
Computational Topology for Data Analysis: Notes
from Book by

Tamal Krishna Dey
Department of Computer Science

Purdue University
West Lafayette, Indiana, USA 46907

Yusu Wang
Halıcıoğlu Data Science Institute

University of California, San Diego
La Jolla, California, USA 92093

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 1

Topic 15: Multiparameter Persistence and Distances

We have seen that persistence modules are important objects of study in topological data analy-
sis in that they serve as an intermediate between the raw input data and the output summariza-
tion with persistence diagrams. For 1-parameter case, the distances between modules can be
computed from bottleneck distances between the corresponding persistence diagrams. For mul-
tiparameter persistence modules, we already that the indecomposables which are analogues to
bars in 1-parameter case are more complicated. So, defining distances between persistence mod-

Figure 15.1: A 2-parameter module is sliced by lines that provide matching distance between two
modules as we explain in Section 15.3. Figure is courtesy to RIVET software due to [22].

ules in terms of indecomposables become also more complicated. However, we need distance
or distance-like notion between persistence modules to compare the input data inducing them.
Figure 15.1 shows an output of RIVET software [22] that implemented the so-called matching
distance between 2-parameter persistence modules. In this chapter, we describe some of these
distances proposed in the literature and algorithms for computing them efficiently (polynomial
time).

The interleaving distance dI between 1-parameter persistence modules as defined earlier pro-
vides a useful means to compare them. Fortunately, for 1-parameter persistence modules, they can
be computed exactly by computing the bottleneck distance db between their persistence diagrams
thanks to the isometry theorem [21] (see also [1, 12]). We have seen a polynomial time algorithm
O(n1.5 log n) for computing bottleneck distance. The status however is not so well settled for
multiparameter persistence modules.

One of the difficulties facing the definition and computation of distances among multiparame-
ter persistence modules is the fact that their indecomposables do not have a finite characterization
as indicated previously. Even for finitely generated modules, this is true though a unique decom-

2 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

position is guaranteed by Krull-Schmidt Theorem [16]. Despite this difficulty, one can define
an interleaving distance dI for multiparameter persistence modules which can be viewed as an
extension of the interleaving distance defined for 1-parameter persistence modules. Shown by
Lesnick [21], this distance is the most fundamental one because it is the most discriminative
distance among persistence modules that is also stable with respect to functions or simplicial fil-
trations that give rise to the modules. Unfortunately, it turns out that computing dI for n-parameter
persistence modules and even approximating it within a factor less than 3 is NP-hard for n ≥ 2.
For a special case of modules called interval modules, dI can be computed in polynomial time.
In Section 15.2, we introduce the interleaving distance for multiparameter persistence modules.
We follow it with a polynomial time algorithm [15] in Section 15.4.3 which computes dI for
2-parameter interval modules.

To circumvent the problem of computing interleaving distances, several other distances have
been proposed in the literature that is computable in polynomial time and bounds the interleaving
distance either from above or below, but not both in the general case. Given the NP-hardness of
approximating interleaving distance, there cannot exist any polynomial time computable distance
that bounds dI both from above and below within a constant factor of 3 unless P = NP. The
matching distance dm as defined in Section 15.3 bounds dI from below, that is, dm ≤ dI , and it
can be computed in polynomial time.

Finally, in Section 15.4, we extend the definition of the bottleneck distance to multiparam-
eter persistence modules. Extending the concept from 1-parameter case, one can define db as
the supremum of the pairwise interleaving distances between indecomposables under an opti-
mal matching. Then, straightforwardly, dI ≤ db but the converse is not necessarily true. It is
known that no lower bound in terms of db for dI may exist even for a special class of 2-parameter
persistence modules called interval decomposable modules [6]. However, db can be useful as
a reasonable upper bound to dI . Unfortunately, a polynomial time algorithm for computing db

is not known for general persistence modules. For some persistence modules whose indecom-
posables have constant description such as block decomposable modules, one can compute db in
polynomial time simply because the interleaving distance between any two modules with constant
description cannot take more than O(1) time.

In Section 15.4, we consider a special class of persistence modules whose indecomposables
are intervals and present a polynomial time algorithm for computing db for them. These are mod-
ules whose indecomposables are supported by “stair-case" polyhedra. Our algorithm assumes
that all indecomposables are given and computes db exactly for 2-parameter interval decompos-
able modules. Although the algorithm can be extended to persistence modules with larger number
of parameters, we choose to present it only for 2-parameter case for simplicity while not losing
the essential ingredients for the general case. The indecomposables required as input can be
computed by the decomposition algorithm presented earlier.

15.1 Persistence modules from categorical viewpoint

In this chapter we define the persistence modules as categorical structures which are different from
the graded structures used in the previous chapter. Other than introducing a different viewpoint
of persistence modules, we do so because this definition becomes more amenable to defining dis-
tances. Thanks to representation theory [8, 13, 19], these two notions coincide when the modules

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 3

are finitely generated in the graded module definition and are of finite type (Definition 5) in the
categorical definition. Let us recall the definition in 1-parameter case. A persistence module M
parameterized over A = Z, or R is defined by a sequence of vector spaces Mx, x ∈ A with linear
maps ρx,y : Mx → My so that ρx,x is identity for every x ∈ A and for all x, y, z ∈ A with x ≤ y ≤ z,
one has ρx,z = ρy,z ◦ ρx,y. These conditions can be formulated using category theory.

Definition 1 (Category). A category C is a set of objects ObjC with a set of morphisms hom(x, y)
for every pair of elements x, y ∈ ObjC where

1. for every x ∈ ObjC, there is a special identity morphism 1x ∈ hom(x, x);

2. if f ∈ hom(x, y) and g ∈ hom(y, z), then g ◦ f ∈ hom(x, z);

3. for homomorphisms f , g, h, the compositions wherever defined are associative, that is, (f ◦
g) ◦ h = f ◦ (g ◦ h);

4. 1x ◦ fx,y = fx,y and fx,y ◦ 1y = fx,y for every pair x, y ∈ ObjC.

All sets form a category Set with functions between them playing the role of morphisms. Topo-
logical spaces form a category Top with continuous maps between them being the morphisms.
Vector spaces form the category Vec with linear maps between them being the morphisms. A
poset P form a category with every pair x, y ∈ P admitting at most one morphism; hom(x, y)
has one element if x ≤ y and empty otherwise. Such a category is called a thin category in the
literature for which composition rules take trivial form.

Definition 2 (Functor). A functor between two categories C and D is an assignment F : C → D

satisfying the following conditions:

1. for every x ∈ ObjC, F(x) ∈ ObjD;

2. for every morphism f ∈ hom(x, y), F(f) ∈ hom(F(x), F(y));

3. F respects composition, that is, F(f ◦ g) = F(f) ◦ F(g);

4. F preserves identity morphisms, that is, F(1x) = 1F(x) for every x ∈ ObjC.

One can observe that the 1-parameter persistence module is a functor from the category of totally
ordered set of Z (or R) to the category of Vec. Homology groups with a field coefficient for
topological spaces provide a functor from category Top to the category of vectors spaces Vec. We
can define maps between functors themselves.

Definition 3 (Natural transformation). Given two functors F,G : C→ D, a natural transformation
η from F to G, denoted as η : F =⇒ G, is a family of morphisms {ηx : F(x) → G(x)} for every
x ∈ ObjC so that the following diagram commutes:

F(x)

ηx

��

F(ρ) // F(y)

ηy

��
G(x)

G(ρ) // G(y)

4 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Let k be a field, Vec be the category of vector spaces over k, and vec be the subcategory of
finite dimensional vector spaces. As usual, for simplicity, we assume k = Z2.

Definition 4 (Persistence module). Let P be a poset category. A P-indexed persistence module
is a functor M : P → Vec. If M takes values in vec, we say M is pointwise finite dimensional
(p.f.d.). The P-indexed persistence modules themselves form another category where the natural
transformations between functors constitute the morphisms.

Definition 5 (Finite type). A P-indexed persistence module M is said to have finite type if M is
p.f.d. and all morphisms M(x ≤ y) are isomorphisms outside a finite subset of P.

Here we consider the poset category to be Rn with the standard partial order and all modules
to be of finite type. We call Rn-indexed persistence modules as d-parameter modules in short.
The reader can recognize that this is a shift from our assumption in the last chapter where we
considered Zd-indexed modules. The category of d-parameter modules in this chapter is denoted
as Rn-mod. For a d-parameter module M ∈ Rn-mod, we use notations Mx := M(x) and ρM

x→y :=
M(x ≤ y).

Definition 6 (Shift). For any δ ∈ R, we denote ~δ = (δ, · · · , δ) = δ · ~e, where ~e = (e1, e2, . . . , ed)
with {ei}

d
i=1 being the standard basis of Rd. We define a shift functor (·)→δ : Rn-mod → Rn-mod

where M→δ := (·)→δ(M) is given by M→δ(x) = M(x + ~δ) and M→δ(x ≤ y) = M(x + ~δ ≤ y + ~δ). In
other words, M→δ is the module M shifted diagonally by ~δ.

15.2 Interleaving distance

The following definition of interleaving adapts the original definition designed for 1-parameter
modules in [11, 12] to d-parameter modules.

Definition 7 (Interleaving). For two d-parameter persistence modules M and N, and δ ≥ 0, a
δ-interleaving between M and N are two families of linear maps {φx : Mx → Nx+~δ}x∈Rn and
{ψx : Nx → Mx+~δ}x∈Rn satisfying the following two conditions; see Figure 15.2:

• ∀x ∈ Rn, ρM
x→x+2~δ

= ψx+~δ ◦ φx and ρN
x→x+2~δ

= φx+~δ ◦ ψx

• ∀x ≤ y ∈ Rn, φy ◦ ρ
M
x→y = ρN

x+~δ→y+~δ
◦ φx and ψy ◦ ρ

N
x→y = ρM

x+~δ→y+~δ
◦ ψx

If such a δ-interleaving exists, we say M and N are δ-interleaved. We call the first condition
triangular commutativity and the second condition rectangular commutativity.

Definition 8 (Interleaving distance). The interleaving distance between modules M and N is
defined as dI(M,N) = infδ{M and N are δ-interleaved}. We say M and N are ∞-interleaved if
they are not δ-interleaved for any δ ∈ R+, and assign dI(M,N) = ∞.

The following computational hardness result from [4] is stated assuming that the input mod-
ules are represented with the graded matrices as described previously. As we mentioned before,
these modules coincide with the category of modules of finite type.

Theorem 1. Given two modules M and N given by graded matrix representations, the problem
of computing a real r so that dI(M,N) ≤ r < 3dI(M,N) is NP-hard.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 5

N

M
x

x+ 2~δ

x+ ~δ

x

x+ ~δ x+ 2~δ

φx
φx+~δ

ψx ψx+~δ

ρM
x,x+2~δ

ρN
x,x+2~δ

x
y

x+ ~δ
y + ~δ

ρMx,y

ρN
x+~δ,y+~δ

φyφx

ρNx,y

ρM
x+~δ,y+~δ

ψx

ψy

N

M

(a) (b)

Figure 15.2: (a) Triangular commutativity, (b) Rectangular commutativity.

15.3 Matching distance

The matching distance between two persistence modules M and N draws upon the idea of taking
the restrictions of M and N over lines with positive slopes and then determining the supremum of
weighted interleaving distances on these restrictions. It can be defined for d-parameter modules.
We are going to describe a polynomial time algorithm for computing it for 2-parameter modules,
so for simplicity we define the matching distance for 2-parameter modules. Let ` : sx + t denote
any line in R2 with s > 0 and let Λ denote the space of all such lines. Define a parameterization
λ : R→ ` of ` by taking λ(x) = 1

1+s2 (x, sx+ t). For a line ` ∈ Λ, let M|` denote the restriction of M
on ` where M|`(x) = M(λ(x)) with linear maps induced from M.This is a 1-parameter persistence
module. We define a weight w(`) as

w(`) =


1√

1+s2
for s ≥ 1

1√
1+ 1

s2

for 0 < s < 1

Definition 9. The matching distance dm(M,N) between two persistence modules is defined as

dm(M,N) = sup
`∈Λ
{w(`) · dI(M|`,N |`)}.

The weight w(`) is introduced to make the matching distance stable with respect to the inter-
leaving distance.

15.3.1 Computing matching distance

We define a point-line duality in R2: a line ` ⊂ R2 is dual to a point `∗ = (s, t) where ` : y = sx− t
and a point p = (s, t) is dual to a line p∗ : y = sx − t. Following facts can be deduced from the
definition easily (Exercise 3).

Fact 1.

1. For a point p and a line `, one has (p∗)∗ = p and (`∗)∗ = `.

6 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

2. If a point p is in a line `, then point `∗ is in line p∗.

3. If a point p is above (below) a line `, then point `∗ is above (below) the line p∗.

Consider the open half-plane Ω of R2 where Ω = {x, y | x > 0}. Let α denote the bijective map
between Ω and the space Λ of lines with positive slopes where α(p) = p∗.

The representation theory [8, 13, 19] tells us that finitely generated graded modules as defined
earlier are essentially equivalent to persistence modules as defined in this chapter as long as
they are of finite type (Definition 5). Then, if a persistence module M is a functor on the poset
P = R2 or Z2, we can talk about the grades (elements of P) of a generating set of M and the
relations which are combinations of generators that become zero. A mindful reader can recognize
these are exactly the grades of the rows and columns of the presentation matrix for M as we
mentioned earlier.

Given two 2-parameter persistence modules M and N, let gr(M) and gr(N) denote the grades
of all generators and relations in M and N respectively. Consider the set of lines L dual to the
points in gr(M) ∪ gr(N). These lines together create a line arrangement in Ω which is a partition
of Ω into vertices, edges, and faces. The vertices are points where two lines meet, the edges are
maximal connected subset of the lines excluding the vertices, and faces are maximal connected
subsets of Ω excluding the vertices and edges. Let A0 denote this initial arrangement. We refine
this arrangement further later. First, we observe an invariant property of the arrangemnt for which
we need the following definition.

Definition 10 (Point pair type). Given two points p, q and a line `, we say (p, q) has the following
types with respect to ` : (i) Type-1 if both p and q lie above `, (ii) Type-2 if both p and q lie below
`, (iii) Type-3 if p lies above and q lies below `, and (iv) Type-4 if p lies below and q lies above `.

The following proposition follows from Fact 1.

Proposition 2. For two points p, q ∈ gr(M) ∪ gr(N) and a face τ ∈ A0, the type of (p, q) with
respect to the line z∗ is the same for all z ∈ τ.

Our goal is to refine A0 further to another arrangement A so that for every face τ ∈ A the grade
points p, q that realizes dI(M|`,N |`) for every ` = z∗ remains the same for all z ∈ τ. Toward that
goal, we define the push of a grade point.

Definition 11 (Push). For a point p = (px, py) and a line ` : y = sx − t, the push push(p, `) is
defined as

push(p, `) =

{
(px, spx − t) for p below `

((py + t)/s, py) for p above `

Geometrically, push(p, `) is the intersection of ` with the upward ray originating from p in
the first case, and horizontal ray originating from p in the second case. Figure 15.3 illustrates the
two cases.

For p, q ∈ R2, let
δp,q(`) = ‖push(p, `) − push(q, `)‖2

Consider the equations

δp,q(`) = 0 for p, q ∈ gr(M) or p, q ∈ gr(N)
cp,qδp,q(`) = cp′,q′δp′,q′(`) for p, q, p′, q′ ∈ gr(M) t gr(N)

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 7

p

q

Figure 15.3: Pushes of two points to three lines. Red thick segments indicate δp,q for the corre-
sponding lines.

where

cp,q =

{ 1
2 if p, q ∈ gr(M) or p, q ∈ gr(N)
1 otherwise.

The following proposition is proved in [17].

Proposition 3. The solution set z ∈ τ for a face τ ∈ A0 so that δp,q(z∗) satisfies the above equations
is either empty, the entire face τ, intersection of a line with τ, or the intersection of two lines with
τ.

Let A be the arrangement of Ω with the lines used to form A0, the lines stated in the above
proposition, and the vertical line x = 1.

Proposition 4. A is formed with O(n4) lines where n = |gr(M) + gr(N)|.

The next theorem states the main property of A which allows us to consider only finitely many
(polynomially bounded) lines ` for computing the supremum of {dI(M|`,N |`)}.

Theorem 5. For any face τ ∈ A, there exists a pair p, q ∈ gr(M) ∪ gr(N) so that cp,qδp,q(z∗) =

dI(M|z∗ ,N |z∗) for every z ∈ τ.

The above theorem implies that after determining the pair (p, q) for the face τ ∈ A, we need to
compute the supz∈τ F(z) where F(z) = dI(M|z∗ ,N |z∗) because then considering all F over all faces
in A gives the global supremum. So, now we focus on how to compute the supremum of F on a
face τ.

A region is the closure of a face τ ∈ A in Ω. A region R is called inner if it is bounded and its
closure in R2 does not meet the vertical line s = 0. See Figure 15.4. All other regions are called
outer. An outer region has exactly two edges that are either unbounded or reaches the vertical
line s = 0 in the limit. They are called outer edges. It turns out that sup F(z) is achieved either at
a vertex or at the limit point of the outer edges that can be computed easily.

8 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

s = 0

Figure 15.4: Outer regions are shaded green whose outer segments are colored red ; the region
shaded yellow is inner.

Theorem 6. The supremum supz∈R F(z) for a region R is realized either at a boundary vertex of
R or at the limit point of an outer edge. In the latter case, let p, q be the pair given by Theorem 5
for τ ⊆ R. If e is an outer edge and p lies above z∗ for any (and all by Proposition 2) z ∈ τ, then
sup F restricted to e is given by:

sup F|e =

{
|px − t| if line of e intersects line x = 0 at t.
|qx + r| if line of e is infinite and has slope r.

The roles of p and q reverses if p lies below z∗ for any z ∈ τ.

We present the entire algorithm in Algorithm 1:MatchDist. It is known that this algorithm
runs in O(n11) time where n is the total number of generators and relations for the two input
modules. A more efficient algorithm approximating the matching distance is also known [18].

15.4 Bottleneck distance

Definition 12 (Matching). A matching µ : A 9 B between two multisets A and B is a partial
bijection, that is, µ : A′ → B′ for some A′ ⊆ A and B′ ⊆ B. We say im µ = B′, coim µ = A′.

For the next definition, we call a d-parameter module M δ-trivial if ρM
x→x+~δ

= 0 for all x ∈ Rn.

Definition 13 (Bottleneck distance). Let M �
⊕m

i=1 Mi and N �
⊕n

j=1 N j be two persistence
modules, where Mi and N j are indecomposable submodules of M and N respectively. Let I =

{1, · · · ,m} and J = {1, · · · , n}. We say M and N are δ-matched for δ ≥ 0 if there exists a matching
µ : I 9 J so that, (i) i ∈ I \ coim µ =⇒ Mi is 2δ-trivial, (ii) j ∈ J \ im µ =⇒ N j is 2δ-trivial,
and (iii) i ∈ coim µ =⇒ Mi and Nµ(i) are δ-interleaved.

The bottleneck distance is defined as

db(M,N) = inf{δ | M and N are δ-matched}.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 9

Algorithm 1 MatchDist(M, N)

Input:
Two modules M and N with grades of their generators and relations

Output:
Matching distance between M and N

1: Compute arrangement A as described from gr(M) ∪ gr(N);
2: Let V be the vertex set of A;
3: Compute maximum m = maxz∈V F(z∗) over all vertices z ∈ V;
4: for every outer region R do
5: Pick a point z ∈ R;
6: Compute the pair p, q ∈ gr(M) ∪ gr(N) that realizes dI(M|z∗ ,N |z∗);
7: if p is above z∗ then
8: if e as defined in Theorem 6 is infinite then
9: m := max(m, qx + r) where r is the slope of e

10: else
11: m := max(m, px − t) where e meets line x = 0 at t
12: end if
13: else
14: reverse roles of p and q
15: end if
16: end for
17: return m

The following fact observed in [6] is straightforward from the definition.

Fact 2. dI ≤ db.

15.4.1 Interval decomposable modules

We present a polynomial time algorithm for computing the bottleneck distances for a class of
persistence modules called interval decomposable modules which we have seen in the previous
chapter. For ease of description, we will describe the algorithm for the 2-parameter case though
an extension to multiparameter case exists.

Persistence modules whose indecomposables are interval modules (Definition 15) are called
interval decomposable modules. To account for the boundaries of free modules, we enrich the
poset Rn by adding points at ±∞ and consider the poset R̄n = R̄ × . . . × R̄ where R̄ = R ∪ {±∞}
with the usual additional rule a ±∞ = ±∞.

Definition 14 (Interval). An interval is a subset ∅ , I ⊂ R̄d that satisfies the following:

1. If p, q ∈ I and p ≤ r ≤ q, then r ∈ I (convexity condition);

2. If p, q ∈ I, then there exists a sequence (p = p0, . . . , pm = q) ∈ I for some m ∈ N so that
for every i ∈ [0, k − 1] either pi ≤ pi+1 or pi ≥ pi+1 (connectivity condition). We call the
sequence (p = p0, . . . , pm = q) a path from p to q (in I).

10 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Let Ī denote the closure of an interval I in the standard topology of R̄d. The lower and upper
boundaries of I are defined as

L(I) = {x = (x1, · · · , xd) ∈ Ī | ∀y = (y1, · · · , yd) with yi < xi ∀i =⇒ y < I}

U(I) = {x = (x1, · · · , xd) ∈ Ī | ∀y = (y1, · · · , yd) with yi > xi ∀i =⇒ y < I}.

Let B(I) = L(I) ∪ U(I). According to this definition, R̄d is an interval with boundary B(R̄d)
that consists of all the points with at least one coordinate ∞. The vertex set V(R̄d) consists of 2d

corner points with coordinates (±∞, · · · ,±∞).

Definition 15 (d-parameter interval module). A d-parameter interval persistence module, or in-
terval module in short, is a persistence module M that satisfies the following condition: for an
interval IM ⊆ R̄d, called the interval of M,

Mx =

k if x ∈ IM

0 otherwise
ρM

x→y =

1 if x, y ∈ IM

0 otherwise

where 1 and 0 denote the identity and zero maps respectively.

It is known that an interval module is indecomposable [6].

Definition 16 (Interval decomposable module). A d-parameter interval decomposable module is
a persistence module that can be decomposed into interval modules.

Definition 17 (Rectangle). A k-dimensional rectangle, 0 ≤ k ≤ d , or k-rectangle, in Rd, is a set
I = [a1, b1]×, · · · ,×[ad, bd], ai, bi ∈ R̄, such that, there exists a size k index set Λ ⊆ [d] where
∀i ∈ Λ, ai , bi, and ∀ j ∈ [d] \ Λ, a j = b j.

A 0-rectangle is a vertex. A 1-rectangle is an edge. Note that a rectangle is an example of an
interval.

M = M1 ⊕M2 ⊕M3

IM1

IM2

IM3

L(IM1
)

U(IM3
)

(a) (b)

Figure 15.5: (a) Interval in R3, (b) Intervals in R2.

We say an interval I ⊆ R̄d is discretely presented if it is a finite union of d-rectangles. We also
require the boundary of the interval is a (d − 1)-manifold. A facet of I is a (d − 1)-dimensional

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 11

subset f = f̂ ∩ L ⊆ R̄d where f̂ = {xi = c} is a hyperplane at some standard direction ~ei in Rd

and L is either L(I) or U(I). We denote the facet set as F(I) and the union of all of their vertices
as V(I). So the boundary of I is the union of facets. And the vertices of each facet is a subset of
V(I). Figure 15.5(a) and (b) show intervals in R3 and R2 respectively.

For 2-parameter cases, a discretely presented interval I ⊆ R̄2 has boundary consisting of a
finite set of horizontal and vertical line segments called edges, with end points called vertices,
which satisfy the following condition: (i) every vertex is incident to either a single horizontal
edge or a vertical edge, (ii) no vertex appears in the interior of an edge. We denote the set of
edges and vertices with E(I) and V(I) respectively.

We say a d-parameter interval decomposable module is finitely presented if it can be decom-
posed into finitely many interval modules whose intervals are discretely presented (figure on right
for an example in 2-D cases). They belong to the finitely presented persistence modules as defined
in the previous chapter. In the following, we focus on finitely presented interval decomposable
modules.

For an interval module M, let M be the interval module defined on the closure IM. To avoid
complication in this exposition, we assume that every interval module has closed intervals which
is justified by the following proposition (Exercise 6).

Proposition 7. dI(M,N) = dI(M,N).

15.4.2 Bottleneck distance for 2-parameter interval decomposable modules

We present an algorithm for 2-parameter interval decomposable persistence modules though most
of our definitions and claims in this section apply to general d-parameter persistence modules.
They are stated and proved in the general setting wherever applicable.

Given the intervals of the indecomposables (interval modules) as input, an approach based
on bipartite-graph matching is presented earlier for computing the bottleneck distance db(M,N)
between two 1-parameter persistence modules M and N. This approach constructs a bipartite
graph G out of the intervals of M and N and their pairwise interleaving distances including the
distances to zero modules. If these distance computations take O(C) time in total, then the al-
gorithm for computing db takes time O(m

5
2 log m + C) where M and N together have m inde-

composables altogether. Observe that, the term m
5
2 in the complexity comes from the bipartite

matching. Although this could be avoided in the 1-parameter case taking advantage of the two
dimensional geometry of the persistence diagrams, we cannot do this here for determining match-
ing among indecomposables according to Definition 13. Given indecomposables (say computed
by the algorithm in previous chapter or Meataxe [23]), this approach is readily extensible to
the d-parameter modules if one can compute the interleaving distance between any pair of in-
decomposables including the zero modules. To this end, we present an algorithm to compute
the interleaving distance between two 2-parameter interval modules Mi and N j with ti and t j

vertices respectively on their intervals in O((ti + t j) log(ti + t j)) time. This gives a total time of
O(m

5
2 log m+

∑
i, j(ti +t j) log(ti +t j)) = O(m

5
2 log m+t2 log t) where t is the total number of vertices

over all input intervals.
Now we focus on computing the interleaving distance between two given intervals. Given

intervals IM and IN with t vertices, the algorithm searches a value δ so that there exists two families
of linear maps from M to N→δ and from N to M→δ respectively which satisfy both triangular and

12 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

square commutativity. The search is done with a binary probing: For a chosen δ from a candidate
set of O(t) values, the algorithm determines the direction of the search by checking two conditions
called trivializability and validity on the intersections of modules M and N.

Definition 18 (Intersection module). For two interval modules M and N with intervals IM and
IN respectively let IQ = IM ∩ IN , which is a disjoint union of intervals,

∐
IQi . The intersection

module Q of M and N is Q =
⊕

Qi, where Qi is the interval module with interval IQi . That is,

Qx =

k if x ∈ IM ∩ IN

0 otherwise
and for x ≤ y, ρQ

x→y =

1 if x, y ∈ IM ∩ IN

0 otherwise

From the definition we can see that the support of Q, supp(Q), is IM ∩ IN . We call each Qi an
intersection component of M and N. Write I := IQi and consider φ : M → N to be any morphism.
The following proposition says that φ is constant on I.

Proposition 8. φ|I ≡ a · 1 for some a ∈ k.

Proof.
Mpi Mpi+1 Mpi Mpi+1

Npi Npi+1 Npi Npi+1

1

φpi φpi+1 φpi

1

φpi+1

1 1

For any x, y ∈ I, consider a path (x = p0, p1, p2, ..., p2m, p2m+1 = y) in I from x to y and the
commutative diagrams above for pi ≤ pi+1 (left) and pi ≥ pi+1(right) respectively. Observe that
φpi = φpi+1 in both cases due to the commutativity. Inducting on i, we get that φ(x) = φ(y). �

Definition 19 (Valid intersection). An intersection component Qi is (M,N)-valid if for each x ∈
IQi the following two conditions hold (see Figure 15.6):

(i) y ≤ x and y ∈ IM =⇒ y ∈ IN , and (ii) z ≥ x and z ∈ IN =⇒ z ∈ IM

Proposition 9. Let {Qi} be a set of intersection components of M and N with intervals {IQi}. Let
{φx} : M → N be the family of linear maps defined as φx = 1 for all x ∈ IQi and φx = 0 otherwise.
Then φ is a morphism if and only if every Qi is (M,N)-valid.

Definition 20 (Diagonal projection and distance). Let I be an interval and x ∈ R̄n. Let ∆x =

{x + ~α | α ∈ R} denote the line called diagonal with slope 1 that passes through x. We define (see
Figure 15.7)

dl(x, I) =

miny∈∆x∩I{d∞(x, y) := |x − y|∞} if ∆x ∩ I , ∅
+∞ otherwise.

In case ∆x ∩ I , ∅, define πI(x), called the projection point of x on I, to be the point y ∈ ∆x ∩ I
where dl(x, I) = d∞(x, y).

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 13

Q1 (M,N)-valid, Q2 not

IQ1

IQ2

IM

IN

Figure 15.6: Examples of a valid intersection and a invalid intersection.

I
d′

x′
y

∆x = ∆x′

(−∞,−∞)

(−∞,∞)

x′

y

d′

(∞,∞)

(∞,−∞)

IM

IN IQ
2d

dx
d

x
∆x = ∆x′

2d′

I

Figure 15.7: d = dl(x, I), y = πI(x), d′ = dl(x′, L(I)) (left); d = dl(x, I) and d′ = dl(x′,U(I)) are
defined on the left edge of B(R̄2) (middle); Q is d′(M,N)- and d(N,M)-trivializable (right).

Note that ∀α ∈ R, we have ±∞ + α = ±∞. Therefore, for x ∈ V(R̄n), the line collapses to a
single point. In that case, dl(x, I) , +∞ if and only if x ∈ I, which means πI(x) = x.

Notice that upper and lower boundaries of an interval are also intervals by definition. With
this understanding, following properties of dl are obvious from the above definition.

Fact 3.

(i) For any x ∈ IM,

dl(x,U(IM)) = sup
δ∈R̄
{x + ~δ ∈ IM} and dl(x, L(IM)) = sup

δ∈R̄
{x − ~δ ∈ IM}.

(ii) Let L = L(IM) or U(IM) and let x, x′ be two points such that πL(x), πL(x′) both exist. If x
and x′ are on the same facet or the same diagonal line, then |dl(x, L)−dl(x′, L)| ≤ d∞(x, x′).

Set VL(I) := V(I)∩L(I), EL(I) := E(I)∩L(I), VU(I) := V(I)∩U(I), and EU(I) := E(I)∩U(I).

Proposition 10. For an intersection component Q of M and N with interval I, the following
conditions are equivalent:

1. Q is (M,N)-valid.

2. L(I) ⊆ L(IM) and U(I) ⊆ U(IN).

3. VL(I) ⊆ L(IM) and VU(I) ⊆ U(IN).

14 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Definition 21 (Trivializable intersection). Let Q be a connected component of the intersection of
two modules M and N. For each point x ∈ IQ, define

d(M,N)
triv (x) = max{dl(x,U(IM))/2, dl(x, L(IN))/2)}.

For δ ≥ 0, we say a point x is δ(M,N)-trivializable if d(M,N)
triv (x) < δ. We say an intersection

component Q is δ(M,N)-trivializable if each point in IQ is δ(M,N)-trivializable (Figure 15.7). We
also denote d(M,N)

triv (IQ) := supx∈IQ
{d(M,N)

triv (x)}.

The following proposition discretizes the search for trivializability.

Proposition 11. An intersection component Q is δ(M,N)-trivializable if and only if every vertex of
Q is δ(M,N)-trivializable.

Recall that for two modules to be δ-interleaved, we need two families of linear maps satisfy-
ing both triangular commutativity and square commutativity. For a given δ, Theorem 14 below
provides criteria which ensure that such linear maps exist. In the algorithm, we then will make
sure that these criteria are verified.

Given an interval module M and the diagonal line ∆x for any x ∈ R̄d, there is a 1-parameter
persistence module M|∆x which is the functor restricted on the poset ∆x as a subcategory of R̄d.
We call it a 1-dimensional slice of M along ∆x. Define

δ∗ = inf
δ∈R̄
{δ : ∀x ∈ R̄d,M|∆x and N |∆x are δ-interleaved}.

Equivalently we have δ∗ = supx∈R̄n{dI(M|∆x ,N|∆x)}. We have the following Proposition and
Corollary from the equivalent definitions of δ∗.

Proposition 12. For two interval modules M,N and δ > δ∗ ∈ R+, there exist two families of
linear maps φ = {φx : Mx → N(x+δ)} and ψ = {ψx : Nx → M(x+δ)} such that for each x ∈ R̄d, the
1-dimensional slices M|∆x and N |∆x are δ-interleaved by the linear maps φ|∆x and ψ|∆x .

Corollary 13. dI(M,N) ≥ δ∗.

Theorem 14. For two interval modules M and N, dI(M,N) ≤ δ if and only if the following two
conditions are satisfied:

(i) δ ≥ δ∗,
(ii) ∀δ′ > δ, each intersection component of M and N→δ′ is either (M,N→δ′)-valid or δ(M,N→δ′)-

trivializable, and each intersection component of M→δ′ and N is either (N,M→δ′)-valid or δ(N,M→δ′)-
trivializable.

Proof. Note that dI(M,N) ≤ δ if and only if ∀δ′ > δ,M,N is δ′-interleaved.

‘only if’ direction: Given M and N are δ-interleaved. The part (i) follows from Corollary 13
directly. For part (ii), by definition of interleaving, ∀δ′ > δ, we have two families of linear
maps {φx} and {ψx} which satisfy both triangular and square commutativities. Let the morphisms
between the two persistence modules constituted by these two families of linear maps be φ = {φx}

and ψ = {ψx} respectively. For each intersection component Q of M and N→δ′ with interval

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 15

I := IQ, consider the restriction φ|I . By Proposition 8, φ|I is constant, that is, φ|I ≡ 0 or 1. If
φ|I ≡ 1, by Proposition 9, Q is (M,N→δ′)-valid. If φ|I ≡ 0, by the triangular commutativity of
φ, we have that ρM

x→x+2~δ′
= ψx+~δ′ ◦ φx = 0 for each point x ∈ I. That means x + 2~δ′ < IM. By

Fact 3(i), dl(x,U(IM))/2 < δ′. Similarly, ρN
x−~δ′→x+~δ′

= φx ◦ ψx−~δ′ = 0 =⇒ x − ~δ′ < IN , which

is the same as to say x − 2~δ′ < IN→δ′ . By Fact 3(i), dl(x, L(IN→δ′))/2 < δ′. So ∀x ∈ I, we have
d(M,N→δ′)

triv (x) < δ′. This means Q is δ′(M,N→δ′)
-trivializable. Similar statement holds for intersection

components of M→δ′ and N.
‘if’ direction: We construct two families of linear maps {φx}, {ψx} as follows: On the interval

I := IQi of each intersection component Qi of M and N→δ′ , set φ|I ≡ 1 if Qi is (M,N→δ′)-valid and
φ|I ≡ 0 otherwise. Set φx ≡ 0 for all x not in the interval of any intersection component. Similarly,
construct {ψx}. Note that, by Proposition 9, φ := {φx} is a morphism between M and N→δ′ , and
ψ := {ψx} is a morphism between N and M→δ′ . Hence, they satisfy the square commutativity. We
show that they also satisfy the triangular commutativity.

We claim that ∀x ∈ IM, ρM
x→x+2~δ′

= 1 =⇒ x + ~δ′ ∈ IN and similar statement holds for IN .
From condition that δ′ > δ ≥ δ∗ and by proposition 12, we know that there exist two families of
linear maps satisfying triangular commutativity everywhere, especially on the pair of 1-parameter
persistence modules M|∆x and N |∆x . From triangular commutativity, we know that for ∀x ∈ IM

with ρM
x→x+2~δ′

= 1, x+ ~δ′ ∈ IN since otherwise one cannot construct a δ-interleaving between M|∆x

and N |∆x . So we get our claim.
Now for each x ∈ IM with ρM

x→x+2~δ′
= 1, we have dl(x,U(IM))/2 ≥ δ′ by Fact 3, and x+~δ′ ∈ IN

by our claim. This implies that x ∈ IM∩IN→δ′ is a point in an interval of an intersection component
Qx of M,N→δ′ which is not δ′(M,N→δ′)

-trivializable. Hence, it is (M,N→δ′)-valid by the assumption.
So, by our construction of φ on valid intersection components, φx = 1. Symmetrically, we have
that x + ~δ′ ∈ IN ∩ IM→δ′ is a point in an interval of an intersection component of N and M→δ′
which is not δ′(N,M→δ′)-trvializable since dl(x + ~δ′, L(IM))/2 ≥ δ′. So by our construction of ψ on
valid intersection components, ψx+~δ′ = 1. Then, we have ρM

x→x+2~δ′
= ψx+~δ′ ◦ φx for every nonzero

linear map ρM
x→x+2~δ′

. The statement also holds for any nonzero linear map ρN
x→x+2~δ′

. Therefore,
the triangular commutativity holds. �

Note that the above proof provides a construction of the interleaving maps for any specific
δ′ if it exists. Furthermore, the interleaving distance dI(M,N) is the infimum of all δ′ satisfying
the two conditions in the theorem, which means dI(M,N) is the infimum of all δ′ ≥ δ∗ satisfying
condition 2 in Theorem 14.

15.4.3 Algorithm to compute dI for intervals

In practice, we cannot verify all those infinitely many values δ′ > δ∗. But we propose a finite
candidate set of potentially possible interleaving distance values and prove later that our final
target, the interleaving distance, is always contained in this finite set. Surprisingly, the size of the
candidate set is only O(n) with respect to the number of vertices for 2-parameter interval modules.

Based on our results, we propose a search algorithm for computing the interleaving distance
dI(M,N) for interval modules M and N.

Definition 22 (Candidate set). For two interval modules M and N, and for each point x in IM∪ IN ,

16 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

let

D(x) = {dl(x, L(IM)), dl(x, L(IN)), dl(x,U(IM)), dl(x,U(IN))} and

S = {d | d ∈ D(x) or 2d ∈ D(x) for some vertex x ∈ V(IM) ∪ V(IN)} and

S ≥δ := {d | d ≥ δ, d ∈ S }.

Algorithm 2 Interleaving(IM, IN)

Input:
IM and IN with t vertices in total

Output:
dI(M,N)

1: Compute the candidate set S and let ε be the half of the smallest difference between any two
numbers in S . /* O(t) time */

2: Compute δ∗; Let δ = δ∗. /* O(t) time */

3: Let δ∗ = δ0, δ1, · · · , δk be numbers in S ≥δ∗ in non-decreasing order. /*O(t log t) time */

4: ` := 0; u = k;
5: while ` < u /* O(log t) probes*/ do
6: i := b (u+`)

2 c; δ := δi; δ′ := δ + ε;
7: Compute intersections Q := {IM ∩ IN→δ′ } ∪ {IN ∩ IM→δ′ }. /* O(t) time */

8: if every Q ∈ Q is valid or trivializable according to Theorem 14 /* O(t) time*/ then
9: u := i

10: else
11: ` := i
12: end if
13: end while
14: Output δ

In Algorithm 2:Interleaving, the following generic task of computing diagonal span is per-
formed for several steps. Let L and U be any two chains of vertical and horizontal edges that are
both x- and y-monotone. Assume that L and U have at most t vertices. Then, for a set X of O(t)
points in L, one can compute the intersection of ∆x with U for every x ∈ X in O(t) total time. The
idea is to first compute by a binary search a point x in X so that ∆x intersects U if at all. Then, for
other points in X, traverse from x in both directions while searching for the intersections of the
diagonal line with U in lock steps.

Now we analyze the complexity of the algorithm Interleaving. The candidate set, by def-
inition, has O(t) values which can be computed in O(t) time by the diagonal span procedure.
By Proposition 15, δ∗ is in S and can be determined by computing the interleaving distances
dI(M|∆x ,N |∆x) for modules indexed by diagonal lines passing through O(t) vertices of IM and IN .
This can be done in O(t) time by diagonal span procedure. Once we determine δ∗, we perform
a binary search (while loop) with O(log t) probes for δ = dI(M,N) in the truncated set S δ≥δ∗ to
satisfy the first condition of Theorem 14. Intersections between two polygons IM and IN bounded
by x- and y-monotone chains can be computed in O(t) time by a simple traversal of the bound-
aries. The validity and trivializability of each intersection component can be determined in time

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 17

linear in the number of its vertices due to Proposition 10 and Proposition 11 respectively. Since
the total number of intersection points is O(t), validity check takes O(t) time in total. The check
for trivializabilty also takes O(t) time if one uses the diagonal span procedure. So the total time
complexity of the algorithm is O(t log t).

Proposition 15 below says that δ∗ is determined by a vertex in IM or IN and δ∗ ∈ S .

Proposition 15. (i) δ∗ = maxx∈V(IM)∪V(IN){dI(M|∆x ,N |∆x)}, (ii) δ∗ ∈ S .

The correctness of the algorithm Interleaving already follows from Theorem 14 as long as
the candidate set contains the distance dI(M,N). This is indeed true as shown in [15].

Theorem 16. dI(M,N) ∈ S .

Remark 1. Our main theorem and algorithm consider the persistence modules defined on R2. For
a persistence module defined on a finite or discrete poset like Z2, one can extend it to a persistence
module M on R2 to apply our theorem and algorithm. This extension is achieved by assuming
that all morphisms outside the given persistence module are isomorphisms and Mx→−∞ = 0 if it
is not given otherwise. The reader can draw the analogy between this extension and the one we
had for 1-parameter persistence modules.

15.5 Notes and Exercises

We already mentioned earlier that for 1-parameter persistence modules, Chazal et al. [11] showed
that the bottleneck distance is bounded from above by the interleaving distance dI; see also [5, 7,
14] for further generalizations. Lesnick [21] established the isometry theorem which showed that
indeed dI = db. Consequently, dI for 1-parameter persistence modules can be computed exactly
by efficient algorithms known for computing db.

Lesnick defined the interleaving distance for multiparameter persistence modules, and proved
its stability and universality [21]. Specifically, he established that interleaving distance between
persistence modules is the best discriminating distance between modules having the property of
stability. It is straightforward to observe that dI ≤ db. For some special cases, results in the
converse direction exist. Botnan and Lesnick [6] proved that, for the special class of 2-parameter
persistence modules, called block decomposable modules, db ≤

5
2dI . The support of each inde-

composable in such modules consists of the intersection of a bounded or unbounded axis-parallel
rectangle with the upper halfplane supported by the diagonal line x1 = x2. Bjerkevic [3] im-
proved this result to db ≤ dI thereby extending the isometry theorem dI = db to 2-parameter
block decomposable persistence modules.

Interestingly, a zigzag persistence module can be mapped to a block decomposable mod-
ule [6]. Therefore, one can define an interleaving and a bottleneck distance between two zigzag
persistence modules by the same distances on their respective block decomposable modules.
Suppose that M1 and M2 denote the block decomposable modules corresponding to two zigzag
filtration F1 and F2 respectively. Bjerkevic’s result implies that db(Dgmp(F1),Dgmp(F2)) ≤
2db(M1,M2) = 2dI(M1,M2). The factor of 2 comes due to the difference between how distances
to a null module are computed in 1-parameter and 2-parameter cases. It is important to note that
the bottleneck distance db for persistence diagrams here takes into account the types of the bars as

18 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

described for zigzag modules. This means, while matching the bars for computing this distance,
only bars of similar types are matched.

A similar conclusion can also be derived for the bottleneck distance between the levelset per-
sistence diagrams of Reeb graphs. Mapping the 0-th levelset zigzag modules Z f ,Zg of two Reeb
graphs (F, f) and (G, g) to block decomposable modules M f and Mg respectively, one gets that
db(Dgm0(Z f),Dgm0(Zg)) ≤ 2db(M f ,Mg) = 2dI(M f ,Mg). The interleaving distance dI(M f ,Mg)
between block decomposable modules is bounded from above (not necessarily equal) by the in-
terleaving distance between Reeb graphs as mentioned in earlier chapter for Reeb graphs, that is,
dI(M f ,Mg) ≤ dI(F,G).

Bjerkevic also extended his result to rectangle decomposable d-parameter modules (inde-
composables are supported on bounded or unbounded rectangles). Specifically, he showed that
db ≤ (2d − 1)dI for rectangle decomposable d-parameter modules and db ≤ (d − 1)dI for free
d-parameter modules. He gave an example for exactness of this bound when d = 2.

Multiparameter matching distance dm introduced in [9] provides a lower bound to interleav-
ing distance [20]. This matching distance can be approximated within any error threshold by
algorithms proposed in [2, 10]. But, it cannot provide an upper bound like db. The algorithm
for computing dm exactly as presented in Section 15.3 is taken from [17]. The complexity of
this algorithm is rather high. To address this issue, an approximation algorithm with better time
complexity has been proposed in [18] which builds on the result in [2].

For free, block, rectangle, and triangular decomposable modules, one can compute db by
computing pairwise interleaving distances between indecomposables in constant time because
they have a description of constant complexity. Due to the results mentioned earlier, dI can be
estimated within a constant or dimension-dependent factors by computing db for these modules.
On the other hand, Botnan and Lesnick [6] observed that even for interval decomposable modules,
db cannot approximate dI by any constant factor approximation.

Botnan et al. [4] showed that computing interleaving distance for 2-parameter interval de-
composable persistence modules as considered in this chapter is NP-hard. Worse, it cannot be
approximated within a factor of 3 in polynomial time. In this context, the fact that db does not
approximate dI within any factor for 2-parameter interval decomposable modules [6] turns out
to be a boon in disguise because otherwise a polynomial time algorithm for computing it by the
algorithm as presented in Section 15.4 would not have existed. This algorithm is taken from [15]
whose extension to the multiparameter persistence modules is available on arxiv.

Exercises

1. Show that dI and db are pseudo-metrics on the space of finitely generated multiparameter
persistence modules. Show that if the grades of generators and relations of the modules do
not coincide, both become metrics.

2. Prove dI ≤ db and dm ≤ dI .

3. Prove Fact 1 for point-line duality.

4. The algorithm MatchDist computes dm is O(n11) time. Design an algorithm for computing
dm that runs in o(n11) time.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 19

5. Consider the matching distance dm between two interval modules. Compute dm in this case
in O(n4) time.

6. Prove Proposition 7.

7. For two points x, y ∈ R2, the `∞ distance between x, y is given by `∞(x, y) = max{x1 −

y1, x2 − y2}. Given a non-negative real δ ≥ 0, we can define an `∞ δ-ball centered at a point
x ∈ R2 as �δ(x) = {x′ ∈ R2 : `∞(x, x′) ≤ δ}. We can further extend this idea to a set I ∈ R2

as I+δ =
⋃

x∈I �δ(x), which is the union of all `∞ δ-balls centered at all points in I. For two
intervals I, J ⊂ R2, the `∞ Hausdorff distance is defined as dH(I, J) = infδ{I ⊆ J+δ, J ⊆
I+δ}. Show that:

(a) For two interval modules M and N, we have dI(M,N) ≤ dH(IM, IN).

(b) dI(M,N) � dH(IM, IN) strictly.

(Hint: show that dH(IM, IN) ≥ δ∗ and ∀δ ≤ dH(IM, IN) each intersection component be-
tween M,N→δ, and between N,M→δ is valid.)

20 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Bibliography

[1] Ulrich Bauer and Michael Lesnick. Induced matchings of barcodes and the algebraic sta-
bility of persistence. In Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, SOCG’14, pages 355:355–355:364, 2014.

[2] Silvia Biasotti, Andrea Cerri, Patrizio Frosini, and Daniela Giorgi. A new algorithm for
computing the 2-dimensional matching distance between size functions. Pattern Recogni-
tion Letters, 32(14):1735–1746, 2011.

[3] Håvard Bjerkevik. Stability of higher-dimensional interval decomposable persistence mod-
ules. arXiv preprint arXiv:1609.02086, 2020.

[4] Håvard Bjerkevik, Magnus Botnan, and Michael Kerber. Computing the interleaving dis-
tance is np-hard. Found. Comput. Math., 2019.

[5] Magnus Botnan, Justin Curry, and Elizabeth Munch. The poset interleaving distance, 2016.

[6] Magnus Botnan and Michael Lesnick. Algebraic stability of zigzag persistence modules.
Algebraic & geometric topology, 18:3133–3204, 2018.

[7] Peter Bubenik and Jonathan Scott. Categorification of persistent homology. Discrete &
Computational Geometry, 51(3):600–627, 2014.

[8] Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Dis-
crete & Computational Geometry, 42(1):71–93, Jul 2009.

[9] Andrea Cerri, Barbara Di Fabio, Massimo Ferri, Patrizio Frosini, and Claudia Landi. Betti
numbers in multidimensional persistent homology are stable functions. Mathematical Meth-
ods in the Applied Sciences, 36(12):1543–1557, 2013.

[10] Andrea Cerri and Patrizio Frosini. A new approximation algorithm for the matching distance
in multidimensional persistence. Technical report, February 2011.

[11] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Oudot.
Proximity of persistence modules and their diagrams. In Proc. 25th ACM Sympos. on Com-
put. Geom., pages 237–246, 2009.

[12] Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability of
persistence modules. arXiv preprint arXiv:1207.3674, 2012.

21

22 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

[13] René Corbet and Michael Kerber. The representation theorem of persistence revisited and
generalized. Journal of Applied and Computational Topology, 2(1):1–31, Oct 2018.

[14] Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified reeb graphs. Discrete &
Computational Geometry, 55(4):854–906, Jun 2016.

[15] Tamal K. Dey and Cheng Xin. Computing bottleneck distance for 2-d interval decomposable
modules. In 34th International Symposium on Computational Geometry, SoCG 2018, June
11-14, 2018, Budapest, Hungary, pages 32:1–32:15, 2018.

[16] Pizzanu Kanongchaiyos and Yoshihisa Shinagawa. Articulated Reeb graphs for interactive
skeleton animation. In Shuji Hashimoto, editor, Multimedia Modeling: Modeling Multime-
dia Information and System, pages 451–467. World Scientific, 2000.

[17] Michael Kerber, Michael Lesnick, and Steve Oudot. Exact computation of the matching dis-
tance on 2-parameter persistence modules. In Gill Barequet and Yusu Wang, editors, 35th
International Symposium on Computational Geometry, SoCG 2019, June 18-21, 2019, Port-
land, Oregon, USA, volume 129 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[18] Michael Kerber and Arnur Nigmetov. Efficient approximation of the matching distance for
2-parameter persistence. CoRR, abs/1912.05826, 2019.

[19] Kevin P Knudson. A refinement of multi-dimensional persistence. arXiv preprint
arXiv:0706.2608, 2007.

[20] Claudia Landi. The rank invariant stability via interleavings. arXiv preprint
arXiv:1412.3374, 2014.

[21] Michael Lesnick. The theory of the interleaving distance on multidimensional persistence
modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.

[22] Michael Lesnick and Matthew Wright. Interactive visualization of 2-d persistence modules.
CoRR, abs/1512.00180, 2015.

[23] Richard A Parker. The computer calculation of modular characters (the meat-axe). Compu-
tational group theory, pages 267–274, 1984.

