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Topic 9: Point cloud, homology inference

In this chapter, we focus on topological analysis of point cloud data (PCD), a common type
of input data across a broad range of applications. Often, there is a hidden space of interest,
and the PCD we obtain is only observations / samples from that hidden space. If the sample
is sufficiently dense, it should carry information about the hidden space. We are interested in
topological information in particular. However, discrete points themselves do not have interesting
topology. To impose a connectivity that mimics that of the hidden space, we construct a simplicial
complex such as the Rips or Čech complex using the points as vertices. Then, an appropriate
filtration is considered as a proxy for the same on the topological space that the PCD presumably
samples. This provides topological summaries such as the persistence diagrams induced by the
filtrations. Figure 9.1 shows an example application of this approach. The PCD in this case
represents atomic configurations of silica in three different states: liquid, glass, and crystal states.
Each atomic configuration can be viewed as a set of weighted points, where each point represents
the center of an atom and its weight is the radius of the atom. The persistence diagrams for
the three states show distinctive features which can be used for further analysis of the phase
transitions. The persistence diagrams can also be viewed as a signature of the input PCD and can
be used to compare shapes (e.g, [6]) or provide other analysis.

Figure 9.1: Persistence diagrams of silica in liquid (left), glass (middle), and crystal (right) states.
Image taken from [21].

We mainly focus on PCD consisting of a set of points P ⊆ (Z, dZ) embedded in some metric
space Z equipped with a metric dZ . One of the most common choices for (Z, dZ) in practice is
the d-dimensional Euclidean space Rd equipped with the standard Lp-distance. We review the
relevant concepts of constructing Rips and Čech complexes, their filtrations, and describe the
properties of the resulting persistence diagrams in Section 9.1. In practice, the size of a filtration
can be prohibitively large. In Section 9.2, we discuss data sparsification strategies to approximate
topological summaries much more efficiently and with theoretical guarantees.

As we have mentioned, a PCD can be viewed as a window through which we can peek at topo-
logical properties of the hidden space. In particular, we can infer about the hidden homological
information using the PCD at hand if it samples the hidden space sufficiently densely. In Section
9.3, we provide such inference results for the cases when the hidden space is a manifold or is a
compact set embedded in the Euclidean space. To obtain theoretical guarantees, we also need to
introduce the language of sampling conditions to describe the quality of point samples. Finally,
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in Section 9.4, we focus on the inference of scalar field topology from a set of point samples P,
as well as function values available at these samples. More precisely, we wish to estimate the
persistent homology of a real-valued function f : X → R from a set of discrete points P ⊂ X as
well as the values of f over P.

9.1 Persistence for Rips and Čech filtrations

Suppose we are given a finite set of points P in a metric space (Z, dZ). Consider a closed ball
BZ(p, r) with radius r (r-radius ball) centered at each point p ∈ P and consider the space Pr :=
∪p∈PBZ(p, r). The Čech complex w.r.t. P and a parameter r ≥ 0 is defined as

Cr(P) = {σ = {p0, . . . , pk} | ∩i∈[0,k]BZ(p, r) , ∅}. (9.1)

As mentioned before, the Čech complex Cr(P) is the nerve of the union of balls Pr. If the
metric balls centered at points in P in the metric space (Z, dZ) are convex, then the Nerve Theorem
gives the following corollary.

Corollary 1. For a fixed r ≥ 0, if the metric ball BZ(x, r) is convex for every x ∈ P, then Cr(P) is
homotopy equivalent to Pr, and thus Hk(Cr(P)) � Hk(Pr) for any dimension k ≥ 0.

The above result justifies the utility of Čech complexes. For example, if P ⊆ Rd and dZ is the
standard Lp-distance for p > 0, then the Čech complex Cr(P) becomes homotopy equivalent to
the union of r-radius balls centering points in P. Later in this chapter, we will also see an example
where the points P are taken from a Riemannian manifold X equipped with the Riemannian metric
dX . When the radius r small enough, the intrinsic metric balls also become convex. In both cases,
the resulting Čech complex captures information of the union of r-balls Pr.

In general, it is not clear at which scale (radius r) one should inspect the input PCD. Varying
the scale parameter r, we thus obtain a filtration of spaces P := {Pα ↪→ Pα

′

}α≤α′ as well as
a filtered sequence of simplicial complexes C(P) := {Cα(P) ↪→ Cα′(P)}α≤α′ . The homotopy
equivalence between Pr and Cr, if holds, further induces an isomorphism between persistence
modules obtained from these two filtrations.

Proposition 2 ([9]). If the metric ball B(x, r) is convex for every x ∈ P and all r ≥ 0, then the
persistent module HkP is isomorphic to the persistent module HkC(P). This also implies that
their corresponding persistence diagrams are identical: DgmkP = DgmkC(P), for any dimension
k ≥ 0.

A related persistence-based topological invariant is given by the Vietoris-Rips filtration Rips(P) =

{VRα(P) ↪→ VRα′(P)}α≤α′ , where Vietoris-Rips complex VRr(P) for a finite subset P ⊆ (Z, dZ) at
scale r is defined as

VRr(P) = {σ = {p0, . . . , pk} | dZ(pi, p j) ≤ 2r for any i, j ∈ [0, k]}. (9.2)

Recall from previous topics that the Čech filtration and Vietoris-Rips filtration are multiplicatively
2-interleaved, meaning that their persistence modules are 2-interleaved at the log-scale, and

db(DgmlogC(P),DgmlogRips(P)) ≤ log 2, (Corollary ??). (9.3)
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Finite metric spaces. The above definitions of Čech or Rips complexes assume that P is em-
bedded in an ambient metric space (Z, dZ). It is possible that Z = P and we simply have a discrete
metric space spanned by points in P, which we denote by (P, dP). Obviously, the construction of
Čech and Rips complexes can be extended to this case. In particular, the Čech complex Cr

P(P) is
now defined as

Cr
P(P) = {σ = {p0, . . . , pk} | ∩i∈[0,k]BP(p; r) , ∅}, (9.4)

where BP(p, r) := {q ∈ P | dP(p, q) ≤ r}. However, note that when P ⊂ Z and dP is the restriction
of the metric dZ to points in P, the Čech complex Cr

P(P) defined above can be different from the
Čech complex Cr

Z(P), as the metric balls (BP vs. BZ) are different. In particular, in this case, we
have the following relation between the two types of Čech complexes:

Cr
P(P) ⊆ Cr

Z(P) ⊆ C2r
P (P). (9.5)

On the other hand, in this setting, the two Rips complexes are the same because the definition
of Rips complex involves only pairwise distance between input points, not metric balls. In what
follows, we often omit the subscript P or Z for the Čech complex when its choice is clear.

The persistence diagrams induced by the Čech and the Rips filtrations can be used as topologi-
cal summaries for the input PCD P. We can then for example, compare input PCDs by comparing
these persistence diagram summaries.

Definition 1 (Čech, Rips distance). Given two finite point sets P and Q, equipped with appropriate
metrics, the Čech distance between them is a pseudo-distance defined as:

dCech(P,Q) = max
k

dB(DgmkC(P),DgmkC(Q))).

Similarly, the Rips distance between P and Q is a pseudo-distance defined as:

dRips(P,Q) = max
k

dB(DgmkRips(P),DgmkRips(Q))).

These distances are stable with respect to the Hausdorff or the Gromov-Hausdorff distance
between P and Q depending on whether they are embedded in a common metric space or are
viewed as two discrete metric spaces (P, dP) and (Q, dQ)). We introduce the Hausdorff and
Gromov-Hausdorff distances now. Given a point x and a set A from a metric space (X, d), let
d(x, A) := infa∈A d(x, a) denote the closest distance from x to any point in A.

Definition 2 (Hausdorff distance). Given two compact sets A, B ⊆ (Z, dZ), the Hausdorff distance
between them is defined as:

dH(A, B) = max{ max
a∈A

dZ(a, B), max
b∈B

dZ(b, A) }.

Note that the Hausdorff distance requires the input objects to be embedded in a common
ambient space. In case they are not embedded in any common ambient space, we use Gromov-
Hausdorff distance, which intuitively measures how much two input metric spaces differ from
being isometric.
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Definition 3 (Gromov-Hausdorff distance). Given two metric spaces (X, dX) and (Y, dY ), a corre-
spondence C is a subset C ⊆ X × Y so that (i) for every x ∈ X, there exists some (x, y) ∈ C; and
(ii) for every y′ ∈ Y , there exists some (x′, y′) ∈ C. The distortion induced by C is

distortC(X,Y) :=
1
2

sup
(x,y),(x′,y′)∈C

|dX(x, x′) − dY (y, y′)|.

The Gromov-Hausdorff distance between (X, dX) and (Y, dY ) is the smallest distortion possible by
any correspondence; that is,

dGH(X,Y) := inf
C⊆X×Y

distortC(X,Y).

Theorem 3. Čech- and Rips-distances satisfy the following stability statements:

1. Given two finite sets P,Q ⊆ (Z, dZ), we have

dCech(P,Q) ≤ dH(P,Q); and dRips(P,Q) ≤ dH(P,Q).

2. Given two finite metric spaces (P, dP) and (Q, dQ), we have

dCech(P,Q) ≤ 2dGH((P, dP), (Q, dQ)), and dRips(P,Q) ≤ dGH((P, dP), (Q, dQ)).

Note that the bound on dCech(P,Q) in statement (2) of the above theorem has an extra factor
of 2, which comes due to the difference in metric balls – see the discussions after Eqn (9.4). We
also remark that (2) in the above theorem can be extended to the so-called totally bounded metric
spaces (which are not necessarily finite) (P, dP) and (Q, dQ) defined as follows. First, recall that
an ε-sample of a metric space (Z, dZ) is a finite set S ⊆ Z so that for every z ∈ Z, dZ(z, S ) ≤ ε. A
metric space (Z, dZ) is totally bounded if there exists a finite ε-sample for every ε > 0. Intuitively,
such a metric space can be approximated by a finite metric space for any resolution.

9.2 Approximation via data sparsification

One issue with using the Vietoris-Rips or Čech filtrations in practice is that their size can become
huge, even for moderate number of points. For example, when the scale r is larger than the
diameter of a point set P, the Čech and the Vietoris-Rips complexes of P contain every simplex
spanned by points in P, in which case the size of d-skeleton of Cr(P) or VRr(P) is Θ(nd+1) for
n = |P|.

On the other hand, as shown in Figure 9.2, as the scale r increases, certain points could
become “redundant”, e.g, having no or little contribution to the underlying space of the union of
all r-radius balls. Based on this observation, one can approximate these filtrations with sparsified
filtrations of much smaller size. In particular, as the scale r increases, the point set P with which
one constructs a complex is gradually sparsified keeping the total number of simplicies in the
complex linear in the input size of P where the dimension of the embedding space is assumed to
be fixed.

We describe two data sparsification schemes in Sections 9.2.1 and 9.2.2, respectively. We
focus on the Vietoris-Rips filtration for points in a Euclidean space Rd equipped with the standard
Euclidean distance d.
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(a) (b) (c)

Figure 9.2: Vietoris-Rips complex: (b) at small scale, the Rips complex of points shown in (a)
requires the two yellow points; (c) the two yellow points become redundant at larger scale.

9.2.1 Data sparsification for Rips filtration via reweighting

Most of the concepts presented in this section apply to general finite metric spaces though we
describe them for finite point sets equipped with an Euclidean metric. The reason for this choice
is that the complexity analysis draws upon the specific property of Euclidean space. The reader is
encouraged to think about generalizing the definitions and the technique to other metric spaces.

Definition 4 (Nets and net-tower). Given a finite set of points P ⊂ (Rd, d) and γ ≥ 0, γ′ ≥ 0, a
subset Q ⊆ P is a (γ, γ′)-net of P if the following two conditions hold:

Covering condition: Q is a γ-sample for (P, d), i.e., for every p ∈ P, d(p,Q) ≤ γ.

Packing condition: Q is also γ-sparse, i.e., for every q , q′ ∈ Q, d(q, q′) ≥ γ′.

If γ = γ′, we also refer to Q as a γ-net of P.
A single-parameter family of nets {Nγ}γ is called a net-tower of P if (i) there is a constant

c > 0 so that for all γ ∈ R, Nγ is a (γ, γ/c)-net for P, and (ii) Nγ ⊇ Nγ′ for any γ ≤ γ′.

Intuitively, a γ-net approximates a PCD P at resolution γ (Covering condition), while also
being sparse (Packing condition). A net-tower provides a sequence of increasingly sparsified
approximation of P.

Net-tower via farthest point sampling. We now introduce a specific net-tower constructed via
the classical strategy of farthest point sampling, also called greedy permutation e.g. in [3, 4].
Given a point set P ⊂ (Rd, d), choose an arbitrary point p1 from P and set P1 = {p1}. Pick pi

recursively as pi ∈ argmaxp∈P\Pi−1
d(p, Pi−1)1, and set Pi = Pi−1 ∪ {pi}. Now set tpi = d(pi, Pi−1),

which we refer to as the exit-time of pi. Based on this exit-times, we construct the following two
families of sets:

Open net-tower N = {Nγ}γ∈R where Nγ := {p ∈ P | tp > γ}. (9.6)

Closed net-tower N = {Nγ}γ∈R where Nγ := {p ∈ P | tp ≥ γ}. (9.7)

1Note that there may be multiple points that maximize d(p, Pi−1) making argmaxp∈P\Pi−1
d(p, Pi−1) a set. We can

choose pi to be any point in this set.
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It is easy to verify that both Nγ and Nγ are γ-nets, and the families N and N are indeed two net-
towers as γ increases. As γ increases, Nγ and Nγ can only change when γ = tp for some p ∈ P.
Hence the sequence of subsets P = Pn ⊃ Pn−1 ⊇ · · · ⊇ P2 ⊇ P1 contain all the distinct sets in the
open and close net-towers {Nγ} and {Nγ}.

In what follows, we discuss a sparsification strategy for the Rips filtration of P using the above
net-towers. The approach can be extended to other net-towers, such as the net-tower constructed
using the net-tree data structure of [20].

Weights, weighted distance, and sparse Rips filtration. Given the exit-time tps for all points
p ∈ P, we now associate a weight wp(α) for each point p at a scale α as follows (the graph of this
weight function is shown on the right): for some constant 0 < ε < 1,

wp(α) =


0 tp

ε ≥ α

α −
tp
ε

tp
ε < α <

tp
ε(1−ε)

εα
tp

ε(1−ε) ≤ α
α

wα(p)

tp
ε

tp
ε(1−ε)

tp
(1−ε)

0

Claim 1. The weight function wp is a continuous, 1-Lipschitz, and non-decreasing function on α.

The parameter ε controls the resolution of the sparsification. The net-induced distance at
scale α between input points is defined as:

d̂α(p, q) := d(p, q) + wp(α) + wq(α). (9.8)

Definition 5 (Sparse (Vietoris-)Rips). Given a set of points P ⊂ Rd, a constant 0 < ε < 1, and
the open net-tower {Nγ} as well as the closed net-tower {Nγ} for P as introduced above, the open
sparse-Rips complex at scale α is defined as

Qα := {σ ⊆ Nε(1−ε)α | ∀p, q ∈ σ, d̂α(p, q) ≤ 2α}; (9.9)

while the closed sparse-Rips at scale α is defined as

Q
α

:= {σ ⊆ Nε(1−ε)α | ∀p, q ∈ σ, d̂α(p, q) ≤ 2α}. (9.10)

Set Sα := ∪β≤αQ
α
, called the cumulative complex at scale α. The (ε-)sparse Rips filtration then

refers to the R-indexed filtration S = {Sα ↪→ Sβ}α≤β.

Obviously, Qα ⊆ Q
α
. Note that for α < β, Qα is not necessarily included in Qβ (neither is Q

α

in Q
β
); while the inclusion Sα ⊆ Sβ always holds.

In what follows, we show that the sparse Rips filtration approximates the standard Vietoris-
Rips filtration {VRr(P)} defined over P, and that the size of the sparse Rips filtration is only linear
in n for any fixed dimension d which is assumed to be constant. The main results are summarized
in the following theorem.

Theorem 4. Let P ⊂ Rd be a set of n points where d is a constant, and Rips(P) = {VRr(P)} be
the Vietoris-Rips filtration over P. Given net-towers {Nγ} and {Nγ} induced by exit-times {tp}p∈P,
let S(P) = {Sα} be its corresponding ε-sparse Rips filtration as defined in Definition 5. Then, for
a fixed 0 < ε < 1

3 ,
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(i) S(P) and Rips(P) are multiplicatively 1
1−ε -interleaved at the homology level. Thus, for any

k ≥ 0, the persistence diagram DgmkS(P) is a log 1
1−ε -approximation of DgmkRips(P) at

the log-scale.

(ii) For any fixed dimension k ≥ 0, the total number of k-simplices ever appeared in S(P) is
Θ(( 1

ε )kdn).

9.2.2 Approximation via simplicial tower

We now describe a different sparsification strategy by directly building a simplicial tower of Rips
complexes connected by simplicial maps whose persistent homology also approximates that of
the standard Rips-filtration. This sparsification is conceptually simpler, but its approximation
quality is worse than the one introduced in the previous section.

Given a set of points P ⊂ Rd, α > 0, and some 0 < ε < 1, we consider the filtration (which is
a subsequence of the standard Rips filtration)

VRα(P) ↪→ VRα(1+ε)(P) ↪→ VRα(1+ε)2
(P) ↪→ · · · ↪→ VRα(1+ε)m

(P). (9.11)

We construct a sparsified sequence by seting P0 := P, building a sequence of point sets Pk,
k = 0, 1, . . . ,m where Pk+1 is a αε

2 (1 + ε)k−1-net of Pk, and terminating the process when Pm is of
constant size.

Consider the following vertex map πk : Pk → Pk+1, for any k ∈ [0,m − 1], where πk(v) is the
nearest neighbor of v ∈ Pk in Pk+1. Define π̂k : P0 → Pk+1 as π̂k := πk ◦ · · · ◦ π0. Based on the
fact that Pk+1 is a αε

2 (1 + ε)k−1-net of Pk, it can be verified that πk induces a simplicial map

πk : VRα(1+ε)k
(Pk)→ VRα(1+ε)k+1

(Pk+1)

which further gives rise to a simplicial map π̂k : VRα(P0) → VRα(1+ε)k+1
(Pk+1). We thus have the

following tower of simplicial complexes:

Ŝ : VRα(P0)
π0
−−→ VRα(1+ε)(P1)

π1
−−→ · · ·

πm−1
−−−→ VRα(1+ε)m

(Pm). (9.12)

Claim 2. For any fixed α ≥ 0, ε ≥ 0, and any integer k ≥ 0, each triangle in the following
diagram commutes at the homology level:

VRα(1+ε)k
(P0) �

� ik //

π̂k

**

VRα(1+ε)k+1
(P0)

VRα(1+ε)k
(Pk)

?�
jk

OO

πk // VRα(1+ε)k+1
(Pk+1)

?�
jk+1

OO

Here, the maps iks and jks are canonical inclusions.

The above result implies that at the homology level, the sequence in Eqn (9.12) and the se-
quence Eqn (9.11) are weakly (1+ε)-interleaved in a multiplicative manner. In particular, different
from the interleaving introduced before, here the interleaving relations only hold at discrete index
values of the filtrations.
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Definition 6 (Weakly interleaving of vector space towers). Let U =
{
Ua

ua,b
−→ Ub

}
a0≤a≤b and

V =
{
Va

va,b
−→ Vb

}
a0≤a≤b be two vector space towers over an index set A = {a ∈ R | a ≥ a0} with

resolution a0 ≥ 0. For some real number ε ≥ 0, we say that they are weakly ε-interleaved if there
are two families of linear maps φi : Ua0+iε → Va0+(i+1)ε, and ψi : Va0+iε → Ua0+(i+1)ε, for any
integer i ≥ 0, such that any subdiagram of the following diagram commutes:

U : Ua0
//

##

Ua0+ε
//

%%

Ua0+2ε //

%%

. . . . . . // Ua0+mε //

##

. . .

V : Va0
//

;;

Va0+ε
//

99

Va0+2ε //

99

. . . . . . // Va0+mε //

;;

. . .

(9.13)

It turns out that to verify the commutability conditions of the diagram in Eqn (9.13), it is
sufficient to verify it for all subdiagrams (rectangular and triangular commutativity) as we have
seen before for interleaving of persistence modules. Furthermore, ε-weakly interleaved persis-
tence modules also have bounded bottleneck distances between their persistence diagrams [10]
though the distance bound is relaxed to 3ε, that is, if U and V are weakly-ε interleaved, then
db(DgmU,DgmV) ≤ 3ε. Analogous results hold for multiplicative setting. Finally, using a simi-
lar packing argument as before, one can also show that the total number of k-simplices that ever
appear in the simplicial-map based sparsification Ŝ is linear in n (assuming that k and the dimen-
sion d are both constant). To summarize:

Theorem 5. Given a set of n points P ⊂ Rd, we can 3 log(1 + ε)-approximate the persistence
diagram of the discrete Rips filtration in Eqn (9.11) by that of the filtration in Eqn (9.12) at the log-
scale. The number of k-simplices that ever appear in the filtration in Eqn (9.12) is O(( 1

ε )O(kd)n).

9.3 Homology inference from PCDs

So far, we considered the problem of approximating the persistence diagram of a filtration created
out of a given PCD. Now we consider the problem of inferring certain homological structure of
a (hidden) domain where the input PCD presumably is sampled from. More specifically, the
problem we consider is: Given a finite set of points P ⊂ Rd, residing on or around a hidden
domain X ⊆ Rd of interest, compute or approximate the rank of H∗(X) using input PCD P. Later
in this chapter, X is assumed to be either a smooth Riemannian manifold embedded in Rd, or
simply a compact set of Rd.

Main ingredients. Since points themselves do not have interesting topology, we first construct
a certain simplicial complex K, typically a Čech or a Vietoris-Rips complex from P. Next, we
compute the homological information of K as a proxy for the same of X. Of course, the approx-
imation becomes faithful only when the given sample P is sufficiently dense and the parameters
used for building the complexes are appropriate. The high level approach works as follows.

Input: A finite point set P ⊂ Rd “approximating” a hidden space X ⊂ Rd.

Step 1. Compute the Čech complex Cα(P), or a pair of Rips complexes VRα(P) and VRα′(P) for
some appropriate 0 < α < α′.
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Step 2. In the case of Čech complex, return dim(H∗(Cα(P))) as an approximation of dim(H∗(X)).
In the case of Rips complex, return rank (im (i∗)), where the homomorphism i∗ : H∗(VRα(P))→
H∗(VRα′(P)) is induced by the inclusion VRα(P) ⊆ VRα′(P).

To provide quantitative statements on the approximation quality of the outcome of the above
approach, we need to describe first what the quality of the input PCD P is, often referred to as
the sampling conditions. Intuitively, a better approximation in homology is achieved if the input
points P “approximates” / “samples” X better. The quality of input points is often measured by the
Hausdorff distance measured with Euclidean distances between PCD P and the hidden domain X
of interest (Definition 2), such as requiring that dH(P, X) ≤ ε for some ε > 0. Note that points in
P do not necessarily lie in X. The approximation guarantee for dim(H∗(X)) relies on relating the
distance fields induced by X and by the sample P. We describe the distance field and feature sizes
of X in Section 9.3.1. We present how to infer homology for smooth manifolds and compact sets
from data in Section 9.3.2 and Section 9.3.3 respectively. In Section 9.4, we discuss inferring the
persistent homology induced by a scalar function f : X → R on X.

9.3.1 Distance field and feature sizes

To describe how well P samples X, we introduce two notions of the so-called “feature size" of X:
the local feature size and the weak feature size, both related to the distance field dX w.r.t. X.

Definition 7 (Distance field). Given a compact set X ⊂ Rd, the distance field (w.r.t. X) is

dX : Rd → R, x 7→ d(x, X).

The α-offset of X is defined as Xα := {x ∈ Rd | dX(x) ≤ α}, which is simply the sub-level set
d−1

X ((−∞, α]) of dX .

Given x ∈ Rd, let Π(x) ∈ X denote the set of closest points of x in X; that is,

Π(x) = {y ∈ X | d(x, y) = dX(x)}.

The medial axis of X, denoted by MX , is the closure of the set of points with more than one closest
point in X; that is,

MX = closure{x ∈ Rd | |Π(x)| ≥ 2}.

Intuitively, |Π(x)| ≥ 2 implies that the maximal Euclidean ball ceneterd at x whose interior is free
of points in X meets X in more than one point on its boundary. Hence, MX is the closure of the
centers of such maximal empty balls.

Definition 8 (Local feature size and reach). For a point x ∈ X, the local feature size at x, denoted
by lfs(x), is defined as the minimum distance to the medial axis MX; that is,

lfs(x) := d(x,MX).

The reach of X, denoted by ρ(X), is the minimum local feature size of any point in X.
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The concept has been primarily developed for the case when X is a smooth manifold embed-
ded in Rd. Indeed, the local feature size can be zero at a non-smooth point: consider a planar
polygon; its medial axis intersects its vertices, and the local feature size at a vertex is thus zero.
The reach of a smoothly embedded manifold could also be zero; see Section 1.2 of [15] for an
example. Next, we describe a “weaker" notion of feature size [8, 13], which is more suitable for
compact subsets of Rd.

Critical points of distance field. The distance function dX introduced above is not everywhere
differentiable. Its gradient is defined on Rd \{X∪MX}. However, one can still define the following
vector which extends the notion of gradient of dX to include the medial axis MX: Given any point
x ∈ Rd \ X, there exists a unique closed ball with minimal radius that encloses Π(x) [22]. Let c(x)
denote the center of this minimal enclosing ball, and r(x) its radius. It is easy to see that for any
x ∈ Rd \MX , this ball and c(x) degenerates to the unique point in Π(x).

Definition 9 (Generalized vector field). Define the following vector field ∇d : Rd \X → Rd where
the (generalized) gradient vector at x ∈ Rd \ X is:

∇d(x) =
x − c(x)
dX(x)

.

The critical points of ∇d are points x for which ∇d(x) = 0.

This generalized gradient field ∇d coincides with the gradient of the distance function dX for
points in Rd \ {X ∪MX}. We also call the critical points of ∇d the critical points of the distance
function dX . The distance field (distance function) and its critical points were previously studied
in e.g., [19], and have played an important role in sampling theory and homology inference. In
general, a point x is a critical point if and only if x ∈ Rd \ X is contained in the convex hull of
Π(x) (The convex hull of a compact set A ⊂ Rd is the smallest convex set that contains A). It is
necessary that all critical points of ∇d belong to the medial axis MX of X. For the case where
X is a finite set of points in Rd, the critical points of dX are the non-empty intersections of the
Delaunay simplices with their dual Voronoi cells (if exist) [15].

Definition 10 (Weak feature size). Let C denote the set of critical points of ∇d. The weak feature
size of X, denoted by wfs(X), is the distance between X and C; that is,

wfs(X) = min
x∈X

inf
c∈C

d(x, c).

Proposition 6. If 0 < α < α′ are such that there is no critical value of dX in the closed interval
[α, α′], then Xα′ deformation retracts onto Xα. In particular, this implies that H∗(Xα) � H(Xα′).

In the homology inference frameworks, the reach is usually used for the case when X is a
smooth embedded manifold, while the weak feature size is used for general compact spaces.

9.3.2 Data on manifold

We now consider the problem of homology inference from a point sample of a manifold. We first
state a standard result from linear algebra (see also the Sandwich Lemma from [9]), which we use
several times in homology inference.
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Fact 1. Given a sequence A → B → C → D → E → F of homomorphisms (linear maps)
between finite-dimensional vector spaces over some field, if rank (A → F) = rank (C → D), then
this quantity also equals rank (B→ E).

Specifically, if A→ B→ C → E → F is a sequence of homomorphisms such that rank (A→
F) = dim C, then rank (B→ E) = dim C.

Let P be a point set sampled from a manifold X ⊂ Rd. We construct either the Čech complex
Cα(P), or a pair of Rips complexes VRα(P) ↪→ VR2α(P) for some parameter α > 0. The homology
groups of these spaces are related as follows.

H(X) oo
Prop. 7 // H(Pα) oo Nerve Lemma // H(Cα(P)) oo Fact 1 // image

(
H(VRα)→ H(VR2α)

)
(9.14)

Specifically, recall that Ar is the r-offset of A which also equals the union of balls ∪a∈AB(a, r).
The connection between the discrete samples P and the manifold X is made through the union of
balls Pα. The following result is a variant of a result by Niyogi, Smale, Weinberger [23]2.

Proposition 7. Let P be a finite point set be such that dH(X, P) ≤ ε where X ⊂ Rd is a smooth

manifold with reach ρ(X). If 3ε ≤ α ≤ 3
4

√
3
5ρ(X), then H∗(Pα) is isomorphic to H∗(X).

The Čech complex Cα(P) is the nerve complex for the set of balls {B(p, α), p ∈ P}. As
Euclidean balls are convex, Nerve Lemma implies that Cα(P) is homotopy equivalent to Pα. It
follows that we can use the Čech complex Cα(P), for an appropriate α, to infer homology of
X using the isomorphisms H∗(X) � H∗(Pα) � H∗(Cα(P)). The first isomorphism follows from
Proposition 7 and the second one from the homotopy equivalence between the nerve and space.

A stronger statement in fact holds: For any α ≤ β, the following diagram commutes:

H∗(Pα)
i∗ //

h∗
��

H∗(Pβ)

h∗
��

H∗(Cα(P))
i∗ // H∗(Cβ(P))

(9.15)

Here, i∗ stands for the homomorphism induced by inclusions, and h∗ is the homomorphism in-
duced by the homotopy equivalence h : Pα → Cα(P). We can now state the following theorem on
estimating H∗(X) from a pair of Rips complexes.

Theorem 8. Given a smooth manifold X embedded in Rd, let ρ(X) be its reach. Let P ⊂ Rd be

finite sample such that dH(P, X) ≤ ε. For any 3ε ≤ α ≤ 3
16

√
3
5ρ(X), let i∗ : H∗(VRα)→ H∗(VR2α)

be the homomorphism induced by the inclusion i : VRα → VR2α. We have that

rank (im (i∗)) = dim(H∗(Cα(P))) = dim(H∗(X)).

Proof. By Eqn (9.15) and Proposition 7, we have that for 3ε ≤ α ≤ β ≤ 3
4

√
3
5ρ(X),

H∗(X) � H∗(Pα) � H∗(Cα(P)) � H∗(Cβ(P)), (9.16)

2The result of [23] assumes that P ⊆ X, but it then shows that Pα deformation retracts to X. In our statement P is
not necessarily from X, and the isomorphism follows easily from the result of [23] and Fact 1.
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where the last isomorphism is induced by inclusion. On the other hand, recall the interleaving
relation between the Čech and the Rips complexes:

· · ·Cα(P) ⊆ VRα(P) ⊆ C2α(P) ⊆ VR2α(P) ⊆ C4α(P) · · · .

We thus have the following sequence of homomorphisms induced by inclusion:

H∗(Cα(P))→ H∗(VRα(P))→ H∗(C2α(P))→ H∗(VR2α(P))→ H∗(C4α(P)).

We have H∗(Cα(P)) � H∗(C2α(P)) � H∗(C4α(P)) by Eqn (9.16). It follows that

(H∗(Cα(P))→ H∗(C4α(P))) = dim(H∗(Cα(P))).

The theorem then follows from the second part of Fact 1. �

9.3.3 Data on a compact set

We now consider the case when we are given a finite set of points P sampling a compact subset
X ⊂ Rd. It is known that an offset Xα for any α > 0 may not be homotopy equivalent to X for
every compact set X. In fact, there exist compact sets so that H∗(Xλ) is not isomorphic to H∗(X) no
matter how small λ > 0 is (see Figure 4 of [13]). So, in this case we aim to recover the homology
groups of an offset Xλ of X for a sufficiently small λ > 0.

The high level framework is in Eqn (9.17). Here we have 0 < λ < wfs(X), while Cα and
VRα stand for the Čech and Rips complexes Cα(P) and VRα(P) over the point set P. For any
0 < λ < wfs(X):

H∗(Xλ) oo
Prop. 9// image

(
H∗(Cα → H∗(C2α)

) ooEqn (9.20)

Fact 1
// image

(
H∗(VRα)→ H∗(VR4α)

)
. (9.17)

It is similar to Eqn (9.14) for the manifold case. However, we no longer have the isomorphism
between H∗(Pα) and H∗(X). To overcome this difficulty, we leverage Proposition 6. This in turn
requires us to consider a pair of Čech complexes to infer homology of Xλ, instead of a single Čech
complex as in the case of manifolds.

More specifically, suppose that the point set P satisfies that dH(P, X) ≤ ε; then we have the
following nested sequence for α > ε and α′ ≥ α + 2ε:

Xα−ε ⊆ Pα ⊆ Xα+ε ⊆ Pα
′

⊆ Xα′+ε. (9.18)

By Proposition 6, we know that if it also holds that α′ + ε < wfs(X), then the inclusions
between Xα−ε ⊆ Xα+ε ⊆ Xα′+ε induce isomorphisms between their homology groups, which are
also isomorphic to H∗(Xλ) for λ ∈ (0,wfs(X)). It then follows from the second part of Fact 1 that,
for α, α′ ∈

(
ε,wfs(X) − ε

)
and α′ − α ≥ 2ε, we have

H∗(Xλ) � im (i∗), where i∗ : H∗(Pα)→ H∗(Pα
′

) is induced by inclusion i : Pα ⊆ Pα
′

. (9.19)

Combining the above with the commutative diagram in Eqn (9.15), we obtain the following
result on inferring homology of Xλ using a pair of Čech complexes.
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Proposition 9. Let X be a compact set in Rd and P ⊂ Rd a finite set of points with dH(X, P) < ε

for some ε < 1
4 wfs(X). Then, for all α, α′ ∈

(
ε,wfs(X) − ε

)
such that α′ − α ≥ 2ε, and any λ ∈

(0,wfs(X)), we have H∗(Xλ) � im (i∗), where i∗ : H∗(Cα(P))→ H∗(Cα′(P)) is the homomorphism
between homology groups induced by the inclusion i : Cα(P) ↪→ Cα′(P).

Finally, to perform homology inference with the Rips complexes, we again resort to the in-
terleaving relation between Čech and Rips complexes, and apply the first part of Fact 1 to the
following sequence

H∗(Cα/2(P))→ H∗(VRα/2(P))→ H∗(Cα(P))→ H∗(C2α(P))→ H∗(VR2α(P))→ H∗(C4α(P)).(9.20)

If 2ε ≤ α ≤ 1
4 (wfs − ε), both H∗(Cα/2(P)) → H∗(C4α(P)) and H∗(Cα(P)) → H∗(C2α(P))

have ranks equal to dim(H∗(Xλ)) by Proposition 9. Applying Fact 1, we then obtain the following
result.

Theorem 10. Let X be a compact set in Rd and P a finite point set with dH(X, P) < ε for some
ε < 1

9 wfs(X). Then, for all α ∈
(
2ε, 1

4 (wfs(X) − ε)
)

and all λ ∈ (0,wfs(X)), we have H∗(Xλ) �
im ( j∗), where j∗ is the homomorphism between homology groups induced by the inclusion j :
VRα/2(P) ↪→ VR2α(P).

9.4 Homology inference for scalar fields

Suppose we are only given a finite sample P ⊂ X from a smooth manifold X ⊂ Rd together with
a potentially noisy version f̂ of a smooth function f : X → R presented as a vertex function
f̂ : P → R. We are interested in recovering the persistent homology of the sub-level filtration
of f from f̂ . That is, the goal is to approximate the persistent homology induced by f from the
discrete sample P and function values f̂ on it.

9.4.1 Problem setup

Set Fα = f −1(−∞, α] = {x ∈ X | f (x) ≤ α} as the sublevel set of f w.r.t. α. The sublevel set
filtration of X induced by f , denoted by F f = {Fα; iα,β}α≤β, is a family of sets Fα totally ordered
by inclusion map iα,β : Fα ↪→ Fβ for any α ≤ β. This filtration induces the following persistence
module:

HpF = {Hp(Fα)
iα,β∗
→ Hp(Fβ) }α≤β, where iα,β∗ is induced by inclusion map iα,β. (9.21)

For simplicity, we often write the filtration and the corresponding persistence module as F f =

{Fα}α∈R and HpF = {H(Fα)}α∈R, when the choices of maps connecting their elements are clear.
Our goal is to approximate the persistence diagram Dgmp(F) from point samples P and

f̂ : P → R. Intuitively, we construct a specific Čech (or Rips) complex Cr(P), use f̂ to in-
duce a filtration of Cr(P), and then use its persistent homology to approximate Dgmp(F). More
specifically, we need to consider nested pair filtration for either Cr(P) or VRr(P).
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Nested pair filtration. Let Pα = {p ∈ P | f̂ (p) ≤ α} be the set of sample points with the
function value for f̂ at most α, which presumably samples the sublevel set Fα of X w.r.t. f . To
estimate the topology of Fα from these discrete sample Pα, we consider either the Čech complex
Cr(Pα) or the Rips complex VRr(Pα). For the time being, consider VRr(Pα). As we already
saw in previous sections, the topological information of Fα can be inferred from a pair of nested

complexes VRr(Pα)
jα
↪→ VRr′(Pα) for some appropriate r < r′. Fixing r and r′, for any α ≤ β,

consider the following commutative diagram induced by inclusions:

H∗(VRr(Pα)) //

iα∗
��

H∗(VRr(Pβ))

iβ∗
��

H∗(VRr′(Pα))
jβα∗ // H∗(VRr′(Pβ))

(9.22)

Set φβα : im (iα∗) → im (iβ∗) to be φβα = jβα∗|im (iα∗), that is, the restriction of jβα∗ to im (iα∗). This
map is well-defined as the diagram above commutes. This gives rise to a persistence module{
im (iα∗); φ

β
α
}
α≤β, that is, a family of totally ordered vector spaces

{
im (iα)

}
with commutative ho-

momorphisms φβα between any two elements. We formalize and generalize the above construction
below.

Definition 11 (Nested pair filtration). A nested pair filtration is a sequence of pairs of complexes

{ABα = (Aα, Bα)}α∈R where (i) Aα
iα
↪→ Bα is inclusion for every α and (ii) ABα ↪→ ABβ for α ≤ β is

given by Aα ↪→ Aβ and Bα
jβα
↪→ Bβ. The p-th persistence module of the filtration {ABα}α∈R is given

by the homology module {im (Hp(Aα)→ Hp(Bα)); φβα}α≤β where φβα is the restriction of jβα∗ on the
im iα∗. For simplicity, we say the module is induced by the nested pair filtration {Aα ↪→ Bα}.

The high level approach of inferring persistent homology of a scalar field f : X → R from a
set of points equipped with f̂ : P→ R involves the following steps:

Step 1. Sort all points of P in non-decreasing f̂ -values, P = {p1, . . . , pn}. Set ai = f̂ (pi) for
i ∈ [1, n].

Step 2. Compute the persistence diagram induced by the filtration of nested pairs {VRr(Pαi) ↪→
VRr′(Pαi)}i∈[1,n] (or {Cr(Pαi) ↪→ Cr′(Pαi)}i∈[1,n]) for appropriate parameters 0 < r < r′.

To obtain an approximation guarantee for the above approach, we consider an intermediate
object defined by the intrinsic Riemannian metric on the manifold X. Indeed, note that the filtra-
tion of X w.r.t. f is intrinsic in the sense that it is independent of how X is embedded in Rd. Hence
it is more natural to approximate its persistent homology with another object defined intrinsically
for X.

Given a compact Riemannian manifold X ⊂ Rd embedded in Rd, let dX be the Riemannian
metric of X inherited from the Euclidean metric dE of Rd. Let BX(x, r) := {y ∈ X | dX(x, y) ≤ r}
be the geodesic ball on X centered at x and with radius r. In contrast, BE(x, r) (or simply B(x, r))
denotes the Euclidean ball in Rd. A ball BX(x, r) is strongly convex if for every pair y, y′ ∈ BX(x, r),
there exists a unique minimizing geodesic between y and y′ whose interior is contained within
BX(x, r). For details on these concepts, see [5, 18].
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Definition 12 (Strong convexity). For x ∈ X, let ρc(x; X) denote the supreme of radius r such that
the geodesic ball BX(x, r) is strongly convex. The strong convexity radius of (X, dX) is defined as
ρc(X) := infx∈X ρc(x; X).

Let dX(x, P) := infp∈P dX(x, p) denote the closest geodesic distance between x and the set
P ⊆ X.

Definition 13 (ε-geodesic sample). A point set P ⊂ X is an ε-geodesic sample of (X, dX) if for all
x ∈ X, dX(x, P) ≤ ε.

Recall that Pα is the set of points in P with f̂ -value at most α. The union of geodesic balls
Pδ;Xα =

⋃
p∈Pα BX(p, δ) is intuitively the “δ-thickening" of Pα within the manifold X. We use two

kinds of Čech and Rips complexes. One is defined with the metric dE of the ambient Euclidean
space which we call (extrinsic) Čech complex Cδ(Pα) and (extrinsic) Rips complex VRδ(Pα). The
other is intrinsic Čech complex Cδ

X(Pα) and intrinsic Rips complex VRδ
X(Pα) that are defined with

the intrinsic metric dX . Note that Cδ
X(Pα) is the nerve complex of the union of geodesic balls

forming Pδ;Xα . Also the interleaving relation between the Čech and Rips complexes remains the
same as for general metric spaces; that is, Cδ

X(Pα) ⊆ VRδ
X(Pα) ⊆ C2δ

X (Pα) for any α and δ.

9.4.2 Inference guarantees

Recall that two ε-interleaved filtrations lead to ε-interleaved persistence modules, which further
mean that the bottleneck distance between their persistence diagrams are bounded by ε. Here we
first relate the space filtration with the intrinsic Čech filtrations and then relate these intrinsic ones
with the extrinsic Čech or Rips filtrations of nested pairs as illustrated in Eqn 9.23 below.

{Fα} oo // {Pr;X
α }
oo // {Cr

X(Pα)} oo // {Cr(Pα) ↪→ Cr′(Pα)} or {VRr(Pα) ↪→ VRr′(Pα)} (9.23)

Proposition 11. Let X ⊂ Rd be a compact Riemmanian manifold with intrinsic metric dX , and
let f : X → R be a C-Lipschitz function. Suppose P ⊂ X is an ε-geodesic sample of X, equipped
with f̂ : P → R so that f̂ = f |P. Then, for any fixed δ ≥ ε, the filtration {Fα}α and the filtration
{Pδ;Xα }α are (Cδ)-interleaved w.r.t. inclusions.

The intrinsic Čech complex Cδ
X(Pα) is the nerve complex for {BX(p, δ)}p∈Pα . Furthermore,

for δ < ρc(X), the family of geodesic balls in {BX(p, δ)}p∈Pα form a cover of the union Pδ;Xα that
satisfies the condition of the Nerve Theorem. Hence, there is a homotopy equivalence between
the nerve complex Cδ

X(Pα) and Pδ;Xα . Furthermore, using the same argument for showing that
diagram in Eqn (9.15) commutes (Lemma 3.4 of [9]), one can show that the following diagram
commutes for any α ≤ β ∈ R and δ ≤ ξ < ρc(X):

H∗(P
δ;X
α )

i∗ //

h∗
��

H∗(P
ξ;X
β )

h∗
��

H∗(Cδ
X(Pα))

i∗ // H∗(C
ξ
X(Pβ))

(9.24)

Here the horizontal homomorphisms are induced by inclusions, and the vertical ones are isomor-
phisms induced by the homotopy equivalence between a union of geodesic balls and its nerve
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complex. Setting δ = ξ in the above diagram, this leads to the following result (see Lemma 2 of
[12] for details):

Corollary 12. Let X, f , and P be as in Proposition 11 (although f does not need to be C-
Lipschitz). For any δ < ρc(X), {Pδ;Xα }α∈R and {Cδ

X(Pα)}α∈R are 0-interleaved. Hence they induce
isomorphic persistence modules which have identical persistence diagrams.

Combining with Proposition 11, this implies that the filtration {Cr
X(Pα)}α and the filtration

{Fα}α are Cr-interleaved for ε ≤ r < ρc(X).

However, we cannot access the intrinsic metric dX of the manifold X. It turns out that for
points that are sufficiently close, their Euclidean distance forms a constant factor approximation
of the geodesic distance between them on X.

Proposition 13. Let X ⊂ Rd be an embedded Riemannian manifold with reach ρX . For any two
points x, y ∈ X with dE(x, y) ≤ ρX/2, we have that:

dE(x, y) ≤ dX(x, y) ≤
1 +

4d2
E(x, y)

3ρ2
X

 dE(x, y) ≤
4
3

dE(x, y).

This implies the following nested relation between the extrinsic and intrinsic Čech complexes:

C
3
4 δ

X (Pα) ⊆ Cδ(Pα) ⊆ Cδ
X(Pα) ⊆ C

4
3 δ(Pα) ⊆ C

4
3 δ

X (Pα); for any δ <
3
8
ρX . (9.25)

Note that a similar relation also holds between the intrinsic Čech filtration and the extrinsic Rips
complexes due to the nested relation between extrinsic Čech and Rips complexes. To infer persis-
tent homology from nested pairs filtrations for complexes constructed under the Euclidean metric,
we use the following key lemma from [12], which can be thought of as a persistent version as well
as a generalization of Fact 1.

Proposition 14. Let X, f , and P be as in Proposition 11. Suppose that there exist ε′ ≤ ε′′ ∈

[ε, ρc(X)) and two filtrations {Gα}α and {G′α}α, so that

for all α ∈ R, Cε
X(Pα) ⊆ Gα ⊆ Cε′

X (Pα) ⊆ G′α ⊆ Cε′′

X (Pα).

Then the persistence module induced by the filtraiton {Fα}α for f and that induced by the nested
pairs of filtrations {Gα ↪→ G′α}α are Cε′′-interleaved, where f is C-Lipschitz.

Combining this proposition with the sequences in Eqn (9.25), we obtain the following results
on inferring the persistent homology induced by a function f : X → R.

Theorem 15. Let X ⊂ Rd be a compact Riemannian manifold with intrinsic metric dX , and
f : X → R a C-Lipschitz function on X. Let ρX and ρc(X) be the reach and the strong convexity
radius of (X, dX) respectively. Suppose P ⊂ X is an ε-geodesic sample of X, equipped with
f̂ : P→ R such that f̂ = f |P. Then:

(i) for any fixed r such that ε ≤ r ≤ min{ 9
16ρc(X), 9

32ρX}, the persistent homology module
induced by the sublevel-set filtration of f : X → R and that induced by the filtration of
nested pairs {Cr(Pα) ↪→ C

4
3 r(Pα)}α are 16

9 Cr-interleaved; and
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(ii) for any fixed r such that 2ε ≤ r ≤ min{ 9
32ρc(X), 9

64ρX}, the persistent homology module
induced by the sublevel set filtration of f and that induced by the filtration of nested pairs
{VRr(Pα) ↪→ VR

8
3 r(Pα)}α are 32

9 Cr-interleaved.

In particular, in each case above, the bottleneck distance between their respective persistence
diagrams is bounded by the stated interleaving distance between persistence modules.

9.5 Notes and Exercises

Part of Theorem 3 has been proven in [10, 6]. A complete proof as well as a thorough treatment
for geometric complexes such as Rips and Čech complexes can be found in [11]. The first work
on data sparsification for Rips filtrations is proposed by Sheehy [26]. The presentation of Chapter
9.2.1 combines the treatments of sparsification of [27, 3]; in particular, in [27], a net-tower created
via net-tree data structure (e.g, [20]) is used for constructing sparse Rips filtration. Extension of
such sparsification to Čech complexes and a geometric interpretation are provided in [4]. The Rips
sparsification is extended to handle weighted Rips complexes derived from distance to measures
in [3]. Sparsification via towers is introduced in [16]. This is an application of the algorithm
we presented before for computing persistent homology for a simplicial tower. Simplicial maps
allow batch-collapse of vertices and leads to more aggressive sparsification. However, in practice
it is observed that it also has the over-connection issues as one collapses the vertices. This issue
is addressed in [17]. In particular, the SimBa algorithm of [17] exploits the simplicial maps for
sparsification, but connects vertices at sparser levels based on a certain distance between two sets
(each of which intuitively is the set of original points mapped to this vertex at this level). While
SimBa has similar approximation guarantees in sparsification, in practice, the sparsified sequence
of complexes has much smaller size compared to prior approaches.

Much of the materials in Section 9.3 are taken from [9, 23, 12, 11]. We remark that there have
been different variations of the medial axis in the literature. We follow the notation from [15]. We
also note that there exists a robust version of the medial axis, called the λ-medial axis, proposed
in [8]. The concept of the local feature size was originally proposed in [25] in the context of mesh
generation and a different version that we describe in this chapter was introduced in [1] in the
context of curve/surface reconstruction. The local feature size has been widely used in the field of
surface reconstruction and mesh generation; see the books [15, 14]. Critical points of the distance
field were originally studied in [19]. See [8, 13, 22] for further studies as well as the development
on weak feature sizes.

In homology inference for manifolds, we note that Niyogi, Smale and Weinberger in [23]
provide two deformnation retract results from union of balls over P to a manifold X; Proposition
3.1 holds for the case when P ⊂ X, while Proposition 7.1 holds when P is within a tubular
neighborhood of X. The latter has much stronger requirement on the radius α. In our presentation,
our Proposition 7 uses a corollary of Proposition 3.1 of [23] to obtain an isomorphism between the
homology groups of union of balls and of X to allow a better range of the parameter α – however,
we lose the deformation retraction here; see the footnote above Proposition 7. Results in Chapter
9.4 are mostly based on work from [12].

This chapter focuses presenting the main framework behind homology (or persistent homol-
ogy) inference from point cloud data. The current theoretical guarantees hold when input points
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sample the hidden domain well within Hausdorff distance. See [3, 7, 24] for data sparsification or
homology inference for points corrupted with more general noise, and [2] for persistent homology
inference under more general noise for input scalar fields.

Exercise

1. Prove Part (i) of Theorem 3.

2. Prove the bound on the Rips pseudo-distance dRips(P,Q) in Part (ii) of Theorem 3.

3. Given two finite sets of points P,Q ⊂ Rd, let dP and dQ denote the restriction of the Eu-
clidean metric over P and Q respectively. Consider the Hausdorff distance δH = dH(P,Q)
between P and Q, as well as the Gromov-Hausdorff distance δGH = dGH((P, dP), (Q, dQ)).

(i) Prove that δGH ≤ 2δH .

(ii) Give an example of P,Q ⊂ R2 such that δH is much larger than δGH , say δH ≥ 10δGH .
[In fact, this can hold for any fixed constant.]

4. Consider the greedy permutation approach introduced in Chapter 9.2, and the assignment
of exit-times for points p ∈ P. Construct the open tower {Nγ} and closed tower {Nγ} as
described in the chapter. Prove that both Nγ and Nγ are γ-nets for P.

5. Suppose we are given P0 ⊃ P1 sampled from a metric space (Z, d) where P1 is an γ-net of
P0. Define π : P0 → P1 as π(p) 7→ argminq∈P1

d(p, q).

(a) Prove that the vertex map π induces a simplicial map π : VRα(P0)→ VRα+γ(P1).

(b) Consider the following diagram. Prove that the map j◦π is contiguous to the inclusion
map i.

VRα(P0) �
� i //

π

&&

VRα+γ(P0)

VRα+γ(P1)
?�

j

OO (9.26)

6. Let P be a set of points in Rd. Let d2 and d1 denote the distance metric under L2 norm
and under L1 norm respectively. Let C2(P) and C1(P) be the Čech filtration over P induced
by d2 and d1 respectively. Show the relation between the log-scaled version of persistence
diagrams DgmlogC2(P) and DgmlogC1(P), that is, bound dB(DgmlogC2(P),DgmlogC1(P)).

7. Prove Proposition 11. Using the fact that Diagram 9.24 commutes, prove Corollary 12.
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