stable. To formulate this stability, we need a notion of distances between persistence
diagrams.

birth

death

∞

Figure 4.8: Two persistence diagrams and their bottleneck distance which is half of the side
lengths of the squares representing bijections.

Let Dgmp(F f ) and Dgmp(Fg) be two persistence diagrams for two functions f and g. We
want to consider bijections between points from Dgmp(F f ) and Dgmp(Fg). However, they may
have different caridinality of off-diagonal points. Recall that persistence diagrams include the
points on the diagonal ∆ each with infinite multiplicity. This addition allows us to borrow points
from the diagonal when necessary to define the bijections. We note that we are here considering
only filtrations of finite complexes which also makes each homology group finite.
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Definition 9 (Bottleneck distance). Let Π = {π} denote the set of all bijections π : Dgmp(F f ) →
Dgmp(Fg). Consider the distance between two points x = (x1, x2) and y = (y1, y2) in L∞-norm
‖x − y‖∞ = max{|x1 − x2|, |y1 − y2|}. The bottleneck distance between the two diagrams is:

db(Dgmp(F f ),Dgmp(Fg)) = inf
π∈Π

sup
x∈Dgmp(F f )

‖x − π(x)‖∞.

Fact 5. db is a metric on the space of persistence diagrams. Clearly, db(X,Y) = 0 iff X = Y.
Moreover, db(X,Y) = db(Y, X) and db(X,Y) ≤ db(X,Z) + db(Z,Y).

There is a caveat for the above fact. If db is taken as a distance on the space of homology
modules HpF instead of the persistence diagrams Dgmp(F) they generate, that is, if we define
db(HpF f ,HpFg) := db(Dgmp(F f ),Dgmp(Fg)), then it may not be a metric. The first axiom for
metric becomes false if the homology modules are allowed to have classes created and destroyed
at the same function values. These classes of zero persistence generate points on the diagonal ∆

in the diagram. Since points on the diagonal have infinite multiplicity, two modules differing in
the number of such classes of zero persistence may have diagrams with zero bottleneck distance.
If we allow such cases, db becomes a pseudometric on the space of homology modules meaning
that it satisfies all axioms of a metric except the first one.

The following theorems originally proved in [5] and further detailed in [8] quantify the notion
of the stabilty of the persistence diagram. There are two versions, one involves simplicial filtra-
tions and another involves space filtrations. For two functions, f , g : X → R, the infinity norm is
defined as ‖ f − g‖∞ := supx∈X | f (x) − g(x)|.

Theorem 2 (Stability for filtrations). Let f , g : K → R be two simplex-wise monotone functions
giving rise to two simplicial filtrations F f and Fg. Then, for every p ≥ 0,

db(Dgmp(F f ),Dgmp(Fg)) ≤ ‖ f − g‖∞.

For the second version of the stability theorem, we require that the functions referred in the
theorem are ‘nice’ in the sense that they are tame. A function f : X → R is tame if the homology
groups of its sublevel sets have finite rank and these ranks change only at finitely many values
called critical.

Theorem 3 (Stability for spaces). Let X be a triangulable space and f , g : X → R be two tame
functions giving rise to two space filtrations F f and Fg where the sublevel sets are taken for
critical values. Then, for every p ≥ 0,

db(Dgmp(F f ),Dgmp(Fg)) ≤ ‖ f − g‖∞.

There is another distance called q-Wasserstein distance with which also persistence diagrams
are often compared.
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Definition 10 (Wasserstein distance). Let Π be the set of bijections as defined in Definition 9. For
any p ≥ 0, q ≥ 1, the q-Wasserstein distance is define as

dW,q(Dgmp(F f ),Dgmp(Fg)) = inf
π∈Π

[
Σx∈Dgmp(F f )

(
‖x − π(x)‖q

)q]1/q
.

The distance dW,q also is a metric on the space of persistence diagrams just like the bottleneck
distance. It also enjoys a stability property though it is not as strong as in Theorem 3.

Fact 6. Let f , g : X → R be two Lipschitz functions defined on a triangulable compact metric
space X. Then, there exist constants C and k depending on X and the Lipschitz constants of f and
g so that for every p ≥ 0 and q ≥ k,

dW,q(Dgmp(F f ),Dgmp(Fg)) ≤ C · ‖ f − g‖
1− k

q
∞ .

Recently, a better stability result has appeared in the literature [17] for Wasserstein distance
which considers the Lq-distance between functions defined on a common domain X:

‖ f − g‖q =
(
Σx∈X | f (x) − g(x)|q

)1/q .

Theorem 4 (Stability for Wasserstein distance). Let f , g : K → R be two simplex-wise monotone
functions on a simplicial complex K. Then, one has

dW,q(Dgmp(F f ),Dgmp(Fg)) ≤ ‖ f − g‖q.

Bottleneck distances can be computed using perfect matchings in bipartite graphs. Computing
Wasserstein distances become more difficult. It can be computed using an algorithm for minimum
weight perfect matching in weighted bipartite graphs. We leave it as an Exercise question (Exer-
cise 2).

Computing bottleneck distances.

Let A and B be the non-diagonal points in two persistence diagrams Dgmp(F f ) and Dgmp(Fg)
respectively. For a point a ∈ A, let ā denote the nearest point of a on the diagonal. Define b̄ for
every point b ∈ B similarly. Let Ā = {ā} and B̄ = {b̄}. Let Ã = A ∪ B̄ and B̃ = B ∪ Ā. We want
to bijectively match points in Ã and B̃. Let Π = {π} denote such a matching. It follows from the
definition that

db(Dgmp(F f ),Dgmp(Fg)) = min
π∈Π

sup
a∈Ã,π(a)∈B̃

‖a − π(a)‖∞.

Then, the bottleneck distance we want to compute must be L∞ distance max{|xa − xb|, |ya − yb|}

for two points a ∈ Ã and b ∈ B̃. We do a binary search on all such possible O(n2) distances where
|Ã| = |B̃| = n. Let δ0, δ1, · · · , δn′ be the sorted sequence of these distances in a non-decreasing
order.

Given a δ = δi ≥ 0 where i is the median of the index in the binary search interval [`, u], we
construct a bipartite graph G = (Ã ∪ B̃, E) where an edge e = (a, b){a∈Ã,b∈B̃} is in E if and only if
either both a ∈ Ā and b ∈ B̄ (weight(e) = 0) or ‖a − b‖∞ ≤ δ (weight(e) = ‖a − b‖∞). A complete



Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 13

matching in G is a set of n edges so that every vertex in Ã and B̃ is incident to exactly one edge in
the set. To determine if G has a complete matching, one can use an O(n2.5) algorithm of Hopcroft
and Karp [13] for complete matching in a bipartite graph. However, exploiting the geometric
embedding of the points in the persistence diagrams, we can apply an O(n1.5) time algorithm of
Efrat et al. [10] for the purpose. If such an algorithm affirms that a complete matching exists, we
do the following: if ` = u we output δ, otherwise we set u = i and repeat. If no matching exists, we
set ` = i and repeat. Observe that matching has to exist for some value of δ, in particular for δn′ and
thus the binary search always succeeds. Algorithm 1: Bottleneck lays out the pseudocode for this
matching. The algorithm runs in O(n1.5 log n) time accounting for the O(log n) probes for binary
search each applying O(n1.5) time matching algorithm. However, to achieve this complexity,
we have to avoid sorting n′ = O(n2) values taking O(n2 log n) time. Again, using the geometric
embedding of the points, one can perform the binary probes without incurring the cost for sorting.
For details and an efficient implementation of this algorithm see [14].

Algorithm 1 Bottleneck(Dgmp(F f ),Dgmp(Fg))

Input:
Two persistent diagrams Dgmp(F f ), Dgmp(Fg)

Output:
Bottleneck distance db(Dgmp(F f ), Dgmp(Fg))

1: Compute sorted distances δ0 ≤ δ1 ≤ · · · ≤ δn′ from Dgmp(F f ) and Dgmp(Fg);
2: ` := 0; u = n′;
3: while ` < u do
4: i := b (u+`)

2 c; δ := δi

5: Compute graph G = (Ã ∪ B̃, E) where ∀e ∈ E, weight(e) ≤ δ
6: if ∃ complete matching in G then
7: u := i
8: else
9: ` := i

10: end if
11: end while
12: Output δ

4.3 Persistence modules

We have seen in Section 4.2.1 that persistence diagrams are stable with respect to the perturbation
of the function that defines the filtration on a given simplicial complex or a space. This requires the
domain of the function to be fixed. The result depends on the observation that perturbations in the
filtrations are bounded by the perturbations in the function which in turn also results into bounded
perturbations at the homology level. A natural follow up is to derive a bound of the perturbations
of the persistence diagrams directly in terms of the perturbations at the homology level. Toward
this goal, we now define a generalized notion of homology modules called persistence modules
and a distance among them called the interleaving distance.
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Recall that a filtration gives rise to a homology module which is a sequence of homology
groups connected by homomorphisms that are induced by inclusions defining the filtration. These
homology groups when defined over a field (e.g. Z2) can be thought of as vector spaces connected
by linear maps. Persistence modules extend homology modules by taking vector spaces in place
of homology groups and linear maps in place of inclusion induced homomorphisms.

We make one more extension. So far, the sequences in a filtration and homology modules
have been indexed over a finite subset of natural numbers. It turns out that we can enlarge the
index set to be any poset, say a subset of R.

Definition 11 (persistence module). A persistence module over a poset A ⊆ R is any collection
V =

{
Va

}
a∈A of vector spaces Va together with linear maps va,a′ : Va → Va′ so that va,a = id and

va′,a′′ ◦ va,a′ = va,a′′ for all a, a′, a′′ ∈ A where a ≤ a′ ≤ a′′. Sometimes we write V =
{
Va

va,a′
−→

Va′
}
a≤a′ to denote this collection with the maps.

Remark 2. A persistence module defined over a subposet A of R can be ‘extended’ into a module
over R. For this, for any a < a′ ∈ A where the open interval (a, a′) is not in A and for any
a ≤ b < b′ < a′, assume that vb,b′ is an isomorphism and lima→−∞ Va = 0 if it is not given.

Our goal is to define a distance between two persistence modules with respect to which we
would bound the distance between their persistence diagrams. Given two persistence modules
defined over the index set R, we define a distance between them by identifying maps between
constituent vector spaces of the modules.

Definition 12 (ε-interleaving). Let U and V be two persistence modules over the index set R.
We say U and V are ε-interleaved if there exist two families of maps ϕa : Ua → Va+ε and
ψa : Va → Ua+ε satisfying the following two conditions:

1. va+ε,a′+ε ◦ ϕa = ϕa′ ◦ ua,a′ and ua+ε,a′+ε ◦ ψa = ψa′ ◦ va,a′ [rectangular commutativity]

2. ψa+ε ◦ ϕa = ua,a+2ε and ϕa+ε ◦ ψa = va,a+2ε [triangular commutativity]

The two parallelograms and the two triangles below depict the rectangular and the triangular
commutativities respectively.

Ua
ϕa

""

ua,a′ // Ua′

ϕa′

""
Va+ε va+ε,a′+ε

// Va′+ε

Ua+ε

ua+ε,a′+ε // Va′+ε

Va

ψa
<<

va,a′
// Va′

ψa′
<<

Ua
ϕa

""

ua,a+2ε // Ua+2ε

Va+ε

ψa+ε

;; Ua+ε

ϕa+ε

##
Va

ψa
<<

va,a+2ε // Va+2ε
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Definition 13 (interleaving distance). Given two persistence modules U and V, their interleaving
distance is defined as

dI(U,V) = inf{ε |U and V are ε-interleaved}

Observe that, when ε = 0, Definition 12 implies that the maps ϕa : Ua → Va and ψa : Va →

Ua are isomorphisms. In that case, we get the following diagrams where each vertical map is an
isomorphism and each square commutes. We get two isomorphic persistence modules.

U : · · · · · · // Ua // · · · Ua′ // · · · · · ·

V : · · · · · · // Va // · · · Va′ // · · · · · ·

Definition 14 (isomorphic persistence modules). We say two persistence modules U and V in-
dexed over an index set A are isomorphic if the following two conditions hold (illustrated by the
diagram above).

1. Ua � Va for every a ∈ R, and

2. for every x ∈ Ua, if x is mapped to y ∈ Va by the isomorphism, then ua,a′(x) ∈ Ua′ is
mapped to va,a′(y) ∈ Va′ also by the isomorphism.

Fact 7. If two persistence modules arising from two filtrations F f and Fg are isomophic, the
persistence digrams Dgmp(F f ) and Dgmp(Fg) are identical.

Now we relate the interleaving distance between two persistence modules and the persistence
diagrams they define. For this, we consider a special type of a persistence module called interval
module. Below, we use the standard convention that an open end of an interval is denoted with
the first brcakets ‘(’ or ‘)’ and a closed end of an interval with the third brackets ‘[’ or ‘]’.

Definition 15 (Interval module). Given an index set A ⊆ R and a pair of indices b, d ∈ A,
b ≤ d, four types of interval modules denoted I[b, d), I(b, d], I[b, d], I(b, d) respectively are special
persistence modules defined as:

• (closed-open): I[b, d) : {Va
va,a′
−→ Va′}a,a′∈A where (i) Va = Z2 for all a ∈ [b, d) and Va = 0

otherwise, (ii) va,a′ is identity map for b ≤ a ≤ a′ < d and zero map otherwise.

• (open-closed): I(b, d] : {Va
va,a′
−→ Va′}a,a′∈A where (i) Va = Z2 for all a ∈ (b, d] and Va = 0

otherwise, (ii) va,a′ is identity map for b < a ≤ a′ ≤ d and zero map otherwise.

• (closed-closed): I[b, d] : {Va
va,a′
−→ Va′}a,a′∈A where (i) Va = Z2 for all a ∈ [b, d] and Va = 0

otherwise, (ii) va,a′ is identity map for b ≤ a ≤ a′ ≤ d and zero map otherwise.

• (open-open): I(b, d) : {Va
va,a′
−→ Va′}a,a′∈A where (i) Va = Z2 for all a ∈ (b, d) and Va = 0

otherwise, (ii) va,a′ is identity map for b < a ≤ a′ < d and zero map otherwise.
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In general, we denote the four types of interval modules as I〈b, d〉 being oblivious to the
particular type. The two end points b, d signify the birth and the death points of the interval
in analogy to the bars we have seen for persistence diagrams. This is why sometimes we also
write I〈b, d〉 = 〈b, d〉. Gabriel [12] showed that a persistence module decomposes uniquely into
interval modules when the index set is finite. This condition can be relaxed further as stated in
proposition below. A persistence module U for which each of the vectors spaces Ua, a ∈ R has
finite dimension is called a pointwise finite dimensional (p.f.d. in short) persistence module. A
persistence module for which the connecting linear maps have finite rank is called q-tame. The
results below are part of a more general concept called quiver theory.

Proposition 5.

• Any persistence module over a finite index set decomposes uniquely into closed-closed in-
terval modules, that is, U �

⊕
j∈J I[b j, d j] [12].

• Any p.f.d. persistence module decomposes uniquely into interval modules, that is, U �⊕
j∈J I〈b j, d j〉 [7, 18].

• Any q-tame persistence module decomposes uniquely into interval modules [4].

The birth and death points of the interval modules that a given persistence module U decom-
poses into (Proposition 5) can be plotted as points in R2. This can define a persistence diagram
DgmU for a persistence module U. We aim to relate the interleaving distance between persistence
modules and the bottleneck distance between their persistence diagram thus defined.

Definition 16 (PD for persistence module). Let U �
⊕

j〈b j, d j〉 be the interval decomposition
of a given persistence module U (Proposition 5). The collection of points {(b j, d j)} with proper
multiplicity and the points on the diagonal ∆ : {(x, x)} with infinite multiplicity constitute the
persistence diagram DgmU of the persistence module U.

For the index set A = R, Chazal et al. [3] showed that the bottleneck distance between two
persistence diagrams of p.f.d. modules is bounded from above by their interleaving distance. The
result also holds for q-tame modules. Lesnick [15] and later Lesnick and Bauer [1] proved that
the two distances are indeed equal.

Theorem 6. Given two q-tame persistence modules defined over the totally ordered index set R,
dI(U,V) = db(Dgm U,Dgm V).

Remark 3. The isometry theorem stated for the index set R does not apply directly to the persis-
tence modules that are not defined over the index set R. In this case, to define the interleaving
distance, we can extend the module to be indexed over R as described in Remark 2. For example,
consider a persistence module HpF obtained from a filtration F defined on a finite index set A or
when A = Z. Observe that, all interval modules for HpF (without extension) are of closed-closed
type [b, d] for some b, d ∈ A. This brings out a subtlety. The intervals of the form [b, d] where
b = d are mapped to the diagonal ∆ in the persistence diagram (Definition 8). These points
get ignored while computing the bottleneck distance as both diagrams have the diagonal points
with infinite multiplicity. In fact, the isometry theorem (Theorem 6) does not hold if this is not
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taken care of. To address the issue, for persistence modules HpF generated by a finite filtration
F, we can map each interval [b, d] in the decomposition of HpF to a point (b, d + 1) in Dgmp(F).
This aligns with the observation that, after the extension, the interval [b, d] indeed stretches to
[b, d + 1).

The concept of topological persistence came to the fore in early 2000 with the paper by
Edelsbrunner, Letscher, and Zomorodian [9] though the concept was proposed in a rudimentary
form (for 0-dimensional homology) in other papers by Frosini [11] and Robins [16].

The concept of bottleneck distance for persistence diagrams was first proposed by Cohen-
Steiner et al. [5] who also showed the stability of such diagrams in terms of bottleneck distances
with respect to the infinity norm of the difference between functions generating them. This re-
sult was extended to Wassrstein distance though in a weaker form in [6] which got improved
recently [17]. The more general concept of interleaving distance between persistence modules
and the stability of persistence diagrams with respect them was presented by Chazal et al. [3].
The fact that bottleneck distance between persistence diagrams is not only bounded from above
by interleaving distance but is indeed equal to it was shown by Lesnick [15]. Also see [2] for
more generalization at algebraic level.

Exercises

1. Prove Theorem 1.

2. Give a polynomial time algorithm for computing dW,q.

3. Let F be a simplex-wise filtration F of complex K induced by the sequence of simplicies:
σ1, . . . , σN . Let F′ be a modification of F where only two consecutive simplices σk and
σk+1 swap their order; that is, F′ is induced by the sequence:

σ1, . . . , σk−1, σk+1, σk, σk+2, . . . , σN .

Describe the relation between their corresponding persistence diagrams Dgm(F) and Dgm(F′).

4. Consider the two persistence modules U and V as shown below and a sequence of linear
maps fi : Ui → Vi so that all squares commute.

U : U1 //

f1
��

U2 //

f2
��

U3 //

f3
��

. . . . . . // Um

fm
��

V : V1 // V2 // V3 // . . . . . . // Vm

Consider the sequences

ker f : {ker fi ⊆ Ui → ker fi+1 ⊆ Ui+1}

where the maps are induced from the module U. Prove that ker f is a persistence module.
Show the same for the sequences

im f : {im fi ⊆ Vi → im fi+1 ⊆ im Vi+1} and

coker f : {coker fi = Vi/im fi → coker fi+1 = Vi+1/im fi+1}.
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