next up previous
Next: Mathematical Software Up: VITA WALTER GAUTSCHI Previous: Translations

Refereed Papers


  1. Ein Analogon zu Grammels Methode der graphischen Integration gewöhnlicher Differentialgleichungen, Z. Angew. Math. Mech. 31, 242-243.
  1. Fehlerabschätzungen für die graphischen Integrationsverfahren von Grammel und
    , Verh. Naturforsch. Ges. Basel 64, 401-435.
  1. Über die zeichnerischen Ungenauigkeiten und die zweckmässige Bemessung der Schritt-
    länge beim graphischen Integrationsverfahren von Meissner-Ludwig
    , Verh. Naturforsch.
    Ges. Basel 65, 49-66.
  2. Über eine Klasse von linearen Systemen mit konstanten Koeffizienten, Comment. Math.
    Helv. 28, 186-196.
  1. Über den Fehler des Runge-Kutta-Verfahrens für die numerische Integration gewöhn-
    licher Differentialgleichungen n-ter Ordnung
    , Z. Angew. Math. Phys. 6, 456-461.
  1. Una estensione agli integrali doppi di una condizione di Picone necessaria per un estremo, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 20, 283-289.
  2. Bemerkung zu einer notwendigen Bedingung von Picone in der Variationsrechnung, Comment. Math. Helv. 31, 1-4.
  3. (with F. Malmborg) Calculations related to the improved free-volume-theory of liquids (AF Problem 116), Harvard Computation Laboratory, Problem Report 100, VI-1-VI-41.
  1. Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. and Phys. 38, 77-81.
  2. Exponential integral $\int_1^\infty e^{-xt} t^{-n} dt$ for large values of n, J. Res. Nat. Bur. Standards 62, 123-125.
  3. Note on bivariate linear interpolation for analytic functions, Math. Tables Aids Comput. 13, 91-96.
  1. Recursive computation of certain integrals, J. Assoc. Comput. Mach. 8, 21-40.
  2. Recursive computation of the repeated integrals of the error function, Math. Comp. 15, 227-232.
  3. Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3, 381-397.
  1. (with H. A. Antosiewicz) Numerical methods in ordinary differential equations, Ch. 9 in Survey of numerical analysis (J. Todd, ed.), 314-346, McGraw-Hill, New York.
  2. On inverses of Vandermonde and confluent Vandermonde matrices, Numer. Math. 4, 117-123.
  3. Diffusion functions for small argument, SIAM Rev. 4, 227-229.
  1. Instability of linear second-order difference equations, in Proc. IFIP Congress 62 (C. M.
    Popplewell, ed.), 207, North-Holland, Amsterdam.
  2. On inverses of Vandermonde and confluent Vandermonde matrices II, Numer. Math. 5, 425-430.
  1. (with W. F. Cahill) Exponential integral and related functions, Ch. 5 in Handbook of mathematical functions (M. Abramowitz and I. A. Stegun, eds.), 227-251, Nat. Bur.
    Standards Appl. Math. Ser. 55. [Russian translation by V. A. Ditkin and L. N. Karmazina, in Spravocnik po special'nym funkciyam, 55-79, Nauka, Moscow, 1979.]
  2. Error function and Fresnel integrals, Ch. 7 in Handbook of mathematical functions (M. Abramowitz and I. A. Stegun, eds.), 295-329, Nat. Bur. Standards Appl. Math. Ser.
    55.[Russian translation by V. A. Ditkin and L. N. Karmazina, in Spravocnik po special'nym funkciyam, 119-152, Nauka, Moscow, 1979.]
  3. Algorithm 221 -- Gamma function, and Algorithm 222 -- Incomplete beta function ratios, Comm. ACM 7, 143-144; Certification of Algorithm 222, ibid., 244.
  1. Algorithm 236 -- Bessel functions of the first kind, Comm. ACM 7, 479-480; Certification of Algorithm 236, ibid. 8, 105-106.
  2. Algorithm 259 -- Legendre functions for arguments larger than one, Comm. ACM 8, 488-492.
  1. Computation of transcendental functions by recurrence relations, in Proc. IFIP Congress 65, v. 2 (W. A. Kalenich, ed.), 485-486, Spartan Books, Washington, D. C.
  2. Computation of successive derivatives of $f(z)/z$, Math. Comp. 20, 209-214.
  3. Algorithm 282 -- Derivatives of $e^x /x$, $\cos (x)/x$, and $\sin (x)/x$, Comm. ACM 9, 272.
  4. Algorithm 292 -- Regular Coulomb wave functions, Comm. ACM 9, 793-795.
  1. Computational aspects of three-term recurrence relations, SIAM Rev. 9, 24-82.
  2. Numerical quadrature in the presence of a singularity, SIAM J. Numer. Anal. 4, 357-362.
  1. Construction of Gauss-Christoffel quadrature formulas, Math. Comp. 22, 251-270.
  2. Algorithm 331 -- Gaussian quadrature formulas, Comm. ACM 11, 432-436.
  1. Remark on Algorithm 292, Comm. ACM 12, 280.
  2. On the condition of a matrix arising in the numerical inversion of the Laplace transform, Math. Comp. 23, 109-118.
  3. An application of minimal solutions of three-term recurrences to Coulomb wave functions, Aequationes Math. 2, 171-176; abstract, ibid. 1 (1968), 208.
  4. Algorithm 363 -- Complex error function, Comm. ACM 12, 635.
  1. (with B. J. Klein) Recursive computation of certain derivatives -- a study of error propagation, Comm. ACM 13, 7-9.
  2. (with B. J. Klein) Remark on Algorithm 282, Comm. ACM 13, 53-54.
  3. Efficient computation of the complex error function, SIAM J. Numer. Anal. 7, 187-198.
  4. On the construction of Gaussian quadrature rules from modified moments, Math. Comp.
    24, 245-260.
  1. Attenuation factors in practical Fourier analysis, Numer. Math. 18, 373-400.
  1. Zur Numerik rekurrenter Relationen, Computing 9, 107-126. [English translation in: Aerospace Research Laboratories, Report ARL 73-0005, February 1973.]
  2. The condition of orthogonal polynomials, Math. Comp. 26, 923-924.
  1. Algorithm 471 -- Exponential integrals, Comm. ACM 16, 761-763.
  2. On the condition of algebraic equations, Numer. Math. 21, 405-424.
  1. (with H. Yanagiwara) On Chebyshev-type quadratures, Math. Comp. 28, 125-134.
  2. A harmonic mean inequality for the gamma function, SIAM J. Math. Anal. 5, 278-281.
  3. Some mean value inequalities for the gamma function, SIAM J. Math. Anal. 5, 282-292.
  1. Computational methods in special functions -- a survey, in Theory and applications of special functions (R. A. Askey, ed.), 1-98, Math. Res. Center, Univ. Wisconsin Publ., no. 35, Academic Press, New York.
  2. Nonexistence of Chebyshev-type quadratures on infinite intervals, Math. Comp. 29, 93-99.
  3. Norm estimates for inverses of Vandermonde matrices, Numer. Math. 23, 337-347.
  4. Optimally conditioned Vandermonde matrices, Numer. Math. 24, 1-12.
  5. (with L. A. Anderson) Optimal weighted Chebyshev-type quadrature formulas, Calcolo 12, 211-248.
  6. Stime dell'errore globale nei metodi ``one-step'' per equazioni differenziali ordinarie, Rend. Mat. (2) 8, 601-617.
  1. Advances in Chebyshev quadrature, in Numerical analysis (G. A. Watson, ed.), 100-121, Lecture Notes Math., v. 506, Springer, Berlin.
  2. Comportement asymptotique des coefficients dans les formules d'intégration d'Adams, de Störmer et de Cowell, C. R. Acad. Sci. Paris Ser. A-B 283, A787-A788.
  3. Qualche contributo recente sul problema di Chebyshev nella teoria dell'integrazione numerica, Rend. Sem. Mat. Univ. e Politec. Torino 35, 39-44.
  1. (with G. Monegato) On optimal Chebyshev-type quadratures, Numer. Math. 28, 59-67.
  2. Evaluation of the repeated integrals of the coerror function, ACM Trans. Math. Software 3, 240-252.
  3. Algorithm 521 -- Repeated integrals of the coerror function, ACM Trans. Math. Software 3, 301-302.
  4. Anomalous convergence of a continued fraction for ratios of Kummer functions, Math.
    Comp. 31, 994-999.
  1. On inverses of Vandermonde and confluent Vandermonde matrices III, Numer. Math. 29, 445-450.
  2. (with J. Slavik) On the computation of modified Bessel function ratios, Math. Comp. 32, 865-875.
  3. Questions of numerical condition related to polynomials, in Symposium on recent advances in numerical analysis (C. de Boor and G. H. Golub, eds.), 45-72, Academic Press, New York. [Revised and reprinted in MAA Studies in Mathematics, v. 24: Studies in numerical analysis (G. H. Golub, ed.), 140-177, Math. Assoc. America, Washington, DC, 1984.]
  1. On generating Gaussian quadrature rules, in Numerische Integration (G. Hämmerlin, ed.), 147-154, Internat. Ser. Numer. Math., v. 45, Birkhäuser, Basel.
  2. The condition of polynomials in power form, Math. Comp. 33, 343-352.
  3. On the preceding paper ``A Legendre polynomial integral'' by James L. Blue, Math.
    Comp. 33, 742-743.
  4. A computational procedure for incomplete gamma functions, ACM Trans. Math. Software 5, 466-481.
  5. Algorithm 542 -- Incomplete gamma functions, ACM Trans. Math. Software 5, 482-489.
  6. Un procedimento di calcolo per le funzioni gamma incomplete, Rend. Sem. Mat. Univ. e Politec. Torino 37, 1-9.
  7. Families of algebraic test equations, Calcolo 16, 383-398.
  1. (with F. Costabile) Stime per difetto per gli zeri più grandi dei polinomi ortogonali, Boll. Un. Mat. Ital. (5) 17A, 516-522.
  2. (with M. Montrone) Metodi multistep con minimo coefficiente dell'errore globale, Calcolo 17, 67-75.
  1. A survey of Gauss-Christoffel quadrature formulae, in E. B. Christoffel -- the influence of his work in mathematics and the physical sciences (P. L. Butzer and F. Fehér, eds.), 72-147, Birkhäuser, Basel.
  2. Minimal solutions of three-term recurrence relations and orthogonal polynomials, Math.
    Comp. 36, 547-554.
  3. Recognition of Christoffel's work on quadrature during and after his lifetime, in E. B.
    Christoffel -- the influence of his work in mathematics and the physical sciences
    (P. L. Butzer and F. Fehér, eds.), 724-727, Birkhäuser, Basel.
  1. An algorithmic implementation of the generalized Christoffel theorem, in Numerical integration (G. Hämmerlin, ed.), 89-106, Internat. Ser. Numer. Math., v. 57, Birkhäuser, Basel.
  2. (with R. E. Lynch) Error behavior in optimal relaxation methods, Z. Angew. Math. Phys.
    33, 24-35.
  3. A note on the successive remainders of the exponential series, Elem. Math. 37, 46-49.
  4. Polynomials orthogonal with respect to the reciprocal gamma function, BIT 22, 387-389.
  5. On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3, 289-317.
  1. To Alexander M. Ostrowski on his ninetieth birthday, Linear Algebra Appl. 52/53, xi-xiv.
  2. The condition of Vandermonde-like matrices involving orthogonal polynomials, Linear Algebra Appl. 52/53, 293-300.
  3. How and how not to check Gaussian quadrature formulae, BIT 23, 209-216.
  4. (with R. S. Varga) Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal. 20, 1170-1186.
  5. On Padé approximants associated with Hamburger series, Calcolo 20, 111-127.
  6. On the convergence behavior of continued fractions with real elements, Math. Comp. 40, 337-342.
  1. (with G. V. Milovanovic) On a class of complex polynomials having all zeros in a half circle, in Numerical methods and approximation theory (G. V. Milovanovic, ed.), 49-53, Faculty of Electronic Engineering, Univ. Niš, Niš.
  2. Discrete approximations to spherically symmetric distributions, Numer. Math. 44, 53-60.
  3. On some orthogonal polynomials of interest in theoretical chemistry, BIT 24, 473-483.
  4. (with Jet Wimp) In memoriam YUDELL L. LUKE June 26, 1918 - May 6, 1983, Math. Comp. 43, 349-352.
  1. Some new applications of orthogonal polynomials, in Polynômes orthogonaux et applications (C. Brezinski, A. Draux, A. P. Magnus, P. Maroni and A. Ronveaux, eds.), 63-73, Lecture Notes Math., v. 1171, Springer, Berlin.
  2. (with G. V. Milovanovic) Gaussian quadrature involving Einstein and Fermi functions with an application to summation of series, Math. Comp. 44, 177-190. Supplement, ibid., S1-S11.
  3. Orthogonal polynomials -- constructive theory and applications, J. Comput. Appl. Math.
    12/13, 61-76.
  4. (with G. V. Milovanovic) Polynomials orthogonal on the semicircle, Rend. Sem. Mat.
    Univ. e Politec. Torino, Special Issue, 179-185.
  1. (with B. Flury) An algorithm for simultaneous orthogonal transformation of several positive definite matrices to nearly diagonal form, SIAM J. Sci. Statist. Comput. 7, 169-184.
  2. (with G. V. Milovanovic) Polynomials orthogonal on the semicircle, J. Approx. Theory 46, 230-250.
  3. On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48, 369-382.
  4. (with F. Caliò and E. Marchetti) On computing Gauss-Kronrod quadrature formulae, Math. Comp. 47, 639-650.
  5. (with G. V. Milovanovic) Spline approximations to spherically symmetric distributions, Numer. Math. 49, 111-121.
  6. Reminiscences of my involvement in de Branges's proof of the Bieberbach conjecture, in The Bieberbach conjecture (Albert Baernstein II, David Drasin, Peter Duren, and Albert Marden, eds.), 205-211, Proc. Symp. on the Occasion of the Proof, Math. Surveys Monographs, no. 21, American Mathematical Society, Providence, RI.
  1. (with M. Frontini and G. V. Milovanovic) Moment-preserving spline approximation on finite intervals, Numer. Math. 50, 503-518.
  2. (with J. Wimp) Computing the Hilbert transform of a Jacobi weight function, BIT 27, 203-215.
  3. (with H. J. Landau and G. V. Milovanovic) Polynomials orthogonal on the semicircle II, Constructive Approx. 3, 389-404.
  4. (with M. A. Kovacevic and G. V. Milovanovic) The numerical evaluation of singular integrals with coth-kernel, BIT 27, 389-402.
  5. A conjectured inequality for Hermite interpolation at the zeros of Jacobi polynomials, Problem 87-7, SIAM Rev. 29, 297-298.
  1. Gauss-Kronrod quadrature -- a survey, in Numerical methods and approximation theory III (G. V. Milovanovic, ed.), 39-66, Faculty of Electronic Engineering, Univ. Niš, Niš.
  2. (with S. E. Notaris) Newton's method and Gauss-Kronrod quadrature, in Numerical integration III (H. Brass and G. Hämmerlin, eds.), 60-71, Internat. Ser. Numer. Math., v. 85, Birkhäuser, Basel.
  3. (with S. E. Notaris) An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions, Math. Comp. 51, 231-248.
  4. (with G. Inglese) Lower bounds for the condition number of Vandermonde matrices, Numer. Math. 52, 241-250.
  5. (with T. J. Rivlin) A family of Gauss-Kronrod quadrature formulae, Math. Comp. 51, 749-754.
  1. Orthogonality -- conventional and unconventional -- in numerical analysis, in Computation and control (K. Bowers and J. Lund, eds.), 63-95, Progress in Systems and Control Theory, v. 1, Birkhäuser, Boston.
  2. On the zeros of polynomials orthogonal on the semicircle, SIAM J. Math. Anal. 20, 738-743.
  3. (with S. E. Notaris) Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szegö type, J. Comput. Appl. Math. 25, 199-224. [Erratum, ibid. 27 (1989), 429.]
  1. Some applications and numerical methods for orthogonal polynomials, in Numerical analysis and mathematical modelling (A. Wakulicz, ed.), 7-19, Banach Center Publications, v. 24, PWN Polish Scientific Publishers, Warsaw.
  2. Orthogonal polynomials on the semicircle, in Numerical analysis and mathematical modelling (A. Wakulicz, ed.), 21-27, Banach Center Publications, v 24, PWN Polish Scientific Publishers, Warsaw.
  3. Computational aspects of orthogonal polynomials, in Orthogonal polynomials (Paul Nevai, ed.), 181-216, NATO ASI Series, Series C: Mathematical and Physical Sciences, v. 294, Kluwer, Dordrecht.
  4. How (un)stable are Vandermonde systems?, in Asymptotic and computational analysis (R. Wong, ed.), 193-210, Lecture Notes Pure Appl. Math., v. 124, Dekker, New York.
  5. (with E. Tychopoulos and R.S. Varga) A note on the contour integral representation of the remainder term for a Gauss-Chebyshev quadrature rule, SIAM J. Numer. Anal. 27, 219-224.
  6. (with A. Córdova and S. Ruscheweyh) Vandermonde matrices on the circle: spectral properties and conditioning, Numer. Math. 57, 577-591.
  7. (with Shikang Li) The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points, J. Comput. Appl. Math. 33, 315-329.
  1. Computational problems and applications of orthogonal polynomials, in Orthogonal polynomials and their applications (C. Brezinski, L. Gori and A. Ronveaux, eds.), 61-71, IMACS Annals Comput. Appl. Math., v. 9, Baltzer, Basel.
  2. On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Rocky Mountain J. Math. 21, 209-226.
  3. A class of slowly convergent series and their summation by Gaussian quadrature, Math. Comp. 57, 309-324.
  4. On certain slowly convergent series occurring in plate contact problems, Math. Comp. 57, 325-338.
  5. (with Shikang Li) Gauss-Radau and Gauss-Lobatto quadratures with double end points, J. Comput. Appl. Math. 34, 343-360.
  6. On the paper ``A continued fraction approximation of the modified Bessel function
    $I_1 (t)$'' by P .R. Parthasarathy and N. Balakrishnan, Appl. Math. Letters 4, 47-51.
  7. Quadrature formulae on half-infinite intervals, BIT 31, 438-446.
  1. Remainder estimates for analytic functions, in Numerical integration (T. O. Espelid and A. Ganz, eds.), 133-145, NATO ASI Series, Series C: Mathematical and Physical Sciences, v. 357, Kluwer, Dordrecht.
  2. Applications and computation of orthogonal polynomials, Proc. Eighteenth South African Sympos. Numer. Math. (S. Abelman, ed.), 47-71, Department of Computer Science, University of Natal, Durban.
  3. Spline approximation and quadrature formulae, Atti Sem. Mat. Fis. Univ. Modena 40, 169-182.
  4. On mean convergence of extended Lagrange interpolation, J. Comput. Appl. Math. 43, 19-35.
  1. The spiral of Theodorus, special functions, and numerical analysis, Supplement A in Spirals: from Theodorus to chaos by P. J. Davis, 67-87, A K Peters, Boston.
  2. (with Shikang Li) A set of orthogonal polynomials induced by a given orthogonal polynomial, Aequationes Math. 46, 174-198.
  3. Is the recurrence relation for orthogonal polynomials always stable?, BIT 33, 277-284.
  4. On the computation of generalized Fermi-Dirac and Bose-Einstein integrals, Comput. Phys. Comm. 74, 233-238.
  5. Gauss-type quadrature rules for rational functions, in Numerical integration IV (H. Brass and G. Hämmerlin, eds.), 111-130, Internat. Ser. Numer. Math., v.112, Birkhäuser, Basel.
  6. (with S. E. Notaris) Problem 6, in Numerical integration IV (H. Brass and G. Hämmerlin, eds.), 379-380, Internat. Ser. Numer. Math., v. 112, Birkhäuser, Basel.
  1. Summation of slowly convergent series, in Numerical analysis and mathematical modelling (A. Wakulicz, ed.), 7-18, Banach Center Publications, v. 29, PWN Polish Scientific Publishers, Warsaw.
  2. Applications and computation of orthogonal polynomials, in Advances in computational mathematics: New Delhi, India (H. P. Dikshit and C. A. Micchelli, eds.), Series in Approximations and Decompositions, v. 4, World Scientific, Singapore.
  3. Algorithm 726: ORTHPOL -- a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Trans. Math. Software 20, 21-62; Remark on Algorithm 726, ibid. 24 (1998), 355.
  4. Reflections and recollections, in Approximation and computation: a festschrift in honor of Walter Gautschi (R. V. M. Zahar, ed.), xvii-xxxv, Internat. Ser. Numer. Math., v. 119, Birkhäuser, Basel.
  1. The work of Philip Rabinowitz on numerical integration, Numer. Algorithms 9, 199-222.
  2. Luigi Gatteschi's work on special functions and numerical analysis, Annals Numer.
    Math. 2, 3-19.
  3. (with M. Zhang) Computing orthogonal polynomials in Sobolev spaces, Numer. Math. 71, 159-183.
  1. Orthogonal polynomials: applications and computation, Acta Numerica 1996 (A. Iserles, ed.), 45-119, Cambridge University Press, Cambridge.
  2. (with Shikang Li) On quadrature convergence of extended Lagrange interpolation, Math.
    Comp. 65, 1249-1256.
  3. (with S. E. Notaris) Stieltjes polynomials and related quadrature formulae for a class of weight functions, Math. Comp. 65, 1257-1268.
  1. (with J. Waldvogel) Contour plots of analytic functions, Ch. 25 in Solving problems in scientific computing using Maple and Matlab (W. Gander and J. Hrebícek, eds.), 3d ed., 359-372, Springer, Berlin. [Chinese translation by China Higher Education Press and Springer, 1999; Portuguese translation of 3d ed. by Editora Edgard Blücher Ltda, Sao Paolo, 2001; Russian translation of 4th ed. by Vassamedia, Minsk, Bjelarus, 2005.]
  2. The computation of special functions by linear difference equations, in Advances in difference equations (S. Elaydi, I. Gyori, and G. Ladas, eds.), 213-243, Gordon and Breach, Amsterdam.
  3. On the computation of special Sobolev-type orthogonal polynomials, The heritage of P. L. Chebyshev: a festschrift in honor of the 70th birthday of T. J. Rivlin, Ann. Numer. Math. 4, 329-342.
  4. Moments in quadrature problems, Approximation theory and approximation, Comput. Math. Appl. 33, 105-118.
  5. (with A. B. J. Kuijlaars) Zeros and critical points of Sobolev orthogonal polynomials, J. Approx. Theory 91, 117-137.
  6. (with G. V. Milovanovic) s-orthogonality and construction of Gauss-Turán-type quadrature formulae, J. Comput. Appl. Math. 86, 205-218.
  1. The incomplete gamma functions since Tricomi, in Tricomi's ideas and contemporary applied mathematics, 203-237, Atti dei Convegni Lincei, n. 147, Accademia Nazionale dei Lincei, Roma.
  2. Ostrowski and the Ostrowski prize, Math. Intelligencer 20, 32-34. [Revised and translated into German, Uni Nova 87 (2000), 60-62, Universität Basel.]
  1. Orthogonal polynomials and quadrature, Electron. Trans. Numer. Anal. 9, 65-76.
  2. A note on the recursive calculation of incomplete gamma functions, ACM Trans. Math.
    Software 25, 101-107.
  3. Algorithm 793: GQRAT -- Gauss quadrature for rational functions, ACM Trans. Math.
    Software 25, 213-239.
  1. (with W. Gander) Adaptive quadrature -- revisited, BIT 40, 84-101.
  2. (with L. Gori and F. Pitolli) Gauss quadrature for refinable weight functions, Appl. Comput. Harmon. Anal. 8, 249-257.
  3. (with L. Gori and M. L. Lo Cascio) Quadrature rules for rational functions, Numer. Math. 86, 617-633.
  4. High-order Gauss-Lobatto formulae, Numer. Algorithms 25, 213-222.
  5. Gauss-Radau formulae for Jacobi and Laguerre weight functions, Math. Comput. Simulation 54, 403-412. [Reprinted in Computational Science, Mathematics and Software (Ronald F. Boisvert and Elias Houstis, eds.), 237-248, Purdue University Press, West Lafayette, IN.]
  1. Remark on the paper ``Barycentric formulae for cardinal (SINC-) interpolants'' by Jean-Paul Berrut, Numer. Math. 87, 791-792.
  2. (with J. Waldvogel) Computing the Hilbert transform of the generalized Laguerre and Hermite weight functions, BIT 41, 490-503.
  3. The use of rational functions in numerical quadrature, J. Comput. Appl. Math. 133, 111-126.
  1. Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions, J. Comput. Appl. Math. 139, 173-187.
  2. Computation of Bessel and Airy functions and of related Gaussian quadrature formulae, BIT 42, 110-118.
  3. The interplay between classical analysis and (numerical) linear algebra -- a tribute to Gene H. Golub, Electron. Trans. Numer. Anal. 13, 119-147.
  4. Alessandro M. Ostrowski (1893-1986). La sua vita e le opere, Boll. Docenti Matem. 45, 9-19.
  1. (with F. E. Harris and N. M. Temme) Expansions of the exponential integral in incomplete gamma functions, Appl. Math. Lett. 16, 1095-1099.
  1. Generalized Gauss-Radau and Gauss-Lobatto formulae, BIT 44, 711-720.
  1. Orthogonal polynomials (in Matlab), J. Comput. Appl. Math. 178, 215-234.
  2. The Hardy-Littlewood function: an exercise in slowly convergent series, J. Comput.
    Appl. Math. 179, 249-254.
  3. Computing polynomials orthogonal with respect to densely oscillating and exponentially decaying weight functions and related integrals, J. Comput. Appl. Math. 184, 493-504.
  4. A historical note on Gauss-Kronrod quadrature, Numer. Math. 100, 483-484.
  5. Numerical quadrature computation of the Macdonald function for complex orders, BIT Numer. Math. 45, 593-603.
  1. Orthogonal polynomials, quadrature, and approximation: computational methods and software (in Matlab), in Orthogonal polynomials and special functions -- computation and applications (Francisco Marcellán and Walter Van Assche, eds.), 1-77, Lecture Notes Math. 1883.
  2. The circle theorem and related theorems for Gauss-type quadrature rules, Electron. Trans.
    Numer. Anal. 25, 129-137.
  3. Computing the Kontorovich-Lebedev integral transforms and their inverses, BIT Numer. Math. 46, 21-40.
  1. (with Paul Leopardi) Conjectured inequalities for Jacobi polynomials and their largest zeros, Numer. Algorithms 45, 217-230.
  2. Leonhard Eulers Umgang mit langsam konvergenten Reihen, Elem. Math. 62, 174-183.
  3. Commentary, in Milestones in matrix computation: selected works of Gene H. Golub, with commentaries (Raymond H. Chan, Chen Greif, and Dianne P. O'Leary, eds.), 345-358, Oxford University Press, New York.
  4. A guided tour through my bibliography, Numer. Algorithms 45, 11-35.
  1. On Euler's attempt to compute logarithms by interpolation: a commentary to his letter of February 16, 1734 to Daniel Bernoulli, J. Comput. Appl. Math. 219, 408-415.
  2. Leonhard Euler: his life, the man, and his work, SIAM Rev. 50, 3-33. [Also published in ICIAM 07, $6^{\rm {th}}$ International Congress on Industrial and Applied Mathematics, Zürich, Switzerland, 16-20 July 2007 (Rolf Jeltsch and Gerhard Wanner, eds.), 447-483, European Mathematical Society, 2009. Chinese translation in Mathematical Advance in Translation (2008)(2-3).]
  3. The numerical evaluation of a ``challenging'' integral, Numer. Algorithms 49, 187-194.
  4. (with Carla Giordano) Luigi Gatteschi's work on asymptotics of special functions and their zeros, Numer. Algorithms 49, 11-31.
  5. On a conjectured inequality for the largest zero of Jacobi polynomials, Numer. Algorithms 49, 195-198.
  1. On conjectured inequalities for zeros of Jacobi polynomials, Numer. Algorithms 50, 93-96.
  2. New conjectured inequalities for zeros of Jacobi polynomials, Numer. Algorithms 50, 293-296.
  3. How sharp is Bernstein's inequality for Jacobi polynomials?, Electr. Trans. Numer. Anal.
    36, 1-8.
  4. High-order generalized Gauss-Radau and Gauss-Lobatto formulae for Jacobi and Laguerre weight functions, Numer. Algorithms 51, 143-149.
  5. Variable-precision recurrence coefficients for nonstandard orthogonal polynomials, Numer. Algorithms 52, 409-418.
  1. Alexander M. Ostrowski (1893-1986): his life, work, and students, in Swiss Mathematical Society 1910-2010 (Bruno Colbois, Christine Riedtmann, and Viktor Schroeder, eds.), 257-278, European Mathematical Society.
  2. The spiral of Theodorus, numerical analysis, and special functions, J. Comput. Appl.
    Math. 235, 1042-1052.
  3. Gauss quadrature routines for two classes of logarithmic weight functions, Numer. Algorithms 55, 265-277.
  1. The Lambert W-functions and some of their integrals: a case study of high-precision computation, Numer. Algorithms 57, 27-34.
  2. Optimally scaled and optimally conditioned Vandermonde and Vandermonde-like matrices, BIT Numer. Math. 51, 103-125.
  3. My collaboration with Gradimir V. Milovanovic, in Approximation and computation -- in honor of Gradimir V. Milovanovic (Walter Gautschi, Giuseppe Mastroianni, and Themistocles M. Rassias, eds.), 33-43, Springer Optim. Appl., v. 42, Springer, Dordrecht.
  4. Experimental mathematics involving orthogonal polynomials, in Approximation and computation -- in honor of Gradimir V. Milovanovic (Walter Gautschi, Giuseppe Mastroianni, and Themistocles M. Rassias, eds.), 115-131, Springer Optim. Appl., v. 42, Springer, Dordrecht.
  5. Remark on ``New conjectured inequalities for zeros of Jacobi polynomials'' by Walter Gautschi, Numer. Algorithms 50: 293-296 (2009), Numer. Algorithms 57, 511.
  1. Numerical integration over the square in the presence of algebraic/logarithmic singularities with an application to aerodynamics, Numer. Algorithms 61, 275-290.
  2. Sub-range Jacobi polynomials, Numer. Algorithms 61, 649-657.
  3. Interpolation before and after Lagrange, Rend. Sem. Matem. Univ. Politecn. Torino 70, 347-368.
  1. Repeated modifications of orthogonal polynomials by linear divisors, Numer. Algorithms 63, 369-383.
  2. Neutralizing nearby singularities in numerical quadrature, Numer. Algorithms 64, 417-425.
  1. High-precision Gauss-Turán quadrature rules for Laguerre and Hermite weight functions, Numer. Algorithms 67, 59-72.
  2. A brief summary of my scientific work and highlights of my career, in Walter Gautschi--selected works with commentaries, Vol. 1 (C. Brezinski and A. Sameh, eds.), 9-17, Birkhäuser, Boston, MA.
  1. Polynomials orthogonal with respect to exponential integrals, Numer. Algorithms 70, 215-226.
  1. Algorithm 957: Evaluation of the repeated integrals of the coerror function by half-range Gauss-Hermite quadrature, ACM Trans. Math. Software 42, 9.1-9.10.
  2. Kommentar zum Brief Leonhard Eulers an Daniel Bernoulli vom 27. Februar 1734, Opera Omnia IVA/3, p. 116, Birkhäuser, Basel.
  1. Monotonicity properties of the zeros of Freud and sub-range Freud polynomials: analytic and empirical results, Math. Comp. 86, 855-864.
  2. Erratum to: Sub-range Jacobi polynomials, Numer. Algorithms 74, 637.
  3. Polynomials orthogonal with respect to cardinal B-spline weight functions, Numer. Algorithms 76, 1099-1107.
  4. A discrete top-down Markov problem in approximation theory, in Frontiers in orthogonal polynomials and q-series (Xin Li and Z. Nashed, eds.), World Scientific Publishers, to appear.
  5. On the Ismail-Letessier-Askey monotonicity conjecture for zeros of ultraspherical polynomials, in Frontiers in orthogonal polynomials and q-series (Xin Li and Z. Nashed, eds.), World Scientific Publishers, to appear.

next up previous
Next: Mathematical Software Up: VITA WALTER GAUTSCHI Previous: Translations
Walter Gautschi 2017-11-27