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ABSTRACT
Modern location-based applications rely extensively on the
efficient processing of spatial data and queries. Spatial query
engines are commonly engineered as an extension to a re-
lational database or a cluster-computing framework. Large
parts of the spatial processing runtime is spent on evaluat-
ing spatial predicates and traversing spatial indexing struc-
tures. Typical high-level implementations of these spatial
structures incur significant interpretive overhead, which in-
creases latency and lowers throughput. A promising idea to
improve the performance of spatial workloads is to leverage
native code generation techniques that have become popular
in relational query engines. However, architecting a spatial
query compiler is challenging since spatial processing has
fundamentally different execution characteristics from rela-
tional workloads in terms of data dimensionality, indexing
structures, and predicate evaluation.

In this paper, we discuss the underlying reasons why stan-
dard query compilation techniques are not fully effective
when applied to spatial workloads, and we demonstrate how
a particular style of query compilation based on techniques
borrowed from partial evaluation and generative program-
mingmanages to avoidmost of these difficulties by extending
the scope of custom code generation into the data structures
layer. We extend the LB2 main-memory query compiler, a
relational engine developed in this style, with spatial data
types, predicates, indexing structures, and operators. We
show that the spatial extension matches the performance
of specialized library code and outperforms relational and
map-reduce extensions.
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1 INTRODUCTION
The proliferation of location-enabled devices and the pop-
ularity of emerging Internet of Things (IoT) applications
have resulted in large amounts of spatial data that need to
be efficiently processed. Spatial data types, e.g., geometric,
geographic, etc., lie in a two or higher-dimensional space,
meaning that sorting and hashing techniques typically imple-
mented in relational query engines are not directly applicable.
As a consequence, additional indexing structures, e.g., R-tree,
k-d tree, etc. are needed to access spatial data efficiently.

Moving beyond relational processing, spatial engines often
extend existing relational query engines, e.g., PostGIS [9],
Oracle Spatial [8], etc. or cluster computing frameworks,
e.g., GeoSpark [72], Simba [70], etc. with spatial data types,
predicates, indexing structures, and operators as illustrated
in Figure 1. The key advantage of extending an existing data
management back-end is leveraging the engineering effort
that went into building sophisticated management layers for
memory, storage, and query evaluation.

The performance of spatial workloads is primarily affected
by data access and spatial predicate evaluation. Time spent
in evaluating spatial predicates makes up a large part of spa-
tial processing runtime. For instance, the spatial range join
query shown in Figure 1 performs the ST_Contains predicate
on pairs of data records when testing for spatial containment.
For convenience, spatial engines rely on external libraries,
e.g., JTS [5], Geos [3], etc. for evaluating spatial predicates.
However, these high-level libraries are opaque to the query
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Figure 1: Spatial processing overview: a relational
back-end is extended with spatial indexing structures
and evaluation.

evaluator which incurs runtime overhead in expensive func-
tion calls, and also prevents further code optimizations that
target both the predicate and query plan implementation,
e.g., inlining, loop fusion, etc.
For the case of relational spatial processing, the spatial

indexing structures are typically implemented in a generic
form to support instantiating various types of structures
behind a common interface. For instance, the SP-GiST [11]
indexing framework in PostgreSQL/ PostGIS is used to in-
stantiate a quad-tree, k-d tree, or trie. Processing data in
generic structures is expensive due to function calls (usu-
ally virtual) needed to resolve which data structure to use.
Similarly, the performance of spatial Spark extensions is sub-
optimal, in general, since Spark is internally designed for
distributed shared-nothing environments. As a consequence,
spatial datasets need to be explicitly partitioned to avoid
scanning the entire data under Spark’s distributed execu-
tion model. Data partitioning and two-level indexing are
expensive tasks especially when performed inside Spark.

In summary, both spatial relational and spatial Spark exten-
sions incur substantial runtime overhead. What can be done
to speed up spatial computations? It is natural to look at query
compilation – the translation of high-level queries to native
code – which has seen a renaissance in relational query
engines. However, applying query compilation techniques
effectively to spatial workloads is far from straightforward.

Choosing a Query Compilation Approach. Spatial pro-
cessing cost is rather dominated by evaluating coarse-grained
spatial predicates that are individually computationally ex-
pensive and accessing complex spatial data structures that
index diverse types of spatial data, e.g., points, rectangles,
polygons, etc. Architecting a spatial query compiler needs to
go beyond removing the interpretive overhead from query
evaluation and focus on evaluating complex spatial pred-
icates and generating efficient spatial indexing structures
while taking into consideration the cost of code generation
and compilation. The question then is: how to choose a query
compilation approach for spatial workloads?

Low-level query compilation implemented in HyPer, pre-
implements data structures in a high-level language such as

C++ and encodes the query evaluation in LLVM assembly to
minimize the base cost of code generation and compilation
that takes place at runtime. However, building a spatial ex-
tension with spatial indexing structures layer using this style
of code generation is challenging due the low-level imple-
mentation that permeates large parts of the engine code [64].
Furthermore, taking an in-depth look at HyPer’s code gener-
ation adopted in systems like Spark [28] already reveals that
pre-implementing data structures in a language other than
C++, especially Java for interoperability with common clus-
ter computing frameworks, results in generating suboptimal
code due to various issues including JVM overhead, the spe-
cialization level of data structures and query evaluation did
not entirely remove interpretive overhead associated with
processing Spark distributed plan [28].

On the same vein, adopting DBLAB’s approach for compil-
ing spatial queries would require adding new transformation
passes tailored towards high-dimensional spatial indexing
structures since DBLAB’s compiler is engineered to compile
linear data structures, e.g., hash tables to specialized arrays.

Therefore, we believe the compilation approach based on
programmatic specialization presented in the work of the
LB2 compiler [64] (Section 2.1) is the most suitable among
others as it (i) enables generating specialized data structures
while implementing the query engine in a high-level lan-
guage, i.e., an interpreter-based implementation similar to
existing spatial query engines (ii) allows pregenerating as
much or as little data structures code, targeting short and
long-running queries within the same query compiler (Sec-
tion 2.2).

The key idea to address the previous challenges is to spe-
cialize spatial predicate implementation (Section 3.2) in addi-
tion to facilitating building optimized data structures (Section
3.3) using programmatic specialization, the same technique
LB2 already uses for generating efficient code for relational
queries. We thus extend the LB2 [64] main-memory query
compiler with spatial compilation1; in particular, spatial pred-
icates, indexing structures, and spatial operators.

This paper makes the following contributions:
• We discuss the unique challenges of compiling spatial
workloads and build a spatial extension to the LB2
query compiler (Section 2).
• We describe staging spatial predicates, compiling op-
timized spatial indexing structures, supporting paral-
lelism and applications in LB2-Spatial (Section 3).
• We compare the performance of the spatial extension
on small and large datasets with low-level libraries
code, spatial RDBMS PostGIS, and two Spark spatial

1Compiling relational queries is extensively discussed in [39, 40, 45, 57,
64]. In this work, we give a general overview about relational queries but
primarily focus on compiling spatial workloads.
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Figure 2: Specializing query engines using the practical realization of the first Futamura Projection [64].

extension Simba and GeoSpark. The experiments vali-
date that the performance of low-level libraries can be
achieved in LB2-Spatial extension (Section 4).

Finally, we review related work in Section 5 and Section 6
concludes the paper.

2 QUERY COMPILATION OVERVIEW
In this Section, we review the generative programming code
generation approach used in LB2-Spatial and discuss the
compilation overhead in LB2-Spatial and recent state-of-the-
art query engines.

2.1 Generative Query Compilation
Most query engines are interpreters that evaluate a query
plan with respect to input data and produce results as illus-
trated in Figure 2a.
result = interpreter(source, input)

The fundamental idea of compiling SQL to low-level code
lies in removing the interpretive overhead associated with
query evaluation. In other words, applying a form of partial
evaluation to remove the dispatch which the interpreter
performs on the structure of the query.

The first Futamra projection [32], illustrated in Figure 2b,
states that specializing an interpreter (e.g., query engine)
with respect to a static input (e.g., query) is identical to a
query compiler.
target = mix(interpreter, source)

result = target(input)

As discussed in the literature [23], fully automatic partial
evaluation (“mix” in Figure 2b) is largely intractable due to
the difficulty of binding time separation [38] (i.e., deciding
which expressions to specialize and generate in the residual
code). Hence, the programmatic specialization discussed in
[64] delegates staging the query interpreter to programmers
and generative programming frameworks as illustrated in
Figure 2c.
target = staged_interpreter(source)

result = target(input)

The programmatic specialization approach for writing self-
specializing code is summarized as follows. First, a program-
mer identifies the parameters that need to be specialized or
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Figure 3: The trade-off between optimizing execution
time and compilation overhead in exiting query com-
pilers.

generated in the residual code. Second, a code generation
framework, e.g., the Lightweight Modular Staging (LMS) is
used to emit evaluation code for residual expressions. LMS
is a library-based generative programming and compiler
framework that uses generative programming abstractions,
operator overloading and other features in regular general-
purpose languages to generate code. The following example
shows specializing the power function for a fixed value of n
using LMS.
def power(x: Rep[Int], n:Int): Int =

if (n == 0) 1 else x * power(x, n - 1)

The parameter x is annotated using the Rep constructor to
denote that the staged expression x is a symbolic integer
type with operations overloaded to emit code. The generated
code for power(x,4) is as follows.
int x0 = x * 1; int x1 = x * x0;

int x2 = x * x1; int x3 = x * x2;

Figure 2c shows the practical realization of the first Futamura
projection. The query engine (i.e., interpreter) is staged with
Rep annotations and specialized with respect to a given SQL
query. The compiled target is used to evaluate data at runtime
and produce the query result.

2.2 Compilation Overhead
Code generation and compilation incur additional overhead
at runtime, typically hundreds of milliseconds to a second,
in high-level query compilers. For long-running queries, the
compilation overhead is negligible to the overall execution
time. However, for shorter queries, a pre-compilation strat-
egy, e.g., using pregenerated data structures and individual



1 class Agg(op: Op)(grp: GrpFun)(init: Record)(agg: AggFun) extends Op {

2 def exec(cb: Record ⇒ Unit) = {

3 val hm = new HashMap()

4 op.exec { tuple ⇒

5 val key = grp(tuple)

6 hm.update(key, init) {

7 curr ⇒ agg(curr, tuple)

8 } }

9 for (tuple <- hm)

10 cb(tuple)

11 } }
(a)

1 class HashMap() {

2 val name = freshName()

3 emit(s"""val $name = new HashMap()""")

4 def apply(key: Key) = s"""$name($key)"""

5 def update(key: Key, v: Value)(up: Value ⇒ Value) =

6 emit(s"""$name($key) = $up($name.getOrElse($key,$v))""")

7 }
(b)

1 abstract class HashMap(kSch: Seq[Field], vSch: Seq[Field]) {

2 def update(key: Record, init: Record)(up: Record ⇒ Record): Unit

3 def foreach(f: Record ⇒ Unit): Unit

4 }

5 class LB2HashMap(kSch: Seq[Field], vSch: Seq[Field]) extends HashMap {

6 val size = defaultSize

7 val agg = new ColumnarBuffer(vSch, size)

8 val keys = new ColumnarBuffer(kSch, size)

9 val used = new Array[Int](size)

10 var next = 0

11 def update(k: Record, init: Record)(up: Record ⇒ Record) = {

12 val idx = defaultHash(k)

13 if (isEmpty(keys(idx))) {

14 used(next) = idx; next += 1

15 keys(idx) = k; agg(idx) = up(init)

16 } else agg(idx) = up(agg(idx))

17 }

18 def foreach(f: Record ⇒ Unit) = {

19 for (idx <- 0 until next) {

20 val j = used(idx)

21 f(merge(keys(j), agg(j)))

22 } } }

(c)

Figure 4: (a) The aggregate operator in LB2 that uses
(b) an abstraction to generate a hash map using a
pre-compiled data structure or (c) generates a fully-
specialized hash map implementation in-place.

operators, may be a beneficial trade-off for minimizing com-
pilation overhead, and hence the end-to-end execution time.
Figure 3 demonstrates how code generation approaches

implemented in recent state-of-the-art query engines ad-
dress compilation overhead. For instance, Engine A (similar
to Hyper [45]), generates code that links with pre-compiled
data structures. Although the generated code is not fully
specialized, the compiling overhead is significantly reduced.
On the other hand, Engine B (similar to Legobase [39] and
DBLAB [57]), is engineered towards producing highly opti-
mized code, i.e., with all function calls inlined, data structures
specialized, etc. at the expense of compilation time.

The generative query compilation approach adopted in
this work is inherently flexible in the amount of pregener-
ated and runtime-generated code. In other words, the spatial
extension does not need to pick one extreme or the other but
can pick any point on the spectrum, i.e., compile queries that
link with pre-compiled indexing structures or generate all
the query code at runtime. However, for long-running spatial
join queries data structures specialization is more critical
than relational queries. Hence, the performance profile of
Engine Z is more desirable in such cases.

2.3 The LB2 Query Compiler
LB2 is a high-level relational query compiler that uses LMS
with guidance from the first Futamura projection [33] to
compile queries into optimized low-level code.

The code in Figure 4a shows the Aggregate operator that
uses an abstraction (Line 3) to generate a hash map data
structure. The HashMap class illustrated in Figure 4b gener-
ates only the hash map object and method calls. The hash
map implementation is a linked code that is either pregener-
ated or an existing library (similar to Engine A in Figure 3).
Furthermore, LB2 provides another hash map class, shown
in 4c, that uses buffer abstractions to generate specialized
hash map code [64] (similar to Engines B and Z in Figure 3).

3 ARCHITECTING A SPATIAL QUERY
COMPILER

Over the previous decade, spatial query engines have de-
voted a tremendous effort to support large workloads by
building spatial indexes [49], applying adaptive query pro-
cessing techniques [16], exploiting advances in distributed
and parallel computing, etc. We add to the ongoing effort and
compile spatial queries to low-level code as in pioneering
relational databases. Our goal is to architect a spatial query
compiler, in a high-level language, by extending the LB2
query compiler with spatial data types, spatial predicates,
spatial indexing structures, and spatial operators.

3.1 LB2-Spatial Overview
The LB2-Spatial extension compiles spatial queries into opti-
mized native code. Figure 5 shows a high-level architecture
of LB2-Spatial. The front-end accepts SQL queries, spatial
queries (adopting the syntax in [9, 70]), and a domain-specific
API for spatial operations in Scala. The back-end is extended
with spatial predicates, indexing structures (R-tree, k-d tree
and 2D grid) and the following predicates and join operators:
range, distance, and kNN (each operator is implemented with
an index, without using an index, serial and parallel).
Finally, LB2-Spatial adds two types of spatial indexing

structures to support both short and long-running queries.
Fully specialized indexing structures implemented using
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LB2’s high-level abstractions, e.g., various array buffers that
generate low-level code, and pre-compiled indexing struc-
tures that are linked as external libraries.
As discussed earlier (in Section 2 and [64]), evaluating a

query plan with respect to a staged query evaluator (using
LMS Rep annotations) produces a staged query. The LMS
framework builds an intermediate representation (IR) graph
that encodes high-level constructs and operations. The result
of executing the graph is a source program (generated in
Scala or C) that implements the query evaluation without the
interpretive overhead of processing static input (i.e., query
pipeline). Finally, the generated code is compiled into a target
and executed.

Front-end and Query Optimization. Spatial Spark ex-
tensions, e.g., Simba and GeoSpark, provide a SQL front-end
as traditional RDBMS, and a programmatic front-end that
offers a spatial processing API within a programming lan-
guage, e.g., Scala, Python, etc. LB2-Spatial follows the same
approach and provides SQL and programmatic front-ends.

Query Example. Throughout the remainder of this Sec-
tion, we are going to use the point-rectangle range join query
(using ST_Contains predicate) illustrated in Figure 6a (ex-
pressed in SQL and spatial API) as a running example for
compiling spatial queries. Given two tables, Rectangles and
Points, the point-rectangle range join query finds the points
located inside the rectangle areas.
Figure 6b shows the straightforward implementation

of point-rectangle range join using nested loops (in the
data-centric model with callbacks). Query evaluation starts
with Print operator calling the exec method of its child
NestedLoopRangeJoinOp. The NestedLoopRangeJoinOp in turn
executes its own execmethod (Lines 6-19) where it calls the
exec methods of Scan(Rectangles) and Scan(Points) opera-
tors (i.e., left.exec and right.exec). At a closer look, Lines
7-10 show the actions that are performed on the left oper-
ator where the records obtained from the Rectangles table
are inserted into a buffer to prepare for the join operation.
Moreover, Lines 11-18 encode the join operation where a pair
of rectangle and point values are extracted in Lines 13-16
2The spatial extension is the realization of a vision presented in
[65] where we describe supporting compilation in spatial query
engines.

// Rectangles(rid: Int, x1: Double, x2: Double, y1: Double, y2: Double)

// Points (pid: Int, px: Double, py: Double)

SELECT *
FROM Rectangles, Points

WHERE ST_Contains(x1,x2,y1,y2,px,py)

Print(

NestedLoopRangeJoinOp(

Scan(Rectangles), Scan(Points))

(x ⇒ x("x1"))(x ⇒ x("x2"))

(x ⇒ x("y1"))(x ⇒ x("y2"))

(x ⇒ x("px"))(x ⇒ x("py")))

PointsRectangles

ST_Contains
(x1,x2,y1,y2,
 px,py)

⋈

Π

(a)

1 class NestedLoopRangeJoinOp(left: Op, right: Op)

2 (x1Fun: key1, x2Fun: key2, ..., pxFun: keyx, pxFun: keyy)

3 extends Op {

4 val len = var_new(0L)

5 val buffer = new ColumnarBuffer(schema, defaultSize)

6 def exec(cb: Record ⇒ Unit) = {

7 left.exec { rec ⇒

8 buffer(len) = rec

9 len = len + 1

10 }

11 right.exec { rec ⇒

12 for ( i<-0 until len) {

13 val x1 = key1(buffer(i))

14 // val x2 ... val y1 ... val y2 ...

15 val px = keyx(rec)

16 val py = keyy(rec)

17 if(ST_Contains(x1,x2,y1,y2,px,py))

18 cb(merge(buffer(i),rec))

19 }}}}

(b)

Figure 6: (a) Point-rectangle range join query in SQL
and spatial API (b) the implementation of Nested-
LoopRangeJoinOp in LB2-Spatial.

from the corresponding records, and the spatial predicate
ST_Contains is evaluated. Finally, the statement in Line 18 is
essential as it invokes the callback of the caller’s execmethod
to stream the joined records to the parent operator Print.

Next, in Sections 3.2-3.5, we discuss the elements of compil-
ing spatial queries: staging spatial predicates, specializing in-
dexing structures, supporting parallelism in shared-memory
and spatial applications.

3.2 Staging Spatial Predicates
Spatial predicates encode the spatial relation between spatial
types, e.g., overlap, containment, etc. Spatial query engines
extensively use spatial predicates (usually provided by exter-
nal libraries) to implement various spatial operations, e.g.,
nearest neighbors, ranking, etc. For convenience, external
libraries, e.g., JTS [5] in Java, Geos [3] in C++, etc. are used
for spatial predicates’ evaluation. However, using libraries
for evaluating spatial predicate would result in generating
suboptimal code. First, the generic library interface adds



// ST_Contains predicate

def ST_Contains(x1: Rep[Int],

x2: Rep[Int], y1: Rep[Int],

y2:Rep[Int], x: Rep[Int],

y: Rep[Int]): Rep[Boolean]= {

((x1 <= x) && (x2 >= x) &&

(y1 <= y) && (y2 >=y))

}

// Scanner code ...

val rec = Record(fields, schema)

val x1 = rec("x1")

val x2 = rec("x2")

val y1 = rec("y1")

// ...

// invoking ST_Contains

if(ST_Contains(x1, x2, y1, y2,px,py))

println("ST_Contains")

(a) (b)

// Scanner code ...

// x11-x16 represent x1,x2,y1,y2,px,py

val x18 = x11 <= x15

val x20 = if (x18) {

val x19 = x12 >= x15; x19

} else false

val x22 = if (x20) {

val x21 = x13 <= x16; x21

} else false

val x24 = if (x22) {

val x23 = x14 >= x16; x23

} else false

val x27 = if (x24) {

val x25 = println("ST_Contains"); x25

} else ()

x27

(c)

Figure 7: Compiling spatial predicates (a) staging
ST_Contains predicate using Rep type constructor (b)
application code that uses ST_Contains (c) generated
code for ST_Contains predicate in Scala.

nontrivial interpretive overhead in function calls to process
parameter types and choosing the right overloaded function.
For instance, a spatial shape could be a point, line, polygon,
etc. Second, the library code appears as a black box for the
query engine and hence cannot be further optimized. To
address the previous shortcomings, LB2-Spatial implements
spatial predicates inside the query engine. The implemen-
tation effort is equivalent to staging the code of an existing
open source library with Rep type constructor.
Figure 7a shows a staged implementation for a simpli-

fied3 ST_Contains predicate used in range queries that tests
whether a point (x, y) is located inside a rectangle (x1, x2, y1,
y2). The Rep constructor denotes that all parameter values are
future stage (i.e., only known at runtime). Figure 7b shows a
partial code for a spatial predicate operation that uses the
staged ST_Contains to check whether a point is contained
inside a rectangle. Figure 7c shows the generated code in
Scala (LB2-Spatial generates Scala and C). Furthermore, LB2-
Spatial implements a subset of the commonly used spatial
predicates (e.g., ST_Contains, ST_Intersects, etc.) Additional
predicates can be incrementally added as needed.

3Typically a compile-time abstractions Rectangle and Point are used in-
stead of (x1,x2,y1,y2) and (x1,y1)

3.3 Data Loading and Indexing Structures
Data Loading. Data is processed in-situwithout an explicit

preloading phase as follows. The query optimizer uses the
available meta-data, and statistics to produce an optimized
query plan. At loading time, the spatial indexing structures
are created based on the key attributes specified in the query
plan. Finally, the spatial indexes are made available for the
query evaluator.
Spatial Indexing Structures. Spatial data are multi-

dimensional in nature. Hence, spatial engines implement
various types of indexing structures to access data efficiently.
For instance, R-trees are used for indexing minimum bound-
ing rectangles (MBRs), k-d trees are suitable for range, and
nearest neighbor queries, grids perform best when data is not
skewed, etc. General indexing frameworks, e.g., SP-GiST [11]
used in PostGIS provides high-level abstractions to support
most commonly used tree indexes, e.g., R-tree, k-d tree and
tries. Traversing generic trees tend to be inefficient due to
expensive function calls (usually virtual). Thus, LB2-Spatial
generates code for indexes (to support peak performance for
long-running queries) and uses data schema to specialize
access to indexes, and hence eliminating dispatch overhead.
Moreover, LB2-Spatial flattens tree structures into arrays to
optimize data access and layout.
Figure 8 demonstrates flattening the k-d tree index in

LB2-Spatial. Figure 8a shows spatial data stored in a column-
oriented layout for optimized storage and access. Figure 8b-c
shows the space layout, and the standard k-d tree using
pointers. The flattened k-d tree is shown in 8d where the
values inside the flat array reference the original data without
duplication. In main-memory spatial processing, flat data
structures have shown good performance [59].

All runtime-generated indexing structures in LB2-Spatial
are implemented using array abstractions that generate opti-
mized code similar to LB2’s [64]. Moreover, index-based op-
erations, e.g., range, kNN, etc. are implemented as an index-
based method, i.e., similar to normal interpreter code that is
called by spatial operators. For instance, Figure 9 shows the
implementation of an index range join operator that uses a
spatial index (in contrast to the nested loop version shown
in Figure 6). Line 6 obtains the index built on the Points

(right) table. Lines 9-14 shows the actions performed on the
Rectangles (left) table where a rectangle is extracted (Line
10) and the RangeRectanglemethod implemented inside the
index finds the points that lie inside the rectangle. Further-
more, the callback is invoked in Line 13 to stream the result
to the parent operator. Note the structure of basic operators,
and index-based operators are almost the same. The differ-
ence lies in invoking the implementation provided by the
index operation.
Pregenerated Indexing Structures. The base cost of gener-

ating spatial indexing structures at runtime is significant
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(a) data in column-layout (b)-(c) standard k-d tree im-
plementation using pointers and (d) using a flat array.

1 // left: Rectangles table,

2 // right: spatial index on Points table

3 // Index range operator that uses a spatial index on the right table

4 class IndexRangeJoinOp(left: Op, right: Op) (idxName: String)

5 (rectFun: keyRect) extends Op {

6 // obtain index for right table

7 val index: Index = right.getIndex(idxName)

8 def exec(cb: Record ⇒ Unit) = {

9 left.exec { lTuple ⇒

10 val rectangle = rectFun(lTuple)

11 // use index to find the points located inside rectangle

12 index(rectangle).RangeRectangle { pnt ⇒

13 cb(merge(pnt, rectangle))

14 }}}}

Figure 9: The implementation of the index point-
rectangle range join operator.

for short-running spatial queries. Hence, using pregener-
ated data structures as external libraries would significantly
reduce the end-to-end execution time. For such queries, LB2-
Spatial uses external libraries for spatial indexing and gener-
ates only the necessary code for index creation and manipu-
lating the indexed data.
Auxiliary Data Structures. Spatial processing is best de-

scribed as performing spatial computations while traversing
indexing structures. The implementation of various spatial
operators often use auxiliary data structures to assist traver-
sals and maintain intermediate results. For instance, the kNN
operation uses a heap to keep the list of k nearest spatial
shapes during index traversal which may update the neigh-
bors’ list. In LB2-Spatial, we recognize the performance of
auxiliary data structures is essential to query runtime. There-
fore, all auxiliary data structures, e.g., stack, heap, etc. are
implemented on optimized flattened fashion.

3.4 Parallelism
LB2 supports parallelism on shared memory systems using
OpenMP [7] where blocks of parallel code are generated
with OMP parallel annotations. The key elements to imple-
ment parallel evaluation are summarized as first, defining

1 class ParOp {

2 type ValueCallback = Record ⇒ Unit

3 type DataLoop = ValueCallback ⇒ Unit

4 type ThreadCallback =

5 Rep[Int] ⇒ DataLoop ⇒ Unit

6 def exec: ThreadCallback ⇒ Unit

7 }

ParScan

ParPrint

exec

exec

callback

callback

tid/ 
tuples

tid/ 
tuples

ParRange

(a) (c)

8 def parallelPipeline(seq: Op ⇒ Op) =

9 (parent: ParOp) ⇒ new ParOp {

10 def exec = {

11 val opExec = parent.exec

12 (tCb: ThreadCallback) ⇒ opExec { tId ⇒ dataloop ⇒

13 tCb(tId)((cb: ValueCallback) ⇒

14 seq(new Op { def exec = dataloop }).exec(cb) })

15 } } }

(b)

Figure 10: (a)-(b) Parallel operator class and paral-
lel pipeline wrapper (c) the interactions between op-
erators within a parallel query execution pipeline
(adapted from [64]).

code generation constructs that emit various OMP anno-
tations. Second, modifying the parallel evaluator structure,
and operators internally to enable orchestrating parallel ex-
ecution. Third, handling shared data structures for opera-
tors that maintain state by defining per-thread or lock-free
data structures. For instance, the following code shows LB2’s
parallelRegionannotation that emits a #pragma omp parallel

around a block of statements.
def parallelRegion(worker: Rep[Long] ⇒ Unit): Unit = {

parallel_region {

val j = ompGetThreadId

worker(j)

}}
The code in Figure 10a-b shows the definition of LB2’s

parallel pipeline wrapper that enables generating parallel
code by adding thread variables and thread callbacks (Lines
11-12). LB2-Spatial extends LB2’s parallel evaluator with
parallel spatial operators. Consider evaluating the following
index range query.
SELECT *
FROM Points

WHERE ST_Contains(0,0,100,100,px,py)

The query pipeline in Figure 10c shows how the query evalu-
ation starts withParPrint calling theexecmethod ofParRange
operator which in turn calls ParScan.exec. The ParScan oper-
ator is the point where threads are initiated. In other words,
ParScan parallelizes the loop that reads data from the source.
Thus, for each thread, ParScan calls exec callback with the
thread id tId, and another callback dataloop. This allows the
downstream operator ParRange to initialize the appropriate
thread-local data structures (recall, ST_Contains uses a previ-
ously created index meaning that each thread requires a local
data structure to maintain traversal state independently). Fi-
nally, the downstream operator ParPrint triggers the flow



of data by invoking dataloop, and passing another callback
upstream, on which the ParScanwill send each tuple for the
data partition corresponding to the active thread.

3.5 Spatial Applications
Traditional RDBMS provide procedural languages, e.g.,
PL/pgSQL in PostgreSQL to support user applications that
interleave spatial processing and application code. Similarly,
Spark programs naturally interleave front-end code, e.g.,
Python, Scala, etc. with dataframe operations. However, the
performance of these applications is often suboptimal due to
the limited visibility between query evaluation and user code.
In other words, a query is executed independently where the
application is given an iterator to process the result dataset.
However, this is not an issue in LB2-Spatial since the query
engine is implemented in Scalawith LMS, the whole applica-
tion code is optimized and generated (not only the operators).
In the following, we demonstrate writing a spatial applica-
tion using the spatial processing API.
Consider supporting a user-customized spatial-textual

scoring operation that first finds the records that lie within a
specific radius (facilitated by an index) and uses application
code to assign a score for each record in the result based on
the content of a textual attribute. Figure 11 gives an appli-
cation program that performs spatial-textual processing to
assign scores to tweets that were issued close to a number of
cities. The application uses the tweet content to compute the
score. Lines 1-11 creates an R-tree index named tweetIdx on
(lon,lat) attributes of the Tweets. Lines 13-16 loads data into
the Cities table which stores the geo-locations for a number
of cities. The function f defined in Lines 22-29 encodes scor-
ing actions to be performed on the result records obtained
from tweetIdx. The for loop starting at Line 30 reads records
from Cities table, uses the city location to probe the tweetIdx
in order to find the tweets issued within eps radius from that
city. Finally, the scoring code is injected using the callback
function f which adds a score to each record in the result.
Additionally, LB2-Spatial supports writing user-defined

functions (UDFs) similar to standard RDBMs. For instance,
spatial predicates not already implemented in the spatial
extension can be written as UDFs. Unlike traditional RDBMS,
the implementation of UDFs in LB2-Spatial is not opaque to
evaluation, and does not incur a performance penalty.

4 EVALUATION
In this section, we evaluate the performance of the spatial
extension implemented in LB2. We compare the performance
of LB2-Spatial with spatial library code [13, 60], a spatial
extension to relational engine PostGIS [9] and two spatial
Spark extensions Simba [70] and Geospark [72].

1 // create a record abstraction for spatial key

2 type pointRec = Record { val lon: Double; val lat: Double}

3 def pointRec(x: Rep[Double], y: Rep[Double]) =

4 new Record { val lon = x; val lat = y }

5 // Tweets schema

6 type tweetRec = Record { val tid: Long; val lon:

7 Double; val lat: Double; val tweet: String }

8 // building an R-tree index the Tweets data

9 val tweetIdx =

10 loadWithIdx[pointRec, tweetRecord] (file_tweet,

11 RTreeKey("twidx", x ⇒ pointRec(x.lon, x.lat)))

12 // Citites schema

13 type citiesRec = Record { val cname: String;

14 val lon: Double; val lat: Double }

15 // loading the Citites table

16 val Cities = load[citiesRec](file_cities)

17 // constructing a (lon, lat) key

18 val locationkey = x ⇒ pointRec(x.lon, x.lat)

19 val eps = 1.5

20 type ScoreRec = Record { val score: Long }

21 // user code for scoring records based on the tweets content

22 val f = { tuple ⇒

23 val t = tuple("tweet") // getting the tweet attribute

24 val scoreValue =

25 // code to compute a score based on the tweet text

26 // ...

27 val rec = new Record { val score = scoreValue }

28 printRecord(merge(tuple,rec))

29 }

30 // scanning Citites and probing tweetIdx

30 for ( i<-0 until Cities.length) {

32 val city = Cities(i)

33 val cityLoc = locationkey(city)

34 // invoking the distance predicate and

35 // passing the scoring code as a callback

36 tweetIdx(cityLoc).distance(f, eps)

37 }

Figure 11: Compiling user applications in LB2-Spatial.

We conduct three sets of experiments. The first set eval-
uates the performance of spatial operators in a single-core
setup. We also provide experiments that focus on evaluating
the effect of varying the selectivity ratio in range queries
and the impact of scaling up the index size in spatial join
queries. The second set of experiments evaluates parallelism
in LB2-Spatial, and spatial Spark extensions when scaling
up the number of cores. The third set of experiments eval-
uates the code generation and compilation overhead, and
measures the total memory consumed by LB2-Spatial, and
the Spark-based systems while performing join operations.
Finally, we provide a productivity evaluation analysis that
summarizes the lines of code needed to extend LB2 with
spatial processing.
The experiments focus on evaluating the absolute query

runtime without including data loading and indexing con-
struction time. The rationale behind this decision is first, both
PostGIS and spatial spark extensions do not optimize load-
ing time. Second, Spark extensions perform expensive data
partitioning phase during loading time to avoid scanning the
entire data under Spark’s distributed execution model. For



Table 1: Spatial datasets that are used in experiments.

Dataset Geometry #Records Size(GB)

Tweets Point 1 billion 32
OSM Nodes Point 200 million 4.3
OSM Rectangles 1 Rectangle 1 million 0.05
OSM Rectangles 2 Rectangle 114 million 14
OSM Buildings Polgons 1 million 0.19
Random Point 10 million 0.5

the single-core setup, we show that LB2-Spatial outperforms
spatial spark extensions and PostGIS in spatial join queries
by 2×-299×. For scaled-up execution, LB2-Spatial is 10×-20×
faster than spatial Spark extensions.

Datasets and Queries. Table 1 shows the spatial datasets
we use in the experiments section. The tweets dataset con-
sists of one billion geo-tagged tweets located inside the
United States. The tweets were collected over the period from
January 2013 to December 2014. We cleaned the dataset from
invalid records that did not include an accurate geo-location.
Furthermore, we only kept the longitude and latitude at-
tributes and dropped the remaining attributes. We added a
serial numeric attribute to identify data records. The Open
Street Map (OSM) consists of 200 million points, two rectan-
gles datasets one million and 114 million respectively, and
one million polygons obtained from a performance evalua-
tion study that compares the performance of several spatial
Spark extensions [51]. The last dataset is synthetic and con-
sists of ten million randomly generated points using the
uniform distribution.
Table 2 shows the queries used in the experiments. We

chose a subset of queries that evaluate the performance of
index-traversal operations (e.g., range join and distance join)
and operations that maintain a state e.g., kNN join. The
syntax of kNN join is adapted from [70]. We run each query
five times and record the median reading. To guarantee local
execution, we run the queries in a single NUMA node using
numactl -m and -C options.

Environment. All experiments are conducted on a single
NUMA machine with 4 sockets, 24 cores in a Xeon(R) Plat-
inum 8168 CPU per socket, and 750GB RAM per socket (3
TB total). The operating system is Ubuntu1 16.04.9. We use
Scala 2.11, GCC 5.4 with optimization flag -O3. We use Scala
2.11, PostgreSQL 10.4, PostGIS 2.2, GeoSpark 2.0, and Simba
with Spark 2.1.

4.1 Single-Core Spatial Join
In the first experiment, we compare LB2-Spatial with
Simba, GeoSpark, and PostGIS in point-rectangle range join
(using ST_Contains), rectangle-polygon range join (using
ST_Intersects), distance join, and kNN join queries using

Table 2: Queries that are used in experiments.

Point-

Rectangle

Range

Predicate

SELECT *
FROM Points

WHERE ST_Contains(ST_PolygonFromEnvelope(x1,x2,y1,y2),

Points.pointshape);

Point-

Rectangle

Range Join

SELECT *
FROM Points, Rectangles

WHERE ST_Contains(Rectangles.rectangleshape,

Points.pointshape);

Rectangle-

Polygon

Range Join

SELECT *
FROM Rectangle, Polygons

WHERE ST_Intersects(Rectangles.rectangleshape,

Polygon.polygonshape);

Distance

Join

SELECT *
FROM Points1, Points2

WHERE ST_DWithin(Points1.pointshape,

Points2.pointshape, distance);

kNN

Join
SELECT *
FROM Points1 AS P1 KNN JOIN Points2 AS P2 ON

POINT(P2.x, P2.y) IN KNN(POINT(P1.x, P1.y), k);

only a single-core. The goal of this experiment is to show the
performance gained when compiling long-running spatial
queries to low-level code. For point-rectangle range join we
use the OSM points, and rectangles 1 datasets as follows.
A spatial index is built on the left points table of size 200
million, and the size of the right table is one million4. For the
rectangle-polygon range join query, a spatial index is build
on the left table (rectangles 2 dataset) of size 114 million.
Moreover, we set up the value of k to 5. For distance join and
kNN join queries, we use the tweets dataset where a spatial
index is built on the left table. The size of the index is 200
million and 10 million respectively. Moreover, the size of the
right table is one million. For the kNN join query, we reduced
the index size to 10 million as in [51, 70] to avoid runtime
issues (i.e., Simba’s kNN algorithm creates duplicate points
during the kNN processing which eventually fills up the heap
space causing a runtime crash [51]). The points R-tree index
used in point-rectangle join, distance join and kNN join is
runtime generated whereas the rectangles R-tree index used
in the rectangle-polygon range join query is pregenerated.
Figure 12 gives the absolute runtime for four spatial

join queries: distance join, range join (point-rectangle and
rectangle-polygon) and kNN join. Overall, LB2-Spatial out-
performs Simba, GeoSpark, and PostGIS in all join queries.
Moreover, PostGIS outperforms Simba and GeoSpark in in-
dex distance join query and rectangle-polygon range join.
The performance gap between PostGIS and spatial spark
extensions is attributed in part to the fact that Spark-based
systems underperform in the single-core setup[28, 43].

4For the single-core experiments, we limited the index size to 200 million
and used a smaller right table i.e., one million, to keep the runtime of
spatial Spark extensions relatively low since Spark-based systems inherit
significant internal overheads due to Spark’s distributed evaluation.
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Figure 12: The absolute runtime in seconds for LB2-
Spatial, Simba, GeoSpark, and PostGIS in index dis-
tance join, index point-rectangle range join (Range J1),
index rectangle-polygon range join (Range J2), and in-
dex kNN join.

On a query-by-query analysis, LB2-Spatial outperforms
PostGIS, GeoSpark, and Simba in the distance join by 25×,
30×, and 299× respectively. Moreover, LB2-Spatial outper-
forms GeoSpark and PostGIS in point-rectangle by 19× and
28× respectively. Similarly, LB2-Spatial outperforms the pre-
vious systems in rectangle-polygon range join by 2×-10×
respectively. The comparable performance between PostGIS
and LB2-Spatial in the polygon-rectangle range join is at-
tributed in part to (i) the nature of the dataset where most
of the polygons are contained inside the rectangles which
in turn decreases the expensive intersection operation (ii)
the spatial index used in this query is pregenerated and in-
curs additional traversal time in contrast to fully specialized
indexing structures. Finally, LB2-Spatial is 13× faster than
Simba in kNN join.
In general, map-reduce extensions similar to Simba and

GeoSpark are optimized for distributed execution on large
clusters. The single machine performance is suboptimal due
to internal RDD overhead, JVM overhead, etc. The perfor-
mance of Spark-based systems can be improved with leverag-
ingmulti-threading and appropriate data partitioning schemes
that work well with the broadcast-based operations. For tra-
ditional spatial RDBMS extensions, the interpreted evalu-
ation associated with processing data in high-level incurs
significant runtime overhead.

Stand-alone Spatial Indexing Libraries. In the second
experiment, we compare LB2-Spatial with stand-alone spa-
tial indexing library code. The Spatial Indexing at Cornell
project [13, 60] provides a spatial indexing library written in
C++ for a set of common spatial indexing structures and op-
erations. For this experiment, we extend the R-tree and grid
structures from the previous library with distance join and
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Figure 13: The absolute runtime in milliseconds for
LB2-Spatial and library code in distance join and kNN
join using R-tree and grid.

kNN join operations to evaluate LB2-Spatial performance
with specialized code (i.e., without RDBMS overhead). We
use a randomly generated dataset in this experiment since
the grid index in [13] processes only positive numbers (and
hence the longitude and latitude datasets are not applicable).
Moreover, a spatial index is built on the left table of size 10
million5, and the size of the right table is 1000.
Figure 13 shows the absolute runtime of performing dis-

tance, and kNN join using R-tree and grid in LB2-Spatial
and stand-alone indexing library. The performance of R-tree
distance join is comparable in both systems whereas the
spatial library is 70% faster than LB-Spatial in the kNN join
query. The small performance gap in the kNN join query is
attributed in part to the uniformly distributed dataset that
assists in pruning more data while performing less compu-
tations. Thus, we expect LB2-Spatial to perform better in
dense datasets, e.g., tweets dataset, where more time is spent
in accessing and processing data in the leaf level.
For the case of the grid index, LB2-Spatial outperforms

the library code by 70%, and 10% in distance join and kNN
join respectively. The small performance gap between the
two systems is attributed in part to a number of implementa-
tion details. First, LB2-Spatial’s grid is implemented as a flat
array whereas the library grid index is implemented as a two-
dimensional array. Hence, there is additional memory access
incurred in the later system. Second, LB2-Spatial’s generated
code leverages compiler’s level optimizations (e.g., dead code
elimination, loop fusion, etc.) that are sometimes missed by
general purpose compilers. Lastly, although grid structures,
are significantly slower than spatial trees, grids are still com-
monly used for low index creation time. Furthermore, the
availability of a low-cost indexing structure facilitates build-
ing two-tier indexing structures that are commonly used in
distributed spatial processing.
5The choice of building a small index in this experiment is driven by the
configurations of the R-tree in [13] which always sets the leaf size to 12
leading to a higher tree height with increasing the index size.
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Figure 14: The selectivity ratio of range predicate.

Range Predicate Selectivity. The selectivity of a spatial
predicate determines the amount of computations performed
by an operator. In this experiment, we evaluate the effect
of varying the selectivity ratio of the point-rectangle range
predicate using single-core. We use the OSM nodes dataset
of size 200 million and build a spatial index on the points
data. We follow the same approach from [51] and submit
a batch of 100 queries and compute the throughput as the
number of queries executed per minute. In this experiment,
a throughput value less than one is counted as zero.
Figure 14 shows the throughput of range query in LB2-

Spatial, Simba and GeoSpark for σ = 1, 10, 50 and 100. LB2-
Spatial’s throughput for highly selective range predicate is
7500 and 134 respectively when the range predicate does not
perform any data pruning. On the other hand, the through-
put of spatial Spark extensions is very low, e.g., 9 and 2 for
σ = 1, 10 respectively in Simba and zero otherwise. Given
the simplicity of the range predicate, the low throughput is
primarily caused by Spark’s runtime overhead.

Scaling up Index Size. In this experiment, we evaluate
the effect of scaling up the index size in LB2-Spatial for range,
distance and kNN join operators using the tweets dataset.
For each join query, we build a spatial index on the left table
of size 200 million, 400 million, up to one billion. The size
of the right table is fixed as one million and the R-tree node
size is 20. Moreover, we exclude the spatial Spark systems
since Spark does not scale up well in a single-core [28, 51].
Figure 15 gives the absolute runtime in seconds for per-

forming range, distance, and kNN join operations in LB2-
Spatial. We observe the runtime increases linearly with in-
creasing the index size. The outcome validates that LB2-
Spatial does not incur system overhead beyond data loading
and a proportional time for index traversal as we increased
input size.

4.2 Parallel Spatial Join Queries
In this experiment, we compare the scalability of LB2-
Spatial with GeoSpark, and Simba on distance join and point-
rectangle range join queries.We use the OSM dataset where a
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Figure 15: The scalability of LB2-Spatial range query
with increasing the index size in single-core.

spatial index is built on the left table of size 200 million. More-
over, the size of the right table is one million. The experiment
focuses on the absolute performance and the Configuration
that Outperforms a Single Thread (COST)metric proposed by
McSherry et al. [43]. COST compares the number of threads
needed by one system to match the single-thread perfor-
mance of another. We scale the number of cores up to 24 to
keep the execution local within a single socket.

Figure 16a gives the absolute runtime for scaling up LB2-
Spatial, GeoSpark, and Simba in distance join query. Overall,
the speedup of all systems increases with the number of
cores and spatial Spark systems appear as having better
speedup than LB2-Spatial at 24 cores, i.e., 8× to 11×. However,
examining the absolute running times, LB2-Spatial is 21×
and 214× faster than GeoSpark, and Simba respectively at 24
cores. Furthermore, it takes GeoSpark over than 24 cores to
match LB2-Spatial’s single-core performance. What appears
to be good scaling for spatial Spark extension actually reveals
that the runtime incurs significant overhead.

Figure 16b gives the absolute runtime for scaling up LB2-
Spatial and GeoSpark in the point-rectangle range join query.
LB2-Spatial outperforms GeoSpark 20× up to 4 cores, and by
10× as the number of cores reach 24. Also, it takes GeoSpark
over than 24 cores to match LB2’s single-core performance.
The gap in performance is attributed in part to Spark’s inter-
nal overhead, Java Virtual Machine (JVM) overhead, high-
level data structures implementation, etc.

4.3 Code Generation and Compilation
Overheads

In this experiment, we analyze the overhead of code gen-
eration and compilation using GCC for various spatial joins
and spatial predicates operations (nested loop and index-
based). The LB2-Spatial query compiler is implemented in a
high-level language (Scala) and generates optimized C. As a
consequence, the code generation time is affected by Scala’s
runtime. The compilation overhead results are illustrated in
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Figure 17: Code generation and compilation for spa-
tial queries.

Figure 17 where the y-axis illustrates both and code genera-
tion and GCC compilation for each query.
Overall, the code generation time is dominated by gen-

erating specialized code for the scanner, spatial indexing
structures and query evaluation. For instance, generating
an index-based distance join query takes approximately 780
ms whereas a nested loop version takes 330 ms. Moreover,
compiling kNN join operation incurs additional overhead
for generating the heap data structure that maintains the
list of nearest k . Similarly, the overhead of generating spa-
tial predicates on a single table is comparable to spatial join
since the compilation overhead is largly incurred by the
data structures rather than the query evaluation. Finally, the
GCC compiler with -O3 optimization adds 100 ms to 200 ms,
depending on the implmentation details, code size, etc.
Furthermore, we analyze the compilation overhead for

two high-level query compilers6 discussed in Section 2.2.
EngineA uses precompiled indexing structures, e.g., existing
libraries. In this case, the query compiler generates only
the necessary code for index creation and manipulating the
6The query compiler instances used in this experiment are implemented in
high-level language which incurs code generation cost.

Table 3: Code generation, compilation and execution
time in milliseconds for compiling point-rectangle
range join andpoint-rectangle range predicate queries
in EngineA (precompiled linked index), and Engine X
(generated index without specialization).

RangeJoin generation compilation execution

Engine A 339 115 152896
Engine X 564 390 72676
RangePredicate

Engine A 265 55 < 1
Engine X 325 340 < 1

indexed data. On the other hand, Engine X is a point on the
compilation spectrumwhere the query engine generates data
structures without specialization, e.g., function inlining, data
structures flattening, etc. Table 3 compares the performance
of compiling point-rectangle range join and point-rectangle
range predicate queries in the previous two engines. Overall,
pre-compilation in Engine A reduces compilation overhead
approximately by 2× in comparison with Engine X and the
compilation overhead reported in Figure 17.

In general, the compilation overhead for spatial join queries
is negligible to the end-to-end query execution time. How-
ever, for the shorter queries, e.g., range predicates, a pre-
compilation strategy is a beneficial trade-off for minimizing
compilation overhead.

4.4 Memory Consumption
In this experiment, we measure the total memory consumed
by LB2-Spatial, Simba, and GeoSpark while performing spa-
tial join operations. For both Spark and LB2-Spatial, we used



Table 4: Total memory consumed (in GB) by LB2-
Spatial, Simba and GeoSpark while performing vari-
ous spatial join operations.

Distance Join Range Join kNN Join

LB2 12.3 21.1 1.3
Simba 60.8 - 2.6
GeoSpark 94.4 95.8 -

the time command in Unix with the verbose option -v and
recorded the value of maximum resident set size. We also
monitored the Storage tab in Spark’s web UI7 which gives
the memory occupied by a cached RDD. We observed that
storage memory value after constructing a spatial index on
200 million records is approximately 21 GB and 48 GB in
Simba, and GeoSpark respectively. The difference is due to
index serialization in Simba [70].
Table 4 gives the maximum execution memory used by

LB2-Spatial and the Spark-based systems. LB2-Spatial con-
sumes lessmemory than Spark-based systems (approximately
5×-7× and 4.5× less in the distance and range queries re-
spectively). Typically, Spark-based systems consume more
memory due to replication, distributed execution, and JVM
[61]. Furthermore, spatial Spark extensions perform data
partitioning that requires extra storage for sampling and pro-
cessing [51]. On the other hand, LB2-Spatial leverages the
dataset size, when available, and incrementally increases the
data structures size otherwise. For instance, the raw size of
the points and rectangles datasets used in range query is ap-
proximately 18.6 GB. LB2-Spatial consumed only additional
3 GB to perform this operation.

4.5 Productivity Evaluation
Table 5 summarizes the development effort in terms of line of
code (in Scala) needed to extend LB2 with spatial processing.
The front-end work consists of extending an existing SQL
front-end and optimizer with spatial keywords and rules.
Overall, the front-end extension was written in 277 lines.
The spatial indexing structures (R-tree, k-d tree and grid)
and auxiliary data structures were developed in 1087 lines.
Moreover, basic, index-based, single thread and parallel oper-
ations (for R-tree, k-d tree and grid) are implemented in 1474
lines. Other 120 lines of code cover various tasks, e.g., data
loading, configurations, etc. Overall, the LB2-Spatial engine
consists of 2958 lines.

5 RELATEDWORK
Spatial Processing. Several well-known relational

databases are extended with indexing structures, spatial

7Memory consumption for Spark’s RDDs cannot be collected programmati-
cally [51, 61].

Table 5: Lines of code needed to extend LB2 with spa-
tial processing.

Front-end 277
Spatial indexing and auxiliary data structures 1087
Spatial operators (basic and index-based) 1474
Other 120
Total 2958

types, etc. to support spatial processing. For instance,
PostGIS [9] uses SP_GiST’s [11] R-tree, Oracle Spatial [8]
adds QuadTree, Microsoft SQL [30] adds a hierarchical grid
index, IBM DB2 [24] uses a grid index where each cell is
indexed using a B-tree [12]. Similarly, SAP HANA Spatial
[10] and Vertica [14] created spatial extensions. AT-GIS
[48] is a single-node parallel spatial processing system
that integrates parsing and spatial query processing using
the proposed associative transducers (ATs) computational
abstraction. MonetDB [68] (a column-store) does not
support indexing and stores spatial bounding boxes as a
separate column. The performance of containment queries
is comparable to the index-based implementation. However,
the performance of large join queries are suboptimal
since it requires maintaining the entire dataset in memory.
GeoCouch [2] is a NoSQL spatial processing engine. A
comprehensive overview of spatial indexing structures is
surveyed in [42, 44, 46].

Hadoop + Spatial Processing. The Hadoop big data era
witnessed several Hadoop-based systems that extended
Hadoop with spatial partitioning, indexing, operators, etc.
The Spatial Join with MapReduce (SJMR) first introduced
in [73] did not use an index. SpatialHadoop [27] pioneered
SJMR using two indexing levels: a global index for parti-
tioning data across nodes and a local index for accessing
data within each node. Similarly, HadoopGIS [15] supports
SJMR in addition to a specialized pathology image analy-
sis module. Parallel SECONDO [41] integrates Hadoop with
the SECONDO [36] database that supports spatial process-
ing. GeoMesa [31] supports indexing and querying of spa-
tiotemporal data on Accumulo [1]. MD-HBase [47] extends
HBase [4] (key-value store) with multidimensional indexes
to support range and kNN queries. Accumulo and HBase are
based on Google’s BigTable [22]. The main disadvantages in
Hadoop-based systems are the need to load data into HDFS
and the cost of inter-job data movement.

Spark + Spatial Processing. In recent years, Spark [17]
computing framework has become popular for its main-
memory executionmodel and expressive front-end. GeoSpark
[72], SparkGIS [19], Stark [37], LocationSpark [67], Simba
[70], Magellan [6], SpatialSpark [71] and others extended
Spark with spatial indexing (e.g., R-tree, quadtree, etc.), spa-
tial operators (e.g., distance join, kNN join, etc.) and spatial



types (e.g., points, polygons, etc.). Du et. al. [25] presented a
multiway spatial join algorithm with Spark (MSJS). However,
the performance of Spark extensions inherits Spark’s inter-
nal main-memory processing bottlenecks, the overhead of
distributed datasets (RDDs) operations, and communication
through Spark’s runtime system [28]. The spatial extension
in this work supports spatial processing without incurring
runtime overhead. Similar to spatial Spark extensions, LB2-
Spatial integrates spatial indexing and operations into LB2.
Furthermore, LB2-Spatial generates code for a single ma-
chine instead of clusters.

Query Compilation. The idea of Compiling SQL queries
into native code was first proposed in System R [18]. How-
ever, compilation was not adapted at that time due to porta-
bility challenges. The Volcano iterator evaluation model [34]
implemented in most disk-based data management systems,
for its simplicity and expressiveness, suffered from large
overhead due to calling next for each tuple. Hence, Vector-
ization techiques introduced in MonetDB [68], where an
operation is performed on an array of tuples, reduces the
Volcano’s evaluation overhead significantly. Daytona [35]
compiles Cymbal (Daytona’s query language) into C code.
The work of [54] compiles queries to Java bytecode by re-
moving virtual functions from the iterator evaluation. The
holistic query evaluation (HIQUE [40]) uses a template code
generation approach to compile queries to C code.

HyPer [45] introduced the data-centric evaluation model
that is used in most main-memory databases. HyPerSpace
[52] extends spatial compilation into HyPer. In contrast to
LB2-Spatial, HyPerSpace uses the S2 library for spatial pred-
icates, and does not implement spatial indexing structures.
Furthermore, HyPerSpace does not support join operations
which extensively use spatial indexing structures for effi-
cient performance. Voodoo [53] compiles portable query
plans that can run on CPUs and GPUs. Moreover, Voodoo’s
intermediate algebra captures hardware optimizations, e.g.,
multicores, SIMD, etc. Weld [50] provides a common run-
time for diverse libraries that represent computations using
Weld’s intermediate representation (IR). During evaluation,
the IR is optimized and compiled into machine code.

Query Compilation in PostgreSQL. Butterstein et. al.
[21] compiles query subexpressions into machine code. The
work in [58] uses program specialization and LLVM to gen-
erate query code. Furthermore, Duta et. al. [26] compiles
procedural SQL away by interpreting functions into sub-
queries that can be efficiently evaluated.

High-level Query Compilers. The Legobase [39] query
compiler is implemented in Scala and uses the lightweight
modular staging framework (LMS) [56] to generate optmized
C. DBLAB [57] reimplements Legobase and uses multiple

compiler passes to compile queries. The LB2 [64] query com-
piler expanded the work presented in (“SQL to C in 500 lines”
[55]) and demonstrated that highly efficient query compila-
tion can be performed efficiently in a single compiler pass.
LB2-Graph [66] supports compiling graph workloads in LB2.
Flare [28] is a back-end accelerator for Apache Spark SQL
that brings relational performance on par with the best SQL
engines. Lantern [69] is a machine learning framework that
performs automated differentiation via delimited continua-
tions, and uses LMS to generate efficient low-level C++ and
CUDA code. Flare and Lantern are integrated [29] on the code
generation level to efficiently compile machine learning ap-
plications that process data in Flare. Delite [20, 62] and its
domain specific languages (OptiQL, OptiML [63], and Op-
tiMesh) use LMS to compile SQL, machine learning, linear
algebra, etc. to low-level code.

6 CONCLUSIONS
The widespread use of location-enabled devices has resulted
in volumes of spatial data that need to be efficiently pro-
cessed. Several spatial engines are implemented as extensions
to relational query engines or map-reduce cluster comput-
ing frameworks to leverage optimized memory, storage, and
evaluation. Still, the performance of these extensions is of-
ten impeded by the interpretive nature of the underlying
data management, generic data structures, and the need to
execute domain-specific external libraries.
In this work, we address the system challenges for com-

piling spatial workloads, and we show that the idea of the
first Futamura projection that links interpreters and compil-
ers through specialization can be applied to compile spatial
queries into low-level code, mainly eliminating the complex-
ities that so far have negatively impacted the performance
of spatial extensions. As a proof of concept, we add spa-
tial query compilation inside the LB2 main-memory query
compiler. We support parallelism for shared memory us-
ing OpenMP and thread-aware data structures. The spatial
extension matches the performance of the library code. In
single-core distance join, range join and kNN join queries,
LB2-Spatial outperforms spatial Spark extensions and Post-
GIS in spatial join queries by 2×-299×. For scale-up execution,
LB2-Spatial is 10×-20× faster than spatial Spark extensions.
As future work, we plan to support additional spatial data
types, spatial operators, high-dimensional data structures,
and minimize compilation overhead.
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