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ABSTRACT
Today’s ‘Big’ spatial computing and analytics are largely
processed in-memory. Still, evaluation in prominent spa-
tial query engines is neither fully optimized for modern-class
platforms nor taking full advantage of compilation (i.e., gen-
erating low-level query code). Query compilation has been
rapidly rising inside in-memory relational database manage-
ment systems (RDBMSs) achieving remarkable speedups;
how can we bring similar benefits to spatial query engines?

In this research, we bring in proven Programming Lan-
guages (PL) approaches e.g., partial evaluation, generative
programming, etc. and leverage the power of modern hard-
ware to extend query compilation inside spatial query en-
gines. We envision a fully compiled spatial query engine
that is efficient and feasible to implement in a high-level
language. We describe LB2-Spatial; a prototype for the first
fully compiled spatial query engine that employs generative
and multi-stage programming to realize query compilation.
Furthermore, we discuss challenges, and conduct a prelimi-
nary experiment to highlight potential gains of compilation.
Finally, we sketch potential avenues for supporting spatial
query compilation in Postgres; a traditional RDBMS and
Spark SQL; a main-memory cluster computing framework.
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1. INTRODUCTION
A typical spatial query combines two aspects: data op-

erators, e.g., scan, filter, join, etc. and spatial predicates,
e.g., intersects, contains, etc. While the first part is generic
and forms the backbone of any data management system,
supporting operations on spatial (or geometric) types re-
quires specialized libraries and efficient data access meth-
ods. Spatial data are by definition in 2D, 3D, or a higher-
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dimensional space. Hence, sorting and hashing techniques
to implement join operators, for instance, are not applica-
ble. As a result, spatial query processing relies extensively
on multi-dimensional indexes to run queries efficiently.

Most spatial query engines are implemented as an exten-
sion to an RDBMS, e.g. PostGIS [4], or a map-reduce cluster
computing framework, e.g. Spatial Spark and Simba [8, 23].
The spatial predicates are often supported using an exter-
nal library (e.g., JTS [2] or geos [1]) and the query engine
is extended with spatial data types and indexes. Hence,
a competitive query evaluation in the underlying database
engine is crucial for the performance of spatial queries. In
reality, most query engines are interpreter-based (i.e., they
run pre-compiled code in contrast to generating specialized
low-level target code per query at runtime) and primarily
optimized for disk I/O. On the other hand, recent evolu-
tion in big memory platforms has eliminated the need to
store data in disk. Instead, both data and indexes now fit
in-memory. The shift to in-memory databases has revived
query compilation, which was originally debuted but then
abandoned in System R [10], and brought in ideas from the
programming languages (PL) and compilers community to
optimize query engines as in HyPer [17] and Legobase [16].

In this vision paper, we present a generative programming
approach to support compilation in spatial query engines.
We bring in an important result from PL’s partial evalu-
ation theory called Futamura Projections [13]. In the first
Futamura Projection, specializing the code of an interpreted
query engine with respect to a given query is equivalent to
a compiled version of that query. Executing compiled code
(in contrast to interpreted) is known to be more efficient at
runtime. To the best of our knowledge, this work is the first
to extend compilation to spatial query engines.

We review the necessary background on how to specialize
an interpreted query engine to a compiler in Section 2. In
Section 3 we describe LB2-Spatial; a prototype for the first
main-memory compiled spatial query engine, discuss chal-
lenges in Section 3.1 and present a preliminary experiment,
in Section 3.2, to identify potential gains of compilation.
We present two use cases on how to support spatial query
compilation in Postgres [5] and Spark SQL [9] in Section 4.
Finally, Section 5 concludes the paper.

2. BACKGROUND
This section provides the necessary background to com-

prehend the prerequisites of query compilation: the distinc-
tions between interpreters and compilers, partial evaluation,
generative and multi-stage programming.
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2.1 Partial Evaluation
A plain query interpreter first parses a given SQL query

into a parse tree, i.e., an Abstract Syntax Tree (AST) of
algebraic operators. It then evaluates the parse tree expres-
sions with respect to the input data and produces results
all in a single stage, as illustrated in Figure 1a: result =
interpreter(query, input). An interpreter is relatively easy
to implement but slow at runtime, due to the dispatch over-
head of repeatedly looking up which expression to evaluate
next. On the other end of the spectrum is compilation; a
two-phase execution. In the first stage, a source program
(i.e. query, without input data) is parsed by a compiler and
target code is emitted. In the second stage, the generated
target code evaluates the input, and directly produces the
result. The staged nature of compilers removes interpreta-
tion overhead from the runtime and enables applying op-
timizations on different stages as illustrated in Figure 1b:
target = compiler(query), result = target(input). De-
spite the benefits of compilation, query engines favored in-
terpreters over compilers since I/O was the prime bottle-
neck, mostly shadowing the compute overhead. It is easier
to traverse and evaluate parse trees in a single pass as in
the iterator evaluation [14], maximizing pipelining and min-
imizing disk reads.

Program specialization studies the instances where input
values are always known then generates an optimized code
that applies input as constants instead of passing input as
parameters. Partial evaluation [15] studies program special-
ization with respect to input parameters.

The Futamura projections [13] theory is an example of
applying specialization on interpreters. The first projection
states that a specialized interpreter with respect to input is
equivalent to a compiler. Consider Figure 1c, a staged in-
terpreter is a query engine where the code is bootstrapped
with special annotations. The staging process enables apply-
ing transformation and optimizations in future stages when
more information becomes available. The staged interpreter
and the static input i.e., query, together comprise a compiler
that emits a target code. Next, a dynamic input is evaluated
against the target to produce the result.

2.2 Generative and Multi-stage Programming
Generative programming is a form of programming where

a program written in high-level abstractions composes an-
other specialized program. That is, instead of writing down
a low-level optimized program, generative programming
provides customized components, domain-specific meta-
programs and optimizations as a library to generate com-
piled code. Along the same lines, multi-stage programming
separates computations into stages based on the frequency
of execution and information availability.

LMS (Lightweight Modular Staging) [19] is a multi-stage
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Figure 2: The architecture of a compiled spatial
query engine.

generative programming framework that provides runtime
compilation and code generation in Scala. At the core of
LMS is a graph-like intermediate representation (IR) that
encodes constructs and transformations. LMS provides a
high-level interface to add and manipulate existing and user
defined IR nodes. The LMS approach leverages the Scala
type system to distinguish future execution stages (from the
present stage) where further optimizations can be applied.
A special type constructor called Rep[T] (where T is a type
e.g., Integer) is introduced to tag expressions computed in
a future stage. In other words, present-stage computations
are executed right away and future stage expressions Rep[T]
are inserted into an IR graph to be optimized in subsequent
optimization passes. The following code shows a piece of
our staged query interpreter’s code. The Rep constructor is
applied only to the fields of Record objects. Thus, the main
interpreter function execOp will be specialized with respect
its input, a tree of query operators op of type Operator,
and a callback function yld which is to be invoked for each
record. Thus, according to the Futamura Projections, the
result of executing execOp on a given op will be a special-
ized program that implements the manipulations of record
fields in low-level code, but has all the overhead of a Record
abstraction and indirect control flow removed.

class Record(fields: List[Rep[String]], schema: List[String])
def execOp(o: Operator)(yld: Record => Unit) = o match {
case Scan(name, schema, delim, externalSchema) => ...
case Join(left, right) => ...
...

}

Finally, LMS applies compiler level optimizations e.g., func-
tion inlining, dead code elimination, loop unrolling, etc. be-
fore generating optimized code either in Scala or C.

3. LB2-SPATIAL: A COMPILED SPATIAL
QUERY ENGINE

We envision a generative programming approach to sup-
port compilation in spatial query engines. The prototype



described in this section is based on LB2 [3]; a compiled
main-memory query engine forked from Legobase [16]. The
distinction between LB2 and Legobase lies in the implemen-
tation of push-based evaluator and low-level compilation de-
tails that are out of this paper’s scope. Figure 2 gives a high-
level architecture of a compiled spatial query engine. First,
the query parser and optimizer are extended to identify spa-
tial constructs and produce a feasible execution plan. Next,
the spatial library functions, query evaluator and spatial in-
dexes (e.g., R tree, k-d tree, Quad-tree, etc.) are annotated
with Rep types to enable staging. The LMS framework con-
structs the IR graph and initiates a number of consecutive
transformation passes. In each pass, all of the available pre-
defined or user-defined optimizations are applied and a new
IR is generated. Towards the end of each pass, the set of
available optimizations are re-examined. Finally the LMS
compiler generates compiled query code i.e., optimized C
code and invokes just-in-time JIT compiler to compile C
sources into executable target. The query input i.e., data is
evaluated against the target code.

Compilation offers mechanisms to eliminate unnecessary
code (e.g. expensive validation checks, configuration vari-
ables, etc.) that query engines perform during execution.
For instance, consider building an R-tree for points (in con-
trast to minimum bounding rectangles MBRs), in this case,
points are treated as rectangles adding extraneous boundary
checks while processing each point. LMS reduces evaluation
overhead by re-compiling engine codes effected at runtime.

In summary, compilation benefits spatial query engines
with improving the performance of backbone data operators
and further optimizing spatial operations and indexing.

3.1 Challenges
In this section, we highlight some of the challenges encoun-

tered while extending compilation to main-memory spatial
query engines e.g., code generation approach, spatial index-
ing and diverse programming models.

3.1.1 Code Generation and Optimizations
The choice of code generation mechanism is critical to

realize compilation inside query engines while lowering de-
velopment overhead. For instance low-level generators e.g.,
Low-Level Virtual Machine (LLVM) has been utilized to in
query compilation [17, 12]; however, low-level code genera-
tion approaches are difficult to implement and may hinder
productivity. The multi-stage generative programming in
this work follows the direct approach (also called cogen by
hand [11]) where a programmer is involved in the loop to
specialize engine code with respect to input. The core spe-
cialization task is relatively easy [18] yet, the programmer’s
domain knowledge can be useful in reasoning which subset of
parameters to multi-stage and whether IR level operations
should be defined.

Additional challenges on the compilation frameworks level
include handling the phase-ordering problem; where there
are several ordering for applying database and PL optimiza-
tions. Furthermore, mitigating the performance cost on call-
ing un-staged code (e.g, external spatial libraries) and the
choice of generated code e.g., Java bytecode or low-level C.

3.1.2 Spatial Indexing
Spatial indexes make up the core of spatial query engines.

Spatial queries employ several types of indexing depending

on the nature of query e.g., R-trees are superior for indexing
MBRs and k-d trees are suitable for range and KNN. Com-
piling nonlinear data structures imposes several data layout
and memory management challenges. For instance, know-
ing the data structure size a priori at compilation time helps
with allocating the right amount of memory, except, this is
not always the case. Furthermore, trees should be flattened
as linear arrays. Hence, careful data referencing is crucial to
avoid unnecessary levels of indirection. Interestingly, under
certain conditions, a well-implemented data structure e.g.,
grid may outperform spatial trees [20].

3.1.3 Supporting Diverse Programming Models
The generative programming approach, as discussed so

far, enables compiling spatial queries on single-threaded plat-
forms. However, spatial computations are becoming mas-
sively parallel and there is an interest in supporting dis-
tributed and parallel platforms e.g., NUMA, GPU, Spark,
etc. Without loss of generality, the core challenge is em-
bodied in generating a portable spatial compiled query code
that can run on multiple platforms.

General-purpose Domain-Specific Languages (DSLs) com-
piler frameworks e.g., Delite [22] provides DSLs e.g., OptiQL
to develop programs that can be compiled into multiple
portable targets. Extending spatial primitives and index-
ing to OptiQL, for instance, is one path to extend spatial
compilation into diverse programming models.

3.2 A Preliminary Experiment
We conduct a preliminary experiment in order to gain in-

sights about how the performance of compiled spatial queries
compare to optimized code. We implement R-tree index and
window join query (in around 300 lines of high-level Scala
code) inside LB2-Spatial. Consider example Query 1 that
performs index window join query on tables T1, T2 with
schema [<id:Integer>, <P:Point>]. A spatial index is
built on T2.P. We perform the query in (i) PostGIS [4]; a
generic spatial RDBMS and (ii) a specialized spatial index-
ing framework [7, 21] (SIF for brevity) that implements in-
memory spatial join where the code is pre-compiled, hand-
written and hand-optimized in C++.

Query 1.

select id1, id2
from T1, T2
where ST_Contains(ST_MakeBox2D (

ST_Point( ST_X(T1.p)-xDel, ST_Y(T1.p)-yDel),
ST_Point( ST_X(T1.p)+xDel, ST_Y(T1.p)+yDel)),
T2.point)

The absolute runtime of window join query (excluding in-
dex building time) is 280ms in PostGIS, 12.09ms in SIF and
1.4ms in LB2-Spatial. Therefore, realizing spatial compila-
tion has the potential to bridge the performance gap between
spatial query engines and specialized frameworks.

4. EXAMPLES
Realizing a fully compiled spatial query engine is the ul-

timate goal of this research. Still, there is a dire need to ex-
tend spatial query compilation into existing systems. In this
section we discuss how our vision is extensible; we describe
viable approaches to support spatial query compilation in
Postgres and Spark SQL.
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4.1 Postgres: Traditional RDBMS
Postgres is a well-known traditional disk-based RDBMS.

PostGIS supports spatial data management on top of Post-
gres and has become a popular choice for many GIS appli-
cations. Although Postgres/PostGIS is a disk-based system,
it can benefit from compilation on warm runs when data is
already in memory buffers.

In our vision, we extend a proposal to support spatial
compilation in Postgres. Recall, Postgres is written in C
and adopts the iterator-based evaluation. Our approach il-
lustrated in Figure 3 keeps the front-end and optimizer in-
tact, the optimized query plan is exported into a compiled
spatial query engine (e.g., LB2-Spatial) where the query is
compiled into low-level C code. In other words, we replace
Postgres’s query engine with LB2-Spatial. The generated
code can be loaded into Postgres as dynamic library and
use internal Postgres APIs to communicate with the exist-
ing infrastructure and access stored data. Several internal
database details e.g., transaction management, recovery etc.
will need to be realized inside LB2-Spatial.

4.2 Spark and Spark SQL
Spark SQL [9] is a declarative dataframe API and query

optimizer that operates on top of Spark’s Resilient Dis-
tributed Datasets (RDDs) [24] cluster computing framework.
Several works extend Spark SQL with spatial data sup-
port [8, 23]. Spark SQL employs a form of query compi-
lation [6] within its kernel, however, spatial extensions (i.e.,
types, operators and indexes) and Spark libraries remain
pre-compiled and therefore inaccessible for Spark’s built-in
code generation. A full spatial query compilation support
involves extending compilation into two kernels; Spark and
Spark SQL in addition to spatial extensions whether embed-
ded or external.

Spark RDDs/ Spark SQL are written in Scala and hence
the generative programming approach using LMS is read-
ily applicable. A possible limitation is Spark’s underlying
RDD execution model, which is based on map-reduce col-
lections operations, and might limit performance for spatial
workloads. However, code generation could be extended all
the way through the RDD level, replacing Spark RDDs with
an equivalent compiled backend. Equipping general-purpose
compiler framework for embedded DSLs e.g., Delite [22] with
spatial capabilities is promising avenue not only for Spark
but also for massively parallel programming models.

5. CONCLUSIONS
We examine the state of spatial computing and analytics

in main-memory platforms and recognize that spatial query
engines are not leveraging the power of modern hardware.
In this vision paper, we bring in ideas from the PL com-
munity to support compilation in spatial query engines. We
describe LB2-Spatial; a prototype for the first compiled spa-
tial query engine that adopts a generative programming ap-
proach and employs Lightweight Modular Staging (LMS).
We further explain how to extend compilation into Postgres
and SparkSQL.
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