
Flare & Lantern: Efficiently Swapping Horses Midstream

Grégory Essertel, Ruby Y. Tahboub, Fei Wang, James Decker, Tiark Rompf
Purdue University, West Lafayette, Indiana

{gesserte,rtahboub,wang603, decker31, tiark}@purdue.edu

ABSTRACT
Running machine learning (ML) workloads at scale is as
much a data management problem as a model engineer-
ing problem. Big performance challenges exist when data
management systems invoke ML classifiers as user-defined
functions (UDFs) or when stand-alone ML frameworks in-
teract with data stores for data loading and pre-processing
(ETL). In particular, UDFs can be precompiled or simply
a black box for the data management system and the data
layout may be completely different from the native layout,
thus adding overheads at the boundaries. In this demo, we
will show how bottlenecks between existing systems can be
eliminated when their engines are designed around runtime
compilation and native code generation, which is the case
for many state-of-the-art relational engines as well as ML
frameworks. We demonstrate an integration of Flare (an
accelerator for Spark SQL), and Lantern (an accelerator for
TensorFlow and PyTorch) that results in a highly optimized
end-to-end compiled data path, switching between SQL and
ML processing with negligible overhead.

PVLDB Reference Format:
Grégory Essertel, Ruby Y. Tahboub, Fei Wang and Tiark Rompf.
Flare & Lantern: Efficiently Swapping Horses Midstream. PVLDB,
12(12): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3352063.3352097

1. INTRODUCTION
Machine learning, and especially deep neural networks,

have been extraordinarily successful in fields such as game
play, image recognition, speech processing, etc., and are hav-
ing a similar impact on business intelligence and related
domains. Productionizing ML applications and deploying
them at scale often requires interfacing with big datasets
stored in data management systems (DBMS) or data stores
such as HDFS.
Interactions with ML systems include sampling, extract-

ing, and pre-processing data from DB systems, and certain

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352097

DB queries also use ML trained models as UDFs (User-
Defined Functions), e.g in Figure 1.

for epoch in range(100):
for batch, labels in sql("select ... from t1 join t2 ..."):

y = model.train(batch, labels)

sql.register_udf("model", model)
sql("select * from input where model(x, y, z, ...) == Cluster1")

Figure 1: DBMS used for data loading with ML training
algorithm and model used as UDF within a SQL query.

Many of these query execution pipelines mix data manip-
ulation and domain-specific operations. For examples, given
a dataset of images, a query pipeline may need to filter, join
and mirror images.
The current state of affairs in ML processing represents

a chasm between two classes of systems. Data management
systems are highly optimized on the relational side but typi-
cally lacking in native ML support, especially regarding au-
tomatic differentiation, which is necessary for training via
gradient descent. As a result, ML libraries are integrated
as external user-defined functions UDFs e.g., a PyTorch or
TensorFlow [1] classifier in Spark [2], Flare [5], etc. (See
Figure 2). The performance of ML UDFs varies based on
the nature of integration with DBMS evaluation (i.e., black
box entirely or with some degree of cross-optimization).
On the other hand, ML frameworks e.g., TensorFlow,

PyTorch, etc. provide high-level front-ends on the top of
highly-optimized back-end kernels. Programming on such
frameworks is heavily based on API calls. However ML
frameworks are not optimized for data processing when data
is local or when accessing distributed datasets.

Comparison with Recent Hybrid Compiler Frameworks.
Earlier works that integrated data manipulation and ML
processing into a common intermediate representation IR
are Delite [11] and Weld [9]. Delite’s Distributed Multiloop
Language (DMLL) [3] and Weld’s common runtime perform
cross optimization on data processing and ML operations.
While both systems achieve efficient ML processing on the
hybrid scenario, the performance of individual cases (i.e.,
ML or data processing alone) does not match the perfor-
mance of the best of breed systems yet. Weld’s evaluations
have only shown limited relational queries and small ML
models. Delite does not yet support neural network con-
struction and automated differentiation, which are the keys
to modern deep learning. On the other hand, this work
demonstrates the best of breed performance for both state of

Define linear classifier using TensorFlow
import tensorflow as tf
weights from pre-trained model elided
mat = tf.constant([[...]])
bias = tf.constant([...])
def classifier(c1,c2,c3,c4):
compute distance
x = tf.constant([[c1,c2,c3,c4]])
y = tf.matmul(x, mat) + bias
y1 = tf.session.run(y1)[0]
return max(y1)

Register classifier as UDF: dumps TensorFlow graph to
a .pbtxt file, runs tf_compile to obtain .o binary file
flare.udf.register_tfcompile("classifier", classifier)
Use compiled classifer in PySpark query with Flare:
q = spark.sql("
select real_class,
sum(case when class = 0 then 1 else 0 end) as class1,
sum(case when class = 1 then 1 else 0 end) as class2,
... until 4 ...

from (select real_class,
classifier(c1,c2,c3,c4) as class from data)

group by real_class order by real_class")
flare(q).show()

Figure 2: Spark query using TensorFlow classifier as a UDF
in Python.

the art deep learning models e.g., DeepSpeech or SqueezeNet
and on a full relational benchmark e.g., TPC-H.

2. SYSTEM OVERVIEW

2.1 Flare
Flare [5] is a back-end accelerator for Apache Spark SQL

that displays high performance that matches the state of the
art in in-memory database systems. Flare has been designed
around the data-centric model introduced in Hyper [8] and
implements the code generation techniques that we devel-
oped for the LB2 system [12].
Flare is architected to bypass the default Spark back-end

that is inadequate for single NUMA machine. Indeed, Spark
is using resilient distributed datasets (RDDs) for its internal
execution. While these RDDs are giving a good abstraction
for map reduce operation, allowing them to be parallelized
transparently and also are ensuring fault-tolerant computa-
tion, they come at a high price in term of performance when
the system is used on in-memory data within a single ma-
chine. Figure 4 shows the performance benchmark of Flare,
a traditional DBMS system (Postgres), Spark using its na-
tive RDD back-end layer and Hyper, the state of the art in
in-memory data management system. The benchmark used
is TPC-H with scale factor 10. We can see that Postgres and
Spark are much slower than the two other systems and that
Flare and Hyper are neck to neck in most of the queries.
Flare generates low-level C code using the LMS frame-

work. Within Flare, LMS is used to partially evaluate the
query interpreter with respect to the query plan given as
input. This process, known as the first Futamura projection
[6], generate a compiled version of the input. We provide
more insight about LMS in Section 2.3

2.2 Lantern
Lantern [14, 16, 15] is a machine learning framework that

performs automated differentiation via delimited continua-
tions, and uses LMS to generate efficient low-level C++ and
CUDA code

Machine learning relies on backpropagation to compute
gradients and update model parameters. Traditional ma-
chine learning frameworks such as TensorFlow and PyTorch
use axillary data structures (computation graphs or traces)
to track forward computations for backpropagation. Lantern
achieves a language level backprogation (without auxiliary
data structures) through callbacks. That is to say, each com-
putation operation has access to a callback (also called de-
limited continuation, that represents the rest of the forward
propagation and the beginning of the backward propaga-
tion). Each computation operation is overloaded to compute
the forward computation, trigger the callback with the result
of the forward computation as the argument, and compute
backward computation after the callback returns. When
multiple such operations are stacked together, the forward
propagation happens when the stack of callbacks are trig-
gered, and the backward computation happens when the
stack of callbacks return. Generation of callbacks is fur-
ther automated via delimited continuations operators shift
and reset, which in addition achieves backpropagation via
code transformation.
After backpropagation via delimited continuations, Lantern

stages the intermediate representations and generate low
level C++/CUDA code via LMS. The generated code of
Lantern has comparable performance compared with Ten-
sorFlow and PyTorch, we report some of the evaluation on
different well-known models in Figure 5.

2.3 LMS
LMS (Lightweight Modular Staging) is a multi-stage gen-

erative programming framework that provides runtime com-
pilation and code generation in Scala. LMS introduces a
special staged type constructor called Rep[T] (where T is a
type e.g., Int, String, etc.) in order to distinguish expres-
sions to be evaluated in future stages. LMS provides typed
API for staged Rep[T] that hides internal implementation and
guarantees type and value correctness. This means that all
operations or language constructs (if, while, ...) on Int are
executed at compile time, and all operation on Rep[Int] will
generate the equivalent code. Figure 6 shows a simple ex-
ample of LMS.

2.4 Flare & Lantern
Figure 3 shows the integration of Flare and Lantern on

the code generation level using lightweight modular staging
(LMS). For ML applications, any of the ML front-ends in-
tegrated with Lantern e.g. TensorFlow can be used to write
ML applications. It is also possible to use Lantern primi-
tives directly. The computation graph is processed, staged
and the code is generated to target the different back-end of
Flare and Lantern. Thus, the code is optimized for both of
data and ML processing. Moreover, SQL queries with ML
UDFs are written in Spark SQL and optimized as part of
Flare’s evaluation [5]. Using the example in Figure 2, the
result of the runs on multiple systems is shown in Figure 7.

3. DEMONSTRATION PROPOSAL
In our demonstration, we will show how our two systems,

Lantern for machine learning and Flare for data manage-
ment, can be combined to give the user powerful tools at
the intersection of database and machine learning. The
demo will illustrate how machine learning can be integrated
with data management in two different aspects: using a full

Spark SQL

Catalyst Optimizer

DataFrame API

Spark
Resilient Distributed Dataset

Code Generation

(a) Spark SQL

Flare

SQLScala Python …

(b) Flare

Export query plan

(c) Lantern

Lantern

TensorFlow PyTorch ...

(d) ML Frameworks

Backend

Computation graph

LMS

CPU GPU

high bandwidth

communication

code generation

Figure 3: System overview: (a) architecture of Spark [2] (b)-(c) the integration of Flare (a Spark accelerator and query
compiler) with Lantern (a machine learning framework) on the code generation level using lightweight modular staging
(LMS) (d) ML frameworks

��

���

����

�����

������

�������

������

�� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
�
�
��
�

�
�
��
�

�
��
�
� ���������� ����� ����� �����

SF10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Postgres 72599 5064 20790 6032 17904 9071 16408 20003 31728 16409 4729 15755 16152 9369 9607 5662 66254 30104 12852 22795 184736 6900
Spark SQL 17692 21062 28039 20693 40008 2826 28262 55346 98216 27585 16193 15431 25632 5913 11538 30973 66089 47542 11062 27448 78896 8687
HyPer 498 47 969 725 821 207 804 467 1782 846 111 460 3307 283 227 1112 485 3061 1666 345 1349 177
Flare 550 98 481 544 527 212 596 1016 2688 1429 53 643 3499 256 175 679 1924 1150 2236 836 1533 241

Figure 4: Performance comparison of Postgres, HyPer, Spark SQL, Flare in SF10

Figure 5: Runtime Performance of SqueezeNet, ResNet50,
DeepSpeech2, and TreeLSTM in different frameworks. Bars
in plots show the training time per epoch in seconds.

DBMS system to load data for ML training, and using ML
models through UDF within a query (data generation, se-
lection function etc.).
The attendees will learn how to elegantly build a ML

training pipeline using Flare and Lantern in a very high-level
representation and see how the combined systems can gen-
erate a standalone, highly efficient binary from it. During
the presentation, the attendees will have access to a Jupyter
notebook with some predefined demos or interactively en-
ter their own. Multiple datasets will be available: SNAP
Memetracker [7], TPC-H or -DS [13], Imagenet [4]. We will
show how we generate machine learning code that directly

def power(x: Rep[Int], n: Int): Rep[Int] = {
if (n == 0) 1
else {
val xx = power(x, n / 2)
if (n % 2 == 0) xx * xx else x * xx * xx

}
}
def main(args: Rep[String]) = println(power(args(0).toInt, 5))

(a)
int main(int argc, char** argv) = {
int x0 = atoi(argv[0]);

int x1 = 1; // x0

int x2 = x0 * x1 * x1; // x1 = x ∗ x0 ∗ x0

int x3 = x2 * x2; // x2 = x1 ∗ x1

int x4 = x0 * x3 * x3; // x5 = x ∗ x2 ∗ x2

printf("%d\n", x4);
}

(b)
Figure 6: In the code snippet (a), the exponent n is of
type Int, therefore LMS executes the branches. However
the multiplications are done on Rep[Int], therefore it will
generate code, the final result is displayed in (b).

queries and loads training data from database within the
training loop with various kinds of data filtering, data ag-
gregation, joins, and data augmentation, thus optimizing
the whole data path. The audience will see how using the
full strength of a database system can open the exploration
of new training strategies for neural networks, e.g. filter-
ing poor samples, trying a different order to load the data,
or investigate any strategy in order to improve the conver-
gence speed. Then the audience will experience how we can
integrate pre-trained machine learning models as UDFs for
database queries, whether for a selection operator or within
a GROUP BY operator. For example, the audience will
see how to use speech-to-text algorithm using a stream of

#Data
Points

Spark Spark +
JNI

Flare

200 11909 990 0.064

2000 522471 3178 0.503

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

200 2000
Data Points

Spark SQL
Spark JNI

Flare

Figure 7: Running time (ms) of query in Figure 2 using
TensorFlow in Spark and Flare.

recognized words from live spoken audio within the query:
select author, quote
from raw_audio, quotes
where quote contains speech2text(raw_audio.data)

Or a image recognition algorithm using a video input:
select name, count(*)
from imagenet, raw_camera
where label == resnet.classify(raw_camera.data)
group by name

The audience will be able to compare our system directly
with Spark, PyTorch and Tensorflow by running the exam-
ples side by side and observe the difference in runtime. In
addition they will have access to the code generated for the
different queries that will be presented and see how the data
path is optimized to avoid unnecessary processing.

4. RELATED WORK
Delite [11] is a general purpose compiler framework, imple-

ments high-performance DSLs (e.g., SQL, Machine Learn-
ing, graphs and matrices), provides parallel patterns and
generates code for heterogeneous targets. The Distributed
Multiloop Language (DMLL)[3] provides rich collections and
parallel patterns and supports big-memory NUMAmachines.
Weld [9] is another recent system that aims to provide a

common runtime for diverse libraries e.g., SQL and machine
learning. Weld is using an IR similar to DMLL that sup-
port nested parallel structures. The system is optimizing
externally written libraries into a common IR.
Delite and Weld are earlier approaches of integrating ML

and data management. Their performances come from the
analysis of the IR and loop fusion operations. The current
work is distinguished by demonstrating best of breed per-
formance for both state of the art deep learning models e.g.,
SqueezeNet and relational benchmarks e.g., TPC-H. In ad-
dition, Delite and Weld differ from ours by their multi-pass
compilation process. Flare and Lantern emit directly the
same IR that can then be optimized in a single pass.
Lightweight modular staging (LMS) [10] is a library-based

generative programming and compiler framework that uses
generative programming abstractions, operator overloading
and other features in regular general-purpose languages to
generate code.

5. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and

X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous distributed systems, 2015.

[2] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: relational
data processing in Spark. In SIGMOD, pages
1383–1394. ACM, 2015.

[3] K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth,
C. De Sa, C. Aberger, and K. Olukotun. Have
abstraction and eat performance, too: Optimized
heterogeneous computing with parallel patterns. CGO
2016, pages 194–205. ACM, 2016.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

[5] G. M. Essertel, R. Y. Tahboub, J. M. Decker, K. J.
Brown, K. Olukotun, and T. Rompf. Flare:
Optimizing apache spark with native compilation for
scale-up architectures and medium-size data. In OSDI,
pages 799–815. USENIX Association, 2018.

[6] Y. Futamura. Partial evaluation of computation
process — an approach to a compiler-compiler.
Transactions of the Institute of Electronics and
Communication Engineers of Japan, 54-C(8):721–728,
1971.

[7] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[8] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, 4(9):539–550,
2011.

[9] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan,
H. Pirk, M. Schwarzkopf, S. Amarasinghe, M. Zaharia,
and S. InfoLab. Weld: A common runtime for high
performance data analytics. In CIDR, 2017.

[10] T. Rompf and M. Odersky. Lightweight Modular
Staging: a pragmatic approach to runtime code
generation and compiled DSLs. Commun. ACM,
55(6):121–130, 2012.

[11] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf,
H. Chafi, M. Odersky, and K. Olukotun. Delite: A
compiler architecture for performance-oriented
embedded domain-specific languages. TECS,
13(4s):134, 2014.

[12] R. Y. Tahboub, G. M. Essertel, and T. Rompf. How
to architect a query compiler, revisited. In SIGMOD
Conference, pages 307–322. ACM, 2018.

[13] The Transaction Processing Council. TPC-H Version
2.15.0.

[14] F. Wang, J. M. Decker, X. Wu, G. M. Essertel, and
T. Rompf. Backpropagation with callbacks:
Foundations for efficient and expressive differentiable
programming. In NeurIPS, pages 10201–10212, 2018.

[15] F. Wang and T. Rompf. A language and compiler
view on differentiable programming. ICLR Workshop
Track, 2018.

[16] F. Wang, X. Wu, G. M. Essertel, J. M. Decker, and
T. Rompf. Demystifying differentiable programming:
Shift/reset the penultimate backpropagator. CoRR,

abs/1803.10228, 2018.

