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Topic 2: Complexes

This topic introduces a very basic tool on which topological data analysis (TDA) is built. It is
called simplicial complexes. Data supplied as a discrete set of points do not have an interesting
topology. Usually, we construct a scaffold on top of it which is commonly taken as a simplicial
complex. It consists of vertices at the data points, edges connecting them, triangles, tetrahedra and
their higher dimensional analogues to establish higher order connectivity. Section 2.1 formalizes
this construction. There are different kinds of simplicial complexes. Some are easier to compute,
but take more space. The others are more sparse, but takes more time to compute. Sections 2.2
presents an important construction called the nerve and a complex called the Čech complex which
is defined on this construction. This section also presents a commonly used complex in topolog-
ical data analysis called the Vietoris-Rips complex that interleaves with the Čech complexes in
terms of containment. In section 2.3, we introduce some of the complexes which are sparser in
size than the Vietoris-Rips or Čech complexes.

2.1 Simplicial complex

A complex is a collection of some basic elements that satisfy certain properties. In a simplicial
complex, these basic elements are simplices.

Definition 1 (Simplex). A k-simplex σ in an Euclidean space Rm is the convex hull1 of a set P
of k + 1 affinely independent points in Rm. In particular, a 0-simplex is a vertex, a 1-simplex is
an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. A k-simplex is said to have
dimension k. For 0 ≤ k′ ≤ k, a k′-face (or, simply a face) of σ is a k′-simplex that is the convex
hull of a nonempty subset of P. Faces of σ come in all dimensions from zero (σ’s vertices) to k;
and σ is a face of σ. A proper face of σ is a simplex that is the convex hull of a proper subset of
P; i.e. any face except σ. The (k − 1)-faces of σ are called facets of σ; σ has k + 1 facets.

In Figure 2.1(a), triangle abc is a 2-simplex which has three vertices as 0-faces and three edges
as 1-faces. These are proper faces out of which edges are its facets. Similarly, a tetrahedron has
four 0-faces (vertices), six 1-faces (edges), four 2-faces (triangles), and one 3-face (tetrahedron
itself) out of which vertices, edges, triangles are proper. The triangles are facets.

Definition 2 (Geometric simplicial complex). A geometric simplicial complex K, also known
as a triangulation, is a set containing finitely2 many simplices that satisfies the following two
restrictions.

• K contains every face of each simplex in K.

• For any two simplices σ, τ ∈ K, their intersection σ ∩ τ is either empty or a face of both σ
and τ.

1Convex hull of a set of given points p0, . . . , pk in Rm is the set of all points x ∈ Rm that are convex combination of
the given points, i.e., x = Σk

i=0αi pi for αi ≥ 0 and Σαi = 1.
2Topologists usually define complexes so they have countable cardinality. We restrict complexes to finite cardinality

here.
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The dimension k of K is the maximum dimension of any simplex in K which is why we also refer
it as a simplicial k-complex.

The above definition of simplicial complexes is very geometric which is why they are referred
as geometric simplicial complexes. Figure 2.1 shows such a geometric simplicial 2-complex in
R2 (left) and another in R3 (right). There is a parallel notion of simplicial complexes that is devoid
of geometry.

Definition 3 (Abstract simplicial complex). A collection K of subsets of a given set V(K) is an
abstract simplicial complex if every element σ ∈ K has all of its subsets σ′ ⊆ σ also in K.
Each such subset σ′ with |σ′| = k′ + 1 is called a k′-face (or, simply a face) of σ and σ with
|σ| = k + 1 is a k-coface (or, simply a coface) of σ′. Sometimes, σ′ is also called a face of σ with
co-dimension k − k′. The elements of V(K) are the vertices of K. Each (sub)set in K is a simplex
whose dimension equals its cardinality minus 1.

A geometric simplicial complex K in Rm is called a geometric realization of an abstract sim-
plicial complex K′ if and only if there is an embedding e : V(K′)→ Rm that takes every k-simplex
{v0, v1, . . . , vk} in K′ to a k-simplex in K that is the convex hull of e(v0), e(v1), . . . , e(vk). For exam-
ple, the complex drawn in R2 in Figure 2.1(left) is a geometric realization of the abstract complex
with vertices a, b, c, d, e, f , eight 1-simplices {a, b}, {a, d}, {a, f }, {b, c}, {b.d}, {c, d}, {d, e}, {d, f },
and one 2-simplex {a, b, d}.

An abstract simplicial complex K with m vertices can always be geometrically realized in
Rm−1 as a subcomplex of a geometric (m − 1)-simplex. To make the realization canonical, we
choose the (m − 1)-simplex to be in Rm with a vertex vi having the ith coordinate to be 1 and all
other coordinates 0. We define K’s underlying space as the underlying space of this canonical
geometric realization.

Definition 4 (Underlying space). The underlying space of an abstract simplicial complex K,
denoted |K|, is the pointwise union of its simplices in its canonical geometric realization; that is,
|K| =

⋃
σ∈K |σ| where |σ| is the restriction of this realization on σ. In case K is geometric, its

geometric realization can be taken as itself.

Because of the equivalence between geometric and abstract simplicial complexes, we drop
the qualifiers “geometric" and “abstract" and call them simply as simplicial complexes when it
is clear from the context which one we actually mean. Also, sometimes, we denote a simplex
σ = {v0, v1, · · · , vk} simply as v0v1 · · · vk.

Definition 5 (k-skeleton). The k-skeleton of a simplicial complex K, denoted by Kk, is the sub-
complex formed by all of its k-dimensional simplices and their faces.

In Figure 2.1, the 1-skeleton of the simplicial complex on left consists of six vertices a, b, c,
d, e, f and eight edges adjoining them.

Stars and links. Given a simplex τ ∈ K, its star in K is the set of simplices that have τ as a face,
denoted by St(τ) = {σ ∈ K | τ ⊆ σ} (recall that τ ⊆ σ means that τ is a face of σ). Generally, the
star is not closed under face relation and hence is not a simplicial complex. We can make it so by
adding all missing faces. The result is the closed star, denoted by St(τ) =

⋃
σ∈St(τ){σ} ∪ {σ

′ ∈ K |
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Figure 2.1: (left) A simplicial complex with six vertices, eight edges, and one triangle, (right) A
simplicial 2-complex triangulating a 2-manifold in R3.

σ′ ⊂ σ}, which is also the smallest subcomplex that contains the star. The link of τ consists of the
set of simplices in the closed star that are disjoint from τ, that is, Lk(τ) = {σ ∈ St(τ) | σ∩ τ = ∅}.
Intuitively, we can think of the star (resp. the closed star) of a vertex as an open (resp. closed)
neighborhood around it, and the link as the boundary of that neighborhood.

In Figure 2.1(left), we have

• St(a) = {{a}, {a, b}, {a, d}, {a, f }, {a, b, d}}, St(a) = St(a) ∪ {{b}, {d}, { f }, {b, d}}

• St( f ) = {{ f }, {a, f }, {d, f }}, St( f ) = St( f ) ∪ {{a}, {d}}

• St({a, b}) = {{a, b}, {a, b, d}}, St({a, b}) = St({a, b}) ∪ {{a}, {b}, {d}, {a, d}, {b, d}}

• Lk(a) = {{b}, {d}, { f }, {b, d}}, Lk( f ) = {{a}, {d}}, Lk({a, b}) = {{d}}.

Triangulation of a manifold. Given a simplicial complex K and a manifold M, we say that K
is a triangulation of M if the underlying space |K| is homeomorphic to M. Note that if M is a
k-manifold, the dimension of K is also k. Furthermore, for any vertex v ∈ K, the underlying space
|St(v)| of the star St(v) is homeomorphic to the open k-ball Bk

o if v maps to an interior point in M
and to the k-dimensional halfspace Hk if v maps to a point on the boundary of M. The underlying
space |Lk(v)| of the link Lk(v) is homeomorphic to (k − 1)-sphere Sk−1 if v maps to interior and to
a closed (k − 1)-ball Bk−1

o otherwise.

Simplicial map. Corresponding to the continuous functions (maps) between topological spaces,
we have a notion called simplicial map between simplicial complexes.

Definition 6 (Simplicial map). A map f : K1 → K2 is called simplicial if for every simplex
{v0, . . . , vk} ∈ K1, we have the simplex { f (v0), . . . , f (vk)} in K2.

A simplicial map is called a vertex map if the domain and codomain of f are only vertex sets
V(K1) and V(K2) respectively. Every simplicial map is associated with a vertex map. However, a
vertex map f : V(K1)→ V(K2) does not necessarily extend to a simplicial map from K1 to K2.

Fact 1. Every continuous map f : |K1| → |K2| can be approximated arbitrarily closely by simpli-
cial maps on appropriate subdivisions of K1 and K2.
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There is also a counterpart of homotopic maps in simplicial setting.

Definition 7 (Contiguous map). Two simplicial maps f1 : K1 → K2, f2 : K1 → K2 are contiguous
if for every simplex σ ∈ K1, f1(σ) ∪ f2(σ) is a simplex in K2.

Contiguous maps play an important role in topological analysis. We use a result involving
contiguous maps and homology groups. We defer stating it where we introduce homology groups.

2.2 Nerves, Čech and Rips complex

Recall Definition of covers. A cover of a topological space defines a special simplicial complex
called its nerve. The nerve plays an important role in bridging topological spaces to complexes
which we will see below and also later. We first define the nerve in general terms which can be
specialised to covers easily.

Definition 8 (Nerve). Given a finite collection of sets U = {Uα}α∈A, we define the nerve of the
set U to be the simplicial complex N(U) whose vertex set is the index set A, and where a subset
{α0, α1, . . . , αk} ⊆ A spans a k-simplex in N(U) if and only if Uα0 ∩ Uα1 ∩ . . . ∩ Uαk , ∅.

UM N(U)

Figure 2.2: Examples of two spaces (left), open covers of them (middle), and their nerves (right).
(Top) the intersections of covers are contractible, (bottom) the intersections of covers are not
necessarily contractible.

Taking U to be a cover of a topological space in the above definition, one gets a nerve of a
cover. Figure 2.2 shows two topological spaces, their covers, and corresponding nerves.

One important result involving nerves is the so called Nerve Theorem which have different
forms that depend on the type of topological spaces and covers. Adapting to our need, we state it
for metric spaces which are a special type of topological spaces as we have observed.

Theorem 1 (Nerve Theorem [4, 23]). Given a finite cover U (open or closed) of a metric space M,
the underlying space |N(U)| is homotopy equivalent to M if every non-empty intersection ∩k

i=0Uαi

of cover elements is homotopy equivalent to a point, that is, contractible.
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Figure 2.3: Čech complex Cr(P) and Rips complex VRr(P)

The cover in the top row of Figure 2.2 satisfy the property of the above theorem and its nerve
is homotopy equivalent to M whereas the same is not true for the cover shown in the bottom row.

Given a finite subset P for a metric space (M, d), we can build an abstract simplicial complex
called Čech complex with vertices in P using the concept of nerve.

Definition 9 (Čech complex). Let (M, d) be a metric space and P be a finite subset of M. Given
a real r > 0, the Čech complex Cr(P) is defined to be the nerve of the set {B(pi, r)} where

B(pi, r) = {x ∈ M | d(pi, x) ≤ r}

is the geodesic open ball of radius r centering pi.

Observe that if M is Euclidean, the balls considered for Čech complex are necessarily con-
vex and hence their intersections are contractible. By Theorem 1, Čech complex in this case is
homotopy equivalent to the space of union of the balls. The Čech complex is related to another
complex called Vietoris-Rips complex which is often used in topological data analysis.

Definition 10 (Vietoris-Rips complex). Let (P, d) be a finite metric space. Given a real r > 0, the
Vietoris-Rips (Rips in short) complex is the abstract simplicial complex VRr(P) where a simplex
σ ∈ VRr(P) if and only if d(p, q) ≤ 2r for every pair of vertices of σ.

Notice that the 1-skeleton of VRr(P) determines all of its simplices. It is the completion (in
terms of simplices) of its 1-skeleton; see Figure 2.3. Also, observe the following fact.

Fact 2. Let P be a finite subset of a metric space (M, d) where M satisfies the property that, for
any real r > 0 and two points p, q ∈ M with d(p, q) ≤ 2r, the metric balls B(p, r) and B(q, r) have
non-empty intersection. Then, the 1-skeletons of VRr(P) and Cr(P) coincide.

Notice that if M is Euclidean, it satisfies the condition stated in the above fact and hence for
finite point sets in any Euclidean space, Čech and Rips complexes defined with Euclidean balls
share the same 1-skeleton. However, for a general finite metric space (P, d), it may happen that
for some p, q ∈ P, one has d(p, q) ≤ 2r and B(p, r) ∩ B(q, r) = ∅.

An easy but important observation is that the Rips and Čech complexes interleave.

Proposition 2. Let P be a finite subset of a metric space (M, d). Then,

Cr(P) ⊆ VRr(P) ⊆ C2r(P).
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Figure 2.4: Every triangle in a Delaunay complex has an empty open circumdisk.

Proof. The first inclusion is obvious because if there is a point x in the intersection ∩k
i=1B(pi, r),

the distances d(pi, p j) for every pair (i, j), 1 ≤ i, j ≤ k, are at most 2r. It follows that for every
simplex {p1, . . . , pk} ∈ Cr(P) is also in VRr(P).

To prove the second inclusion, consider a simplex {p1, . . . , pk} ∈ VRr(P). Since by definition
of the Rips complex d(pi, p1) ≤ 2r for every pi, i = 1, . . . , k, we have ∩k

i=1B(pi, 2r) ⊃ p1 , ∅.
Then, by definition, {p1, . . . , pk} is also a simplex in C2r(P). �

2.3 Sparse complexes

The Rips and Čech complexes are often too large to handle in practice. For example, the Rips
complex with n points in Rd can have Ω(nd) simplices. In practice, they can become large even in
dimension as low as three. Just to give a sense of the scale of the problem, we note that the Rips
or Čech complex built out of a few thousand points often has triangles in the range of millions.
There are other complexes that are much sparser in size because of which they may be preferred
sometimes for computations.

2.3.1 Delaunay complex

This is a special complex that can be constructed out of a point set P ∈ Rd. This complex embeds
in Rd (in the generic setting). Because of its various optimal properties, this complex is used
in many applications involving mesh generation, in particular in R2 and R3, see [7]. However,
computation of Delaunay complexes in high dimensions beyond R3 can be time intensive, so it is
not yet the preferred choice for applications in dimensions beyond R3.

Definition 11 (Delaunay simplex; Complex). In the context of a finite point set P ∈ Rd, a k-
simplex σ is Delaunay if its vertices are in P and there is an open d-ball whose boundary contains
its vertices and is empty—contains no point in P. Note that any number of points in P can lie on
the boundary of this ball. But, for simplicity, we will assume that only the vertices of σ are on the
boundary of its empty ball. A Delaunay complex of P, denoted Del P, is a (geometric) simplicial
complex with vertices in P in which every simplex is Delaunay and |Del P| coincides with the
convex hull of P, as illustrated in Figure 2.4.
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In R2, a Delaunay complex of a set of points in general position is made out of Delaunay
triangles and all of their lower dimensional faces. Similarly, in R3, a Delaunay complex is made
out of Delaunay tetrahedra and all of their lower dimensional faces.

Fact 3. Every non-degenerate point set (no d + 2 points are co-spherical) admits a unique De-
launay complex.

Delaunay complexes are dual to the famous Voronoi diagrams defined below.

Definition 12 (Voronoi diagram). Given a finite point set P ⊂ Rd in generic position, the Voronoi
diagram Vor (P) of P is the tessellation of the embedding space Rd into convex cells Vp for every
p ∈ P where

Vp = {x ∈ Rd | d(x, p) ≤ d(x, q)∀q ∈ P}.

A k-face of Vor (P) is the intersection of (d − k + 1) Voronoi cells.

Duality between Delaunay complex and Voronoi diagram is expresed by the duality among
their faces. Specifically, a Delaunay k-simplex in Del (P) is dual to a Voronoi (d − k)-face in
Vor (P). The Voronoi diagram dual to the Delaunay complex in Figure 2.4 is shown in Figure 2.5.

The following optimality properties make Delaunay complexes useful for applications.

Fact 4. A triangulation of a point set P ⊂ Rd is a geometric simplicial complex whose vertex set
is P and whose simplices tessellate the convex hull of P. Among all triangulations of a point set
P ⊂ Rd, Del P achieves the following optimized criteria:

1. In R2, Del P maximizes the minimum angle of triangles in the complex.

2. In R2, Del P minimizes the largest circumcircle for triangles in the complex.

3. For a simplex in Del P, let its min-ball be the smallest ball that contains the simplex in it.
In all dimensions, Del P minimizes the largest min-ball.

1-skeletons of Delaunay complexes in R2 are planar graphs and hence they have size O(n) for
n points. They can be computed in Θ(n log n) time. In R3, their size grows to O(n2) and they can
be computed in Θ(n2) time. In Rd, d ≥ 3, Delaunay complexes have size Θ(ndd/2e) and can be
computed in optimal time Θ(ndd/2e) [5].

Alpha complex. Alpha complexes are subcomplexes of the Delaunay complexes which are
parameterized by a real α ≥ 0. For a given point set P and α ≥ 0, an alpha complex consists of all
simplices in Del (P) that have a circumscribing ball of radius at most α. It can also be described
alternatively as a nerve. For each point p ∈ P, let Bαp denote a closed ball of radius α centering p.
Consider the closed set Dp defined as follows:

Dα
p = {x ∈ Bαp | d(x, p) ≤ d(x, q)∀q ∈ P}

The alpha complex Del α(P) is the nerve of the closed sets {Dα
p}p∈P. Another interpretation for

alpha complex stems from its relation to the Voronoi diagram of the point set P. Alpha complex
contains a k-simplex σ = {p0, . . . , pk} if and only if ∪p∈PBαp meets the intersection of Voronoi
cells Vp0 ∩ Vp1 · · · ∩ Vpk . Figure 2.5 shows an alpha complex for the point set in Figure 2.4 for an
α. The Voronoi diagram is shown with the dotted segments.
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α

Figure 2.5: Alpha complex of the point set in Figure 2.4 for an α indicated in the figure. The
Voronoi diagram of the point set is shown with dotted edges. The traingles and edges in the
complex are shown with solid edges which are subset of the Delaunay complex.

2.3.2 Witness complex

The witness complex defined by de Silva and Carlsson [9] sidesteps the size problem by a sub-
sampling strategy. First, we define the witness complex with two finite set, P called the witnesses
and Q called the landmarks. The complex is built with vertices in the landmarks where the sim-
plices are defined with a notion of witness from the witness set. Given a finite set P equipped
with pairwise distances d : P× P→ R, we can build the witness complex on a subsample Q ⊆ P.

Definition 13 (Weak witness). Let Q ⊆ P where P is a finite set with a real valued function on
pairs d : P × P→ R. A simplex σ = {q1, . . . , qk} with qi ∈ Q is weakly witnessed by x ∈ P \ Q if
d(q, x) ≤ d(p, x) for every q ∈ {q1, . . . , qk} and p ∈ Q \ {q1, . . . , qk}.

We now define the witness complex using the notion of weak witnesses.

Definition 14 (Witness complex). Let P,Q be a finite sets as in Defintion 13. The witness complex
W(Q, P) is defined as the collection of all simplices whose all faces are weakly witnessed by a
point in P \ Q.

Observe that a simplex which is weakly witnessed may not have all its faces weakly witnessed
(Exercise 5). This is why the definition above forces the condition to have a simplicial complex.

When P is Rd and Q is a finite subset of it, we have the notion of strong witness.

Definition 15 (Strong witness). Let Q ⊂ Rd be a finite set. A simplex σ = {q1, . . . , qd} with
qi ∈ Q is strongly witnessed by x ∈ Rd if d(q, x) ≤ d(p, x) for every q ∈ {q1, . . . , qd} and
p ∈ Q \ {q1, . . . , qd} and additionally, d(q1, x) = · · · = d(qd, x).

When Q ⊂ Rd as in the above definition, the following fact holds [8].

Proposition 3. A simplex σ is strongly witnessed if and only if every face τ ≤ σ is weakly
witnessed.
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q1

q2
q3

p1p2

Figure 2.6: A witness complex constructed out of the points in Figure 2.4 where landmarks are
the black dots and the witness points are the hollow dots. The witnesses for five red edges and
the blue triangle are the centers of the six circles; e.g., the triangle q1q2q3 and the edge q1q3 are
weakly witnessed by the points p1 and p2 respectively.

Furthermore, when Q ⊂ Rd, we have some connections of the witness complex to the Dealu-
nay complex. By definition, we know the following:

Fact 5. Let Q be a finite subset of Rd. Then a simplex σ is in the Delaunay triangulation Del Q if
and only if σ is strongly witnessed by points in Rd.

By combining the above fact and the observation that every simplex in a witness complex is
strongly witnessed, we have the following result which was observed by de Silva [8].

Proposition 4. If P is a finite subset of Rd and Q ⊆ P, then W(Q, P) ⊆ Del Q.

One important implication of the above observation is that the witness complexes for point
samples in an Euclidean space are embedded in that space.

The concept of the witness complex has a parallel in the concept of the restricted Delaunay
complex. When the set P in Proposition 4 is not necessarily a finite subset, but only a subset X of
Rd, and Q is finite, we can relate W(Q, P) to the restricted Delaunay complex Del|X Q defined as
the collection of Delaunay simplices in Del Q whose Voronoi duals have non-empty intersection
with X.

Proposition 5.

1. W(Q,Rd) = Del|Rd Q := Del Q [8].

2. W(Q,M) = Del|M Q if M ⊆ Rd is a smooth 1- or 2-manifold [2].

3. W(Q, P) = Del|M Q where P and Q are sufficiently dense sample of a 1-manifold M in
R2 and the result does not extend to other cases of submanifolds embedded in Euclidean
spaces [17].
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2.3.3 Graph induced complex

The witness complex does not capture the topology of a manifold even if the input sample is
dense except for smooth curves in the plane. One can modify them with extra structures such as
putting weights on the points and changing the metric to weighted distances to tackle this problem
as shown in [3]. But, this becomes clumsy in terms of the ‘practicality’ of a solution. We study
another complex called graph induced complex(GIC) [11] which also uses subsampling, but is
more powerful in capturing topology and in some case geometry. The adavantage of the GIC over
the witness complex is that GIC is not necessarily a subcomplex of the Delaunay complex and
hence contains few more simplices which aid topology inference. But, for the same reason, it
may not embed in the Euclidean space where its input vertices lie.

In the following definition, 2Q denotes the set of all subsets of a set Q. For the nearest point
map ν in the definition, we have to consider this power set because the nearest point may not be
unique.

Definition 16. Let (P, d) be a metric space where P is a finite set and G(P) be a graph with
vertices in P. Let Q ⊆ P and let ν : P → 2Q be the map given by ν(p) = argmin d(p,Q).
The graph induced complex (GIC) G(G(P),Q, d) is the simplicial complex containing a k-simplex
σ = {q1, . . . , qk+1}, qi ∈ Q, if and only if there exists a (k + 1)-clique {p1, . . . , pk+1} ⊆ P so that
qi ∈ ν(pi) for each i ∈ {1, 2, . . . , k + 1}. To see that it is indeed a simplicial complex, observe that
a subset of a clique is also a clique.

Figure 2.7: A graph induced complex shown with bold vertices, edges, and a shaded triangle
on left. The input graph within the shaded triangle is shown on right. The 3-clique with three
different colors (shown inside the shaded triangle on the right) cause the shaded triangle in the
left to be in the graph induced complex.

Input graph G(P). The input point set P can be a finite sample of a subset X of an Euclidean
space, such as a manifold or a compact subset. In this case, we may consider the input graph
G(P) to be the neighborhood graph Gα(P) := (P, E) where there is an edge {p, q} ∈ E if and only
if d(p, q) ≤ α. The intuion is that if P is a sufficiently dense sample of X, then Gα(P) captures
the local neighborhoods of the points in X. Figure 2.7 shows a graph induced complex for a point
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data in the plane with a neighborhood graph where d is the Euclidean metric. To emphasize the
dependence on α we use the notation Gα(P,Q, d) := G(Gα(P),Q, d).

Subsample Q. Of course, the ability of capturing the topology of the sampled space after sub-
sampling with Q depends on the quality of Q. We quantify this quality with a parameter δ > 0.

Definition 17. A subset Q ⊆ P is called a δ-sample of a metric space (P, d), if the following
condition holds:

• ∀p ∈ P, there exists a q ∈ Q, so that d(p, q) ≤ δ.

Q is called δ-sparse if the following condition holds:

• ∀(q, r) ∈ Q × Q with q , r, d(q, r) ≥ δ.

The first condition ensures Q to be a good sample of P with respect to the parameter δ and the
second condition enforces that the points in Q cannot be too close relative to the distance δ.

Metric d. The metric d assumed in the metric space (P, d) will be of two types in our discus-
sion below; (i) the Euclidean metric denoted dE , (ii) the graph metric dG derived from the the
input graph G(P) where dG(p, q) is the shortest path distance between p and q in the graph G(P)
assuming its edges have non-negative weights such as their Euclidean lengths.

Constructing a GIC. One may wonder how to efficiently construct the graph induced com-
plexes in practice. Experiments show that the following procedure runs quite efficiently in prac-
tice. It takes advantage of computing nearest neighbors within a range and, more importantly,
computing cliques only in a sparsified graph.

Let the ball B(q, δ) in metric d be called the δ-cover for the point q. A graph induced complex
Gα(P,Q, d) where Q is a δ-sparse δ-sample can be built easily by identifying δ-covers with a rather
standard greedy (farthest point) iterative algorithm. Let Qi = {q1, . . . , qi} be the point set sampled
so far from P. We maintain the invariants (i) Qi is δ-sparse and (ii) every point p ∈ P that are
in the union of δ-covers

⋃
q∈Qi B(q, δ) have their closest point ν(p) = argminq∈Qi

d(p, q) in Qi

identified. To augment Qi to Qi+1 = Qi ∪ {qi+1}, we choose a point qi+1 ∈ P that is outside the
δ-covers

⋃
q∈Qi B(q, δ). Certainly, qi+1 is at least δ units away from all points in Qi thus satisfying

the first invariant. For the second invariant, we check every point p in the δ-cover of qi+1 and
update ν(p) to be qi+1 if its distance to qi+1 is smaller than the distance d(p, ν(p)). At the end,
we obtain a sample Q ⊆ P whose δ-covers cover the entire point set P and thus is a δ-sample of
(P, d) which is also δ-sparse due to the invariants maintained. Next, we construct the simplices
of Gα(P,Q, d). This needs identifying cliques in Gα(P) that have vertices with different closest
points in Q. We delete every edge pp′ from Gα(P) where ν(p) = ν(p′). Then, we determine every
clique {p1, . . . pk} in the remaining sparsified graph and include the simplex {ν(p1), . . . , ν(pk)} in
Gα(P,Q, d). The main saving here is that many cliques of the original graph are removed before
it is processed for clique computation.
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2.4 Notes and Exercises

Simplicial complexes is a fundamental structure in algebraic topology. A good source for the
subject is Munkres [21].

The concept of nerve is credited to Alesandroff [1]. The nerve theorem has different versions.
It holds for open covers for topological spaces with some mild conditions [23]. Borsuk proved
it for closed covers again with some conditions on the space and covers [4]. The assumptions of
both are satisfied by metric spaces and finite covers with which we state the theorem in section 2.2.
A version of the theorem is also credited to Leray [20].

Čech and Vietoris-Rips complexes have turned out to be a very effective data structure in
topological data analysis. Čech complexes were introduced to define Čech homology. Leonid
Vietoris [22] introduced Vietoris complex for extending the homology theory from simplicial
complexes to metric spaces. Later, Eliyahu Rips used it in hyperbolic group theory [16]. Jean-
Claude Hausmann named it as Vietoris-Rips complex and showed that it is homotopoy equivalent
to a compact Riemannian manifold when the vertex set spans all points of the manifold and
parameter to build it is sufficiently small [18]. This result was further improved by Latschev [19]
who showed that the homotopy equivalence holds even when the vertex set is finite.

Delaunay complex is a very well known and useful data structure for various geometric ap-
plications in two and three dimensions. They enjoy various optimal properties. For example, for
a given point set P ⊂ R2, among all simplicial complexes linearly embedded in R2 with vertex
set P, the Delaunay complex maximizes the minimum angle over all triangles as stated in Fact 4.
Many such properties and algorithms for computing Delaunay complexes are described in books
by Edelsbrunner [12] and Cheng et al. [6]. Alpha complex was proposed in [14] and further de-
veloped in [15]. The first author of this can attest to the historic fact that the development of the
persistence algorithm was motivated by the study of alpha complexes and their Betti numbers.
The book by Edelsbrunner and Harer [13] confirms this. Witness complexes are proposed by de
Silva and Carlsson [9] in an attempt to build a sparser complex out of a dense point sample. The
graph induced complex is also another such construction proposed by Dey, Fang and Wang [10].

Exercises

1. Suppose we have a collection of set U = {Uα}α∈A where there exists an element U ∈ U that
contains all other elements in U. Show that the nerve complex N(U) is contractible to a
point.

2. Given a parameter α and a set of points P ∈ Rd, show that the alpha complex Del α(P) is
contained in the intersection of Delauney complex and Čech complex at scale α; that is,
Del α(P) ⊆ Del (P) ∩ Cα(P).

3. Let K be a triangulation of a surface without boundary that has genus g. Prove that β1(K) =

2g.

4. We state the nerve theorem (Theorem 1) for covers where either all cover elements are
closed or all cover elements are open. Show that the theorem does not hold if we mix open
and closed elements in the cover.
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5. Give an example where a simplex which is weakly witnessed may not have all its faces
weakly witnessed. Show that (i) W(Q, P′) ⊆W(Q, P) for P′ ⊆ P, (ii) W(Q′, P) may not be
a subcomplex of W(Q, P) where Q′ ⊆ Q.

6. Consider Definition 16 for Graph induced complex. Let VR(G) be the clique complex given
by the input graph G(P). Assume that the map ν : P→ 2Q sends every point to a singleton
under input metric d. Then, ν : P → ν(P) is a well defined vertex map. Prove that the
vertex map ν : P→ Q extends to a simplicial map ν̄ : VR(G)→ G(G(P),Q, d). Also, show
that every simplicial complex K(Q) with the vertex set Q for which ν̄ : VR(G) → K(Q)
becomes simplicial must contain G(G(P),Q, d).
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