Computational Topology for Data Analysis
from Book by

Tamal Krishna Dey
Department of Computer Science
Purdue University
West Lafayette, Indiana, USA 46907

Yusu Wang
Halicioglu Data Science Institute
University of California, San Diego
La Jolla, California, USA 92093

: Notes

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 1

Topic 6: Towers

We have considered filtrations so far for defining persistence and stability of their diagrams.
In a filtration, the connecting maps between consecutive spaces or complexes are inclusions.
Assuming a discrete subset of reals, A : @p < a; < --- < a,, as index set, we write a filtration as:

T Xy = Xoy = = X,

A more generalized scenario occurs when the inclusions are replaced with continuous maps for
space filtrations and simplicial maps for simplicial filtrations: x;; : X, — X,;. In that case, we
call the sequence a space and a simplicial fower respectively:

X01 X12 X(n—1)n
x:Xa0—>Xal —_> s />

Xa, (6.1)

Considering the homology group of each space (complex resp.) in the sequence, we obtain a
sequence of vector spaces connected with linear maps, which we have seen before. Specifically,
we obtain the following fower of vector spaces:

HpX : Hp(Xap) 25 Hp(Xg) 225 - 28 H(X,,)

In the above sequence each linear map x;j. is the homomorphism induced by the map x;;. We
have already seen that persistent homology of such a sequence of vector spaces and linear maps
are well defined. However, since the linear maps here are not induced by inclusions, the original
persistence algorithm as described in the previous chapter does not work. In section 6.2.1, we
describe a new algorithm to compute the persistence diagram of simplicial towers.

But, before presenting the algorithms, we generalize the notion of stability for towers. We
have seen such a notion for persistence modules arising out of filtrations. Here, we adapt it to a
tower.

6.1 Stability of towers

Just like the previous chapter, we define the stability with respect to the perturbation of the towers
themselves forgetting the functions who generate them. This requires a definition of a distance
between towers at simplicial (space) levels and homology levels.

It turns out that it is convenient and sometimes appropriate if the objects (spaces, simplicial
complexes, or vector spaces) in a tower are indexed over the positive real axis instead of a discrete
subset of it. This, in turn, requires to spell out the connecting map between every pair of objects.

Definition 1 (Tower). A fower indexed in an ordered set A C R is any collection T = {7}, of
objects Ty, a € A, together with maps ¢, : T, — Ty sothatt,, = id and t, 47 0 1, = 44 for

alla < a’ < a”. Sometimes we write T = {T, Lo, Ty} < to denote the collection with the maps.
We say that the tower T has resolution r if a > r for every a € A.

When T is a collection of topological spaces connected with continuous maps, we call it a
space tower. When it is a collection of simplicial complexes connected with simplicial maps, we
call it a simplicial tower, and when it is a collection of vector spaces connected with linear maps,
we call it a vector space tower.

2 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Remark 1. As we have already seen, in practice, it may happen that a tower needs to be defined
over a discrete set or more generally an index set A that is only a subposet of R. In such a case,
one can ‘embed’ A into R and convert the input to a tower according to Definition ?? by assuming
that for any a < a’ € Awith (a,a’) ¢ A and forany a < b < b’ < d’, tpy is an isomorphism.

Definition 2 (Interleaving of simplicial (space) towers). Let X = {X, fee, XoYyew and Y =
{v, i Yy} ,<n be two towers of simplicial complexes (spaces resp.) indexed in R. For any

real € > 0, we say that they are e-interleaved if for every ¢ € R one can find simplicial maps
(continuous maps resp.) ¢, : Xy = Yaie and ¥, 1 Y, — X440 S0 that:

(1) Ya+e © @, and x4 442, are contiguous (homotopic resp.),
(1) @g+e © Yy and y, 4420 are contiguous (homotopic resp.).
(ii1)) @y © Xgq aNd Ygieq+e © @4 are contiguous (homotopic resp.),
(V) Xgtea'+e © Yq and Y 0 y, o are contiguous (homotopic resp.).
If no such finite £ exists, we say the two towers are co-interleaved.

These four conditions are summarized by requiring that the four diagrams below commute up
to contiguity (homotopy resp.):

Xa,a+2e
a+2€ a+s (62)
Ya,a+2e
a+8 a+2a
Xated +&
a+s a +e
a+s y a '+& a
H+Ftl +&

If we replace the operator ‘+’ by the multiplication ‘-> with respect to the indices in the above
definition, then we say that XX and Y are multiplicatively e-interleaved. By interleaving we will
mean additive interleaving by default and use the term multiplicative interleaving where necessary
to signify that the shift is multiplicative rather than additive.

Definition 3 (Interleaving distance between simplicial (space) towers). The interleaving distance
between two simplicial (space) towers X and Y is:

d;(X,Y) = inf{X and Y are e—interleaved}.

Similar to the simplicial (space) towers, we can define interleaving of vector space towers.
But, in that case, we replace contiguity (homotopy) with equality in conditions (i) through (iv).

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 3

Vaa

Uga!
Definition 4 (Interleaving of vector space towers). Let U = {U, — Uy}, and V = {V, —
V<o be two vector space towers indexed in R. For any real £ > 0, we say that they are -
interleaved if for each a > r one can find linear maps ¢, : U, = Vg o and ¢, : V, = U, SO
that:

(i) foralla € R, Ygie 0 04 = Uggi2es
(i) forall a € R, @a4s © ¥4 = Vaa+2e-
(iii) foralla’ > a, oy o Ugy = Varea+e © Pas
(iv) foralla’ > a, ugseass ©Wa = Yar © Vau -
If no such finite £ exists, we say the two towers are co-interleaved.

Analogous to the simplicial (space) towers, if we replace the operator ‘+’ by the multiplication
‘.’ in the above definition, then we say that U and V are multiplicatively e-interleaved.

Definition 5 (Interleaving distance between vector space towers). The interleaving distance be-
tween two towers of vector spaces U and V is:

d;(U,V) = inf{U and V are e—interleaved}.

Suppose that we have two simplicial (space) towers X = {X, xﬁl; X))} and Y = {Y, yﬁl;

Y,)}. Consider the two vector space towers also called homology towers obtained by taking the
homology groups of the complexes (spaces), that is,

Xa.a)« Y(a,a’)«

Vx = {Hp(Xa) - Hp(Xa’)} and Vy = {Hp(Ya) - Hp(Ya’)}-

The following should be obvious because simplicial (continuous resp.) maps become linear maps
and contiguous (homotopic resp.) maps become equal at the homology level.

Proposition 1. d;(Vyx,Vy) < d; (X, 9Y).

One can recognize that the vector space tower is a persistence module defined earlier. There-
fore, we can use interval module decomposition to define the persistence diagram DgmV of the
tower V. Recall that d; denotes the bottleneck distance between persistence diagrams. Isometry
theorem as stated earlier also hold for towers that are rame, that is, towers with all linear maps
having finite rank.

Theorem 2. For any two tame towers U and V, we have dp(Dgm(U), Dgm(V)) = d;(U, V).
Combining Proposition 1 and Theorem 2, we obtain the following result.

Theorem 3. Let X and Y be two simplicial (space) towers and Vx and 'y be their homology
towers respectively that are tame. Then, dp(Dgm(Vy), Dgm(Vy)) < d;(%0, Y).

4 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

We want to apply the above result to translate the multiplicative interleaving distances into a
bottleneck distance of the persistence diagrams. For that we need to consider log scale. Given a
persistence diagram Dgm, we denote its log-scaled version Dgm,,, to be the diagram consisting
of the set of points {(log x,logy) | (x,y) € Dgm}. In log scale a multiplicative interleaving
turns into an additive interleaving by which the following corollary is deduced immediately from
Theorem 3.

Corollary 4. Let X and Y be two simplicial (space) towers with a positive resolution that are
multiplicatively c-interleaved and V'x and 'y be their homology towers respectively that are tame.
Then,

dp(Dgmyoe (Vx), Dgmyo,(Vy)) < logec.

Interleaving between Cech and Rips filtrations: We show an example where we can use the
stability result in Theorem 3. Let P C M be a finite subset of a metric space (M, d). Consider the
Rips and Cech-filtrations:

R : {VR*(P) <> VR (P)}o<s<er and € : {C°(P) = C (P)}o<oce
We know that the following inclusions hold.

C?(P) C VR?(P) C C*(P).

N Ce N CZE N C4a

>

s VR? s VR%* s VR*

D\

D\

Figure 6.1: Cech and Rips complexes interleave multiplicatively.

Figure 6.1 illustrates that Cech an Rips complexes are multiplicatively 2-interleaved. Then,
according to Corollary 4, the persistence diagrams Dgm,,,€ and Dgm,,R have bottleneck dis-
tance of log2 = 1.

6.2 Computing persistence of simplicial towers

In this section, we present an algorithm for computing the persistence of a simplicial tower. Con-

sider a simplicial tower K : Ky ﬁ K ﬂ> K- f5>1 K, and the map f;; : K; — K; where

fij = fi-1 0+ 0 fiz1 o fi. To compute the persistent homology for a simplicial filtration, the
persistence algorithm in the previous chapter essentially maintains a consistent basis by comput-
ing the image f;; (B;) of a basis B; of H.(K;). As the algorithm moves through an inclusion in
the filtration, the homology basis elements get created (birth) or are destroyed (death). Here, for
towers, instead of a consistent homology basis, we maintain a consistent cohomology basis. We

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 5

need to be aware that, for cohomology, the induced maps from f;; : K; — K; are reversed, that
is, f:} : H'(K;) « H*(Kj). So, if B' is a cohomology basis of H*(K;) maintained by the algo-
rithm, it computes implicitly the preimage)‘l.j.‘l(B"). Dually, this implicitly maintains a consistent
homology basis and thus captures all information about persistent homology as well.

6.2.1 Annotations

We maintain a consistent cohomology basis using a notion called annotations [2] which are binary
vectors assigned to simplices. These annotations are updated as we go forward through the se-
quence in the given tower. This implicitly maintains a cohomology basis in the reverse direction
whose birth and death coincide with the death and birth respectively of a consistent homology
basis.

Definition 6 (Annotation and valid annotation). Given a simplicial complex K, Let K(p) denote
the set of p-simplices in K. An annotation for K(p) is an assignment a : K(p) — Zi of a binary
vector a, = a(o) of length g to each p-simplex o € K. The binary vector a, is called the
annotation for o~. Each entry ‘0’ or ‘1’ of a, is called its element. Annotations for simplices
provide an annotation for every p-chain c: ac, = Zoec,do-

An annotation a : K(p) — Z‘; is valid if following two conditions are satisfied:

1. g = rank Hy(K), and

2. two p-cycles zj and zp have a;, = a, iff their homology classes are identical, i.e. [z1] = [z2].
Proposition 5. The following two statements are equivalent.

1. An annotation a : K(p) — Zg is valid

2. The cochains {¢i}i=1... o given by ¢i(0) = a,li] for every o € K(p) are cocycles whose
cohomology classes {[¢;]},i = 1, ..., g, constitute a basis of HP(K).

In light of the above result, an annotation is simply one way to represent a cohomology ba-
sis. However, by representing the corresponding basis as an explicit vector associated with each
simplex, it localizes the basis to each simplex. As a result, we can update the cohomology basis
locally by changing the annotations locally (see Proposition 8). This point of view also helps to
reveal how we can process elementary collapses, which are neither inclusions nor deletions, by
transferring annotations (see Proposition 9).

6.2.2 Algorithm

Consider the persistence module H,. X induced by a simplicial tower X : {K; i K1} where every
fi is a so-called elementary simplicial map which we will introduce shortly.

HA: Ha(Ko) D HukD S HaKy) -+ ™5 Hu(Ko)

6 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Instead of tracking a consistent homology basis for the module H.XK, we track a cohomology
basis in the dual module H*X where the homomorphisms are in reverse direction:

i i In-
H*K : H*(Kp) — H*(K)) < HY(K») -+ < H*(K,)

As we move from left to right in the above sequence, the annotations implicitly maintain a coho-
mology basis whose elements are also time stamped to signify when a basis element is born or
dies. We should keep in mind that the birth and death of a cohomology basis element coincides
with the death and birth of a homology basis element because the two modules run in opposite
directions.

To jump start the algorithm, we need annotations for simplices in Ky at the beginning. This can
be achieved by considering an arbitrary filtration of K, and then applying the generic algorithm
as we describe for inclusions in Section 6.2.3. The first vertex in this filtration gets the annotation
of [1].

Before describing the algorithm, we observe a simple fact that simplicial maps can be decom-
posed into elementary maps which let us design simpler atomic steps for the algorithm.

Definition 7 (Elementary simplicial maps). A simplicial map f : K — K’ is called elementary if
it is of one of the following two types:

e f is injective, and K’ has at most one more simplex than K. In this case, f is called an
elementary inclusion.

e fis not injective but is surjective, and the vertex map fy is injective everywhere except on a
pair {u, v} C V(K). In this case, f is called an elementary collapse. An elementary collapse
maps a pair of vertices into a single vertex, and is injective on every other vertex.

We observe that any simplicial map is a composition of elementary simplicial maps.
Proposition 6. If f : K — K’ is a simplicial map, then there are elementary simplicial maps f;

K:K()&Kl é>K'2fn—7)1 Kn:KISOthatf:fnflOf;1720"'0f0-

In view of Proposition 6, it is sufficient to show how one can design the persistence algorithm
for an elementary simplicial map. At this point, we make a change in the definition 7 of elemen-
tary simplicial maps that eases further discussions. We let fy to be identity (which is an injective
map) everywhere except possibly on a pair of vertices {u, v} € V(K) for which fy maps to one of
these two vertices, say u, in K’. This change can be implemented by renaming the vertices in K’
that are mapped onto injectively.

6.2.3 Elementary inclusion

Consider an elementary inclusion K; — K;;;. Assume that K; has a valid annotation. We de-
scribe how we obtain a valid annotation for K;,; from that of K; after inserting the p-simplex
o = Kiy1 \ K;. We compute the annotation as, for the boundary do in K; and take actions as

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 7

0 0 00 00 00 00 00 00 0 0
. L0 Ny, 01 v " 00 v " 0 "
0 17 "0 10 00 10 0 10 0 1
(a) Case(i) (b) Case(ii)

Figure 6.2: Case(i) of inclusion: the boundary duv = u+v of the edge uv has annotation 1 +1 = 0.
After its addition, every edge gains an element in its annotation which is O for all except the edge
uv. Case (ii) of inclusion: the boundary of the top triangle has annotation 01. It is added to the
annotation of uv which is the only edge having the second element 1. Consequently the second
element is zeroed out for every edge, and is then deleted.

follows.

Case (i): If @y, is a zero vector, the class [dc] is trivial in Hj,_{(K;). This means that o~ creates a
p-cycle in K;; | and by duality a p-cocycle is killed while going left from K;.; to K;. In this case
we augment the annotations for all p-simplices by one element with a time stamp i + 1, that is,
the annotation [b1, b, - - - , be] for every p-simplex 7 is updated to [b1, b2, -+ , by, bgy1] With bgy
being time stamped i + 1. We set by = O for 7 # o and bg,| = 1 for 7 = 0. The element b;
of a, is set to zero for 1 < i < g. Other annotations for other simplices remain unchanged. See
Figure 6.2(a).

Case (ii): If @y, is not a zero vector, the class of the (p — 1)-cycle do is nontrivial in H,_;(Kj).
Therefore, o kills the class of this (p — 1)-cycle and a corresponding class of (p — 1)-cocycles is
born in the reverse direction. We simulate it by forcing a,, to be zero which affects other annota-
tions as well. Let iy, iz, - - - , ix be the set of indices in non-decreasing order so that b;,, b;,, - - - , b;,
are all of the nonzero elements in a8y, = [b1,b2, -+ ,b;, -+ ,be]. Recall that ¢; denotes the
(p — 1)-cocycle given by its evaluation ¢ ;(0") = a,-[j] for every (p — 1)-simplex o’ € K; (Propo-
sition 5). With this notation, the cocycle ¢ = ¢;, + ¢;, + --- + ¢, is born after deleting o in the
reverse direction. This cocyle does not exist after time b;, in the reverse direction. In other words,
the cohomology class [¢] which is born leaving the time i + 1 is killed at time b;,. This pairing
matches that of the standard persistence algorithm where the youngest basis element is chosen to
be paired among all those ones whose combination is killed. We add the vector ay, to the anno-
tation of every (p — 1)-simplex whose ix-th element is nonzero. This zeroes out the ix-th element
of the annotation for every (p — 1)-simplex and at the same time updates other elements so that a
valid annotation according to Proposition 5 is maintained. We simply delete i;-th element from
the annotation for every (p — 1)-simplex. See Figure 6.2(b). We further set the annotation a,- for
o to be a zero-vector of length s, where s is the length of the annotation vector of every p-simplex
at this point.

Notice that determining if we have case (i) or (ii) can be done easily in O(pg) time by check-
ing the annotation of do~. Indeed, this is achieved because the annotation already localizes the
cohomology basis to each individual simplex.

8 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Before going to the next case of elementary collapse, here we present Algorithm 1:ANNoT
for computing the annotations for all simplices in a given simplicial complex using the setps of
elementary inclusions. The algorithm proceeds with increasing dimension because it needs to
have the annotaions of (p — 1)-simplices before dealing with p-simplices. It starts with vertices
whose annotations are readily computable. In the following algorithm K” denotes the p-skeleton
of the input simplicial d-complex K.

Algorithm 1 Axnot(K)

Input:
K: input complex
Output:
Annotation for every simplex in K

1: Letm := |K|

2: For every vertex v; € KO, assign an m-vector a(v;) where a(vy)[j] = 1iff j =i
3: forp=1->ddo

4: for all simplex o € K” do

5: Let annotation of every p-simplex be a vector of length g so far
6: if a(do) # 0 then
7: assign a(o) to be a 0 vector of size g
8: pick any non-zero entry b, in a(do)
9: add a(do) to every (p — 1)-simplex ¢’ s.t. a(o”)[u] = 1
10: delete uth entry from annotation of every (p — 1)-simplex
11: else
12: extend a(r) for every p-simplex 7 so far added by appending a 0 bit
13: create vector a(o) of length g + 1 with only the last bit being 1
14: end if
15: end for
16: end for

6.2.4 Elementary collapse

The case for handling collapse is more interesting. It has three distinct steps, (i) elementary
inclusions to satisfy the so called link condition, (ii) local annotation transfer to prepare for the
collapse, and (iii) collapse of the simplices with updated annotations. We explain each of these
steps now.

The elementary inclusions that may precede the final collapse are motivated by a result that

connects collapses with the change in (co)homology. Consider an elementary collapse K; i K
where the vertex pair (u,v) collapses to u. The following link condition, introduced in [3] and
later used to preserve homotopy [1], becomes relevant.

Definition 8. A vertex pair (1, v) in a simplicial complex K; satisfies the link condition if the
edge uv € K; and Lku N Lkv = Lkuv. An elementary collapse f; : K; — K;; satisfies the link
condition if the vertex pair on which f; is not injective satisfies the link condition.

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang

000 000 00
000| 00057000 1000 0oo| 0007000 |gop 00| 00,700 oo
e
010 100 010 100 01 10
-
001 U u 1'10 v [N 11)
00 00 00
00 00
00| 00 00 {go 11| 00 00 {00 11 00
v —_—
01 10 10 10
u 11 u) ~—r_ _—7u

Figure 6.3: Annotation updates for elementary collapse: inclusion of a triangle so as to satisfy the
link condition (upper row), annotation transfer and actual collapse (lower row); annotation 11 of
the vanishing edge uv is added to all edges (cofaces) adjoining u.

Proposition 7 ([1]). If an elementary collapse f; : K; — K;.1 satisfies the link condition, then
the underlying spaces |K;| and |K;.1| remain homotopy equivalent. Hence, the induced homomor-
phisms fi, : Hi(K;) = H.(Kiy1) and f7 : H(K;) < H*(Kj11) are isomorphisms.

If an elementary collapse satisfies the link condition, we can perform the collapse knowing
that the (co)homology does not change. Otherwise, we know that the (co)homology is affected by
the collapse and it should be reflected in our wupdates for annotations.

The diagram at the left provides a precise means to carry out the change
in (co)homology. Let S be the set of simplices in non-decreasing order of
fi dimensions, whose absence from K; makes (u, v) violate the link condition.
For each such simplex o € S, we modify the annotations of every simplex
which we would have done if o were to be inserted. Thereafter, we carry
g out the rest of the elemAentary collapse. In essence, implicitly, we obtain an
intermediate complex K; = K;US where the diagram on the left commutes.
Here, f is induced by the same vertex map that induces f;, and j is an
inclusion. This means that the persistence of f; is identical to that of f; o j
which justifies our action of elementary inclusions followed by the actual collapses.

We remark that this is the only place where we may insert implicitly a simplex ¢ in the current
approach. The number of such o is usually much smaller than the number of simplices that one
may need for a coning strategy detailed in [5] to process simplicial towers.

Next, we transfer annotations in K;. This step locally changes the annotations for simplices
containing the vertices u and/or v. The following definition facilitates the description.

Definition 9. For an elementary collapse f; : K; — K;;1, a simplex o € K; is called vanishing
if the cardinality of f;(0) is one less than that of 0. Two simplices o and ¢’ are called mirror
pairs if one contains u and the other v, and share rest of the vertices. In Figure 6.3(lower row), the
vanishing simplices are {uv, uvw} and the mirror pairs are {u, v}, {uw, vw}.

10 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

In an elementary collapse that sends (u, v) to u, all vanishing simplices need to be deleted, and
all simplices containing v need to be pulled to corresponding ones containing the vertex u (which
are their mirror partners). We update the annotations in such a way that the annotations of all
vanishing simplices become zero, and those of each pair of mirror simplices become the same.
Once this is achieved, the collapse is implemented by simply deleting the vanishing simplices and
replacing v with u in all simplices containing v without changing their annotations. The following
proposition provides the justification behind the specific update operations that we perform.

Proposition 8. Ler K be a simplicial complex and a : K(p) — Zg be a valid annotation. Let
o € K(p) be any p-simplex and T any of its (p—1)-faces. Then, adding a, to the annotation for all
cofaces of T of codimension 1 (including o) produces a valid annotation for K(p). Furthermore,
the cohomology basis corresponding to the annotations (Proposition 5) remains unchanged by
this modification.

Consider an elementary collapse f; : K; — K1 that sends (1, v) to u. We update the anno-
tations for simplices in K; as follows. First, note that the vanishing simplices are exactly those
simplices containing the edge {u, v}. For every p-simplex containing {u, v}, i.e., a vanishing sim-
plex, exactly two of its (p — 1)-faces are mirror simplices, and all other remaining (p — 1)-faces
are vanishing simplices. Let o be a vanishing p-simplex and 7 be its (p — 1)-face that is a mirror
simplex containing . We add a, to the annotations for all cofaces of 7 of codimension 1 includ-
ing 0. We call this an annotation transfer for o. By Proposition 8, the new annotation generated
by this process corresponds to the old cohomology basis for K;. This new annotation has a, as
zero since a, + a, = 0. See the the lower row of Figure 6.3. We perform the above operation for
each vanishing simplex. It turns out that by using the relations of vanishing simplices and mirror
simplices, each mirror simplex eventually acquires an identical annotation to that of its partner.
Specifically, we have the following observation.

Proposition 9. After all possible annotation transfers involved in a collapse, (i) each vanishing
simplex has a zero annotation; and (ii) each mirror simplex T has the same annotation as its
mirror partner simplex T’

Subsequent to the annotation transfer, the annotation of K; fits for actual collapse since each
pair of mirror simplices which are collapsed to a single simplex get the identical annotation and
the vanishing simplex acquires the zero annotation. Furthermore, Proposition 8 tells us that
the cohomology basis does not change by annotation transfer which aligns with the fact that
£ H (Kip) — H*(K;) is indeed an isomorphism. Accordingly, no time stamp changes after
the annotation transfer and the actual collapse. Propositions 5.2 and 5.3 in [4] provide formal
statements justifying the algorithm for annotation updates.

The persistence diagram of a given simplicial tower K can be retrieved easily from the anno-
tation algorithm. Each time during an elementary operation either we add a new element into the
annotation of all p-simplices for some p > 0 or delete an element from the annotations of all of
them. During the deletion, we add the point (bar) (a, b) into ngpK where b is the current time
of deletion (death) and a is the time stamp of the element when it was added (birth).

Computational Topology for Data Analysis: Notes from book by T.K. Dey and Y. Wang 11

6.3 Notes and Exercises

Computation of persistent homology induced by simplicial towers generalizing filtrations were
first considered in the context of TDA by Dey, Fan, Wang [4]. They gave two approaches to com-
pute persistence diagrams for such towers, one by converting a tower to a zigzag filtration which
we will see later and the other by considering annotations in combination with the link conditions
allowing edge collapses without altering homotopy types which is described in Section 6.2.1. The
first approach apparently increases the size of the filtration which motivated the second approach.
Kerber and Schreiber showed that indeed the first approach can be leveraged to produce filtrations
instead of zigzag filtrations and without blowing up sizes [6].

Exercises

1. Show that the inequality in Proposition 1 cannot be imporved to equality by giving a coun-
terexample.

2. Prove Proposition 5
3. Prove Proposition 6
4. Prove Proposition 8
5. Prove Proposition 7

6. For computing the persistence of towers, we checked the link condition for all dimensions.
Argue that it is sufficient to check the condition only for three relevant dimensions.

12 Computational Topology for Data Analysis: Notes from book by T. K. Dey and Y. Wang

Bibliography

[1]

(3]

Dominique Attali, André Lieutier, and David Salinas. Efficient data structure for representing
and simplifying simplicial complexes in high dimensions. In Proc. 27th Annu. ACM Sympos.
Comput. Geom., SoCG ’11, pages 501-509, New York, NY, USA, 2011. ACM.

Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K. Dey, and Yusu Wang. Annotating
simplices with a homology basis and its applications. In Algorithm Theory - SWAT 2012 - 13th
Scandinavian Symposium and Workshops, Helsinki, Finland, July 4-6, 2012. Proceedings,
pages 189-200, 2012.

Tamal K. Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V. Nekhayev. Topology
preserving edge contraction. Publications de I’ Institut Mathematique (Beograd), 60:23-45,
1999.

Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for simpli-
cial maps. CoRR, abs/1208.5018, 2012.

Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for simpli-
cial maps. In Proceedings of the Thirtieth Annual Symposium on Computational Geometry,
SOCG’ 14, pages 345:345-345:354, New York, NY, USA, 2014. ACM.

Michael Kerber and Hannah Schreiber. Barcodes of towers and a streaming algorithm for
persistent homology. Discrete & Computational Geometry, 61(4):852-879, Jun 2019.

13

