Simplicial Complex

Def (Simplex, geometric): K-Simplex
$$\sigma$$
 is the convex hull
Def (Simplex, geometric): K-Simplex σ is the convex hull
of (K1) affinely independent points in R²K
Osimplex Isimplex 2 simplex
Value says triangle assimption
Def (Geometric simplicial complex): K a cellection of geometric
Simplices : every face of $\sigma \in K$ is in K
 $\sigma, \sigma' \in K$ either do not intersect
or intersect in a common face.
A simplicial complex with 6 services, 8 edges,
I triangle (left); A complex triangulating a
Shape in 3D.
Def (Abstract simplex): A ground set V(K) called
Vertex set; K is a cellection of subsets of
V(K) called simplices in K satisfying:
 $\sigma \in K \Rightarrow \sigma' \leq \sigma \in K$
Example: V(K) = {1,2,3}
 $K = {11, {1,2}, {21}} = 3$
 $K = {11, {21, {21}}, {1,2}, {1,3}, {2,3}, {1,2,3}]$

<u>^</u>

Abstract complex not embedded in R. Still we can talk about its underlying space. Def (K-skeleton): K-skeleton of K, denoted K is the subcomplex of K^K CK consisting of all simplices of dimension at most K. 1-skeleton of the Complex drawn above

Stars, Links, Simplicial map Tuesday, January 5, 2021 2:23 PM

Def (star, link): Given
$$\mathcal{T} \in K$$
, $\mathsf{St}(\mathcal{T}) = \{ \mathcal{O} \mid \mathcal{I} \subseteq \mathcal{O} \}$.
Let of all simplices containing \mathcal{I}
construct to star $\mathsf{st}(\mathcal{T})$.
* These stars
define the Alwandrov
topology
. $\mathsf{st}(\mathcal{F}) = \{f, (f, d), (f, a)\}$
. $\mathsf{st}(a) = \{a, (a, b), (a, d), (a, f), (a, b, d)\}$
. $\mathsf{st}(a) = \{a, (a, b), (a, d), (a, f), (a, b, d)\}$
. $\mathsf{st}(a) = \{ad, (abd)\}$
Closed star $\mathsf{st}(\mathcal{T})$ is the closure of $\mathsf{st}(\mathcal{T})$
(With face relations, i.e., $\mathsf{St}(\mathcal{T}) = \mathsf{st}(\mathcal{T}) \cup \{\mathcal{O} \mid \mathsf{OCC} \mathcal{C} \in \mathsf{st}(\mathcal{T})\}$
. $\mathsf{St}(\mathcal{A}) = \mathsf{st}(f) \cup \{a, d\}$
. $\mathsf{St}(\mathcal{A}) = \mathsf{st}(d) \cup \{ab, bd, a, b, d\}$
Link: $\mathsf{Lk}(\mathcal{Y}) = \{\mathcal{T} \in \mathsf{St}(\mathcal{T}) \mid \mathcal{O} \cap \mathcal{T} = \mathcal{O}\}$
These are simplices in the closed star
of \mathcal{T} that are disjoint from \mathcal{T} .
. $\mathsf{Lk}(\mathcal{A}) = \{b, d, f, bd\}$
. $\mathsf{Lk}(a) = \{b, d, f, bd\}$
. $\mathsf{Lk}(a) = \{b\}$
Def (Triangulation of a manifold): A simplicial k-complex
K is a triangulation of a k-manifold if
 $|\mathsf{K}| \simeq \mathsf{M}$

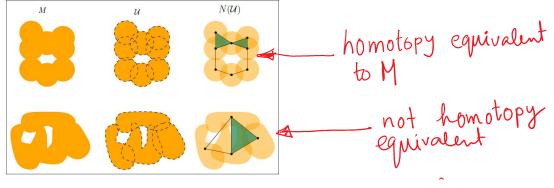
$$\begin{split} |St(u)| &\simeq B_{0}^{k} (open k ball) if ve maps \\ & |St(u)| \simeq |H^{k}(open k ball ball) if \\ & vertice of H \\ & |Ik(u)| \simeq S^{k+1} if ve maps to interior \\ & |Ik(u)| \simeq S^{k+1} (close(k+1) ball) if ve maps to \\ & |Ik(u)| \simeq B^{k+1} (close(k+1) ball) if ve maps to \\ & Hriangnolded 2-ball \\ & |St(u)| is a open half ball \\ & |St(u)| is a open 2-ball \\ & |Ik(u)| is a 1-sphele \\ & |Ik(u)| is a l-sphele \\ & |Ik(u)| is a closed 1-ball \\ & if for every \{v_0, v_1, \cdots, v_n\} \in K_1, \{f(v_0) - f(v_n)\} \in K_2. \\ & 1 \\ & 3 - 2 \\ & 1 \\ & 2 \\ & 3 \\ & f(123) = \{12\} \\ & f(23) = \{12\} \\ & f(23) = \{2\} \\ \end{split}$$

~

Nerves, Cech, Rips Complex

Tuesday, January 5, 2021 8:35 PM

Def (Nerve):
$$\mathcal{U} = \{\mathcal{U}_{i}\}_{i \in A}$$
 finite collection of sets.
Nerve $N(\mathcal{U}) =$ simplicial complex with
• $V(N(\mathcal{U})) = A$
• $O = \{d_{0}, d_{1}, ..., d_{k}\} \in N(\mathcal{U})$ iff $\mathcal{U}_{0} \cap \mathcal{U}_{k} \neq d_{k}$.



.

Theorem (Nerve): U open (or closed) cover of a metric
space M. The nerve
$$|N(U)|$$
 is homotopy equivalent
to M if every non-empty intersection
 $\bigcap_{d \in A} U_d$ is homotopy equivalent to a point.

Def (Čech complex):
$$(M,d)$$
: metric space. $P \subseteq M$
a point Dample. Čech complex $C(P)$ for $r > 0$
 $B(P_i,r) = \{x \in M \mid d(x,P_i) \leq r\}$
 $U = \{B(P_i,r) \mid P_i \in P\}$
 $C'(P) = N(U)$

* If M is Euclidean,
$$B(F;r)$$
 are convex.
* intersections of convex sets are convex.
* Intersections are contractible
* $C(P)$ is homotopy equivalent to $\bigcup_{F \in P} B(F,r)$
Def (Vietoris-Rips Complex): (P,d) : finite metric space.
 $VR'(P)$: σ is a simplex if every edge PVco
satisfies $d(F,v) \leq 2r$
* Edges determine Dimplices
 $Edges$ determine Dimplices
Fact: 1-skeleton of $C'(P)$ and $VR'(P)$ coincide.
Proposition: P a finite subset of (M,d) .
interleaving: $C'(P) \subseteq VR'(P) \subseteq C^{2r}(P)$
* if M is Euclidean
 $C'(P) \subseteq VR'(P) \subseteq C^{2r}(P)$.

Sparse Complexes

Wednesday, January 6, 2021 7:02 AM

Def (Delawnay Complex): Given
$$P \subseteq \Pi^{k}$$
. For $P \in P$, let
 $V_{p} = \{x \mid d(x, P) \leq d(x, q) \neq q \in P\}$
Del $P = N(\{V_{P}\})$
* Collection of V_{p} constitute Voronoi diagrame
* Delawnay triangulation of P is the
Nerve of the Voronoi diagram.
Def (Alpha Complex): Del^x(P): For $x \ge 0$, Let
 $D_{p}^{x} = \{x \in B(P,x) \mid d(x,p) \leq d(x,q) \neq q \in P\}$
Del^x(P) = $N(\{D_{p}^{x}\})$
* Del^x(P) \subseteq Del(P), Del^x(P) = Del(P) for
 $x = \infty$

*
$$P \subseteq \mathbb{R}^{d}$$
, $D_{el}(P)$ can be computed in
 $\Theta(nlogh)$ time if $d=2$.
 $\Theta(n^{2})$ time if $d=3$
 $\Theta(n^{4h^{2}})$ time if $d>2$.
Witness Complex
 $Def(Weak witness):$ Given finite metric space (P, d) .
 $Q \subseteq P$: Landmarks. A simplex $\{P_{1, \cdots}, P_{k}\}, P_{i} \in Q$,
is weakly witnessed by $x \in P \setminus Q$ if
 $\forall Q_{i}$, $d(x, Q_{i}) \leq d(x, P) \neq P \setminus Q$.
 (P_{i}, Q_{i})
 $Q_{i} Q_{i} g_{i}$
 $Q_{i} Q_{i} Q_{i}$
 $Q_{i} Q_{i} Q_{i} Q_{i}$
 Q_{i

by
$$x \in \mathbb{R}^d$$
 if σ is weakly witnessed and additionally $d(q_1, x) = d(q_2, x) = \cdots = d(q_{m}, x)$.

Witness Complex (cont.)

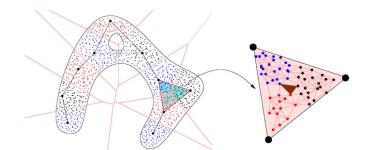
Wednesday, January 6, 2021 7:41 AM

Wednesday, January 6, 202 7.41 M
When
$$Q \subseteq IR^d$$

• A simplex σ is strongly witnessed iff. all of
its faces are weakly witnessed.
• $\sigma \in Deld$ iff σ is strongly witnessed by
points in \mathbb{R}^d .
Proposition: If $Q \subseteq P \subseteq IR^d$, then $W(G, P) \subseteq DelQ$.
Proposition: (i) $W(Q, IR^d) = DelQ$
(ii) $W(Q, M) = DelQ$ if $M \subseteq IR^d$ is

Graph Induced Complex (GIC)

Wednesday, January 6, 2021 7:49 AM



Given · (P,d) finite metric space . G(P) a graph with vertices in P Def (GIC): · Q SP Let 8: P > 2ª nearest point map Y(p) = argmin d(p, a) $G_i(G(P), Q, d)$ is the complex where $\sigma = \{Q_i, \dots, Q_k\}, Q_i \in Q_i$ is in $G_i \in \mathcal{F}$ \mathcal{F} clique $\{P_i, \dots, P_k\}$ in G(P) s.f. $Y(P_i) = Q_i \quad \forall i \in [1, K].$ * Input Graph can be k-nearest neighbor graph for a point cloud * Q can be subsampled from P. · take to arbitrarity, Q < 290} · Choose PEP/Q and delete all $P' \in P$ s.t. $d(P, P') \leq S$ · Q ~ Q U { P' } · Continue till P is exhausted * The above procedure produces a

S-sparse, S-sample of P.

$$\forall P \in P, \forall q \in Q, d(P,q) \leq \delta$$

 $\forall q,q' \in Q, d(q,q') \geq \delta$.

* Mehric d: It can be the shortest path metric in G(P).