Introduction

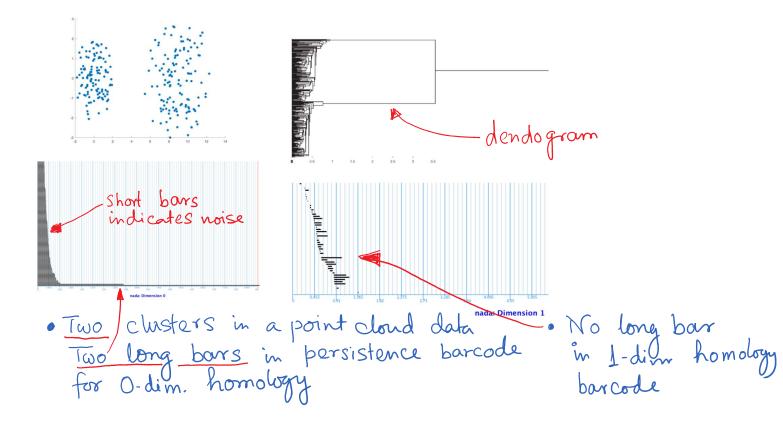
Saturday, January 2, 2021 7:25 PM

• Topological spaces that have the same topology, but different geometry.

• topology encodes connectivity in spaces • It Captures global features in spaces · So, it can be used to compare data wrt. global features • Because of global "features", topology more robust tools against small perturbation due to noise.

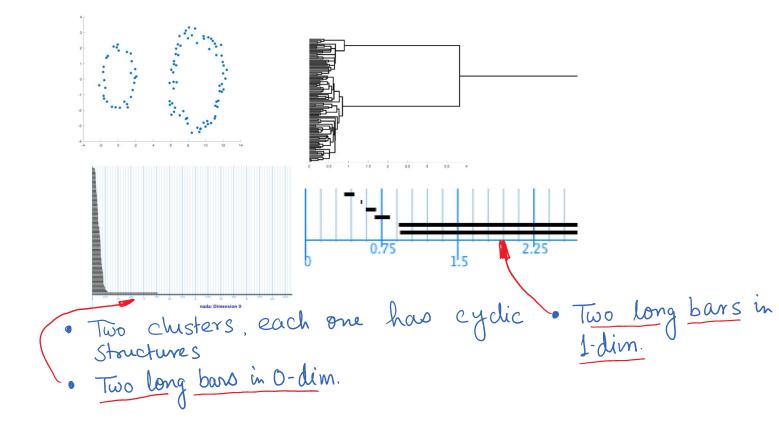
Example of Clusters

Saturday, January 2, 2021 7:33 PM



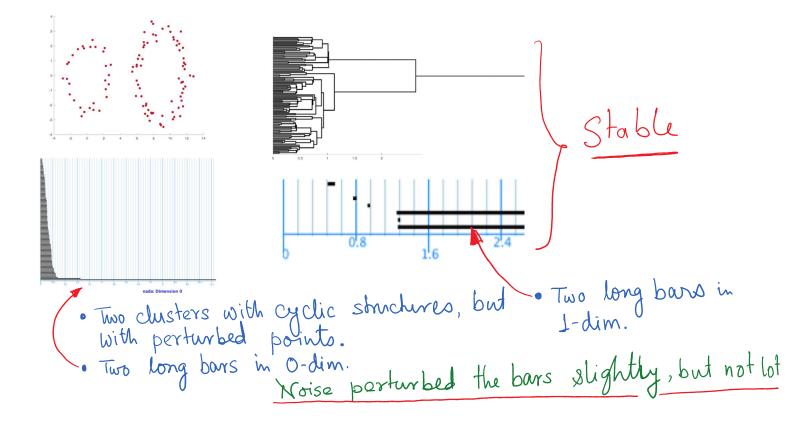
Example: cyclic structures

Saturday, January 2, 2021 7:40 PM



stability against noise

Saturday, January 2, 2021 7:44 PM



Topological space(Definition)

Saturda

biological space (definition)

$$g_{3}, J_{2020}(2, 2, 2021)$$
 754 PM
Def: A point set T is a topo space endowed with
a system of subsets $T \subseteq 2^{T}$ (T is topology on T)
 \cdot T, $\phi \in T$
 \cdot Every $U \subseteq T$, union of sets in U is in T
 \cdot Every f_{inite} $U \subseteq T$, common intersection
 $\cap U \in T$.
 $-$ Every $U \in T$ is an open set
 $-$ An open U is a neighborhood of $P \in T$ if $P \in U$
Example 1: $T = \{0, 1, 3, 5, 7\}$, $T = \{\{\alpha\}, \{1\}, \{5\}, \{0, 1, 3\}, \{0, 1, 5\}, \{0, 1, 3\}, \{0, 1, 5\}, \{0, 1, 3\}, \{1, 5\}, \{0, 1, 3\}, \{1, 5\}, \{0, 1, 3\}, \{1, 5\}, \{0, 1, 3\}\}$ is also a topology
 $T = \{\{0\}, \{0\}, \{1\}, \{1, 5\}, \{0, 1, 5\}\}$ is not a topology
 $\{0\}, U \in I\} = \{0, 1\}$ is not in T

Topological space(Examples)

Sunday, January 3, 2021 2:49 PM

$$\begin{array}{l} \hline \begin{array}{l} \text{Example 2: } T = \{u, v\}, T = 2^{T} = \{p\}, \{u, \}, \{u\}, \{u\}, \{u, v\}\} \\ \hline \begin{array}{l} - For any \text{ set } T, 2^{T} \text{ is a topology called discrete topology} \\ \hline \begin{array}{l} \text{Example 3: } T = \{u, v, \omega, z, (u, z), (v, z), (\omega, z)\} \\ \end{array} \end{array}$$

