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Abstract
In this paper, we present a library-based framework of data views
over chunks of memory segments. Such views not only enable a
uniform treatment of references and arrays, but they provide a more
general abstraction in the sense that parts of arrays, references, or
even views, can be combined into hierarchies to form new logi-
cal data structures. To provide efficient implementations in widely
used industrial languages such as C++ and Scala, we employ static
and dynamic multi-staging techniques, respectively. Through stag-
ing and code specialization, the overhead of traversal and tracking
of such view hierarchies is mostly eliminated. Thus, our data views
can be used as building blocks for creating data structures for which
programmers need not pick a specific representation but can rely on
code generation and specialization to provide the right implementa-
tion that meets asymptotic running time and space guarantees. We
apply our approach in case studies in which two-dimensional array
views are used to efficiently encode real-world matrices, showing
performance on par with specialized data structures such as sparse
matrices from popular linear algebra libraries (Armadillo [33] and
Eigen [18]), or hand-tuned dense representations. We also show
the practicality of specializing data views at run-time on the JVM
via Lightweight Modular Staging, a Scala framework for dynamic
multi-stage programming, by designing a user-friendly API that
hides the underlying compilation through lazy evaluation and a uni-
form access principle.

CCS Concepts • Information systems→Data access methods;
•Software and its engineering → Data types and structures;
Patterns; Dynamic compilers; Source code generation; Runtime
environments; Allocation / deallocation strategies; •Computing
methodologies→ Shared memory algorithms

Keywords arrays, specialization, algorithms, memory model

1. Introduction
Programmers often face a choice of how to structure their data, but
some choices have long-standing consequences on the code design
and, more seriously, performance guarantees. One such dilemma
is array versus tuple of same-typed values. An array can be offset
using raw pointer arithmetic or sliced in order to create subarrays in
O(1) time with no or minimal runtime overhead in some languages,
such as C and Go, respectively. A tuple is more syntax-friendly,
but conversion to or from an array takes linear time and allocation,
forcing a programmer to choose either and be stuck with it.

We consider a more general problem, the design and implemen-
tation of views on an (ordered) set of data chunks (variables or parts
of arrays) without the need for rearranging data in a special way. It
should be possible by design that a part of data is seen by multiple

views, each providing its own logical layout, and we allow com-
posing views into hierarchies for convenience, therefore our data
views must be at least partially (ideally fully) persistent.

The simplest type of view we propose is a one-dimensional ar-
ray view, which is basically an ordered collection of chunks of
contiguous memory (also called array slices) and/or views them-
selves. We refer to either of these constituents as view portions.
A so-called simple view is the one in which no portion is another
view; Figure 1 shows one such view. By extension, we define N -
dimensional (ND) array views as a generalization that supports
logical layout as ofND arrays (e.g., a matrix if N=2) but with their
physical layout hidden. For example, such an abstraction should
provide an efficient indexing by coordinates as well as efficient it-
eration along any of its dimensions. To illustrate that such a prob-
lem is not trivial, consider a well-known representation of a sparse
matrix in Compressed Sparse Row (CSR) format, which contigu-
ously stores column coordinates of non-zero elements. However,
such a representation sacrifices efficiency of column-wise access
for a more efficient row-wise access; traversing along a specific
column requires some sort of a binary search in each of the rows,
and thus requires more than (amortized) constant-time per element.
Other formats have their own trade-offs.

Figure 1. A view (at the bottom) comprising 3 chunks of memory
(at the top); the last three elements in the reverse order, the middle
element, and the second and third element, respectively.

Instead of settling for a specific representation, we provide a
general framework for specializing representations of data depend-
ing on its structure and properties. Some examples are:
• a view that sees every k-th element of an array can be stored as

a pair (array a, indexed access function λi.a[k · i]);
• tridiagonal matrix as a composite view of three 1D array views;
• a view of immutable (infinite) series of elements can be repre-

sented in O(1) space using an indexed access function.

When two instances of an ordered data structure are catenated
together to form a bigger instance in a persistent way (i.e., that both
the instances as well as the merger can be accessed), this necessi-
tates multiple levels of nesting in order to avoid decreased perfor-
mance after many such operations. A simple scenario that results
in such a tree-like hierarchy is when a bigger view is repeatedly
created out of two or more smaller views. However, having a deep
nesting hierarchy hurts performance due to indirection while read-
ing through such composite views. Therefore, we propose using
efficient tree-like data structures that we review in Section 7 for
nested views, depending on their (statically) declared properties.

As hinted by the examples, using both properties and layout of
the data allows for a more efficient access or storage. So, one of



the key ideas in this work is to encode that information into the
types. This can be achieved in two ways: explicitly, by requiring
usage of special types; and implicitly via staging, by compiling the
code at run-time and evaluating first-stage values, then inspecting
the Abstract Syntax Tree and emitting the specialized code in the
second stage. In the former case, C++ templates alleviate the bur-
den of pattern matching on types, since the family of closely re-
lated types can be represented via a type template (e.g., Diag<T,
BlkHeight, BlkWidth>) in order to easily refer to their variations
with different parameters via function templates that act as meta-
functions or in partial specialization (e.g., template<typename T,
size_t...S> Diag<T, Same(S...)>). The template instantiation
allows the compiler to inline certain computation and specialize the
code based on the actual template parameters computed at compile-
time. In the latter case, the parameters that are only known at run-
time must be staged (i.e., evaluated in a later stage), but the rest of
the code will be executed and hence inlined or specialized through
staging. Compilation at run-time is possible due to the virtualized
environment (i.e., Java Virtual Machine). Therefore, the end result
is the same, although the latter approach has additional advantages
(see Section 5).

Ultimately, using the multi-stage programming framework
Lightweight Modular Staging (LMS) [32] in Scala, we support
fine-grained specialization of view types at run-time. The compi-
lation overhead is negligible when lots of data is read or written
through a view, since we use efficient data structures and view
merging algorithms. The whole machinery (staging, code genera-
tion and compilation) is hidden from the user by exposing the view
framework as a Scala library that relies heavily on lazy evaluation
and implicit conversions.

2. Motivating Examples
2.1 Interleaved vs Split Representation
In some numerical libraries that work with complex vectors, such as
FFTW [17], Spiral [31] or the C++ STL, APIs expect either of two
representations—an array with alternating real and imaginary parts,
or the complex and imaginary parts as separate arrays—yet their
performance guarantees are sometimes in favor of one or the other.
(For example, a null pointer or an array of half the size suffices
for the imaginary part in the split representation if the vector is
real or conjugate symmetric, respectively.) In those cases, users are
forced to do the conversion by copying data, which takes linear
time, wastes memory, and requires either provisioning of statically
allocated memory for such conversion or paying overhead for a
dynamic allocation.

As written in the FFTW documentation, the interleaved format
is redundant but still in a widespread use, mostly because it is
simpler to use in practice. We introduce an interleaved view to
neatly provide this convenience without incurring overhead due
to conversion between the representation. The index conversion is
performed on the fly by division through bit shifting, which should
not increase overhead on modern processors that perform both an
addition and shifting in one cycle (at least for the cases when array
subscripts do not otherwise require bit shifts). In C++, storing such
a view as array<T*, 2> (i.e., a two-element array of pointers)
enables the following implementation of ours for accessing at index
i: access the first or the second array (pointer) without branching
using subscript i& 1 (modulo 2), then access the element of type T
at index i >> 1 (division by 2).

2.2 Excluding a Slice or Combining Arrays
Some algorithms that work with arrays require certain elements to
be excluded. Unfortunately, the concept of array slices fails to solve
this elegantly because slices can be narrowed but not expanded nor
catenated; therefore, one needs to maintain a pair of non-excluded

slices instead. To illustrate why this is problematic, consider an
algorithm for creating permutations which maintains a list of used
elements—eventually a permutation—in array prefix, and at each
step:

1. picks every unused element stored in array unused;
2. solves the problem recursively for modified prefix and unused

with the picked element appended and excluded, respectively.

Observe that a typical implementation would incur O(n) time
overhead to exclude the element by catenating the slices before
and after the picked index. Instead, we provide a slice view that is
catenable; i.e., two such views (e.g., before and after the excluded
element) can be catenated inO(1) orO(logn) time, depending on
which guarantees for random access we require, as we are going to
explain in Section 4. Additionally, we provide a split operation for
our generalization of slice (i.e., a view) into two views, which also
runs in sublinear asymptotic time. Splitting is especially useful for
higher-dimensional views, since widespread representations, e.g.,
row/column-major (sparse) formats, require linear time.

In both cases, our data views provide the convenience and si-
multaneously solve the underlying algorithmic challenge of main-
taining reasonably efficient, but perhaps irrelevant to the program-
mer, representation of the accessible data. In cases of catenation
and split, the problem boils down to maintaining a balanced or shal-
low tree (or a forest) of portions, or even provide so-called fingers
for more efficient localized access, as well as specialized iterators.

2.3 Sparse Matrices
We show that it matters how views are composed together into
hierarchies on the following seemingly toy example1 of a sparse
matrix, which actually comes from a collection of real-world sparse
matrices SuiteSparse Matrix Collection [15].

Figure 2 shows a naive breakdown using horizontal then ver-
tical catenation of 2D array views. The sparse matrix comprises:
the main diagonal on the left; and the ten parts on the right, each
containing a full matrix (whose position vary) and a 3x3 diago-
nal matrix (at a fixed vertical position). As most elements are on
the right, reading through or iterating over such a view involves
traversing the view hierarchy of depth 2, and wastes space; i.e., 32
(1+1+10·(1+2)) views are used to represent a sparse 23x63 matrix.

Figure 2. A naive view nesting; each block of the block-diagonal
submatrix is catenated with a small diagonal below it, forming ver-
tically nested views (dark blue) that are then horizontally catenated
with the main diagonal (magenta) into the outermost view (black).

A more conservative approach is illustrated in Figure 3. Here,
the space is saved by observing that full matrices in the top-right
corner form a block-diagonal matrix; ~50% fewer views are re-
quired compared to Figure 2 (15 instead of 32), albeit the small
diagonals views are now nested one level deeper (raising the aver-
age nesting level from ~1.83 to ~2.05). Moreover, since the blocks
are of fixed size (2x4), we are able to optimize away division on

1 linear programming problem, C.Meszaros test set (p0040)

http://www.cise.ufl.edu/research/sparse/matrices/Meszaros/p0040.html


accesses within such blocks (given a row and/or column) through
specialization; for block dimension of size that is a power of two,
we do logical shift right (LSR), otherwise we multiply by a magic
number that is precomputed statically using C++ templates (or dy-
namically compiled once on the JVM).

Figure 3. An obvious breakdown into the main diagonal and the
rest (purple), which is vertically broken down into a block-diagonal
matrix (topmost purple), and a horizontal “chain” of 3x4 matrices
(green) with non-zero elements along their main diagonals (black).

In fact, using a more advanced kind of 2D array views we can
achieve the same asymptotic complexity of random access and it-
eration, but decrease the level to 1. The idea is to support a view in
which nesting is not necessarily along one dimension (i.e., horizon-
tally or vertically) but may alternate as long as end coordinates of
nested views behave as a monotone function—this enables binary
search in either dimension based on a given row/column to locate
the nested views efficiently. Figure 4 illustrates this kind of nesting
via a so-called Mono view, resulting in only a single level of nesting
and 13 views, which is indeed optimal.

Figure 4. The optimal nesting; all the subviews are catenated at
a single level such that their maximal absolute coordinates never
increase, in order: the small diagonal views .1 through .10 (the col-
umn decreases), the block-diagonal view .11 (the row decreases),
and the view spanning the main diagonal (the column decreases).

3. Array Views
Our data views have semantics similar to slices in Go (or the C++
Standard Template Library), except that they can be uniformly used
with all built-in data structures such as arrays, plain variables, or
even (hash) maps. In addition, we allow combining two or more
existing views into a merger view, provided that the corresponding
data types are compatible. Lastly, we discriminate between writable
and read-only views. As an example of why the last property is
desired, consider a view whose data is static, ordered and follows a
pattern; in that case, we may use a read-only view that uses O(1)
space and encodes the data using a function. If either of the merged
views is read-only, the resulting merger is read-only as well.

Since views can be aliased (i.e., see the shared data), they re-
quire some sort of garbage collection. In order to avoid speculating
when such resource handling of views is needed, we require that
data is only referenced through views, not references nor pointers

(i.e., all the variables are views). In that case, it is obvious that the
data which can no longer be seen by any view can be deallocated.
Conversely, data can be created by expanding a view from a thread;
this is a generalization of appending to a slice in the Go program-
ming language (which grows the underlying array). Finally, data
can become shared only if another thread creates a view out of the
view that uniquely sees it—we refer to such a view as owner.

3.1 Higher Dimensions

Our views naturally extend to N dimensions, where we define the
following kinds of view via C++ template parameters:
• NestedArray<T, N>, a wrapper around array<T, N> that pro-

vides access by coordinates and iteration along any dimension
• Sparse<T, N>, a generalization of a sparse matrix that requires
O(logS)) time for random access, where S is the number of
non-default elements (e.g., non-zeros)

• Diag<T, BlockSizeT, S...>, a generalization of block-diagonal
matrix with S1×S2×. . .×SN blocks

• Impl<T, N, Access, DimIterFactory> (usually read-only),
which uses O(1) space by using (stateful) functors (e.g., a
closure) for random access and dimension iterator (via a spe-
cialized get<I> for each dimension I)

• Chain<T, N, View, Along>, which catenates views of type
View into a chain along dimension Along; end coordinates for
each chained view are required to allow for gaps and/or when
dimensionality of nested view is less than N − 1

• Mono<T, N, View>, which catenates N -dimensional views
with monotonically increasing/decreasing end coordinates

All the above family types provide access by coordinates via vari-
adic operator (), as well as efficient iteration along any dimension.
For Diag<T, uint8_t, 2, 4> as an example, random access in-
volves 8-bit arithmetic operations, and dimension iterators maintain
a counter which yields a diagonal element when a certain counter
value is reached and a default element otherwise.

4. View Run-time
So far, it might have seemed as though views are little more than
wrappers around arrays or references. In this section we show that
views are, in fact, building blocks for creating self-optimizing data
structures. Intuitively, this is possible because data views allow the
programmer to specify how they want their data to be accessible
and under which asymptotic time and space guarantees but without
explicitly choosing a specific representation. Actually, the repre-
sentation need not even be the same throughout a view’s lifetime;
e.g., data with the same value can be initially shared but lazily al-
located and moved on writes by splitting each affected view into
several (as in immutable data structures).

4.1 Representation

As array views are a generalization of slices, they need to store or-
dered metadata of memory chunks, i.e., triples (source object, begin
index, and size or end index). In languages that allow raw memory
access via pointers, a pair of virtual addresses unambiguously rep-
resents not only an array slice but also a view reference. Otherwise,
dummy values for indices (or sizes) can be used but with consider-
able space overhead. A common base class is a good solution for
languages that run in a VM, where virtual dispatch is cheap.

What about nesting? A simple solution is to allow the source
object to be a view and use Run-Time Type Information (RTTI) to
specially handle cases when a portion is actually a (part of a) view.
This works particularly well on the JVM, since instanceof checks
are very fast, but is neither efficient nor portable in C++; therefore,
we use (variadic) template arguments and specialize the cases of
array slice/pointers versus views.



4.2 Random Access

Given an index i, the main question is how to efficiently find a por-
tion that sees the i-th element in the imaginary flattened view. If the
view is frozen, it might pay off to actually flatten it, and compute
the prefix sums of the portion sizes; then the binary search on every
random access takes O(log i) time, provided that empty views are
filtered out during the preprocessing. In the general case, however,
a thread may create a view that contains many portions, but the ac-
tual amount of accesses through that view is largely dependent on
the execution path, which may be much less. Therefore, a conser-
vative choice is to not flatten by default but join the corresponding
tree-like nesting hierarchies. Even so, the problem is essentially no
different—a binary search along a binary or multi-way search tree
may be used, which takes time proportional to the tree depth, es-
pecially a self-balancing one such as AVL, Red-Black, or B-tree.
Among those tree variants, the AVL tree has the least depth, but in
all variants it is straightforward to maintain the subtree size infor-
mation (which is needed for binary search) without increasing the
asymptotic time complexity.

4.3 Iteration

Supporting efficient iteration over a view is tricky because not only
portions might be nesting views; they can be views of different
kinds! The latter case is particularly problematic because each kind
of view has its own iterator type, which means that iteration over a
nesting (outer) view requires iteration over nested (inner) views,
yet the type of the nested views may change, since the nested
view might nest another view, and so on. Therefore, the nested
iterators need to be polymorphic. While this does not increase
time in the asymptotic sense, it does incur overhead due to virtual
dispatch. We forbid empty views, as the iterator’s next method
could otherwise take more than constant time; this way, iteration
has the theoretically optimal asymptotic time complexity.

4.4 Split & Exclusion

It is also instrumental to discuss the efficiency of a split operation,
which excludes a portion of a view, or (recursively) breaks an
existing portion into two portions (i.e., views, respectively). If the
AVL trees are used, this operation might not be practically efficient
due to a potentially large number of rotations—proportional to the
tree height—required to rebalance the AVL tree after deleting a
portion (i.e., an element). It has recently been shown by Sen, Tarjan,
and Kim [35, 36] that rebalancing need not be performed after the
deletion, provided that the such a relaxed AVL tree is periodically
rebuilt, without sacrificing logarithmic performance, albeit in terms
of insertions in this case.

One of the primary use cases of splitting a view is to decrease or
control the aliasing. E.g., if a thread no longer needs part of a view,
it might split it at the boundary into two views (and the boundary),
and destroy one of them (or the data on the boundary, respectively).

4.5 Catenation (Join)

When two or more array views are catenated (i.e., merged in an
order preserving manner), the underlying portion trees undergo a
so-called join operation, where the indices of the subsequent view
operands are increased by the size of the preceding merger. For
example, if a view on characters A and B is catenated with a view
on character C, the index of C would change from 0 to 2 in the
resulting view, but the indices of A and B would remain the same.

View catenation in O(1) worst case time is possible using
persistent deques by Kaplan and Tarjan [24], which also support
random access in logarithmic time (as observed by Okasaki [28]).
Another data structure that has been shown effective in practice,
albeit providing catenation in logarithmic time, is RRB vector [41].

90 80 70 60 10 20 40

i < 4 i >= 4 i == 6

i < 6 i >= 6

Figure 5. A nested array view with three portions, and decisions
for random access through it.

5. Specializing Data Views
As illustrated by motivating examples, naively creating views can
result in deep nesting. This is a problem because every random ac-
cess requires traversal from the root of the corresponding tree down
to a leaf, and traversal in general requires polymorphic iteration
along the whole tree. In Section 4 we showed a general approach
for the most dynamic and unpredictable creation of views, but here
we show that we can do much better in many practical scenarios.
As an example, consider a view that comprises three array slices of
length 4, 3, and 1, respectively, which contains a nested view on the
first two chunks as illustrated in Figure 5. (The nesting may have
occurred unintentionally, or as a result of catenation for efficiency.)
For an efficient access at position i, instead of going through a de-
cision procedure starting from the root towards the leaves—which
generally requires O(logn) comparisons of i and subtree sizes—
we generate a switch table, which is O(1).

If chunks are indeed statically known, it suffices to use C++
template specialization and metafunctions to create specialized
methods for access and traversal of views. In fact, a similar ap-
proach is already taken by the Standard Template Library imple-
mentors; vector<bool> could be considered as a view with a finer
granularity—unpacked bits instead of bytes—and bitset<T, Size>
is specialized into a plain integral type for small sizes.

Otherwise, we use the Lightweight Modular Staging (LMS)
framework to specialize the code on the fly. Even though this is
expensive, it eventually pays off as we increase the number of
accesses to the views, since the specialized code is necessarily more
efficient.

Static specialization (using C++ templates) We show static spe-
cialization on our block-diagonal array view, which we specialize
when block size in every dimension is 1, i.e., it is diagonal:
template<class T, typename BlkSizeT, BlkSizeT... S>
class Diag { NestedArray<T, BlkSize, S...>[] bs_; /* ... */ }

// special case: 1 == S0 == S1 == ... == SN
template<class T, typename BlkSizeT, BlkSizeT S0, BlkSizeT... S,

typename = enable_if_t<1 == S0 && Same(S0, S...)>>
class Diag<T, BlkSizeT, S0, S...> { T[] bs_; /* ... */ }

In that special case, we use an array to store values along the di-
agonal, and the rest has some default value (e.g., 0), therefore the
access method returns Same(i...) ? bs_[i] : default_val_,
where Same is a variadic function template that checks if all ar-
guments are equal without branching: it statically expands into
(i0 == i1)&(i1 == i2)& . . .&(iN−1 == iN ). In the general
case when block sizes are S1, S2, . . . , SN , we store the blocks
in a list bs_ of nested arrays that support access by relative co-
ordinates (i1, i2, . . . , iN ). We support random access by absolute
coordinates via method at implemented as follows,
template<size_t Ix0, size_t... Ix, typename I0, typename... I>
T& at0(index_sequence<Ix0, Ix...>, I0&& i0, I&&... i) {
auto k = i0 / get<Ix0>(kScaler);
return Same(k, (i / get<Ix>(kScaler))...))
? bs_[k](i0 - k * get<Ix0>(kScaler),

(i - k * get<Ix>(kScaler))...) : default_val_; }
static const tuple<DimScaler<S...>> kScaler;



template<typename... I>
enable_if_t<sizeof...(I)==sizeof...(S), T&> at(I... i) { return
at0(make_index_sequence_for<I...>{}, forward<I>(i)...); }

which is enabled only if the number of coordinates equals the num-
ber of dimensions, and delegates calls to at0 (and the dummy in-
dex sequence 0, 1, . . . , N that only exists at compile time). The at0
method first computes the index of the block containing the coor-
dinates, k, by dividing block size in any dimension; if quotients are
not the same, a default off-diagonal value is returned. It then com-
putes i mod Si with a series of logical shifts and additions (in-
stead of multiplications and divisions) in the overloaded operators
* and / of the helper class DimScaler, which is able to specialize
this computation because block size Si is known statically.

We achieve modularity by employing a well-known Curiously
Recurring Template Pattern (CRTP). Common functionality (i.e.,
methods and fields) is statically injected by inheriting one or more
helper (base) class templates, each parametrized with an implemen-
tation (i.e., DiagHelper<Derived, ...>), providing implementa-
tion template in terms of Derived class. Such static polymorphism
has no overhead, and helper classes can even access dependent
types that may be different in each implementing Derived class.

Dynamic specialization (using Scala LMS) A more flexible and
user-friendly approach is taken in our implementation of 1D and 2D
array views in Scala. The following snippet illustrates the creation
of a view on catenation of (reversed) arrays from Figure 5:
val a = Array.range(0, 100, 10) // 0, 10, 20, ..., 90
// a --(implicit conversion with cache)-> ArrayView
val a9DownTo6And1To2And4V = ArrayView(

a downTo 6, a from 1 until 3, a at 4)

Behind the scenes, the ArrayView type constructor is a code gener-
ator factory and its methods (e.g., for random access or iteration)
are lazy fields that are compiled on first access. For example, read-
ing at index i through the above view is specialized as follows:
if (i < 4) a(9-i) else if (i < 6) a(i-3) else a(4)

Compared to static specialization, implementation is much simpler
because LMS does it automatically for execution paths that do not
depend on future-stage values (typed as Rep[*]); for example:
class Diag[T](bs: Array[ Array[Array[T]] ]) {
def at(i1: Int, i2: Int): T = atC(i1, i2)
final lazy val atC = compile2(atS) // lazily compiled once
def atS(i1: Rep[Int], i2: Rep[Int]): Rep[T] { // staged
val (k, k2) = ((i1 / bs(0).size), (i2 / bs(0)(0).size))
if (k == k2) staticData(bs)(k)(i1 - k * bs(0).size)

(i2 - k * bs(0)(0).size)
else staticData(defaultVal) }

where current-staged values such as bs(0).size are known during
dynamic compilation, so division is optimized away (as in C++).

6. Experimental Results
We have implemented ND array views with static specialization in
C++, as well as 1D and 2D array views with dynamic specialization
in Scala, as libraries named name cppviews2 and scalaviews3. Dur-
ing the implementation the main challenge we identified is finding
a balance between type refinement and runtime abstractions; the
more properties of a view we encode as C++ template parameters
or current-staged values (not typed as Rep[*] in Scala LMS), the
more specialization we need to explicitly deal with. In the former
case, apart from the complexity of doing compile-time computation
in C++, there is a risk of code explosion. In the later case, not only
the JVM may end up compiling too much at run-time, but the space
for tuning may grow exponentially and become harder to optimize.

2 https://bitbucket.org/losvald/cppviews
3 https://bitbucket.org/losvald/scalaviews

6.1 Case Study: Strassen Algorithm (Matrix Multiplication)
The Strassen algorithm is an efficient divide-and-conquer algorithm
for matrix multiplication in time O(N log2 7+o(1)) ≈ O(N2.8074),
which is faster than the naive O(N3) algorithm. The asymptotic
improvement in time is achieved by partitioning either square ma-
trix (to be multiplied) into 4 equally sized block matrices—here is
where our views come into play—and thus reducing the number of
multiplications from 8 to 7. Our baseline is a fast C/C++ implemen-
tation by Cochran [12] in which partitioning is done in O(1) time
by adjusting the access strides for the submatrices, but this makes
the implementation verbose as both strides and offsets of block ma-
trices need to be explicitly recalculated and carried around. Instead,
we represent submatrices with views and split them (inO(1) time)
at each step in the recursion. Table 1 presents the results, from
which we can see that our convenient and conceptually simple ap-
proach has only 20% slowdown for sufficiently big matrices.
N 256 512 1024 2048 4096
strides & offsets 0.012 0.116 0.585 4.015 30.303
splittable views 0.017 0.136 0.704 4.827 36.660
relative slowdown 44% 16% 20% 20% 21%

Table 1. Running time in seconds of two implementations of the
Strassen algorithm, a hand-optimized one that explicitly calculates
strides as well as offsets (to avoid copying) and ours in which dense
views are simply split, for multiplying two NxN matrices.

6.2 Case Study: Real-world Sparse Matrices
We have visually examined a huge collection of real-world sparse
matrices from SuiteSparse [15], and observed that many can be
represented using the same kind of views and with nestings of
similar depths. We selected a matrix of sufficient size (typically
hundreds of thousands of elements) as a representative of each such
equivalence class, as well as some of the atypical ones in order
to stress test our methods. Details of the matrices can be found
through the online search tool4 by entering their unique names.

We were able to represent each of our sample matrices using
2D array views defined in Section 3.1 with only a few levels of
nesting (depicted as magenta, dark blue, green, red, respectively),
after allowing ourselves to: waste a small fraction of space by over-
approximating certain submatrices as dense by using full views,
which is shown in Figure 6; or potentially give up some perfor-
mance by using sparse views instead of fully exploiting a structure
of a submatrix with complicated patterns, as illustrated in Figure 7.

To evaluate performance of reading sparse matrices through
our views, we first wrote a GUI program (with an interface simi-
lar to the previous figures), which generates a JSON file that de-
scribes the user-created view hierarchy without the actual non-
zero elements; i.e., which views cover which parts of the ma-
trix and how they are nested into the top-level view. Then, we
have a C++ code generator that outputs a header file in which
views have many properties statically encoded using C++ tem-
plate parameters, as shown in Listing 1, so that further com-
pilation for the benchmark of a particular view specializes the
code. For each 3rd-party library that we compare performance
against, we wrote a template-specialized sparse matrix view fa-
cade, SmvFacade<ThirdPartySparseMatrix>, which allows for
easy uniform and static treatment. The overhead of the facade layer
is normally optimized away by the C++ compiler, since our classes
use static polymorphism and their methods simply delegate param-
eters to the APIs of the underlying libraries. Figure 8 shows the
part of our evaluation pipeline that produces *.hpp header files that
declare an uninstantiated class template of a view-like object (each
inheriting the corresponding facade), and Figure 9 shows the next

4 http://yifanhu.net/GALLERY/GRAPHS/search.html

https://bitbucket.org/losvald/cppviews
https://bitbucket.org/losvald/scalaviews
http://yifanhu.net/GALLERY/GRAPHS/search.html


Figure 6. Simplical complexes from Homology from Volkmar
Welker (n3c6-b7). The parts around the antidiagonal are repre-
sented via 16 full views (NestedArrays), each of approximate size
as the rightmost green rectangle, although these small submatrices
look similar to the whole matrix (i.e., have a fractal pattern).

Figure 7. A circuit simulation problem (rajat01). The central re-
gion with diagonal-like submatrices—not even block-diagonal due
to gaps (not visible)—is underapproximated by using a sparse view.
This avoids the need of a nearly-(block-)diagonal kind of view.

stage in which the code is specialized (through template instantia-
tion and specialization) based on a statically known view hierarchy
(or properties of sparse matrices in case of 3rd-party libraries).

Using our pipeline, we performed a series of microbenchmarks,
random reading of zero and non-zero values, and iterating over non-
zero values in a fixed order (consistent with iteration over the cor-
responding indices). We measured average times on 3–5 runs of
these benchmarks on two matrices—containing 133 and 255004
non-zero elements (and 23 rows and 32 columns, and 60008 rows/-
columns, respectively)—such that a large number of candidate ac-
cess coordinates are precomputed (typically 105–106 pairs), which
are repeatedly shuffled and read in round-robin fashion sufficiently
many times (106–109) in each run, so that the times are around
a second. Table 2 and Table 3 show normalized results for these
two matrices in millions of IO operations per second (IOPS). In a
sufficiently large matrix, our random access of non-zero values is
658% and 14% faster than the one of sparse matrices in Armadillo
and Eigen libraries, and 77% faster than the C++ hash table, while

#include "facade.hpp"
struct Figure3
#define SM_BASE_TYPE Chain<ArrayView<int, 2>, 1>

: public SM_BASE_TYPE, public SmvFacade<Figure3> {
Figure3() : SM_BASE_TYPE( // CRTP ^^ for static

#undef SM_BASE_TYPE // injection of methods
ChainTag<1>(), PolyVector<ArrayView<int, 2>>()
.Append([] { // MAIN DIAGONAL
Diag<int, uint, 1, 1> v(ZeroPtr<int>(), 23, 23);
for (uint i = 0; i < 23; ++i) v(i, i) = 1;
return v; }())

.Append( // VERTICALLY CHAINED RIGHT PART (DARK BLUE)
ChainTag<0>(), PolyVector<ArrayView<int, 2>>()
.Append([] {// 2x4 BLOCK-DIAGONAL
Diag<int, uint, 2, 4> v(ZeroPtr<int>(), 20, 40);
return v; }())

.Append( // HORIZONTALLY CHAINED DIAGONALS (GREEN)
ChainTag<1>(), PolyVector<ArrayView<int, 2>>()
.Append([] {
Diag<int, uint, 1, 1> v(ZeroPtr<int>(), 3, 3);
for (uint i = 0; i < 3; ++i) v(i, i) = -1669;
return v; }())

// ... 9 more Appends with different values ^^ ...
, ZeroPtr<int>(), ChainOffsetVector<2>({

{0, 0}, /* ... 8 more pairs ... */ {0, 36} })
, 3, 40)

, ZeroPtr<int>(), ChainOffsetVector<2>({{0, 0}, {20, 0}})
, 23, 40)

, ZeroPtr<int>(), ChainOffsetVector<2>({{0, 0}, {0, 23}})
, 23, 63) { // INITIALIZATION OF VALUES
static int data[] = { -1, -1, -1, -1, +1, +1, +1, +1,

// ... for 8 more blocks ...
-1, -1, -1, -1, +1, +1, +1, +1, };

static uint rows[] = { 0, 0, 0, 0, 1, 1, 1, 1,
// ... for 8 more blocks ...
18, 18, 18, 18, 19, 19, 19, 19, };

static uint cols[] = {23, 24, 25, 26, 23, 24, 25, 26,
// ... for 8 more blocks ...
59, 60, 61, 62, 59, 60, 61, 62, };

for (size_t i = 0; i < 80; ++i)
(*this)(rows[i], cols[i]) = data[i]; } }

Listing 1: Generated C++ header code (except include guards) for
the view in Figure 3. Diag views have their block sizes, 2x4 and
1x1, as template parameters, which enables shifts by a constant in-
stead of divisions upon random access. Similarly, chaining dimen-
sions are statically encoded via ChainTag for efficient iteration.

Random Read Iteration
0s non-0s non-0s

arma::SpMat 110.536 104.984 450.352
Eigen::SparseMatrix 71.180 39.701 1745.864

cppviews 44.389 34.972 34.620
44.155 37.026 33.155

std::map 30.941 27.067 196.826
std::unordered_map 39.718 56.875 –

Table 2. Performance of random reads and iteration in millions
of IOPS (higher is better), for the small sparse matrix p0040. Two
implementations of the view hierarchy as in Figure 3 were bench-
marked, in which the sizes of chained diagonals as well as gaps in
between are both statically known or unknown, respectively. Creat-
ing either view using our GUI tool took 35–60 seconds on average.

the random access to zero values is still acceptable, 59% and 93%
slower than in Armadillo and Eigen. Iteration over non-zero values
is also several times slower, which is understandable since we do
not statically eliminate nesting in our C++ implementation.

7. Related Work
The View Template Library [44] is the most closely related work
we are aware of; it implements views in C++ as container adaptors
which provide access to different representations of data that are
generated on the fly. Such a concept view is a generalization of a
smart iterator [6], which can filter data while iterating over a data
structure (i.e., a container), as opposed to providing a transformed
access over it. A live data view [7] has also been studied in the
context of parallel and mobile environments as a programming
abstraction of a time window over streaming data.

http://www.cise.ufl.edu/research/sparse/matrices/Meszaros/p0040.html


Figure 8. The pipeline for generating a specialized view of a
sparse matrices as a C++ header file out of its JSON representation,
dynamically from Scala (lower part), or statically from C++ code
(upper part) using cppviews or a third-party library that provides
matrix-like data structure for which a facade should be written.

Figure 9. Evaluation pipeline for running experiments using the
generated C++ header file (see Figure 8).

Random Read Iteration
0s non-0s non-0s

arma::SpMat 51.259 2.757 172.665
Eigen::SparseMatrix 57.814 15.872 251.166
cppviews 29.997 18.149 45.075
std::map 2.023 1.497 55.155
std::unordered_map 8.937 10.252 –

Table 3. Performance of random reads and iteration in millions of
IOPS (higher is better) on the large sparse matrix a5esindl, which
we represent with Diags nested up to 3 levels deep via Chain views.
The view creation using our GUI tool took 3–5 minutes on average.

Persistent Data Structures A general framework for turning
ephemeral pointer-based data structures into persistent ones was
provided by Driscol et al. [16] and improved by Brodal [8].

Arrays The concept of an array for contiguous storage has been
introduced by Konrad Zuse [5], and Fortran was the first language
that implemented it. Discontiguous arrays divided into indexed
chunks have been proposed by several researchers [20, 4, 11, 38],
and have been extensively studied in the scope of virtual machines,
where fragmentation caused by large arrays results in unpredictable
space-and-time performance during garbage collection. To reduce
fragmentation, Siebart [38] groups such chunks into a tree, but
this requires an expensive tree traversal on every access. Bacon
et al. [4], Pizlo at al. [29], and Sartor et al. [34] use a single
level of indirection to fixed size arraylets. Sartor et al. further
reduce the indirection overhead by a constant factor via their first-

N optimization, and use other optimization techniques such as zero
compression, lazy allocation, and arraylet copy-on-write [34].

Trees Kuszmaul [26] provides a technique for merging balanced
binary trees inO(1) amortized time. Red-black trees were invented
by Guibas and Sedgewick [19], and remain one of the few balanced
search trees in which rebalance after every operation requiresO(1)
rotations in the worst case (including the deletion). AVL trees [1]
have remained one of the most rigidly balanced trees ever since
their introduction in 1962, and require at most two rotations per
insertion. That a deletion in an AVL tree can cause Θ(logn) ro-
tations, even in the amortized case, has been proved by Amani et
al. [3]. Sen, Tarjan and Kim [35, 36] recently described a relaxation
of AVL and other balanced binary search trees in which deletions
do not rebalance the tree at all, yet worst-case access time remains
logarithmic in the number of insertions, provided that it is periodi-
cally rebuilt. For cases when access is localized, faster trees exist;
Hinze and Paterson invented 2-3 trees known as Finger trees [21],
which are purely functional and designed with simplicity of imple-
mentation in mind. Finally, some trees were invented to perform
better on non-uniform access patterns; their amortized time to ac-
cess an item v is inO(1 + log m

c(v)
), which matches the theoretical

optimum [25] as a function of access frequencies c(v). The earliest
such is the splay tree by Sleator and Tarjan [40]. In a recent work
with Tarjan, Yehuda et al. [2] devised the CB tree—a practical con-
current alternative that achieves the same asymptotic optimality—
in which the number of rotations is subconstant amortized if the
majority of operations are lookups and/or updates (not insertions).

Lists Skip lists [30] are a simpler and significantly faster alter-
native to traditional self-balancing search trees, but with the same
asymptotic expected time bounds (i.e., O(logn)) proved by ran-
domized analysis. They support catenation and splitting. A purely
functional random-access list that supportsO(min{i, logn}) time
lookup or update at index i, and stack operations in O(1) time,
was presented by Okasaki [28]. If external immutability suffices,
there are simpler fully persistent random access deques that rely on
memoization and lazy evaluation to achieve amortizedO(1) deque
operations including catenation, in addition to access in O(log i)
amortized time, as shown by Brodal et al. [23]. The RRB vector
[41] is a random-access deque that supports appending/deleting at
either end in amortizedO(1) time, catenation and lookup/update at
index in O(logn), but exploits spatio-temporal locality.

Metaprogramming Siek and Taha [39] formalize semantics of
C++ templates, which provide a Turing-complete sub-language
within C++ through specialization. Cole and Parker [13] develop
a method for dynamic compilation of C++ templates that delays
code generation for instantiated templates until they are actually
used at run-time. Multi-staged programming (MSP) was pioneered
by Taha [43], mostly through MetaML [42] that allows code gen-
eration at run-time. Czarnecki et al. [14] show how to implement
Domain Specific Languages (DSLs) using MSP: dynamically in
MetaOCaml [9], but also statically in Template Haskell [37] and
C++ via template metaprogramming. Lightweight Modular Staging
(LMS) [32] is a Scala library for MSP that relies solely on types to
distinguish the computational stages, unlike previous approaches—
MetaML [42] and MetaOCaml [9]—which rely on quasiquotes.
Scala LMS is inspired by Carette et al. [10] and Hofer et al. [22],
can generate the code at run-time, and allows for deeply embedded
DSL implementation through Scala Virtualized [27].

8. Conclusion
We design and implement data views that are more general than ex-
isting data structures, supporting efficient operations such as split/-
catenation in N dimensions. They allow not only finer-grained re-
source management, alias control and sharing; they shift the burden

http://www.cise.ufl.edu/research/sparse/matrices/GHS_indef/a5esindl.html


of picking the optimal representation from a programmer to the
compiler. In C++, we compared our view performance and found
it superior to optimized implementations of general-purpose data
structures such as hash and sorted maps, and not more than a few
times slower than ad-hoc (domain-specific) representations imple-
mented in state-of-the-art linear algebra libraries. For efficiency, we
use static specialization, static polymorphism and other compile-
time metaprogramming facilities. Finally, we show feasibility of
dynamic specialization through on-line compilation in Scala LMS,
a multi-stage-programming framework, on our prototype library
that hides the complexity of specialization from the user.
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