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Topic 13: Nerve, Cover, Mapper
Data can be complex both in terms of the domain where they come from and in terms of proper-
ties/observations associated with them which are often modeled as functions/maps. For example,
we can have a set of patients, where each patient is associated with multiple biological markers,
giving rise to a multivariate function from the space of patients to an image domain that may or
may not be the Euclidean space. To this end, we need to analyze not only real-valued scalar fields
as we did in so far in the book, but also more complex maps defined on a given domain, such as
multivariate, circle valued, sphere valued maps, etc.

U1 U2 U3 U4 U5

Figure 13.1: The function values on a hand model are binned into intervals as indicated by differ-
ent colors. The mapper corresponding to these intervals (cover) is shown with the graph below;
picture is taken from [15].

One way to analyze complex maps is to use the Mapper methodology introduced by Singh
et al. in [15]. In particular, given a map f : X → Z, the mapper M( f ,U) creates a topological
metaphor for the structure behind f by pulling back a cover U of the space Z to a cover on X
through f . This mapper methodology can work with any (reasonably tame) continuous maps
between two topological spaces. It converts complex maps and covers of the target space into
simplicial complexes, which are much easier to process computationally. One can view the map
f and a finite cover of the space Z as the lens through which the input data X is examined. It is in
some sense related to Reeb graphs which also summarizes f but without any particular attention
to a cover of the codomain. Figure 13.1 shows a mapper construction where the reader can see its
similarity to the Reeb graph. The choice of different maps and covers allows the user to capture
different aspects of the input data. The mapper methodology has been successfully applied to
analyzing various types of data, we have shown an example in the Prelude of the book, for others
see e.g. [10, 13].

To understand the Mapper and its multiscale version Multiscale Mapper better, we study first
some properties of nerves as they are at the core of these constructions. We already know Nerve
Theorem which states that if every intersection of cover elements in a cover U is contractible, then
the nerve N(U) is homotopy equivalent to the space X =

⋃
U. However, we cannot hope for such a

good cover all the time and need to investigate what happens if the cover is not good. Sections 13.1
and 13.2 are devoted to this study. Specifically, we show that if every cover element satisfies a
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weaker property that it is only path connected, then the nerve may not preserve homotopy, but
satisfies a surjectivity property in one-dimensional homology.

One limitation of the mapper is that it is defined with respect to a fixed cover of the target
space. Naturally, the behavior of the mapper under a change of cover is of interest because it has
the potential to reveal the property of the map at different scales. Keeping this in mind, we study a
multiscale version of mapper, which we refer to as multiscale mapper. It is capable of producing
a multiscale summary in the form of a persistence diagram using a cover of the codomain at
different scales. In Section 13.4, we discuss the stability of the multiscale mapper under changes
in the input map and/or in the tower U of covers. An efficient algorithm for computing mapper and
multiscale mapper for a real valued PL-function is presented in Sections 13.5. In Section 13.6,
we consider the more general case of a map f : X → Z where X is a simplicial complex but Z is
not necessarily Euclidean. We show that we can use an even simpler combinatorial version of the
multiscale mapper, which only acts on vertex sets of X with connectivity given by the 1-skeleton
graph of X. The cost we pay here is that the resulting persistence diagram approximates (instead
of computing exactly) the persistence diagram of the standard multiscale mapper if the tower of
covers of Z is “good" in certain sense.

13.1 Covers and nerves

In this section we present several facts about covers of a topological space and their nerves.
Specifically, we focus on maps between covers and the maps they induce between nerves and
their homology groups.

Let X denote a path connected topological space. Recall that by this we mean that there exists
a continuous function called path γ : [0, 1] → X connecting every pair of points {x, x′} ∈ X × X
where γ(0) = x and γ(1) = x′. Also recall that for a topological space X, a collection U = {Uα}α∈A

of open sets such that
⋃
α∈A Uα = X is called an open cover of X. Although it is not required in

general, we will always assume that each open cover Uα is path connected.

Maps between covers. If we have two covers U = {Uα}α∈A and V = {Vβ}β∈B of a space X,
a map of covers from U to V is a set map ξ : A → B so that Uα ⊆ Vξ(α) for every α ∈ A. We
abuse the notation ξ to also indicate the map U → V. The following proposition connects a map
between covers to a simplicial map between their nerves.

UN(U) V N(V) UN(U) V N(V)ξ UN(U) V N(V)ζ

Figure 13.2: Cover maps ξ and ζ indicated by solid arrows induce simplicial maps N(ξ) and N(ζ)
whose corresponding vertex maps are indicated by dashed arrows.
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Proposition 1. Given a map of covers ξ : U → V, there is an induced simplicial map N(ξ) :
N(U)→ N(V) given on vertices by the map ξ.

Proof. Write U = {Uα}α∈A and V = {Vβ}β∈B. Then, for all α ∈ A we have Uα ⊆ Vξ(α). Now take
any σ ∈ N(U). We need to prove that ξ(σ) ∈ N(V). For this observe that

⋂
β∈ξ(σ)

Vβ =
⋂
α∈σ

Vξ(α) ⊇
⋂
α∈σ

Uα , ∅,

where the last step follows because σ ∈ N(U). �
An example is given in Figure 13.2, where both maps N(ξ) and N(ζ) are simplicial. Furthermore,

if U
ξ
→ V

ζ
→ W are three different covers of a topological space with the intervening maps of

covers between them, then N(ζ ◦ ξ) = N(ζ) ◦ N(ξ) as well.
The following fact will be very useful later for defining multiscale mappers.

Proposition 2 (Induced maps are contiguous). Let ζ, ξ : U→ V be any two maps of covers. Then,
the simplicial maps N(ζ) and N(ξ) are contiguous.

Proof. Write U = {Uα}α∈A and V = {Vβ}β∈B. Then, for all α ∈ A we have both

Uα ⊆ Vζ(α) and Uα ⊆ Vξ(α); ⇒ Uα ⊆ Vζ(α) ∩ Vξ(α).

Now take any σ ∈ N(U). We need to prove that ζ(σ) ∪ ξ(σ) ∈ N(V). For this write

⋂
β∈ζ(σ)∪ξ(σ)

Vβ =

⋂
α∈σ

Vζ(α)

 ∩ ⋂
α∈σ

Vξ(α)


=

⋂
α∈σ

(
Vζ(α) ∩ Vξ(α)

)
⊇

⋂
α∈σ

Uα , ∅,

where the last step follows from assuming that σ ∈ N(U). It implies that the vertices in ζ(σ)∪ξ(σ)
span a simplex in N(V). �

In Figure 13.2, the two maps N(ξ) and N(ζ) can be verified to be contiguous. Furthermore,
contiguous maps induce identical maps at the homology level. Proposition 2 implies that the map
H∗(N(U))→ H∗(N(V)) thus induced can be deemed canonical.

Maps at homology level. Now we focus on establishing various maps at the homology levels
for covers and their nerves. We first establish a map φU between X and the geometric realization
|N(U)| of a nerve complex N(U). This helps us to define a map φU∗ from the singular homology
groups of X to the simplicial homology groups of N(U) (through the singular homology of |N(U)|).
The nerve theorem says that if the elements of U intersect only in contractible spaces, then φU
is a homotopy equivalence and hence φU∗ is an isomorphism between H∗(X) and H∗(N(U)). The
contractibility condition can be weakened to a homology ball condition to retain the isomorphism
between the two homology groups [8]. In absence of such conditions of the cover, simple ex-
amples exist to show that φU∗ could be neither a monophorphism (injection) nor an epimorphism
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(surjection). Figure 13.3 gives an example where φU∗ is not surjective in H2. However, for one
dimensional homology groups, the map φU∗ is necessarily a surjection when each element in the
cover U is path connected. We call such a cover U path connected. The simplicial maps arising
out of cover maps between path connected covers induce a surjection between the 1-st homology
groups of two nerve complexes.

Uαf−1Uα

R3 R2f N(f−1U)

Figure 13.3: The map f : S2 ⊂ R3 → R2 takes the sphere to R2. The pullback of the cover
element Uα makes a band surrounding the equator which causes the nerve N( f −1U) to pinch in
the middle creating two 2-cycles. This shows that the map φU : X → N(U) may not induce a
surjection in H2.

Blow up space. The proof of the nerve theorem given by Hatcher in [7] uses a construction
that connects the two spaces X and |N(U)| via a blow-up space XU that is a product space of U
and the geometric realization |N(U)|. In our case U may not satisfy the contractibility condition
as in that proof. Nevertheless, we use a similar construction to define three maps, ζ : X → XU,
π : XU → |N(U)|, and φU : X → |N(U)| where φU = π ◦ ζ is referred to as the nerve map; see
Figure 13.4(left). Details about the construction of these maps follow.

U0 × {0}

U1 × {1}
XU

U0,1 × [0, 1]

U1

U0,1

U0

X

X |N(U)|

XU
ζ π

φU

Figure 13.4: (left) Various maps used for blow up space; (right) example of a blow up space.

Denote the elements of the cover U as Uα for α taken from some indexing set A. The vertices
of N(U) are denoted by {uα, α ∈ A},where each uα corresponds to the cover element Uα. For each
finite non-empty intersection Uα0,...,αn :=

⋂n
i=0 Uαi consider the product Uα0,...,αn ×∆n

α0,...,αn
, where

∆n
α0,...,αn

denotes the n-dimensional simplex with vertices uα0 , . . . , uαn . Consider now the disjoint
union
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M :=
⊔

α0,...,αn∈A: Uα0 ,...,αn,∅

Uα0,...,αn × ∆n
α0,...,αn

together with the following identification: each point (x, y) ∈ M, with x ∈ Uα0,...,αn and y ∈
[α0, . . . , α̂i, . . . , αn] ⊂ ∆n

α0,...,αn
is identified with the corresponding point in the product Uα0,...,̂αi,...,αn×

∆α0,...,̂αi,...,αn via the inclusion Uα0,...,αn ⊂ Uα0,...,̂αi,...,αn . Here [α0, . . . , α̂i, . . . , αn] denotes the
i-th face of the simplex ∆n

α0,...,αn
. Denote by ∼ this identification and now define the space

XU := M / ∼. An example for the case when X is a line segment and U consists of only two
open sets is shown in Figure 13.4(right).

In what follows we assume that the space X is compact. The main motivation behind re-
stricting X to such spaces is that they admit a condition called partition of unity which we use to
establish further results.

Definition 1 (Locally finite). An open cover {Uα, α ∈ A} of X is called a refinement of another
open cover {Vβ, β ∈ B} of X if every element Uα ∈ U is contained in an element Vβ ∈ V.
Furthermore, U is called locally finite if every point x ∈ X has a neighborhood contained in
finitely many elements of U.

Definition 2 (Partition of unity). A collection of real valued continuous functions {ϕα : X →
[0, 1], α ∈ A} is called a partition of unity if (i)

∑
α∈A ϕα(x) = 1 for all x ∈ X, (ii) For every x ∈ X,

there are only finitely many α ∈ A such that ϕα(x) > 0.
If U = {Uα, α ∈ A} is any open cover of X, then a partition of unity {ϕα, α ∈ A} is subordinate

to U if the support1 supp(ϕα) of ϕα is contained in Uα for each α ∈ A.

Fact 1 ([14]). For any open cover U = {Uα, α ∈ A} of a compact space X, there exists a partition
of unity {ϕα, α ∈ A} subordinate to U.

We assume that X is compact and hence for an open cover U = {Uα}α of X, we can choose
any partition of unity {ϕα, α ∈ A} subordinate to U according to Fact 1. For each x ∈ X such that
x ∈ Uα, denote by xα the corresponding copy of x residing in XU. For our choice of {ϕα, α ∈ A},
define the map ζ : X → XU as:

for any x ∈ X, ζ(x) :=
∑
α∈A

ϕα(x) xα.

The map π : XU → |N(U)| is induced by the individual projection maps

Uα0,...,αn × ∆n
α0,...,αn

→ ∆n
α0,...,αn

.

Then, it follows that φU = π ◦ ζ : X → |N(U)| satisfies, for x ∈ X,

φU(x) =
∑
α∈A

ϕα(x) uα. (13.1)

We have the following fact [14, pp. 108]:

Fact 2. ζ is a homotopy equivalence.
1The support of a real-valued function is the subset of the domain whose image is non-zero.
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13.1.1 Special case of H1

Now, we show that the nerve maps at the homology level are surjective for one dimensional
homology groups, namely all homology classes in N(U) arise from those in X =

⋃
U. Further-

more, if we assume that X is equipped with a pseudo-metric, we can define a size for cycles with
this pseudo-metric and show that all homology classes with representative cycles having a large
enough size survive in the nerve N(U). Note that the result is not true beyond one dimensional
homology (recall Figure 13.3).

To prove this result for H1, first, we make a simple observation that connects the classes in
singular homology of |N(U)| to those in the simplicial homology of N(U). The result follows
immediately from the isomorphism between singular and simplicial homology induced by the
geometric realization; see [12]. Recall that [c] denotes the class of a cycle c. If c is simplicial, |c|
denotes its underlying space.

Proposition 3. Every 1-cycle γ in |N(U)| has a 1-cycle γ′ in N(U) so that [γ] = [|γ′|].

Proposition 4. If U is path connected, φU∗ : H1(X) → H1(|N(U)|) is a surjection, where φU∗ is
the homomorphism induced by the nerve map defined in Eqn. (13.1).

Proof. Let [γ] be any class in H1(|N(U)|). Because of Proposition 3, we can assume that γ = |γ′|,
where γ′ is a 1-cycle in the 1-skeleton of N(U). We will construct a 1-cycle γU in XU so that
π(γU) = γ. Assume first that such a γU can be constructed. Then, consider the map ζ : X → XU in
the construction of the nerve map φU where φU = π ◦ ζ. There exists a class [γX] in H1(X) so that
ζ∗([γX]) = [γU] because ζ∗ is an isomorphism by Fact 2. Then, φU∗([γX]) = π∗(ζ∗([γX])) because
φU∗ = π∗ ◦ ζ∗. It follows φU∗([γX]) = π∗([γU]) = [γ] showing that φU∗ is surjective.

Therefore, it remains only to show that a 1-cycle γU can be constructed given γ′ in N(U)
so that π(γU) = γ = |γ′|. Let e0, e1, . . . , er−1, er = e0 be an ordered sequence of edges on γ′.
Recall the construction of the space XU. In that terminology, let ei = ∆n

αiα(i+1) mod r
. Let vi =

e(i−1) mod r ∩ ei for i ∈ [0, r − 1]. The vertex vi = vαi corresponds to the cover element Uαi where
Uαi ∩ Uα(i+1) mod r , ∅ for every i ∈ [0, r − 1]. Choose a point xi in the common intersection
Uαi ∩Uα(i+1) mod r for every i ∈ [0, r − 1]. Then, the edge path ẽi = ei × xi is in XU by construction.
Also, letting xαi to be the lift of xi in the lifted Uαi , we can choose a vertex path xαi { xα(i+1) mod r

residing in the lifted Uαi and hence in XU because Uαi is path connected. Consider the following
cycle obtained by concatenating the edge and vertex paths

γU = ẽ0xα0 { xα1 ẽ1 · · · ẽr−1xαr−1 { xα0

By projection, we have π(ẽi) = ei for every i ∈ [0, r − 1] and π(xαi { xα(i+1) mod r ) = vαi and thus
π(γU) = γ as required. �

Since we are eventually interested in the simplicial homology groups of the nerves rather than
the singular homology groups of their geometric realizations, we make one more transition using
the known isomorphism between the two homology groups. Specifically, if ιU : Hp(|N(U)|) →
Hp(N(U)) denotes this isomorphism, we let

φ̄U∗ : H1(X)→ H1(N(U)) denote the composition ιU ◦ φU∗. (13.2)

As a corollary to Proposition 4, we obtain:

Theorem 5. If U is path connected, φ̄U∗ : H1(X)→ H1(N(U)) is a surjection.
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U1

X

U2

ξ1

N(ξ1)

U3

ξ2

N(ξ2)

N(U2)N(U1) N(U3)

Figure 13.5: Sequence of cover maps induce a simplicial tower and hence a persistence module:
classes in H1 can only die.

From nerves to nerves. We now extend the result in Theorem 5 to simplicial maps between
two nerves induced by cover maps. Figure 13.5 illustrates this fact. The following proposition is
key to establishing the result.

Proposition 6 (Coherent partitions of unity). Suppose {Uα}α∈A = U
θ
−→ V = {Vβ}β∈B are open

covers of a compact topological space X and θ : A → B is a map of covers. Then there exists a
partition of unity {ϕα}α∈A subordinate to the cover U such that if for each β ∈ B we define

ψβ :=
{ ∑

α∈θ−1(β) ϕα if β ∈ im(θ);
0 otherwise.

then the set of functions {ψβ}β∈B is a partition of unity subordinate to the cover V.

Proof. The proof closely follows that of [14, Corollary pp. 97]. Since X is compact, there exists
a partition of unity {ϕα}α∈A subordinate to U. The fact that the sum in the expression of ψβ is
well defined and continuous follows from the fact that the family {supp(ϕα)}α is locally finite.
Let Cβ :=

⋃
α∈θ−1(β) supp(ϕα). The set Cβ is closed, Cβ ⊂ Uβ, and ψβ(x) = 0 for x < Cβ so that

supp(ψβ) ⊂ Cβ ⊂ Vβ. Now, to check that the family {Cβ}β∈B is locally finite pick any point x ∈ X.
Since {supp(ϕα)}α is locally finite there is an open set O containing x such that O intersects only
finitely many elements in U. Denote these cover elements by Uα1 , . . . ,Uα` . Now, notice if β ∈ B
and β < {θ(αi), i = 1, . . . , `}, then O does not intersect Cβ. Then, the family {supp(ψβ)}β∈B is
locally finite. It then follows that for x ∈ X one has∑

β∈B

ψβ(x) =
∑
β∈B

∑
α∈θ−1(β)

ϕα(x) =
∑
α∈A

ϕα(x) = 1.

We have obtained that {ψβ}β∈B is a partition of unity subordinate to V as needed by the propo-
sition. �

Let {Uα}α∈A = U
θ
−→ V = {Vβ}β∈B be two open covers of X connected by a map of covers

θ : A → B. Apply Proposition 6 to obtain coherent partitions of unity {ϕα}α∈A and {ψβ}β∈B
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subordinate to U and V, respectively. Let the nerve maps φU : X → |N(U)| and φV : X → |N(V)|
be defined as in Eqn. (13.1) using these coherent partitions of unity. Let N(U)

τ
→ N(V) be the

simplicial map induced by the cover map θ. The map τ can be extended to a (linear) continuous
map τ̂ : |N(U)|→|N(V)| by assigning y ∈ |N(U)| to τ̂(y) ∈ |N(V)| where

y =
∑

tαuα =⇒ τ̂(y) =
∑

tατ̂(uα), with
∑

tα = 1.

Claim 1. The map τ̂ satisfies the property that, for x ∈ X, τ̂(φU(x)) = φV(x).

Proof. For any point x ∈ X, one has φU(x) = Σα∈Aϕα(x)uα where uα is the vertex corresponding
to Uα ∈ U in |N(U)|. Then,

τ̂ ◦ φU(x) = τ̂

∑
α∈A

ϕα(x)uα

 =
∑
α∈A

ϕα(x)τ(uα) =
∑
α∈A

ϕα(x) vθ(α)

=
∑
β∈B

∑
α∈θ−1(β)

ϕα(x) vθ(α) =
∑
β∈B

ψβ(x)vβ = φV(x)

�

An immediate corollary of the above claim is:

Corollary 7. The induced maps of φU∗ : Hp(X) → Hp(|N(U)|), φV∗ : Hp(X) → Hp(|N(V)|), and
τ̂∗ : Hp(|N(U)|)→ Hp(|N(V)|) commute, that is, φV∗ = τ̂∗ ◦ φU∗.

Hp(X)

Hp(|N(U)|) Hp(|N(V)|)τ̂∗

φU∗ φV∗

ιU ιV

Hp(N(U)) Hp(N(V))τ∗

Figure 13.6: Maps relevant for Proposition 8; φ̄V∗ = ιV ◦ φV∗ and φ̄U∗ = ιU ◦ φU∗. The triangular
‘roof’ and the square ‘room’ commute, so does the entire ‘house’.

With the fact that isomorphism between singular and simplicial homology commutes with
simplicial maps and their linear continuous extensions, Corollary 7 implies that:

Proposition 8. φ̄V∗ = τ∗ ◦ φ̄U∗ where φ̄V∗ : Hp(X) → Hp(N(V)), φ̄U∗ : Hp(X) → Hp(N(U)) and
τ : N(U)→ N(V) is the simplicial map induced by a cover map U→ V.

Proof. Consider the diagram in Figure 13.6. The upper triangle commutes by Corollary 7. The
bottom square commutes by the property of simplicial maps, see Theorem 34.4 in [12]. The claim
in the proposition follows by combining these two commutating subdiagrams. �
Proposition 8 extends Theorem 5 to the simplicial maps between two nerves.
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Theorem 9. Let τ : N(U) → N(V) be a simplicial map induced by a cover map U → V where
both U and V are path connected. Then, τ∗ : H1(N(U))→ H1(N(V)) is a surjection.

Proof. Consider the maps

H1(X)
φ̄U∗
→ H1(N(U))

τ∗
→ H1(N(V)), and H1(X)

φ̄V∗
→ H1(N(V)).

By Proposition 8, τ∗ ◦ φ̄U∗ = φ̄V∗. By Theorem 5, the map φ̄V∗ is a surjection. It follows that τ∗ is
a surjection. �

13.2 Analysis of persistent H1-classes

Using the language of persistent homology, the results in the previous section imply that one
dimensional homology classes can die in the nerves, but they cannot be born. In this section,
we further characterize the classes that survive. The distinction among the classes is made via
a notion of ‘size’. Intuitively, we show that the classes with ‘size’ much larger than the ‘size’
of the cover survive. The ‘size’ is defined using a pseudometric that the space X is assumed to
be equipped with. Precise statements are made in the subsections. Let (X, d) be a pseudometric
space, meaning that d satisfies the axioms of a metric except the first axiom, that is, d(x, x′) = 0
may not necessarily imply x = x′. Assume X is compact. We define a ‘size’ for a homology class
that reflects how big the smallest cycle in the class is w.r.t. the metric d.

Definition 3. The size s(X′) of a subset X′ of the pseudometric space (X, d) is defined to be
its diameter, that is, s(X′) = supx,x′∈X′×X′ d(x, x′). The size of a class c ∈ Hp(X) is defined as
s(c) = infz∈c s(z).

Recall that a set of p-cycles z1, z2, . . . , zn of Hp(X) is called a cycle basis if the classes
[z1], [z2], . . . , [zn] together form a basis of Hp(X). It is called an optimal cycle basis if Σn

i=1s(zi) is
minimal among all cycle bases.

Lebesgue number of a cover. Our goal is to characterize the classes in the nerve of U with
respect to the sizes of their preimages in X via the map φU. The Lebesgue number of a cover U
becomes useful in this characterization. It is the largest real number λ(U) so that any subset of X
with size at most λ(U) is contained in at least one element of U. Formally, the Lebesgue number
λ(U) of U is defined as:

λ(U) = sup{δ | ∀X′ ⊆ X with s(X′) ≤ δ,∃Uα ∈ U where X′ ⊆ Uα}.

As we will see below, a homology class of size no more than λ(U) cannot survive in the
nerve (Proposition 12). Further, the homology classes whose sizes are significantly larger than
the maximum size of a cover do necessarily survive where we define the maximum size of a cover
as

smax(U) := max
U∈U
{s(U)}.

Theorem 10 summarizes these observations.
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Let z1, z2, . . . , zg be a non-decreasing sequence of the cycles with respect to their sizes in an
optimal cycle basis of H1(X). Consider the map φU : X → |N(U)| as introduced in Eqn. (13.1),
and the map φ̄U∗ as defined by Eqn. (13.2). We have the following result.

Theorem 10. Let U be a path connected cover of X and z1, z2, . . . , zg be a sequence of an optimal
cycle basis of H1(X) as stated above.

i. Let ` = g + 1 if λ(U) > s(zg). Otherwise, let ` ∈ [1, g] be the smallest integer so that
s(z`) > λ(U). If ` , 1, then we have that the class φ̄U∗[z j] = 0 for j = 1, . . . , ` − 1.
Moreover, if ` , g + 1, then the classes {φ̄U∗[z j]} j=`,...,g generate H1(N(U)).

ii. The classes {φ̄U∗[z j]} j=`′,...,g are linearly independent where s(z`′) > 4smax(U).

The result above says that only the classes of H1(X) generated by cycles of large enough size
survive in the nerve. To prove this result, we use a map ρ that sends each 1-cycle in N(U) to
a 1-cycle in X. We define a chain map ρ : C1(N(U)) → C1(X) among one dimensional chain
groups as follows. It is sufficient to exhibit the map for an elementary chain of an edge, say
e = {uα, uα′} ∈ C1(N(U)). Since e is an edge in N(U), the two cover elements Uα and Uα′ in X
have a common intersection. Let a ∈ Uα and b ∈ Uα′ be two points that are arbitrary but fixed
for Uα and Uα′ respectively. Pick a path ξ(a, b) (viewed as a singular chain) in the union of Uα

and Uα′ which is path connected as both Uα and Uα′ are. Then, define ρ(e) = ξ(a, b). A cycle γ
when pushed back by ρ and then pushed forward by φU remains in the same class. The following
proposition states this fact whose proof appears in [6].

Proposition 11. Let γ be any 1-cycle in N(U). Then, [φU(ρ(γ))] = [|γ|].

The following proposition provides a sufficient characterization of the cycles whose classes
become trivial after the push forward.

Proposition 12. Let z be a 1-cycle in C1(X). Then, [φU(z)] = 0 if λ(U) > s(z).

Proof. It follows from the definition of the Lebesgue number that there exists a cover element
Uα ∈ U such that z ⊆ Uα because s(z) < λ(U). We claim that there is a homotopy equivalence
that sends φU(z) to a vertex in N(U) and hence [φU(z)] is trivial.

Let x be any point in z. Recall that φU(x) = Σiϕi(x)uαi . Since Uα has a common intersection
with each Uαi so that ϕαi(x) , 0, we can conclude that φU(x) is contained in a simplex with the
vertex uα. Continuing this argument with all points of z, we observe that φU(z) is contained in
simplices that share the vertex uα. It follows that there is a homotopy that sends φU(z) to uα, a
vertex of N(U). �

Proof. [Proof of Theorem 10]
Proof of (i): By Proposition 12, we have φU∗[z] = [φU(z)] = 0 if λ(U) > s(z). This establishes the
first part of the assertion because φ̄U∗ = ι ◦ φU∗ where ι is an isomorphism between the singular
homology of |N(U)| and the simplicial homology of N(U). To see the second part, notice that φ̄U∗
is a surjection by Theorem 5. Therefore, the classes φ̄U∗(z) where s(z) ≥ λ(U) contain a basis for
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H1(N(U)). Hence they generate it.

Proof of (ii): For a contradiction, assume that there is a subsequence {`1, . . . , `t} ⊂ {`
′, . . . , g}

so that Σt
j=1[φU(z` j)] = 0. Let z = Σt

j=1φU(z` j). Let γ be a 1-cycle in N(U) so that [z] = [|γ|]
whose existence is guaranteed by Proposition 3. As Σt

j=1[φU(z` j)] = 0, it must be that there is
a 2-chain D in N(U) so that ∂D = γ. Consider a triangle t = {uα1 , uα2 , uα3} contributing to D.
Let a′i = φ−1

U
(uαi). Since t appears in N(U), the covers Uα1 ,Uα2 ,Uα3 containing a′1, a′2, and a′3

respectively have a common intersection in X. This also means that each of the paths a′1 { a′2,
a′2 { a′3, a′3 { a′1 has size at most 2smax(U). Then, ρ(∂t) is mapped to a 1-cycle in X of size at
most 4smax(U). It follows that ρ(∂D) can be written as a linear combination of cycles of size at
most 4smax(U). Since z1, . . . , zg form an optimal cycle basis of H1(X), each of the 1-cycles of size
at most 4smax(U) is generated by basis elements z1, . . . , zk where s(zk) ≤ 4smax(U). Therefore, the
class of z′ = φU(ρ(γ)) is generated by a linear combination of the basis elements whose preimages
have size at most 4smax(U). The class [z′] is same as the class [|γ|] by Proposition 11. But, by
assumption [|γ|] = [z] is generated by a linear combination of the basis elements whose sizes are
larger than 4smax(U) reaching a contradiction. Hence the assumption cannot hold and (ii) is true. �

13.3 Mapper and multiscale mapper

In this section we extend the previous results to the structures called mapper and multiscale map-
per. Recall that X is assumed to be compact. Consider a cover of X obtained indirectly as a
pullback of a cover of another space Z. This gives rise to the so-called Mapper. More precisely,
let f : X → Z be a continuous map where Z is equipped with an open cover U = {Uα}α∈A for
some index set A. Since f is continuous, the sets { f −1(Uα), α ∈ A} form an open cover of X. For
each α, we can now consider the decomposition of f −1(Uα) into its path connected components,
and we write f −1(Uα) =

⋃ jα
i=1 Vα,i, where jα is the number of path connected components Vα,i’s

in f −1(Uα). We write f ∗U for the cover of X obtained this way from the cover U of Z and refer to
it as the pullback cover of X induced by U via f . By construction, every element in this pullback
cover f ∗U is path connected.

Notice that there are pathological examples of f where f −1(Uα) may shatter into infinitely
many path components. This motivates us to consider well-behaved functions f : we require
that for every path connected open set U ⊆ Z, the preimage f −1(U) has finitely many open path
connected components. Consequently, all nerves of pullbacks of finite covers become finite.

Definition 4 (Mapper). Let X and Z be topological spaces and let f : X → Z be a well-behaved
and continuous map. Let U = {Uα}α∈A be a finite open cover of Z. The mapper arising from these
data is defined to be the nerve of the pullback cover f ∗(U) of X; that is, M(U, f ) := N( f ∗(U)). See
an illustration in Figure 13.7.

Notice that we define the mapper using finite covers which allow us to extend definitions
of persistence modules and persistence diagrams from previous chapters to the case of mappers.
However, in the next Remark and later we allow infinite covers for simplicity. The definition of
mapper remains valid with infinite covers.
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f

X Z

f

X Z

f−1

X Z

Figure 13.7: Mapper construction: (left) a map f : X → Z from a circle to a subset Z ⊂ R,
(middle) the inverse map f −1 induces a cover of circle from a cover U of Z, (right) the nerves of
the two covers of X and Z: the nerve on the left (quadrangle shaped) is the mapper induced by f
and U.

Remark 1. The construction of mapper is quite general if we allow the cover U to be infinite. For
example, it can encompass both the Reeb graph and merge trees: consider X a topological space
and f : X → R. Then, consider the following two options for U = {Uα}α∈A, the other ingredient
of the construction:

• Uα = (−∞, α) for α ∈ A = R. This corresponds to sublevel sets which in turn lead to merge
trees. See, for example, the construction in Figure 13.8(b).

• Uα = (α − ε, α + ε) for α ∈ A = R, for some fixed ε > 0. This corresponds to (ε-thick)
level sets, which induce a relaxed notion of Reeb graphs. See the description in “Mapper
for PCD” below and Figure 13.8(a).

In these two examples, for simplicity of presentation, the set A is allowed to have infinite cardi-
nality. Also, note one can take any open cover of R in this definition. This may give rise to other
constructions beyond merge trees or Reeb graphs. For instance, using the infinite setting for sim-
plicity again, one may choose any point r ∈ R and let Uα = (r − α, r + α) for each α ∈ A = R or
other constructions.

Mapper for PCD: Consider a finite metric space (P, dP), that is, a point set P with distances
between every pair of points. For a real r ≥ 0, one can construct a graph Gr(P) with every
point in P as a vertex where an edge (p, p′) is in Gr(P) if and only if the distance between p
and p′ is at most r. Let f : P → R be a real-valued function on the point set P. For a set of
intervals U covering R, we can construct the mapper as follows. For every interval (a, b) ∈ U,
let P(a,b) = f −1((a, b)) be the set of points with function values in the range (a, b). Each such set
consists of a partition P(a,b) = {Pi

(a,b)} determined by the graph connectivity of Gr(P). Each set
Pi

(a,b) consists of the vertices of a connected component of the subgraph of Gr(P) spanned by the
vertices in P(a,b). The vertex sets

⋃
(a,b)∈U{Pi

(a,b)} thus obtained over all intervals constitute a cover
f −1(U) of P. The nerve of this cover is the mapper M(P, f ). Here the intersection between cover
elements is determined by the intersection of discrete sets.

Observe that, in the above construction, if one takes the intervals of U = {Ui}i∈Z where
Ui = (i − ε, i + ε) for some ε ∈ (0, 1) causing only two consecutive intervals overlap partially,
then we get a discretized approximation of the Reeb graphs of the function that f approximates
on the discretized sample P. Figure 13.8 illustrates this observation. In the limit that each interval
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degenerates to a point, the discretized Reeb converges to the original Reeb graph as shown in [6,
11].

(a) (b)

r

Figure 13.8: Mapper construction for point cloud, a map f : P → Z from a PCD P to a subset
Z ⊂ R; the graph Gr is not shown: (a) covers are intervals; points are colored with the interval
colors, gray points have values in two overlapping intervals, the mapper is a discretized Reeb
graph; (b) the covers are sublevel sets, points are colored with the smallest levelset they belong
to, discretized Reeb graph does not have the central loop any more.

13.3.1 Multiscale Mapper

A mapper M(U, f ) is a simplicial complex encoding the structure of f through the lens of Z. How-
ever, the simplicial complex M(U, f ) provides only one snapshot of X at a fixed scale determined
by the scale of the cover U. Using the idea of persistent homology, we study the evolution of the
mapper M( f ,Ua) for a tower of covers U = {Ua}a∈A. The tower by definition coarsens the cover
with increasing indices and hence provides mappers at multiple scales.

As an intuitive example, consider a real-valued function f : X → R, and a cover Uε of R con-
sisting of all possible intervals of length ε. Intuitively, as ε tends to 0, the corresponding Mapper
M( f ,Uε) approaches the Reeb graph of f . As ε increases, we look at the Reeb graph at coarser
and coarser resolution. The multiscale mapper in this case roughly encodes this simplification
process.

The idea of multiscale mapper requires a sequence of covers of the target space connected by
cover maps. Through pullbacks, it generates a sequence of covers on the domain. In particular,
first we have:

Proposition 13. Let f : X → Z, and U and V be two covers of Z with a map of covers ξ : U→ V.
Then, there is a corresponding map of covers between the respective pullback covers of X: f ∗(ξ) :
f ∗(U) −→ f ∗(V).
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Proof. Indeed, we only need to note that if U ⊆ V , then f −1(U) ⊆ f −1(V), and therefore it is clear
that each path connected component of f −1(U) is included in exactly one path connected compo-
nent of f −1(V). More precisely, let U = {Uα}α∈A, V = {Vβ}β∈B, with Uα ⊆ Vξ(α) for α ∈ A. Let
Ûα,i, i ∈ {1, . . . , nα} denote the connected components of f −1(Uα) and V̂β, j, j ∈ {1, . . . ,mβ} denote
the connected components of f −1(Vβ). Then, the map of covers f ∗(ξ) from f ∗(U) to f ∗(V) is given
by requiring that each set Ûα,i is sent to the unique set of the form V̂ξ(α), j so that Ûα,i ⊆ V̂ξ(α), j. �

Furthermore, observe that if U
ξ
→ V

ζ
→ W are three different covers of a topological space

with the intervening maps of covers between them, then f ∗(ζ ◦ ξ) = f ∗(ζ) ◦ f ∗(ξ).
The above result for three covers easily extends to multiple covers and their pullbacks. The

sequence of pullbacks connected by cover maps and the corresponding sequence of nerves con-
nected by simplicial maps define multiscale mappers. Recall the definition of towers to designate

a sequence of objects connected with maps. Let U =
{
Ua

ua,a′
−→ Ua′

}
r≤a≤a′ denote a tower, where

r = res(U) refers to its resolution. The objects here can be covers, simplicial complexes, or vector
spaces. The notion of resolution and the variable a intuitively specify the granularity of the covers
and the simplicial complexes induced by them.

The pullback property given by Proposition 13 makes it possible to take the pullback of a
given tower of covers of a space via a given continuous function into another space as stated in
proposition below.

Proposition 14. Let U be a cover tower of Z and f : X → Z be a continuous function. Then,
f ∗(U) is a cover tower of X.

In general, given a cover tower W of a space X, the nerve of each cover in W together with
simplicial maps induced by each map ofW provides a simplicial tower which we denote by N(W).

Definition 5 (Multiscale Mapper). Let X and Z be topological spaces and f : X → Z be a
continuous map. Let U be a cover tower of Z. Then, the multiscale mapper is defined to be the
simplicial tower obtained by the nerve of the pullback:

MM(U, f ) := N( f ∗(U))

where the simplicial maps are induced by the respective cover maps. See Figure 13.9 for an
illustration.

Consider for example a sequence res(U) ≤ a1 < a2 < . . . < an of n distinct real numbers.
Then, the definition of multiscale mapper MM(U, f ) gives rise to the following simplicial tower:

N( f ∗(Ua1))→ N( f ∗(Ua2))→ · · · → N( f ∗(Uan)). (13.3)

which is a sequence of simplicial complexes connected by simplicial maps.
Applying to them the homology functor Hp(·), p = 0, 1, 2, . . ., with coefficients in a field, one

obtains a persistence module: tower of vector spaces connected by linear maps.

Hp
(
N( f ∗(Ua1))

)
→ · · · → Hp

(
N( f ∗(Uan))

)
. (13.4)

Given our assumptions that the covers are finite and that the function f is well-behaved, we
obtain that the homology groups of all nerves have finite dimensions. Thus, we get a persistence



Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 15

CT(Z)

Ua

Ua′

ua,a′

Ur

f ∗Ua

f ∗Ua′

f ∗(ua,a′)

f ∗Ur

f−1

ST(X)

N(f ∗Ua)

N(f ∗Ua′)

N(f ∗(ua,a′))

N(f ∗Ur)

Nerve

CT(X)

Figure 13.9: Illustrating construction of multiscale mapper from a cover tower; CT and ST denote
cover and simplicial towers respectively, that is, CT(Z) = U, CT(X) = f ∗(U), and ST(X) =

N( f ∗(U)).

module which is p.f.d.(see Topic 6 on towers). Now one can summarize the persistence module
induced by MM(U, f ) with its persistent diagram DgmpMM(U, f ) for each dimension p ∈ N. The
diagram DgmpMM(U, f ) can be viewed as a topological summary of f through the lens of U.

13.3.2 Persistence of H1-classes in mapper and multiscale mapper

To apply the results for nerves in Section 13.2 to mappers and multiscale mappers, we need a
‘size’ measure on X. For this, we assume that Z is a metric space and we pull back the metric to
X via f : X → Z. Assuming that X is path connected, let ΓX(x, x′) denote the set of all continuous
paths γ : [0, 1]→ X between any two given points x, x′ ∈ X so that γ(0) = x and γ(1) = x′.

Definition 6 (Pullback metric). Given a metric space (Z, dZ), we define its pullback metric as the
following pseudometric d f on X: for x, x′ ∈ X,

d f (x, x′) := inf
γ∈ΓX(x,x′)

diamZ( f ◦ γ).

Consider the Lebesgue number of the pullback covers of X. The following observation in this
respect is useful.

Proposition 15. Let U be a cover for the codomain Z and U′ be its restriction to f (X). Then, the
pullback cover f ∗U has the same Lebesgue number as that of U′; that is λ( f ∗U) = λ(U′).

Proof. First, observe that, for any path connected cover of X, a subset of X that realizes the
Lebesgue number can be taken as path connected because, if not, this subset can be connected
by a path entirely lying within the cover element containing it. Let X′ ⊆ X be any subset where
s(X′) ≤ λ(U′). Then, f (X′) ⊆ Z has a diameter at most λ(U′) by the definitions of size (Definition
3) and pullback metric. Therefore, by the definition of Lebesgue number, f (X′) is contained in
a cover element U′ ∈ U′. Since X′ is path connected, a path connected component of f −1(U′)
contains X′. It follows that there is a cover element in f ∗U that contains X′. Since X′ was chosen
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as an arbitrary path connected subset of size at most λ(U′), we have λ( f ∗U) ≥ λ(U′). At the same
time, it is straightforward from the definition of size that each cover element in f −1(U′) has at
most the size of U′ for any U′ ∈ U′. Combining with the fact that U′ is the restriction of U to
f (X), we have λ( f ∗U) ≤ λ(U′), establishing the equality as claimed. �

Given a cover U of Z, consider the mapper N( f ∗U). Let z1, . . . , zg be a set of optimal cycle
basis for H1(X) where the metric used to define optimality is the pullback metric d f . Then, as a
consequence of Theorem 10 we have:

Theorem 16. Let f : X → Z be a map from a path connected space X to a metric space Z
equipped with a cover U (i and ii below) or a tower of covers {Ua} (iii below). Let U′ be the
restriction of U to f (X).

i Let ` = g + 1 if λ(U′) > s(zg). Otherwise, let ` ∈ [1, g] be the smallest integer so that
s(z`) > λ(U′). If ` , 1, the class φU∗[z j] = 0 for j = 1, . . . , `− 1. Moreover, if ` , g + 1, the
classes {φU∗[z j]} j=`,...,g generate H1(N( f ∗U)).

ii The classes {φU∗[z j]} j=`′,...,g are linearly independent where s(z`′) > 4smax(U).

iii Consider a H1-persistence module of a multiscale mapper induced by a tower of path con-
nected covers:

H1
(
N( f ∗Ua0)

) s1∗
→ H1

(
N( f ∗Ua1)

) s2∗
→ · · ·

sn∗
→ H1

(
N( f ∗Uan)

)
(13.5)

Let ŝi∗ = si∗ ◦ s(i−1)∗ ◦ · · · ◦ φ̄Ua0∗
. Then, the assertions in (i) and (ii) hold for H1(N( f ∗Uai))

with the map ŝi∗ : X → N( f ∗Uai).

13.4 Stability

To be useful in practice, the multiscale mapper should be stable against the perturbations in the
maps and the covers. we show that such a stability is enjoyed by the multiscale mapper under
some natural condition on the tower of covers. Recall that previous stability results for towers
were drawn on the notion of interleaving. We identify compatible notions of interleaving for
cover towers as a way to measure the “closeness" between two cover towers.

13.4.1 Interleaving of cover towers and multiscale mappers

In this section we consider cover and simplicial towers indexed over R. In practice, we often have

a cover tower U =
{
Ua

ua,a′
−→ Ua′

}
a≤a′ indexed by a discrete set in A ⊂ R. Any such tower can be

extended to a cover tower indexed over R by taking Uε = Ua for each index ε ∈ (a, a′) where a, a′

are any two consecutive indices in the ordered set A.

Definition 7 (Interleaving of cover towers). Let U = {Ua} and V = {Va} be two cover towers
of a topological space X so that res(U) = res(V) = r. Given η ≥ 0, we say that U and V are
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η-interleaved if one can find cover maps ζa : Ua → Va+η and ξa′ : Va′ → Ua′+η for all a, a′ ≥ r;
see the diagram below.

· · · −→ Ua

ζa

��

// Ua+η
//

ζa+η

,,

Ua+2η −→ · · ·

· · · −→ Va //

ξa

>>

Va+η

ξa+η

22

// Va+2η −→ · · ·

Analogously, if we replace the operator ‘+’ by the multiplication ‘·’ in the above definition, then
we say that U and V are multiplicatively η-interleaved.

Proposition 17. (i) If U and V are (multiplicative) η1-interleaved and V andW are (multiplica-
tive) η2-interleaved, then, U and W are (multiplicative (η1η2)-) (η1 + η2)-interleaved. (ii) Let
f : X → Z be a continuous function and U and V be two (multiplicative) η-interleaved tower of
covers of Z. Then, f ∗(U) and f ∗(V) are also (multiplicative) η-interleaved.

Note that in the definition of interleaving cover towers, we do not have explicit requirement
that maps need to make sub-diagrams commute unlike the the interleaving between simplicial
towers. However, it follows from Proposition 2 that interleaving cover towers lead to interleaving
between simplicial towers for N(U) and N(V) as shown in the proposition below.

Proposition 18. Let U and V be two (multiplicatively) η-interleaved cover towers of X with
res(U) = res(V). Then, N(U) and N(V) are also (multiplicatively) η-interleaved.

Proof. We prove the proposition for additive interleaving. Replacing the ‘+’ operator with ‘·’
gives the proof for multiplicative interleaving. Let r denote the common resolution of U and V.

Write U =
{
Ua

ua,a′
−→ Ua′

}
r≤a≤a′ and V =

{
Va

va,a′
−→ Va′

}
r≤a≤a′ , and for each a ≥ r let ζa : Ua → Va+η

and ξa : Va → Ua+η be given as in Definition 7. To define interleaving between the towers of
nerves arising out of covers, we consider similar diagrams to tower interleaving at the level of
covers involving covers of the form Ua and Va, and apply the nerve construction. This operation
yields diagrams identical to those for towers where for every a, a′ where a′ ≥ a ≥ r:

• Ka := N(Ua), La := N(Va),

• xa,a′ := N(ua,a′), for r ≤ a ≤ a′; ya,a′ := N(va,a′), for r ≤ a ≤ a′; ϕa := N(ζa), and
ψa := N(ξa).

To satisfy Definition of interleaving, it remains to verify conditions (i) to (iv). We only verify (i),
since the proof of the others follows the same arguments. For this, notice that both the composite
map ξa+η ◦ ζa and ua,a+2η are maps of covers from Ua to Ua+2η. By Proposition 2 we then have
that N(ξa+η ◦ ζa) and N(ua,a+2η) = fa,a+2η are contiguous. But, by the properties of the nerve
construction N(ξa+η ◦ ζa) = N(ξa+η) ◦ N(ζa) = ψa+η ◦ ϕa, which completes the claim. �

Combining Proposition 17 and Proposition 18, we get that the two multiscale mappers under
cover perturbations stay stable, which is the first part of Corollary 19. Recall from Chapter on
General Persistence that, for a finite simplicial tower S and p ∈ N, we denote by Dgmp(S) the
p-th persistence diagram of the tower S with coefficients in a fixed field. Using Proposition 18, we
have a stability result for DgmpMM(U, f ) when f is kept fixed but the cover tower U is perturbed,
which is the second part of the corollary below.
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Corollary 19. For η ≥ 0, let U and V be two finite cover towers of Z with res(U) = res(V) >
0. Let f : X → Z be well-behaved and U and V be η-interleaved. Then, MM(U, f ) and
MM(V, f ) are η-interleaved. In particular, the bottleneck distance between the persistence di-
agrams DgmpMM(U, f ) and DgmpMM(V, f ) is at most η for all p ∈ N.

13.4.2 (c, s)-good covers

Although DgmpMM(U, f ) is stable under perturbations of the covers U as we showed, it is not
necessarily stable under perturbations of the map f . To address this issue, we introduce a special
family of covers called (c,s)-good covers. To define these covers, we use the index value of the
covers to denote their scales. The notation ε for indexing is chosen to emphasize this meaning.

Definition 8 ((c, s)-good cover tower). Given a cover tower U = {Uε}ε≥s, we say that it is (c,s)-
good if for any ε ≥ s, we have that (i) smax(Uε) ≤ ε and (ii) λ(Ucε) ≥ ε.

As an example, consider the cover tower U = {Uε}ε≥s with Uε := {Bε/2(z) | z ∈ Z}. It is a
(2, s)-good cover tower of the metric space (Z, dZ).

We now characterize the persistent homology of multiscale mappers induced by (c,s)-good
cover towers. Theorem 20 states that the multiscale-mappers induced by any two (c, s)-good cover
towers interleave with each other, implying that their respective persistence diagrams are also
close under the bottleneck distance. From this point of view, the persistence diagrams induced by
any two (c,s)-good cover towers contain roughly the same information.

Theorem 20. Given a map f : X → Z, let U = {Uε

uε,ε′
−→ Uε′

}
ε≤ε′ and V = {Vε

vε,ε′
−→ Vε′

}
ε≤ε′

be two (c, s)-good cover towers of Z. Then the corresponding multiscale mappers MM(U, f ) and
MM(V, f ) are multiplicatively c-interleaved.

Proof. First, we make the following observation.

Claim 2. Any two (c, s)-good cover towers U and V are multiplicatively c-interleaved.

Proof. It follows easily from the definitions of (c, s)-good cover tower. Specifically, first we
construct ζε : Uε → Vcε. For any U ∈ Uε, we have that diam(U) ≤ ε. Furthermore, since V is
(c, s)-good, there exists V ∈ Vcε such that U ⊆ V . Set ζε(U) = V; if there are multiple choice of
V , we can choose an arbitrary one. We can construct ξε′ : Vε′ → Ucε′ in a symmetric manner, and
the claim then follows. �
This claim, combined with Propositions 17 and 18, prove the theorem. �

We also need the following definition in order to state the stability results precisely.

Definition 9. Given a tower of covers U = {Uε} and ε0 ≥ res(U), we define the ε0-truncation of
U as the tower Trε0(U) :=

{
Uε

}
ε0≤ε

. Observe that, by definition res(Trε0(U)) = ε0.

Proposition 21. Let X be a compact topological space, (Z, dZ) be a compact path connected
metric space, and f , g : X → Z be two continuous functions such that for some δ ≥ 0 one has that
δ = maxx∈X dZ( f (x), g(x)). LetW be any (c, s)-good cover tower of Z. Let ε0 = max(1, s). Then,
the ε0-truncations of f ∗(W) and g∗(W) are multiplicatively

(
2c max(δ, s) + c

)
-interleaved.
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Proof. For notational convenience write η := 2c max(δ, s) + c, {Ut} = U := f ∗(W), and {Vt} =

V := g∗(W). With regards to satisfying the definition of interleaving for U and V, for each ε ≥ ε0
we need only exhibit maps of covers ζε : Uε → Vηε and ξε : Vε → Uηε. We first establish the
following, where recall that the offset Or is defined as Or := {z ∈ Z | dZ(z,O) ≤ r}.

Claim 3. For all O ⊂ Z, and all δ′ ≥ δ, f −1(O) ⊆ g−1(Oδ′).

Proof. Let x ∈ f −1(O), then dZ( f (x),O) = 0. Thus,

dZ(g(x),O) ≤ dZ( f (x),O) + dZ(g(x), f (x)) ≤ δ,

which implies the claim. �

Now, pick any ε ≥ ε0, any U ∈ Uε, and fix δ′ := max(δ, s). Then, there exists W ∈ Wε

such that U ∈ cc( f −1(W)), where cc(Y) stands for the set of path connected components of Y .
Claim 3 implies that f −1(W) ⊆ g−1(Wδ′). Since W is a (c, s)-good cover of the connected space
Z and s ≤ max(δ, s) ≤ 2δ′ + ε, there exists at least one set W′ ∈ Wc(2δ′+ε) such that Wδ′ ⊆ W′.
This means that U is contained in some element of cc(g−1(W′)) where W′ ∈Wc(2δ′+ε). But, also,
since c(2δ′ + ε) ≤ c(2δ′ + 1)ε for ε ≥ ε0 ≥ 1, there exists W′′ ∈ Wc(2δ′+1)ε such that W′ ⊆ W′′.
This implies that U is contained in some element of cc(g−1(W′′)) where W′′ ∈ Wc(2δ′+1)ε. This
process, when applied to all U ∈ Uε, all ε ≥ ε0, defines a map of covers ζt : Ut → V(2cδ′+c)ε. A
similar observation produces for each ε ≥ ε0 a map of covers ξε from Vε to V(2cδ′+c)ε.

So we have in fact proved that ε0-truncations of U and V are multiplicatively η-interleaved. �

Applying Proposition 21, Proposition 18, we get the following result, where Dgmlog stands
for the persistence diagram at the log-scale (of coordinates).

Corollary 22. LetW be a (c, s)-good cover tower of the compact connected metric space Z and let
f , g : X → Z be any two well-behaved continuous functions such that maxx∈X dZ( f (x), g(x)) = δ.
Then, the bottleneck distance between the persistence diagrams

db(DgmlogMM(W, f
)
,DgmlogMM

(
W, g

)
) ≤ log(2c max(s, δ) + c) + max(0, log

1
s

).

Proof. We use the notation of Proposition 21. Let U = f ∗(W) and V = g∗(W). If max(1, s) = s,
then U and V are multiplicatively (2c max(s, δ) + c)-interleaved by Proposition 21 which gives a
bound on the bottleneck distance of log(2c max(s, δ) + c) between the corresponding persistence
diagrams at the log-scale. In the case when s < 1, the bottleneck distance remains the same only
for the 1-truncations of U and V. Shifting the starting point of the two families to the left by at
most s can introduce barcodes of lengths at most log 1

s or can stretch the existing barcodes to the
left by at most log 1

s for the respective persistence modules at the log-scale. To see this, consider
the persistence module below where ε1 = s:

Hk
(
N( f ∗(Uε1))

)
→ Hk

(
N( f ∗(Uε2))

)
→ · · · · · · → Hk

(
N( f ∗(U1))

)
→ · · · → Hk

(
N( f ∗(Uεn))

)
A homology class born at any index in the range [s, 1) either dies at or before the index 1 or

is mapped to a homology class of Hk
(
N( f ∗(U1))

)
. In the first case we have a bar code of length at

most | log s| = log 1
s at the log-scale. In the second case, a bar code of the persistence module
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Hk
(
N( f ∗(Uε1))

)
→ · · · → Hk

(
N( f ∗(Uεn))

)
starting at index 1 gets stretched to the left by at most | log s| = log 1

s . The same conclusion can
be drawn for the persistence module induced by V. Therefore the bottleneck distance between
the respective persistence diagrams at log-scale changes by at most log 1

s . �

13.4.3 Relation to intrinsic Čech filtration

In Section 13.3.2, we have seen that given a tower of covers U and a map f : X → Z there exists
a natural pull-back pseudo-metric d f defined on the input domain X (Definition 6). With such a
pseudo-metric on X, we can now construct the standard (intrinsic) Čech filtration C(X) = {Cε(X)}ε
(or Rips filtration) in X directly, instead of computing the Nerve complex of the pull-back covers
as required by mapper. The resulting filtration C(X) is connected by inclusion maps instead of
simplicial maps. This is easier for computational purposes even though one has a method to
compute the persistence diagram of a tower involving arbitrary simplicial maps. Furthermore,
it turns out that the resulting sequence of Čech complexes C interleaves with the sequence of
complexes MM(U, f ), implying that their corresponding persistence diagrams approximate each
other. Specifically, in Theorem 23, we show that when the codomain of the function f : X → Z is
a metric space (Z, dZ), the multiscale mapper induced by any (c, s)-good cover tower interleaves
(at the homology level) with an intrinsic Čech filtration of X defined below. We have already
considered Čech filtrations before. However, we considered only a finite subset of a metric space
to define the Čech complex. Here we redefine it again to account for the fact that each point of
the (pseudo-)metric space is considered and call it intrinsic Čech complex (see an earlier example
of intrinsic Čech complex when we analyzed graphs).

Definition 10. Given a (pseudo)metric space (Y, dY ), its intrinsic Čech complex Cr(Y) at scale r is
defined as the nerve complex of the set of intrinsic r-balls {B(y; r)}y∈Y defined using (pseudo)metric
dY .

The above definition gives way to defining a Čech filtration.

Definition 11 (Intrinsic Čech filtration). The intrinsic Čech filtration of the (pseudo)metric space
(Y, dY ) is

C(Y) = {Cr(Y) ⊆ Cr′(Y)}0<r<r′ .

The intrinsic Čech filtration at resolution s is defined as Cs(Y) = {Cr(Y) ⊆ Cr′(Y)}s≤r<r′ .

Recall the definition of the pseudometric d f on X (Definition 6) induced from a metric on Z.
Applying Definition 10 on the pseudometric space (X, d f ), we obtain its intrinsic Čech complex
Cr(X) at scale r and then its Čech filtration Cs(X).

Theorem 23. Let Cs(X) be the intrinsic Čech filtration of (X, d f ) starting with resolution s. Let

U = {Uε

uε,ε′
−→ Uε′

}
s≤ε≤ε′ be a (c, s)-good cover tower of the compact connected metric space Z.

Then the multiscale mapper MM(U, f ) and Cs(X) are multiplicatively 2c-interleaved.

By a property (see the book) of multiplicative interleaving, the following result is deduced
immediately from Theorem 23.
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Corollary 24. Given a continuous map f : X → Z and a (c, s)-good cover tower U of Z, let
DgmlogMM(U, f ) and DgmlogCs denote the log-scaled persistence diagram of the persistence
modules induced by MM(U, f ) and by the intrinsic Čech filtration Cs of (X, d f ) respectively. We
have that

db(DgmlogMM(U, f ),DgmlogCs) ≤ 2c.

13.5 Exact Computation for PL-functions on simplicial domains

The stability result in Theorem 23 further motivates us to design efficient algorithms for con-
structing multiscale mapper or its approximation in practice. A priori, the construction of the
mapper and multiscale mapper may seem clumsy. Even for PL-functions defined on a simplicial
complex, the standard algorithm needs to determine for each simplex the subset (partial simplex)
on which the function value falls within a certain range. We observe that for such an input, it is
sufficient to consider the restriction of the function to the 1-skeleton of the complex for computing
the mapper and the multiscale mapper. Since the 1-skeleton (a graph) is typically much smaller
in size than the full complex, this helps improving the time efficiency of computing the mapper
and multiscale mapper.

Consider one of the most common types of input in practice, a real-valued PL-function f :
|K| → R defined on the underlying space |K| of a simplicial complex K given as a vertex function.
In what follows, we consider this PL setting, and show that interestingly, if the input function
satisfies a mild “minimum diameter" condition, then we can compute both mapper and multiscale
mapper from simply the 1-skeleton (graph structure) of K. This makes the computation of the
multiscale mapper from a PL-function significantly faster and simpler as its time complexity
depends on the size of the 1-skeleton of K, which is typically orders of magnitude smaller than
the total number of simplices (such as triangles, tetrahedra, etc) in K.

Recall that K1 denote the 1-skeleton of a simplicial complex K: that is, K1 contains the set of
vertices and edges of K. Define f̃ : |K1| → R to be the restriction of f to |K1|; that is, f̃ is the PL
function on |K1| induced by function values at vertices.

Condition 1 (Minimum diameter condition). For a cover towerW of a compact connected metric
space (Z, dZ), let

κ(W) := inf{diam(W); W ∈W ∈ W}

denote the minimum diameter of any element of any cover of the tower W. Given a simplicial
complex K with a function f : |K| → Z and a tower of covers W of the metric space Z, we say
that (K, f ,W) satisfies the minimum diameter condition if diam( f (σ)) ≤ κ(W) for every simplex
σ ∈ K.

In our case, f is a PL-function, and thus satisfying the minimum diameter condition means
that for every edge e = (u, v) ∈ K1, | f (u) − f (v)| ≤ κ(W). In what follows we assume that K is
connected. We do not lose any generality by this assumption because the arguments below can be
applied to each connected component of K.

Definition 12 (Isomorphic simplicial towers). Two simplicial towers S =
{
S ε

sε,ε′
−→ S ε′

}
and

T =
{
Tε

tε,ε′
−→ Tε′

}
are isomorphic, denoted S � T, if res(S) = res(T), and there exist simpli-

cial isomorphisms ηε and ηε′ such that the diagram below commutes for all res(S) ≤ ε ≤ ε′.
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S ε

sε,ε′ //

ηε

S ε′

ηε′

Tε
tε,ε′ // Tε′

Our main result in this section is the following theorem which enables us to compute the mapper,
multiscale mapper, as well as the persistence diagram for the multiscale mapper of a PL function
f from its restriction f̃ to the 1-skeleton of the respective simplicial complex.

Theorem 25. Given a PL-function f : |K| → R and a tower of covers W of the image of f
with (K, f ,W) satisfying the minimum diameter condition, we have that MM(W, f ) � MM(W, f̃ ),
where f̃ is the restriction of f to |K1|.

We show in Proposition 26 that the two mapper outputs M(W, f ) and M(W, f̃ ) are identical
up to a relabeling of their vertices (hence simplicially isomorphic) for every W ∈ W. Also, since
the simplicial maps in the filtrations MM(W, f ) and MM(W, f̃ ) are induced by the pullback of the
same tower of covers W, they are identical again up to the same relabeling of the vertices. This
then establishes the theorem.

In what follows, for clarity of exposition, we use X and X1 to denote the underlying space |K|
and |K1| of K and K1, respectively. Also, we do not distinguish between a simplex σ ∈ K and its
image |σ| ⊆ X and thus freely say σ ⊆ X when it actually means that |σ| ⊆ X for a simplex σ ∈ K.

Proposition 26. If (K, f ,W) satisfies the minimum diameter condition, then for every W ∈ W,
M(W, f ) is identical to M(W, f̃ ) up to relabeling of the vertices.

Proof. Let U = f ∗W and Ũ = f̃ ∗W. By definition of f̃ , each Ũ ∈ Ũ is a connected component
of some U ∩ X1 for some U ∈ U. In Proposition 27, we show that U ∩ X1 is connected for every
U ∈ U. Therefore, for every element U ∈ U, there is a unique element Ũ = U ∩ X1 in Ũ and vice
versa. It is not hard to show that

⋂k
i=1 Ui , ∅ if and only if

⋂k
i=1 Ũi , ∅. This finishes the proof. �

Proposition 27. If (X, f ,W) satisfies the minimum diameter condition, then for every W ∈ W and
every U ∈ f ∗(W), the set U ∩ X1 is connected.

Proof. Fix U ∈ f ∗(W). If U ∩ X1 is not connected, let C1, . . . ,Ck denote its k ≥ 2 connected
components. First, we show that each Ci contains at least one vertex of X1. Let e = (u, v)
be any edge of X1 that intersects U. If both ends u and v lie outside U, then | f (u) − f (v)| >
|maxU f −minU f | ≥ κ(W). But, this violates the minimum diameter condition. Thus, at least one
vertex of e is contained in U. It immediately follows that Ci contains at least one vertex of X1.

Let ∆ be the set of all simplices σ ⊆ X so that σ ∩ U , ∅. Fix σ ∈ ∆ and let x be any point
in σ ∩ U. We defer the proof of the following claim as an exercise.

Claim 4. There exists a point y in an edge of σ so that f (x) = f (y).

Since σ contains an edge e that is intersected by U, it contains a vertex of e that is contained
in U. This means every simplex σ ∈ ∆ has a vertex contained in U. For each i = 1, . . . , k let
∆i := {σ ⊆ X |V(σ) ∩ Ci , ∅.} Since every simplex σ ∈ ∆ has a vertex contained in U, we have
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∆ =
⋃

i ∆i. We argue that the sets ∆1, . . . ,∆k are disjoint from each other. Otherwise, there exist
i , j and a simplex σ with a vertex u in ∆i and another vertex v in ∆ j. Then, the edge (u, v) must
be in U because f is PL. But, this contradicts that Ci and C j are disjoint. This establishes that
each ∆i is disjoint from each other and hence ∆ is not connected contradicting that U is connected.
Therefore, our initial assumption that U ∩ X1 is disconnected is wrong. �

13.6 Approximating multiscale mapper for general maps

While results in the previous section concern real-valued PL-functions, we now provide a sig-
nificant generalization for the case where f maps the underlying space of K into an arbitrary
compact metric space Z. We present a “combinatorial” version of the (multiscale) mapper where
each connected component of a pullback f −1(W) for any cover W in the cover of Z consists of
only vertices of K. Hence, the construction of the Nerve complex for this modified (multiscale)
mapper is purely combinatorial, simpler, and more efficient to implement. But we lose the “exact-
ness”, that is, in contrast with the guarantees provided by Theorem 25, the combinatorial mapper
only approximates the actual multiscale mapper at the homology level. Also, it requires a (c, s)-
good tower of covers of Z. One more caveat is that the towers of simplicial complexes arising in
this case do not interleave in the (strong) sense but in a weaker sense (see the PCD chapter). This
limitation worsens the approximation result by a factor of 3.

In what follows, as before, cc(O) for a set O denotes the set of all path connected components
of O.

Given a map f : |K| → Z defined on the underlying space |K| of a simplicial complex K, to
construct the mapper and multiscale mapper, one needs to compute the pullback cover f ∗(W) for
a cover W of the compact metric space Z. Specifically, for any W ∈ W one needs to compute
the preimage f −1(W) ⊂ |K| and shatter it into connected components. Even in the setting adopted
in 13.5, where we have a PL function f̃ : |K1| → R defined on the 1-skeleton K1 of K, the
connected components in cc( f̃ −1(W)) may contain vertices, edges, and also partial edges: say for
an edge e ∈ K1, its intersection eW = e ∩ f −1(W) ⊆ e, that is, f (eW) = f (e) ∩ W, is a partial
edge. See Figure 13.10 for an example. In general for more complex maps, σ ∩ f −1(W) for any
k-simplex σ may be partial triangles, tetrahedra, etc., which can be nuisance for computations.
The combinatorial version of mapper and multiscale mapper sidesteps this problem by ensuring
that each connected component in the pullback f −1(W) consists of only vertices of K. It is thus
simpler and faster to compute.

13.6.1 Combinatorial mapper and multiscale mapper

Let G be a graph with vertex set V(G) and edge set E(G). Suppose we are given a map f :
V(G)→ Z and a finite open cover W = {Wα}α∈A of the metric space (Z, dZ). For any Wα ∈W, the
preimage f −1(Wα) consists of a set of vertices which is shattered into subsets by the connectivity
of the graph G. These subsets are taken as connected components. We now formalize this:

Definition 13 (G-induced connected component). Given a set of vertices O ⊆ V(G), the set of
connected components of O induced by G, denoted by ccG(O), is the partition of O into a maximal
subset of vertices connected in GO ⊆ G, the subgraph spanned by vertices in O. We refer to each
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W

f

G

f−1(W )

Figure 13.10: Partial thickened edges belong to the two connected components in f −1(W). Note
that each set in ccG( f −1(W)) contains only the set of vertices of a component in cc( f −1(W)).

Algorithm 1 MMapper( f ,K,W)

Input:
f : |K| → Z given by fV : V(K)→ Z, a cover towerW = {W1, . . . ,Wt}

Output:
Persistence diagram Dgm∗(MMK1(W, fV )) induced by the combinatorial MM of f w.r.t. W

1: for i = 1, . . . , t do
2: compute VW ⊆ V(K) where f (VW) = f (V(K)) ∩W and {V j

W } j = ccK1(VW), ∀W ∈Wi;
3: compute Nerve complex Ni = N({V j

W } j,W).
4: end for
5: compute the filtration F : {Ni→Ni+1, i ∈ [1, t − 1]}
6: compute Dgm∗(F).

such maximal subset of vertices as a G-induced connected component of O. We define f ∗G (W), the
G-induced pull-back via the function f , as the collection of all G-induced connected components
ccG( f −1(Wα)) for all α ∈ A.

Definition 14. (G-induced multiscale mapper) Similar to the mapper construction, we define the
G-induced mapper MG(W, f ) as the nerve complex N( f ∗G(W)).

Given a tower of coversW = {Wε} of Z, we define the G-induced multiscale mapper MMG(W, f )
as the tower of G-induced nerve complexes {N( f ∗G(Wε)) |Wε ∈ W}.

Given a map f : |K| → Z defined on the underlying space |K| of a simplicial complex K, let
fV : V(K) → R denote the restriction of f to the vertices of K. Consider the 1-skeleton graph
K1 that provides the connectivity information for vertices in V(K). Given any cover tower W of
the metric space Z, the K1-induced multiscale mapper MMK1(W, fV ) is called the combinatorial
multiscale mapper of f w.r.t. W.
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13.6.2 Advantage of combinatorial multiscale mapper

A simple description of the computation of the combinatorial mapper is in Algorithm 1. For the
simple PL example in Figure 13.10, f −1(W) contains two connected components, one consists of
the set of white dots, while the other consists of the set of black dots. More generally, the con-
struction of the pullback cover needs to inspect only the 1-skeleton K1 of K, which is typically
of significantly smaller size. Furthermore, the construction of the Nerve complex Ni as in Algo-
rithm 1 is also much simpler: We simply remember, for each vertex v ∈ V(K), the set Iv of ids of
connected components {V j

W } j,W∈Wi which contain it. Any subset of Iv gives rise to a simplex in
the Nerve complex Ni.

Let MM(W, f ) denote the standard multiscale mapper as introduced in 13.3.1. Our main
result in this section is that ifW is a (c, s)-good cover tower of Z, then the resulting two simplicial
towers, MM(W, f ) and MMK1(W, fV ) weakly interleave (Definition in the book), and admits a
bounded distance between their respective persistence diagrams as a consequence of the weak-
interleaving result of [3]. This weaker setting of interleaving worsens the approximation by a
factor of 3.

Theorem 28. Assume that (Z, dZ) is a compact and connected metric space. Given a map f :
|K| → Z, let fV : V(K)→ Z be the restriction of f to the vertex set V(K) of K.

Given a (c, s)-good cover tower W of Z such that (K, f ,W) satisfies the minimum diameter
condition (cf. Condition 1), the bottleneck distance between the persistence diagrams DgmlogMM

(
W, f

)
and DgmlogMMK1

(
W, fV

)
is at most 3 log(3c) + 3 max(0, log 1

s ) for all k ∈ N.

13.7 Notes and Exercises

A corollary of the nerve theorem is that the space and the nerve have isomorphic homology
groups if all intersections of cover elements are homotopically trivial. This chapter studies a case
when covers do not necessarily satisfy this property. The result that for path connected covers,
no new 1-dimensional homology class is created in the nerve is proved in [6]. The materials in
sections 13.1 and 13.2 are taken from there. This result can be generalized for other dimensions;
see Exercise 5.

The concept of mapper was introduced by Singh, Mémoli, and Carlsson [15], and has since
been used in diverse applications, e.g [9, 10, 13, 16]. The authors of [15] showed for the first time
that a cover for the codomain in addition to domains can be useful for data analysis. The mapper in
some sense is connected to Reeb graphs (spaces) where the cover elements degenerate to points
in the codomain, see [11] for example. The structure and stability of 1-dimensional mapper is
studied in great details by Carrièr and Oudot in [2]. They showed that given a real valued function
f : X → R and an appropriate cover U, the extended persistence diagram of a mapper M(U, f ) is a
subset of the same of the Reeb graph R f . Furthermore, they characterized the features of the Reeb
graph that may disappear from the mapper. The mapper (for a real-valued function f ) can also be
viewed as a Reeb graph R f ′ of a perturbed function f ′ : X′ → R. It is shown in [2] how one can
track the changes between R f and the mapper by computing the functional distortion distance (see
Reeb graphs) between R f and R f ′ . In [1], the author established a convergence result between
Mapper for a real valued f and the Reeb graph R f . Specifically, the mapper is characterized with
a zigzag persistence module that is a coarsening of the zigzag persistence module for R f . It is
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shown that the mapper converges to R f in the bottleneck distance of the corresponding zigzag
persistence diagrams as the lengths of the intervals in the cover approaches zero. Munch and
Wang [11] showed a similar convergence in interleaving distance using sheaf theory [4].

The multiscale mapper which work on the notion of a filtration of covers was developed in [5].
Most of the materials in this chapter are taken from this paper. The results on the class of 1-cycles
that persist through multiscale mapper are taken from [6].

Exercises

1. For a simplicial complex K, simplices with no cofacet are called maximal simplices. Con-
sider a closed cover of |K|with the closures of the maximal simplices as the cover elements.
Let N(K) denote the nerve of this cover. Prove that N(N(K)) is isomorphic to a subcomplex
of K.

2. A vertex v in K is called dominated by a vertex v′ if every maximal simplex containing v
also contains v′. We say K collapses strongly to a complex L if L is obtained by a series
of deletions of dominated vertices with all their incident simplices. Show that K strongly
collapses to N(N(K)).

3. We say a cover U of a metric space (Y, d) is (α, β)-cover if α ≤ λ(U) and β ≥ smax(U).

• Consider a δ-sample P of Y , that is, every metric ball B(y; δ), y ∈ Y , contains a point
in P. Prove that the cover U = {B(p; 2δ)}p∈P is a (δ, 4δ)-cover of Y .

• Prove that the infinite cover U = {B(y; δ)}y∈Y is a (δ, 2δ)-cover of Y .

4. Theorem 5 requires that the cover to be path connected. Show that this condition is neces-
sary by presenting a counterexample otherwise.

5. One may generalize Theorem 5 as follows: If for any k ≥ 0, t-wise intersections of cover
elements for all t > 0 have trivial reduced homology for Hk−t, then the nerve map induces a
surjection in Hk. Prove or disprove it.

6. Consider a function f : X → Z from a path connected space X to a metric space Z. Definite
the equivalence relation ∼ f such that x ∼ f x′ holds if and only if f (x) = f (x′) and there
exists a continuous path γ ∈ ΓX(x, x′) such that f ◦ γ is constant. The Reeb space R f is the
quotient of X under this equivalence relation.

• Prove that the quotient map q : X → R f is surjective and also induces a surjection
q∗ : H1(X)→ H1(R f ).

• Call a class [c] ∈ H1(X) vertical if and only if there is no c′ ∈ C1(X) so that [c] = [c′]
and f ◦σ is constant for every σ ∈ c′. Show that q∗([c]) , 0 if and only if c is vertical.

• Let z1, . . . , zg be an optimal cycle basis of H1(X) defined with respect to the pseudo-
metric d f . Let ` ∈ [1, g] be the smallest integer so that s(z`) , 0. Prove that if no such
` exists, H1(R f ) is trivial, otherwise, {[q(zi)]}i=`,...g is a basis for H1(R f ).
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7. Let us endow R f with a distance d̃ f that descends via the map q: for any equivalence classes
r, r′ ∈ R f , pick x, x′ ∈ X with r = q(x) and r′ = q(x′), then define

d̃ f (r, r′) := d f (x, x′).

Prove that d̃ f is a pseudo-metric.

8. Prove Proposition 17.

9. Prove Theorem 23.

10. Prove Claim 4.
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