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Precise Reasoning with Structured Time, Structured Heaps,
and Collective Operations

GRÉGORY ESSERTEL, GUANNAN WEI, and TIARK ROMPF, Purdue University, USA

Despite decades of progress, static analysis tools still have great difficulty dealing with programs that combine

arithmetic, loops, dynamic memory allocation, and linked data structures. In this paper we draw attention to

two fundamental reasons for this difficulty: First, typical underlying program abstractions are low-level and

inherently scalar, characterizing compound entities like data structures or results computed through iteration

only indirectly. Second, to ensure termination, analyses typically project away the dimension of time, and

merge information per program point, which incurs a loss in precision.

As a remedy, we propose to make collective operations first-class in program analysis—inspired by Σ-
notation in mathematics, and also by the success of high-level intermediate languages based on map/reduce

operations in program generators and aggressive optimizing compilers for domain-specific languages (DSLs).

We further propose a novel structured heap abstraction that preserves a symbolic dimension of time, reflecting

the program’s loop structure and thus unambiguously correlating multiple temporal points in the dynamic

execution with a single point in the program text.

This paper presents a formal model, based on a high-level intermediate analysis language, a practical

realization in a prototype tool that analyzes C code, and an experimental evaluation that demonstrates

competitive results on a series of benchmarks. Remarkably, our implementation achieves these results in a

fully semantics-preserving strongest-postcondition model, which is a worst-case for analysis/verification.

The underlying ideas, however, are not tied to this model and would equally apply in other settings, e.g.,

demand-driven invariant inference in a weakest-precondition model. Given its semantics-preserving nature,

our implementation is not limited to analysis for verification, but can also check program equivalence, and

translate legacy C code to high-performance DSLs.
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1 INTRODUCTION
Programs like the one in Figure 1 are a real challenge for analysis and verification tools. The

language features used include arithmetic, dynamic memory allocations, linked heap structures,

and loops. Analysis tools need to reason about all these features with high precision. If precision is

lost at any point, it may be impossible to obtain any useful result. In practice, many state-of-the-art

tools are unable to verify this program, including tools that score highly on software verification

competitions such as CPAchecker [Beyer and Keremoglu 2011] and SeaHorn [Gurfinkel et al. 2015],
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// build list of numbers < n

x := null; l := 0

while l < n do {

y := new;

y.head := l;

y.tail := x;

x := y;

l := l + 1

}

// traverse list, compute sum

z: = x; s: = 0

while z != null do {

s := s + z.head;

z := z.tail

}

// check result (closed form)

assert(s == n*(n-1)/2)

Fig. 1. Challenge program: in constrast to state-of-the-art tools like CPAchecker, SeaHorn, or Infer, our

approach is able to verify the final assertion, as well as the absence of memory errors such as dereferences

of null or missing fields. Dynamic allocations and linked data structures pose particular difficulties w.r.t.

disambiguation of memory references, manifest in potential aliasing and the problem of “strong” updates. Our

structured heap model represents allocations inside a loop using a collective form for sequence construction

y = ⟨.⟩(i < n). [head 7→ i, tail 7→ ...], based on which the second loop maps to a collective sum s = Σ(i <
n). y[i].head = Σ(i < n). i over this sequence. Knowledge about closed forms for certain sums validates the

final assert (details, including the definition of tail 7→ ..., are shown in Figure 2 and Section 2.2).

as well as Facebook’s Infer tool [Calcagno et al. 2015]. While it is easy to come up with a long list

of individual reasons that make this kind of analysis hard, we make two overarching observations:

(1) Program abstractions used in common analysis methods are typically scalar, i.e., they represent

individual program variables, relations between individual variables as in the case of relational

abstract domains, array updates at individual positions, and so on. But program abstractions do

not typically represent collective entities such as “an array that contains the natural numbers

from 1 to n” or “the sum of all elements in an array.” Instead, such information must be encoded

extensionally using quantified and often recursive formulae.

(2) Program abstractions typically project away the dimension of time. Most analyses gather

and collapse information into a single abstract value per program point (possibly with some

context-sensitivity). This means that in the presence of loops, values computed in different

loop iterations are not distinguished. Hence, program abstractions do not typically represent

space-time information such as “field tail of the object allocated here in a given loop iteration

points to the object allocated at the same position in the preceding loop iteration.”

In this paper, we address both points through first-class collective operations and a structured heap

representation, coupled with a structured notion of time.

First-Class Collective Operations. For the first point, we propose to model collective operations

such as sums or array formation as first-class entities, without quantifiers or recursive definitions.

This idea is inspired by Σ-notation in mathematics, and by recent advances in highly optimizing

compilers where high-level IRs based on map, reduce, and similar collective abstractions have had

significant success.

In mathematics, collective forms such as ⟨ai ⟩i for sequences and Σiai for series are not just

compact syntactic sugar, but they give rise to intuitive algebraic laws. Thus, collective forms

enable reasoning about sequences and series on a higher level than directly about the underlying

recurrences. Introduced by Fourier [1820], big-Σ and related operators have rapidly become an

integral part of modern mathematics, and they have found their way into programming languages

in the form of comprehensions via SETL [Schwartz 1970], via Dijkstra’s Eindhoven Quantifier

Notation [Dijkstra 1976], and of course as functional operators via APL [Iverson 1980].

If these abstractions help manual reasoning, then it seems only logical that they should also

help automated reasoning—so it is surprising that program analysis tools do not in general afford
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collective forms first-class status and do not try to reverse-engineer low-level code into such higher-

level representations. Instead, automated tools usually reason at the level of scalar recurrences,

which poses all kinds of challenges.

Compilers: From Optimizing for Performance to Simplifying for Clarity. In this aspect, the field of

optimizing compilers is ahead of general program analysis. Compiler writers have long recognized

that aggressive transformations such as automatic parallelization are very hard to perform on

low-level, imperative program representations. Hence, there has been ample work on trying

to extract structure from low-level code. For example, the Chains of Recurrences (CoR) model

[Bachmann et al. 1994; Engelen et al. 2004] is a collective and closed-form representation for classes

of functions including affine, multivariate polynomial, and geometric functions, which is widely

used in optimizing compilers for generating efficient code to compute a given function on an

interval of indexes, e.g., in a loop.

Over the last decade, a thriving line of research has demonstrated that even more aggressive

transformations such as automatic parallelization are imminently practical for domain-specific

languages (DSLs) that restrict mutability and make collective operations such as map, reduce, filter,

groupBy, etc., first-class, so that the DSL compiler can reason about them algebraically when making

optimization decisions, potentially coupled with auto-tuning and/or search for the best implementa-

tion based on cost models and dynamic programming. These systems outperform comparable code

written in general-purpose languages by orders of magnitude and achieve asymptotically better

parallel scaling [Brown et al. 2016, 2011; Ragan-Kelley et al. 2013; Rompf et al. 2013, 2011; Steuwer

et al. 2015, 2017; Sujeeth et al. 2014, 2011]. And while the orignal goal was for programmers to write

DSL code directly, recent research has also shown that it is often practical to “decompile” low-level

legacy code into high-level DSLs, whose role shifts to that of an intermediate representation [Ahmad

and Cheung 2016; Kamil et al. 2016; Mendis et al. 2015; Radoi et al. 2014; Raychev et al. 2015; Rompf

and Brown 2017; Rompf et al. 2014].

The key thrust of this paper is to take this approach further and apply it to more general program

analysis settings, including for the purpose of automatic verification. Thus we shift the goal from

optimizing programs for performance to simplifying programs for clarity, by extracting high-level

collective operators from low-level code. It is not intuitively clear that this reverse-engineering task

is easier than the desired analysis itself, but we will show how several techniques come together to

make this approach practical, in particular by fusing several simplification and analysis tasks into a

single iterative fixed-point computation (Section 4).

Structured Time and Structured Heaps. A major challenge remains: dynamic memory allocation,

coupled with unbounded iteration constructs, may lead to an unbounded number of runtime objects,

which need to be mapped to a finite static representation. The crux of this challenge is to find

a static representation that still enables effective disambiguation of memory references in order

to minimize potential aliasing of pointers, which, among other detrimental effects, stands in the

way of strong updates: recognizing when the previous value of a variable or memory location is

definitely overwritten. More generally, strong updates are one example of a situation where an

analysis needs to reason about the dimension of time, i.e., relating values at different points during

the dynamic execution of the program. To address this challenge, a key ingredient of our approach

is to identify useful collective-form representations for arbitrary-size dynamic heap structures such

as arrays and linked lists.

We propose a novel structured heap model that incorporates the dimension of time in the

structure of addresses and the allocation policy (see Figure 2). This concrete heap model leads

directly to an abstract heap model that permits concise and expressive symbolic representation.

Instead of abstracting dynamic allocations uniformly per program point, and having the abstract
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Fig. 2. Flat vs. structured stores for two example programs. The standard flat store model assigns consecutive

numeric addresses for each allocation. By contrast, addresses in our structured store model consist of a

program point and the surrounding loop variables at the time of allocation. A, B[1], C[42] are all valid

concrete addresses. For program points inside loops (B and C), all objects allocated there are are represented as

sequences (B = ⟨. . . ⟩i and C = ⟨. . . ⟩i ) in the store. Going from concrete to abstract stores, these sequences can

be abstracted as collective forms, with greatly improved precision over an abstract store that only distinguishes

allocations by program point. In particular, it is straightforward to capture the property that elements in a

linked list point to the element allocated in the previous loop iteration and the last element points to null.

heap map abstract locations to sets of abstract values, we represent objects allocated at a program

point inside a loop as a potentially unbounded sequence, indexed by the loop variable. This enables

us to reason about all objects allocated at a given program point in a collective way, and assign

a concise abstract summary based on a symbolic loop index. This in turn gives us fine-grained

abilities to reason about objects allocated in different loop iterations and about their interactions,

including strong updates deep within data structures (see Figure 2).

Framework Instantiation. We instantiate our framework in a way that is similar to deductive

verification with forward reasoning, i.e., a strongest postcondition model. We translate imperative

source programs into a functional representation and simplify, preserving correctness and error

behavior modulo termination. The translation makes all error conditions explicit, so verification

amounts to checking that the valid tag that signals the occurrence of errors in the final program

state has been simplified to the constant true.

In the simplest case, simplification can happen entirely after translation, based on various

rewriting strategies that apply simplification rules one by one. The strategies can be deterministic,

e.g., apply simplification rules bottom-up, or non-deterministically search for the most profitable

simplification based on various heuristics (Section 3.3).

From Pessimistic to Optimistic. However, even search-based post-hoc simplification strategies are

fundamentally limited in that each individual rewrite has to be equality-preserving. The result is

essentially a phase ordering problem (typical in compilers). The solution is to interleave translation
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and simplification [Lerner et al. 2002], which enables a form of speculative rewriting where chains

of rewrites can be tried and either committed, if they are found to preserve equality, or rolled back,

if not (Section 4). The post-hoc approach is also characterized as pessimistic, and the interleaved

approach as optimistic. To illustrate the difference, the optimistic approach can simplify a loop

based on the assumption that a variable remains constant throughout the loop, if it verifies the

assumption afterwards. By contrast, the pessimistic approach would need prove that the variable is

loop-invariant first, which may not be possible without the simplifications currently on hold.

In both pessimistic and optimistic approaches, the end result is a precise symbolic representation

of the program state post execution. Although inefficient, this representation could be used to

compute the concrete program output for any given input. This means that our approach leads to

more precise information than strictly necessary for verification, and essentially solves a harder

problem than demand-driven verification approaches. The fact that we are able to gain this much

precision in a strongest-postcondition setting that is typically considered an unworkable verification

approach makes us confident that the core of our method will apply just as well in weakest

precondition scenarios or analyses based on abstract interpretation that approximate deliberately,

and lead to increased precision there as well.

We implement our approach in a prototype system called SIGMA, which analyzes C code. Since

our approach produces precise symbolic program representations, we can use SIGMA not only

for verification, but also for checking program equivalence, and for translating legacy code to

high-performance DSLs, as we demonstrate in our evaluation.

Contributions. To the best of our knowledge, no previous work models first-class collective

operations in a general-purpose program analysis setting. There are specialized uses in aggressive

optimizing compilers that aim to retarget legacy code to high-performance DSLs [Ahmad and

Cheung 2016; Kamil et al. 2016; Mendis et al. 2015; Radoi et al. 2014; Raychev et al. 2015; Rompf

and Brown 2017; Rompf et al. 2014], but these systems (a) are specific to a given target DSL, and (b)

only deal with flat arrays, not linked lists or dynamic memory allocation. Likewise, simple classes

of structured heap models have been used in previous work [Dillig et al. 2011b; Tan et al. 2017],

but these are restricted to separating container instances. The idea of indexing program values by

loop iterations has also been proposed in the context of dynamic program analysis [Xin et al. 2008]

and in polyhedral compilation [Benabderrahmane et al. 2010]. Our key novel insight, not found in

any previous work, is to push execution indexing all the way into the heap and allocation model.

We give the heap a structure that uniformly reflects the program’s loop structure, with objects

allocated at a program point inside a loop represented as a sequence indexed by the loop variable,

and use this concrete heap model as a basis for symbolic analysis. We make the following specific

contributions:

• We describe the basics and intuition behind our approach of deriving collective forms through

a series of examples with increasing complexity (Section 2).

• We present a detailed formal semantics of our source and target languages, including the

structured heap model. We prove correctness of the translation and target-level simplification

rules. The simplification rules we present give rise to a large space of rewriting opportunities

that can be realized either deterministically bottom-up, or nondeterministically through search.

Each rule is guaranteed to be equality-preserving, which leads to a simple but overall pessimistic

approach if rules are applied one-by-one after the translation step (Section 3).

• We extend the pessimistic, equality-preserving, simplification model to an optimistic approach

that interleaves translation and simplification, based on Kleene-iteration. This model further

increases precision by enabling a form of speculation, e.g., assuming that parts of a data structure
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remain constant throughout a loop, that an arithmetic recurrence has a closed form, or that a

write to a data structure is the initialization of a dense array (Section 4).

• We present SIGMA, which scales up the ideas to analyze C programs, and discuss its implemen-

tation (Section 5).

• We evaluate SIGMA on benchmarks for verification, program equivalence checking, and transla-

tion of legacy code to high-performance DSLs (Section 6).

Section 7 discusses related work and Section 8 concludes. Our mechanized Coq model and prototype

tool SIGMA are available online at: https://github.com/tiarkrompf/sigma

2 COLLECTIVE & CLOSED FORMS, STEP-BY-STEP
We take a program in the imperative source language IMP as input (Figure 3), and translate it

into an equivalent functional program in our intermediate analysis language FUN (Figure 6), on

which we perform symbolic simplification to expose the properties of interest (either after the

translation or interleaved with it). For soundness, we require simplification to preserve all potential

error conditions, but we do not, for example, need to preserve cases of divergence. FUN is a good

intermediate representation for several reasons. First, it eschews side effects and makes all data

dependencies explicit, which enables simplification through structural rewriting and enables us to

represent IMP-level error conditions explicitly in the language. Second, it provides both recursive

functions and collective forms, which enables us to gradually move from one to the other within

the same language. While it can be helpful to think of the translation to FUN as a form of abstract

interpretation of IMP programs, especially w.r.t. the Kleene iteration in Section 4, it is important to

stress that the basic translation is exact (i.e., fully semantics preserving), without any approximation

(details in Section 3).

As a running example, let us consider a simple while loop, which sums the integers from 0 to

k−1 in variable s:

j := 0;

s := 0;

while j < k do {

s := s + j;

j := j + 1

}

Our goal is to characterize the program state after the loop, i.e., to obtain a mapping of the form

[ j 7→ ?, s 7→ ? ], from program variables to abstract values (in our case, symbolic expressions).

The first step is to transform this IMP program into an equivalent FUN program. We make loop

indices explicit and represent the values of j and s after a certain loop iteration i by a set of recursive
functions, derived from the program text. For example, after the first iteration (i = 0), j and s are

equal to 1 and 0 respectively, and are increased by 1 and j (i − 1) respectively for each iteration:

let j = λ (i ). if i ≥ 0 then j (i − 1) + 1 else 0

let s = λ (i ). if i ≥ 0 then s (i − 1) + j (i − 1) else 0

Now we can meaningfully talk about values at iterations i and i − 1, and about their relationship:

we reason in both space and time. We describe the trip count of the loop declaratively, as the first n
for which the condition is false, using the built-in # functional—an example of a collective form:

let n = #(i ). ¬(j (i ) < k )

The operational interpretation of #(i ). f (i ) is to find the smallest i ≥ 0 for which f (i ) evaluates
to true or to diverge if no such i exists. Variable i is bound within the term following the dot, i.e,

f (i ). We are now ready to describe the program state after the loop as a FUN term by mapping each
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variable to a precise symbolic description of how it is computed using the previous definitions:

[ j 7→j (n − 1) , s 7→s (n − 1) ]

We go on by identifying patterns in the recursive definitions. The following chain of rewrites

transforms j and s to collective forms: an explicit sum construct, comparable to the mathematical Σ
notation. For uniformity with other collective forms, we use the syntax Σ(i < n). f (i ) to denote the

sum of all f (i ) for all 0 ≤ i < n. Again, variable i is bound in the body of the term. As part of the

simplification, β-reduction is performed for non-recursive functions:

let j = λ (i ). if i ≥ 0 then j (i − 1) + 1 else 0

= λ (i ). Σ(i2 < i + 1). 1

let s = λ (i ). if i ≥ 0 then s (i − 1) + j (i − 1) else 0

= λ (i ). Σ(i3 < i + 1). j (i3 − 1)

The collective sums for j, s are readily transformed to closed forms, which also provides a closed

form loop count n:

let j = λ (i ). Σ(i2 < i + 1). 1

= λ (i ). if i ≥ 0 then i + 1 else 0

let s = λ (i ). Σ(i3 < i + 1). j (i3 − 1)
= λ (i ). Σ(i3 < i + 1). i3
= λ (i ). if i ≥ 0 then (i + 1) ∗ i/2 else 0

let n = #(i ). ¬(j (i ) < k)
= #(i ). ¬(i + 1 < k)
= if k ≥ 0 then k else 0

With that, we obtain the desired closed form representation for the final program state based on

j (n − 1) and s (n − 1):

[ j 7→ if k ≥ 0 then k else 0, s 7→if k ≥ 0 then k*(k−1)/2 else 0 ]

This symbolic representation can be used for multiple purposes at this point, either to verify

programmer-specified assertions, as in Figure 1, to test equivalence of the source program with

another one, or to generate optimized code (Section 6).

To keep the presentation high-level, we have deliberately omitted some details above, including

exactly how recursive relations are converted into collective and closed forms. A simple approach

can be realized based on pattern-based rewriting (Section 3.3), while the more sophisticated iterative

approach based on speculative rewriting is discussed in Section 4, using the same running example.

2.1 Collective Forms for Arrays
We now turn our attention to dynamic memory operations. The simplest case is arrays. We modify

our example program to first store the numbers in an array a, and then compute the sum by

traversing the array a:

// build array of numbers < n

a := new;

l := 0;

while l < n do {

a[l] := l;

l := l + 1

}

// traverse array, compute Σ
j := 0;

s := 0;

while j < l do {

s := s + a[j];

j := j + 1

}

The additional challenge now is that our analysis needs to reason about array construction, as well

as array traversal. In particular, we need to ensure that all array accesses are safe, and in addition,

we need to precisely identify the values each array slot contains after the first loop, without any

ambiguity. We solve this challenge by representing the array a using a closed form for sequence

construction after the first loop, and recognizing that the second loop sums the elements of that

sequence in s, which enables us again to use a collective sum expression.
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The FUN representation is as follows. For simplicity, we show l and j already rewritten to closed

forms, and the number of iterations already resolved to n ≥ 0. The syntax seq[i 7→ x] denotes

a copy of sequence seq, with the element at position i updated to x. We extract the recursive

dependencies for the first loop:

let l = λ (i ). if i ≥ 0 then i + 1 else 0

let a = λ (i ). if i ≥ 0 then a (i − 1)[i 7→ i] else []

We can now describe the state after the first loop (a(n−1) refers to the definition above):

[ l 7→ n, a 7→ a (n−1) ]

Alas, this will not allow us to relate the array accesses of both loops. Can we do better? In addi-

tion to sums, products, and boolean connectives, our language FUN also contains collective form

constructors for sequences. The notation ⟨.⟩( i < n). f (i ) initializes a sequence or array with index

range i = 0, . . . ,n − 1, where each i is mapped to f (i ). Simplification proceeds as follows:

let a = λ (i ). if i ≥ 0 then a (i − 1)[i 7→ i] else []

= λ (i ). ⟨.⟩(i2 < i + 1). i2

And we obtain a much more useful description of the state after the first loop:

[ l 7→ n, a 7→ ⟨.⟩(i < n). i ]

We can then proceed for the second loop:

let j = λ (i ). if i ≥ 0 then i + 1 else 0

let s = λ (i ). if i ≥ 0 then s (i − 1) + a[j (i − 1)] else 0

= λ (i ). if i ≥ 0 then s (i − 1) + (⟨.⟩(i2 < n+1). i2)[i] else 0

Simplifying the array access (⟨.⟩(i2 < n + 1). i2)[i] to i depends on the presence of the enclosing loop

precondition i < n, i.e., rewriting may be context- and flow-sensitive. Afterwards, simplification of

s proceeds as before.

let s = λ (i ). if i ≥ 0 then s (i − 1) + i else 0

= λ (i ). if i ≥ 0 then (i + 1) ∗ i/2 else 0

Finally the state at the end of the program is:

[ l 7→ n, j 7→ n, a 7→ ⟨.⟩(i < n). i, s 7→n*(n-1)/2 ]

2.2 Collective Forms for Linked Structures
To complicate matters further, we might store the numbers in a linked list instead of an array, and

build the sum by traversing the list, leading to the code from Figure 1:

// build list of numbers < n

x := null;

l := 0;

while l < n do {

y := new;

y.head := l; y.tail := x;

x := y;

l := l + 1

}

// traverse list, compute sum

z: = x;

s: = 0;

while z != null do {

s := s + z.head;

z := z.tail

}

Now we need to reason about individual heap cells, allocated in different iterations of the first loop,

as well as strong updates to the head and tail fields in these dynamically allocated objects. At this

point, our structured heap model introduced in Figure 2 plays a crucial role.

At runtime, there will be one object created for y per loop iteration i. While variable y holds the

address of an object, we identify the actual object by its location p in the program text, indexed by the

loop variables of its enclosing loops, i.e., p[i], and refer to the freshly allocated (but deterministically

chosen) address as &new:p[i].
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Here, p is an abbreviation for the precise path in the program tree, i.e., root.snd.snd.while.fst,

and p[i] is an abbreviation for root.snd.snd.while[i].fst.

The notation p[i] already suggests that we can treat p just like an array of objects. After loop

iteration i, x and y contain the address &new:p[i] of the latest allocated object:

let x = λ (i ). if i ≥ 0 then &new:p[i] else null

let y = λ (i ). if i ≥ 0 then &new:p[i] else ⊥, // ⊥ = uninitialized

The collection (array!) of objects p is defined and gets rewritten as follows:

let p = λ (i ). if i ≥ 0 then p (i − 1)[i 7→[tail 7→ x (i − 1), head 7→ i] ] else []

= λ (i ). ⟨.⟩(i2 < i). [tail 7→ x (i2-1), head 7→ i2]
= λ (i ). ⟨.⟩(i2 < i). [tail 7→ if i2 > 0 then &new:p[i2-1] else null, head 7→ i2]

We can see how the recursive dependency between runtime objects is captured precisely. Note

however that after simplification, p is no longer a recursive function: the address &new:p[i2 − 1] is a
purely syntactic term, which can be used to look up an object later by dereferencing the address.

After the first loop, the program state represents a proper store with static as well as dynamically

allocated objects:

[ l 7→ n,

x 7→ if n > 0 then &new:p[n-1] else null,

y 7→ if n > 0 then &new:p[n-1] else ⊥

p 7→ ⟨.⟩(i < n). [tail 7→ if (i > 0) then &new:p[i-1] else null, head 7→ i]

As indicated before, the structure of the store is hierarchical and mirrors the program structure.

Dereferencing an address entails accessing the store. We will use the notation σ [addr], but need to

keep in mind that for a composite address like &new:p[0], two steps of lookup are necessary: first by

p, and then by 0.

The second loop leads to the following definitions of z, s:

let z = λ (i ). if i ≥ 0 then σ[z (i − 1)][tail] else x
let s = λ (i ). if i ≥ 0 then s (i − 1) + σ[z (i − 1)][head] else 0

Simplification by rewriting yields the desired closed forms (remember i < n as we are within the

loop):

let z = λ (i ). if n > 0 then { if i ≥ 0 then σ[z (i − 1)][tail] else &new:p[n−1] } else null

= λ (i ). if i ≥ 0 then &new:p[n−1 − i] else null

let s = λ (i ). if i ≥ 0 then (i + 1) ∗ i/2 else 0

Thus, we obtain the desired analysis result.

Throughout this section, we have glossed over some details. For example, we did not include

explicit error checks in our translation, but checks for, e.g., validity of field accesses, need to be

accounted for, and the details are described in Section 3.2. We also did not bother with variables

that were obviously loop invariant. In reality, it is part of our analysis’ job to determine which

variables are the loop-invariant ones. We will return to this question in Section 4.

3 FORMAL MODEL
Since our approach hinges on translating imperative to functional code and applying transformation

and simplification rules, it is imperative to formally establish the correctness of all these components

to ensure the overall soundness of the approach. In addition, our structured store allocation model

incurs some subtleties that warrant a formal description that explains the connection with standard

store semantics.

In this section, we formalize the source and target languages and prove correctness of the

translation, and the rewrite and simplification rules. This establishes the key result that an analysis

engine that applies an arbitrary combination of equality-preserving simplifications will produce a
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Expressions e ∈ Exp

n ∈ Nat, b ∈ Bool, x ∈ Name

e ::=
n | b | &x Constant (nat, bool, addr)

e1 + e2 | e1 − e2 | e1 ∗ e2 Arithmetic

e1 < e2 | e1 = e2 | e1 ∧ e2 | ¬e Boolean

e1[e2] Field read

Statements s ∈ Stm

s ::=
x := new Allocation

e1[e2] := e3 Assignment

if e then s1 else s2 Conditional

while e do s Loop

s1; s2 Sequence

skip No-op

abort Error

Syntactic Sugar
x ≡ &x[0]
x := e ≡ x[0] := e
e .x ≡ e[fieldId(x )]
assert e ≡ if e then skip else abort

Fig. 3. IMP: Surface language syntax.

sound result with respect to the semantics of the source language IMP. We have implemented our

formal model in Coq and mechanized the results in this Section.

3.1 Source Language IMP

The syntax of our imperative model language IMP is defined in Figure 3. Our version of IMP is

similar to imperative model languages found in a variety of textbooks, but is extended with dynamic

memory operations and includes the possibility of certain runtime errors which reflect verification

scenarios of practical interest.

IMP’s syntax is split between expressions e and statements s . The language supports allocation
statements x := new, as well as array or field references e1[e2] (note that both array indices and

fields can be computed dynamically) and corresponding assignments. Addresses of local variables

&x are available as constant expressions, and variable references x are treated as syntactic sugar

for dereferencing the corresponding address &x[0]. Named field references e .x are desugared into

a numeric index assuming an injective global mapping fieldId. The null value is not part of the

language, but can be understood as a dedicated address that is not otherwise used. It is important

to note that there is no syntactic distinction between arithmetic and boolean expressions. Hence,

evaluation may fail at runtime due to type errors or undefined fields. The syntax also includes an

explicit abort statement for user-defined errors with assert as syntactic sugar.

Relational Semantics. The semantics of IMP is defined in big-step style, shown in Figure 4. Many

of the evaluation rules are standard: expressions evaluate to values, and statements update the

store. A store σ is a partial function from locations l to heap objects o, which are partial functions

from numeric field indexes to values. We use square brackets to denote store or object lookup, i.e.,

σ [l] = o and o[n] = v , as well as update, i.e., σ [l 7→ o] and o[n 7→ v]. However, two aspects of the

semantics deserve further attention.
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Runtime Structures
v ∈ Val ::= n | b | l Value (nat, bool, ptr)

l ∈ Loc ::= &x | &new:c Store location (static, dynamic)

o ∈ Obj : Nat ⇀ Val Object

σ ∈ Sto : Loc ⇀ Obj Store

c ∈ Ctx ::= Context path

root At top level

c .then | c .else In conditional

c .fst | c .snd In sequence

c .while[n] In loop (iteration n)

Expression Evaluation σ ⊢ e ⇓ v

σ ⊢ n ⇓ n
(ENum)

σ ⊢ e1 ⇓ n1 σ ⊢ e2 ⇓ n2
σ ⊢ e1 + e2 ⇓ n1 + n2

(EPlus)

σ ⊢ e1 ⇓ l1 σ ⊢ e2 ⇓ n2 σ [l1] = o o[n2] = v3

σ ⊢ e1[e2] ⇓ v3

(EField)

Loop Evaluation σ , c ⊢ (e s )n ⇓ σ ′

σ , c ⊢ (e s )0 ⇓ σ (EWhileZero)

σ , c ⊢ (e s )n ⇓ σ ′

σ ′ ⊢ e ⇓ true σ ′, c .while[n] ⊢ s ⇓ σ ′′

σ , c ⊢ (e s )n+1 ⇓ σ ′′

(EWhileMore)

Statement Evaluation σ , c ⊢ s ⇓ σ ′

σ , c ⊢ x := new ⇓ σ [&new:c 7→ [],

&x 7→ [0 7→ &new:c]]
(ENew)

σ ⊢ e1 ⇓ l1 σ ⊢ e2 ⇓ n2 σ ⊢ e3 ⇓ v3 σ [l1] = o

σ , c ⊢ e1[e2] := e3 ⇓ σ [l1 7→ o[n2 7→ v3]]

(EAssign)

σ ⊢ e ⇓ true σ , c .then ⊢ s1 ⇓ σ ′

σ , c ⊢ if e then s1 else s2 ⇓ σ ′
(EIfTrue)

σ ⊢ e ⇓ false σ , c .else ⊢ s2 ⇓ σ ′

σ , c ⊢ if e then s1 else s2 ⇓ σ ′
(EIfFalse)

σ , c ⊢ (e s )n ⇓ σ ′ σ ′ ⊢ e ⇓ false

σ , c ⊢ while e do s ⇓ σ ′
(EWhile)

σ , c .fst ⊢ s1 ⇓ σ ′ σ ′, c .snd ⊢ s2 ⇓ σ ′′

σ , c ⊢ s1; s2 ⇓ σ ′′
(ESeq)

σ , c ⊢ skip ⇓ σ (ESkip)

Fig. 4. IMP: Relational big-step semantics (primitive constants and operators other than n and + elided). Note

the evaluation rules for while loops and the role of program context c for address allocation in rule (ENew).

First, store addresses are not flat but have structure. For dynamic allocations, rule (ENew)

deterministically assigns a fresh store address &new:c where c is the current program context c .
This context is maintained throughout all statement rules and uniquely determines the spatio-

temporal point of execution in the program. It combines static information, i.e., the location in the

program text, with dynamic information, i.e., progress of execution, represented by the current

iteration vector of all enclosing loops. This will later enable us to talk about abstract locations from

within the same loop, but at different iterations.

Second, while loops are executed with the help of an auxiliary judgement σ , c ⊢ (e s )n ⇓ σ ′,
which characterizes the result of executing a loop body n times. This already hints at what we

want to achieve later: replace iteration by a collective form for a given n. Declaratively, the number

of iterations a loop will be executed is the particular n after which the condition becomes false.

Operationally, rule (EWhile) has to “guess” the correct n. While not necessarily the best fit for

deriving an implementation, this formulation of while loops renders the semantics compositional

[Siek 2016, 2017], a good basis for deriving a semantics-preserving translation.

Given these differences, we first establish equivalence of the given semantics with a more

standard formulation that assigns store locations nondeterministically, and defines while loops

without explicit reference to iteration numbers.
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Runtime Structures

o ∈ Obj : Nat→ Option Val Object

σ ∈ Sto : Loc→ Option Obj Store

Monad operations:

m ∈ Option T ::= None | Some τ where τ ∈ T
x ←m; f (x ) = m »= f

»= : Option T → (T → Option U ) → Option U
getOrElse : Option T → T → T

toNat : Val→ Option Nat

toBool : Val→ Option Bool

toLoc : Val→ Option Loc

Iteration primitive:

# : (Nat ⇀ Bool) ⇀ Nat

#f = д (0) where
д (i ) = if f (i ) then i else д (i + 1)

Expression Evaluation ⟦ e ⟧(σ ) = v

⟦ . ⟧ : Exp→ Sto→ Option Val

⟦ n ⟧(σ ) = Some n
⟦ e1 + e2 ⟧(σ ) = n1← ⟦ e1 ⟧(σ ) »= toNat;

n2← ⟦ e2 ⟧(σ ) »= toNat

Some (n1 + n2)
. . . = . . .

⟦ x ⟧(σ ) = o ← σ [&x ]; o[0]
⟦ e1[e2] ⟧(σ ) = l ← ⟦ e1 ⟧(σ ) »= toLoc;

n ← ⟦ e2 ⟧(σ ) »= toNat;

o ← σ [l ];
o[n]

Loop Evaluation ⟦ e s ⟧(σ , c ) (n) = σ ′

⟦ . ⟧ : Exp × Stm→ Sto × Ctx→ Nat

⇀ Option Sto

⟦ e s ⟧(σ , c ) (n) = f (n) where
f (0) = Some σ
f (n + 1) = σ ′ ← f (n)

true← ⟦ e ⟧(σ ′) »= toBool

⟦ s ⟧(σ ′, c .while[n])

Statement Evaluation ⟦ s ⟧(σ , c ) = σ ′

⟦ . ⟧ : Stm→ Sto × Ctx

⇀ Option Sto

⟦ x := new ⟧(σ , c ) = σ [&new:c 7→ [],

&x 7→ [0 7→ &new:c]]
⟦ e1[e2] := e3 ⟧(σ , c ) = l ← ⟦ e1 ⟧(σ ) »= toLoc

n ← ⟦ e2 ⟧(σ ) »= toNat

v ← ⟦ e3 ⟧(σ );
o ← σ [l ];
σ [l 7→ o[n 7→ v]]

⟦ if (e ) s1 else s2 ⟧(σ , c ) = b ← ⟦ e ⟧(σ ) »= toBool

if b then ⟦ s1 ⟧(σ , c .then)
else ⟦ s2 ⟧(σ , c .else)

⟦ while e do s ⟧(σ , c ) = ⟦ e s ⟧(σ , c ) (n) where
n = #(λi .(
σ ′ ← ⟦ e s ⟧(σ , c ) (i )
b ← ⟦ e ⟧(σ ′) »= toBool

Some ¬b ) getOrElse true)
⟦ s1; s2 ⟧(σ , c ) = σ ′ ← ⟦ s1 ⟧(σ , c .fst)

⟦ s2 ⟧(σ ′, c .snd)
⟦ skip ⟧(σ , c ) = Some σ
⟦ abort ⟧(σ , c ) = None

Fig. 5. IMP Functional semantics with explicit errors, partiality reserved for divergence. Note the use of

monad operations throughout and the use of an iteration primitive in the evaluation of while loops.

Definition 3.1 (Standard Semantics). Let ⇓0 be the relation derived from ⇓ by dropping contexts c
and replacing rules (ENew) and (EWhile) with the following rules:

&new:n < σ

σ ⊢ x := new ⇓ σ [&new:n 7→ [], &x 7→ [0 7→ &new:n]]
(ENewN)

σ ⊢ e ⇓0 true σ ⊢ s ⇓ σ ′ σ ′ ⊢ while (e ) s ⇓0 σ ′′

σ ⊢ while (e ) s ⇓0 σ ′′
(EWhileTrue)

σ ⊢ e ⇓0 false

σ ⊢ while (e ) s ⇓0 σ
(EWhileFalse)

Proposition 3.2 (Adeqacy of ⇓). ⇓0 and ⇓ are equivalent, up to a bijection between store addrs

&new:n and &new:c .

We now study key properties of our semantics. First, we show that ⇓ is deterministic, and hence

we can understand it as a partial function eval⇓.
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Proposition 3.3 (Determinism). The semantics is deterministic: ifσ , c ⊢ s ⇓ σ ′ andσ , c ⊢ s ⇓ σ ′′

then σ ′ = σ ′′.

Definition 3.4 (Initial Store). Let σ∅ be the store with σ∅[&x] = [] and σ∅[&new:c] undefined for

all x and c .

Definition 3.5. Let eval⇓ (s ) = σ iff σ∅, root ⊢ s ⇓ σ , and undefined otherwise.

Error Behavior. As presented, the semantics does not distinguish error cases from undefinedness

due to divergence. If our goal is program verification, then we need to isolate the error cases

precisely and introduce a distinction.

Proposition 3.6. For all s , eval⇓ (s ) is either: (1) a unique result σ , (2) undefined due to divergence
(i.e., there exists a loop in the program for which the condition is true for all n in rule (EWhile)), or (3)

undefined due to one of the following possible errors: type error (Nat, Bool, Loc), reference to nonexistent

store location, reference to nonexistent object field, explicit abort

Proof. We show that the property holds up to a given upper bound n on the number of iterations

any loop can execute, and do induction over n. □

Functional Semantics. Based on these observations, we define a second semantics that makes

all error conditions explicit by wrapping potentially failing computations in the Option monad,

and which also replaces the nondeterminism in rule (EWhile) with an explicit and potentially

diverging search for the correct number of iterations. With these modifications, the semantics

can be expressed in a denotational style, directly as partial functions. We show the definition

in Figure 5. Functions ⟦ . ⟧ now take the role of the relation ⇓, and partial functions that could

be undefined due to runtime errors are now replaced by total functions that return an Option T
instance, i.e., either None to indicate an error or Some τ with a T -value τ to signal success. The

evaluation of expressions becomes entirely total. The only remaining source of partiality is the

potentially diverging computation of loop iterations n = #(λi . . . .).

Definition 3.7. Let eval⟦ ⟧ (s ) = ⟦ s ⟧(σ∅, root).

Proposition 3.8. For all s , eval⟦ ⟧ (s ) is either: (1) a unique result Some σ , (2) an explicit error None,

or (3) undefined due to divergence.

Proposition 3.9 (Adeqacy). For all s , eval⇓ (s ) and eval⟦ ⟧ (s ) agree exactly on their value, error,

and divergence behavior.

Proof. By induction on an assumed upper bound on the number of iterations per loop. □

This functional semantics has the appealing property of denotational formulations that we can

directly read it as a translation from IMP to mathematics. By mapping the mathematical notation

into (a subset of) our target language FUN, we obtain a translator from IMP to FUN.

3.2 Target Language FUN

The syntax of FUN is defined in Figure 6. FUN is a functional language based on λ-calculus, with
expressionsд as the only syntactic category. The primitive data types are natural numbers, booleans,

store addresses, and objects, i.e., records with numeric keys. In addition, FUN has a rich set of

collective operators for sums, products, forall, and exists. While the presention here only covers

those four monoids, the technique presented in this paper can be easily generalized to other

monoids.

Figure 7 summarizes how the various entities in the definition of IMP’s functional semantics

in Figure 5 map to FUN constructs. This enables us to directly read the given IMP semantics as

translation rules.
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Expressions д ∈ Exp

д ::=

n | b | l | [] Const (nat, bool, loc, obj)

x Variable

e1 ∋ e2 Field exists?

e1[e2] Field read

e1[e2 7→ e3] Field update

д1 (д2) Application

λ(x ). д Function

#(x ). д First index

⟨.⟩(x < д1). д2 Sequence

w ::= Value

n | b | l Constant

e1 + e2 | e1 − e2 | e1 ∗ e2 Arithmetic

e1 < e2 | e1 = e2 | ¬e Logic

if e then s1 else s2 Conditional

letrec x1 = д1, . . . in дn Recursive let

Σ(x < д1). д2 Sum

Π(x < д1). д2 Product

∀ (x < д1). д2 Conjunction

∃ (x < д1). д2 Disjunction

. . .

[n0 7→ w0, . . .] Object

Fig. 6. FUN: Target language syntax.

Translation
None = [valid 7→ false]

Some д = [valid 7→ true, data 7→ д]
д »= f = if д.valid then f (д.data) else None

д1 getOrElse д2 = if д1.valid then д1.data else д2
Val n = [tpe 7→ nat, val 7→ n]
Val b = [tpe 7→ bool, val 7→ b]
Val l = [tpe 7→ loc, val 7→ l]

toNat д = if д.tpe = nat then Some д.val else None
toBool д = if д.tpe = bool then Some д.val else None
toLoc д = if д.tpe = loc then Some д.val else None

o[n] = if o ∋ n then [valid 7→ true, data 7→ o[n]]else [valid 7→ false]

σ [l] = if σ ∋ l then [valid 7→ true, data 7→ σ [l]]else [valid 7→ false]

Fig. 7. FUN: Mathematical notation as syntactic sugar, and value representation for the Option Monad. This

enables reading Figure 5 as translation from IMP to FUN. Every monadic value has a valid flag that is set to

false to indicate an error condition.

Proposition 3.10. Functions ⟦ e ⟧(σ ) and ⟦ s ⟧(σ , c ) accomplish translation from IMP to FUN.

The semantics of FUN follows the standard call-by-value (CBV) λ rules. The collective operators

trivially map to recursive definitions. The only non-trivial addition is the mapping of store locations

to numeric keys for record access.

Definition 3.11. Let→v be the standard CBV λ reduction, extended to FUN with the following

rules:

w[&new:fst.p]→ w[fst][&new:p]
w[&new:snd.p]→ w[snd][&new:p]

w[&new:while[n].p]→ w[while][n][&new:p]
. . .

Here we assume a standard mapping from names like ‘fst’, ‘while’, etc., to numbers, as before.

We can see now that at the FUN level, the IMP store assumes a nested structure, mapping all values

allocated in a loop into an array indexed by the loop variable. The update and field test rules are

analogous to the lookup rules shown.
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Structural Equivalences
a[k 7→ u][j] ≡ if j = k then u else a[j]

C[if c then u else v] ≡ if c then C[u] else C[v]
letrec f = (λ(i ).[a 7→ u,b 7→ v]) in e ≡ letrec f = (λ(i ).[a 7→ fa (i ), 7→ fb (i )])

fa = (λ(i ).u), fb = (λ(i ).v ) in e
if 1 < e then x else y ≡ if 0 < e then x else y

if x ≡ y when e = 0

if a < e then if b < e then x ′ else y′ else y ≡ if b < e then x ′ else y′

if y ≡ y′ and a ≤ b
. . .

Collective Forms
letrec f = (λ(i ). if 0 ≤ i then

f (i − 1)[i 7→ дi ] else []) in f (a) ≡ ⟨.⟩(i < a + 1). дi
letrec f = (λ(i ). if 0 ≤ i then

f (i − 1) + дi else 0) in f (a) ≡ Σ(i < a + 1). дi
x + Σ(i < a). дi ≡ Σ(i < a + 1). дi

if x ≡ дi [i := a]
Σ(i < n). i ≡ if 0 < n then n ∗ (n − 1)/2 else 0

#(i ). ¬(i < a) ≡ if 0 < a then a else 0

if 0 < #(i ). д then s1 else s2 ≡ s1 if s1[(#(i ). д) := 0] ≡ s2
. . .

Fig. 8. Selected equivalences (non-exhaustive) that can be used as simplification rules, using a variety of

deterministic or nondeterministic rewriting strategies (x[y := z] means that y is substituted by z in x).

Proposition 3.12. Evaluating a FUN expression via→∗v can either: (1) terminate with a value, (2)

terminate with a stuck term, or (3) diverge.

We are now ready to express our main soundness result for the translation from IMP to FUN.

Definition 3.13. Let v � w be the equivalence between IMP values v and FUN valuesw induced

by the value representation in Figure 7. Let w � σ be the relation extended to IMP stores in the

nested representation defined above.

Theorem 3.14. Translation from IMP to FUN is semantics preserving: For any IMP terms e or s
translated to FUN via ⟦ e ⟧ or ⟦ s ⟧, FUN execution via→∗v never gets stuck. Values and stores map to

their equivalents v � w and σ � w , errors map to clearly identified error values, and divergence to

divergence.

Proof. Again, by induction on an appropriate upper bound on the number of any loop iterations.

□

3.3 Analysis and Verification via Simplification
Based on the sound translation from IMP to FUN, we now want to simplify FUN programs and extract

higher-level information. In particular, we want to transform recursive definitions into collective

operations. This approach to program analysis is similar in spirit to deductive verification: we

translate the source language into an equivalent representation (or program logic) which can then

be solved through a solver procedure (e.g., constraint simplification). In our case, the target language

is the functional language FUN, and the solver performs simplification through equality-preserving

rewriting of program terms (we discuss a strategy that interleaves translation and simplification in

Section 4). For the concrete rewriting strategy there is considerable freedom, and we do not fix a

particular strategy here.
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Verification Based on Explicit Errors Values. The key property of the IMP to FUN translation was

that any runtime error in the IMP program will be reflected as an observable error value in the

target language, but not trigger erroneous behavior there (Theorem 3.14). Based on this property,

verification just amounts to checking that the FUN program cannot produce a failure result. All

that is required for this test is a syntactic check that the FUN program after simplification is equal

to Some д—in other words, that the valid flag according to the value representation in Figure 7

statically simplifies to constant true. If the valid flag is any other symbolic expression, it means

that verification did not succeed; i.e., that the program might exhibit erroneous behavior (such as

an assertion failure).

Soundness of Simplification Rules. The property that any error in the IMP program will be reflected

as an observable error value in FUN follows from the semantic preservation of the CBV FUN semantics.

For purposes of verification, however, we may settle for a weaker correspondence, and pick a non-

strict call-by-name semantics for FUN. This provides more flexibility for simplification, e.g., the

ability to rewrite 0 ∗ e → 0 even if evaluation of e may not terminate, but it also means that some

diverging IMP programs may terminate in their FUN translation. In this case, verification may signal

false positive errors. For example, for while true do skip; assert false, the analysis might

miss that the assert is unreachable. Importantly, this result is still sound.

In the following, we therefore assume a non-strict call-by-name (CBN) or call-by-need semantics

for FUN, and recall confluence of λ-calculus and that CBN terminates on more programs that CBV.

We need a few other standard results:

Definition 3.15. Let→ be the standard CBN λ reduction, extended to FUN as above. Let E⟦ д ⟧ be
the partial evaluation function induced by→∗.

Definition 3.16 (Behavioral Equivalence). Let д1 ≡ д2 iff E⟦ д1 ⟧ = E⟦ д2 ⟧.

Proposition 3.17 (Congruence). For any context C , if д1 ≡ д2, then C[д1] ≡ C[д2]

The congruence property enables us to prove the correctness of individual rewrite rules, and use

them to soundly replace parts of an expression with behaviorally equivalent ones.

Simplification Rules in Practice. We show selected equivalences that give rise to useful rewrite

rules for simplification in Figure 8. Besides standard arithmetic simplification, there are structural

rules about objects and their fields. In particular, a key simplification is to split recursive functions

into individual functions per object field. Since the IMP store is represented as a FUN object, this

rule enables local reasoning about individual IMP variables, instead of only about the store as

a whole. Combined with β-reduction for non-recursive functions, the original function may be

replaced entirely by the component-wise ones. The same pattern also applies to the construction of

sequences: instead of creating an array of objects, it is often better to create an object of arrays,

one per field. If only parts of an object change, this enables a more detailed characterization of

such changes. In addition, it is often helpful to distribute conditionals over other operations, e.g., to

push conditionals into object fields. Another important set of rules is concerned with the actual

extraction of collective forms for sums, sequences/arrays, etc. The #(i ) rule is key for numeric

loop bounds. It is also useful to add standard dead-code and common subexpression rules. The last

rewriting rule related to #(i ) in Figure 8 is quite interesting. After analyzing a loop, the resulting

store will always be of the form: if the loop executed at least once (0 < #(i ).д) the new store is s1
otherwise it is s2. However, if the loop did not execute, #(i ).д must be 0. Therefore if s1 is equivalent
to s2 when the loop does not execute, then the condition can be removed, and the new store is s1.

We believe that it is a strong benefit of our approach that the set of simplification rules (Figure 8

and beyond) is not fixed and can be extended at any point. The only requirement for a rule is to

individually preserve the CBN concrete semantics.
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Rewriting Strategies. The set of equivalence rules available for simplification, including the

rules in Figure 8 and beyond, gives rise to a whole space of rewriting opportunities. If each rule

individually is proved to preserve semantics, an implementation is free to apply them in any order

to reach a sufficiently simplified program. A simple and performance-oriented implementation

can use a deterministic bottom-up strategy, but it would be entirely feasible to use auto-tuning,

heuristic search, or strategies based on machine learning.

However, even search-based rewriting strategies are fundamentally limited by their pessimistic

nature if they apply simplification rules one by one, due to the requirement that each individual rule

preserves the program semantics, as opposed to a set of rules applied at once. Section 4 discusses

an optimistic strategy based on Kleene iteration that removes this restriction and leads to more

precise results in practice.

4 SPECULATIVE REWRITING & KLEENE ITERATION
The analysis and verification approach presented in Section 3.3 is based on applying equality-

preserving simplification rules after a full IMP program is translated to FUN. While a useful starting

point, this approach has clear limitations.

Fundamentally, equality-preserving simplification has to operate with pessimistic assumptions

around loops and other recursive dependencies. We can only simplify a program if we are sure that

each individual step will preserve the full extent of the program’s semantics. In this section we will

refine our approach towards optimistic simplification: this approach will simplify loop bodies no

matter what, and check whether the simplification is indeed valid. If not, we try somewhat less

optimistic assumptions, and repeat. This is inspired by Lerner et al.’s work on composing dataflow

analyses and transformations in optimizing compilers [Lerner et al. 2002].

Errors and Loop-Invariant Fields. Concretely, equality-preserving rewriting works well as long

as there are no mutually recursive dependencies, i.e., there is always one recursive function that

can be rewritten first, leading to further rewriting opportunities in other functions. But this is not

always the case. Consider the following program:

j := 0;

while j < n do {

assert(j >= 0); j := j + 1

}

Recall that errors are represented as a valid flag in the record representing the overall program

state (see Section 3). The valid flag is equivalent to a variable v initialized to true at the beginning

of the program, and set to false if the assert fails. To illustrate, the program could be rewritten as

follows:

j := 0;

v := true;

while j < n ∧ v do {

if j >= 0 then j := j + 1 else v := false

}

To demonstrate the absence of errors, we need to demonstrate that the validflag remains unchanged

throughout the loop. However, this is difficult since the derived FUN representation contains mutual

recursion between variables.

let j = λ (i ). if i ≥ 0 then { if v (i − 1) ∧ j (i − 1) ≥ 0 then j (i − 1) + 1 else j (i − 1) } else 0

let v = λ (i ). if i ≥ 0 then { if v (i − 1) ∧ j (i − 1) ≥ 0 then v (i − 1) else false } else true

let n = #(i ). ¬(j (i ) < n ∧ v (i ))
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In this situation, we cannot extract an individual recursive function for j (and much less a

collective form) because the loop body may raise an error (set v to false), and we cannot eliminate

v because we do not have enough knowledge about j. Thus the basic rewriting strategy from

Section 2 cannot work.

We will explain the process in more detail based on a concrete example of scalar recurrences

below, but it is important to note that the approach is more general and applies to all kinds of

expressions and data types. To complete the verification of the program above, recall that error

conditions are represented as a valid flag in the record representing the overall program state (see

Section 3). To demonstrate the absence of errors, we need to demonstrate that the valid flag remains

unchanged throughout a loop. Fortunately, identifying loop-invariant parts of data structures is

straightforward with the speculative rewriting approach: we make initial optimistic assumptions

that all variables and record fields (including the valid flag as special case), are loop-invariant,

and roll back these assumptions only if writes to certain vars/fields are observed. With optimistic

assumptions, there is no write to v in the loop, and the program verifies. The following table

illustrates the simplification process, that terminates once a fixpoint has been reached.

Before loop Before ith iter. After (expected) After (actual)

y0 ˆf (i−1) ˆf (i ) ∆( ˆf (i−1))
Step 1 j = 0 0 0 1

v = true true true true

Step 2 j = 0 i i + 1 i + 1

v = true true true true

Scalar Recurrences. Consider the example from Section 2:

j := 0; s := 0;

while j < k do {

s := s + j;

j := j + 1

}

Our refined approach is as follows: let y0 be the program state before the loop and let ∆ be the

transfer function of the loop, describing the effect of one loop iteration on the program state. We

use f (i ) to denote the program state after iteration i , subject to f (−1) = y0 and f (i + 1) = ∆( f (i )).

The goal is now to approximate f iteratively by a series of increasingly pessimistic functions
ˆfk

until we reach f .

At the first step
ˆf0 we assume (maximum optimism) all variables to be loop invariant, i.e.,

that we can use the following per-variable functions, where n is the current symbolic value of k :
let k = λ (i ).n, let j = λ (i ).0, let s = λ (i ).0
Then, we evaluate the assumed functions to compute the expected value before and after loop

iteration i, i.e., ˆf0 (i − 1) and ˆf0 (i ). We compare the expected post-iteration value with the actual

symbolic evaluation of the loop body, using the same expected initial values ∆( ˆf0 (i − 1)) (Figure 9,

top). In general, if ∆( ˆfk (i )) = ∆( ˆfk (i − 1)) for a symbolic representation of i , we know that
ˆfk = f .

But in this case, we can see that our assumption about j was too optimistic. We need to try a

non-loop-invariant transfer function — but which one?

For scalar values, one of our strategies is to focus on polynomials. The observed difference dj
between before and after the loop iteration can be seen as the discrete derivative of the transfer

function we are approximating. In this case, dj is a constant, i.e., a polynomial in i of degree 0. Thus
we try the (uniquely defined) polynomial of degree 1 (a linear function) that matches the observed

values for i = 0, j = 1 and has derivative dj = 1. let k = λ (i ).n, let j = λ (i ).i + 1, let s = λ (i ).0
The computed expected and actual values are shown in Figure 9 (middle). Now the representation

of j has been settled, but s is no longer correct. We follow the same strategy as before and generalize
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Before loop Before ith iter. After (expected) After (actual)

y0 ˆf (i−1) ˆf (i ) ∆( ˆf (i−1))
k = n n n n

j = 0 0 0 1

s = 0 0 0 0

k = n n n n

j = 0 i i + 1 i + 1

s = 0 0 0 i

k = n n n n

j = 0 i i + 1 i + 1

s = 0 ((i-1)*i)/2 (i*(i+1))/2 (i*(i+1))/2

ˆf0 generalize
ˆf0

ˆf0 (i ) , ∆( ˆf0 (i − 1))

ˆf1 generalize
ˆf1

ˆf1 (i ) , ∆( ˆf1 (i − 1))

ˆf2 stop

ˆf2 (i ) = ∆( ˆf2 (i − 1))

Fig. 9. Fixpoint iteration for running example, iterations 0 (top) to 2 (bottom), converging to a 2nd-degree

polynomial for s. The generalization treats different data types differently: (1) try a higher degree of polynomial

for numerics, (2) apply generalization to fields recursively for records, (3) extract the collective form for arrays

if writing to the adjacent slot, or (4) create a recursive function for fallback.

the transfer function for s . The difference ds = i is a polynomial of degree 1, and discrete integration

yields a quadratic function:

let k = λ (i ).n, let j = λ (i ).i + 1, let s = λ (i ).(i ∗ (i + 1))/2
Nowwe observe convergence, shown in Figure 9 (bottom). Therefore, our strategy succeeded and

we simultaneously computed sound symbolic representations of k , j, and s . We can now compute

the number of iterations executed: #(i ). ¬(j (i ) < n) = if 0 < n then n else 0. Thus, the last iteration

executed was n−1 (or -1 if the loop was not executed at all), and the values of k , j, and s after the
loop are therefore:

[ k 7→ if 0 < n then k (n−1) else n = n,

j 7→ if 0 < n then j (n−1) else 0 = if (0 < n) then n else 0,

s 7→ if 0 < n then s (n−1) else 0 = if (0 < n) then (n-1)*n/2 else 0 ]

In general, polynomials are just one option. Since not all functions can be described as polyno-

mials, we cannot rely on convergence, i.e., we need to stop at a certain degree. In the event that

the analysis did not converge, it needs to stop and produce a conservative solution. The fallback

(always valid) is to create a recursive definition:

ˆfω (i ) = if (i ≥ 0) ∆( ˆfω (i − 1)) else y0

This solution is the last resort for our analysis. Therefore, we can view the function space as

partially ordered, from optimistic to pessimistic:
ˆf0 ⊏ ˆf1 · · · ⊏ ˆfω .

Here,
ˆf0 can be polynomials of degree 0,

ˆf1 polynomials of degree 1 etc., with the recursive form

ˆfω at the top of the chain. While polynomials are useful, other chains of functions would be possible

(e.g., Fourier series). The Kleene iteration is subject to the usual conditions, i.e., that sequences of

functions
ˆfk picked during iteration must be monotonic in k and without infinite chains.

Detecting Sequence Construction. Similar to the extraction of closed forms from scalar recurrences,

we use speculative rewriting to extract collective forms for sequence construction. Consider the

following program:

a := new;

j := 0;

while j < k do {

a[j] := g(j);

j := j + 1

}

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 157. Publication date: October 2019.



157:20 Grégory Essertel, Guannan Wei, and Tiark Rompf

Just like we speculate on a closed form for j, we recognize that the first loop iteration writes to index

0 in a, and we speculate that subsequent loop iterations will write to indexes 1, 2, etc. Hence, for

the next Kleene iteration step we propose a collective form for a, and verify its validity in the next

iteration. During this process, we notice that j is equal to the loop index, which means that a is being

assigned at the loop index. Therefore we can assume that a is an array ⟨.⟩( i2 < i). д (i2) and continue
the iteration process. As explained in Section 2, extracting collective forms for heap-allocated data

structures is key for reasoning about programs like the one in Figure 1.

5 SCALING UP TO C
In the preceding sections, we have instantiated our approach for a representative model language

IMP. To validate this model in practice, we have built a prototype tool called SIGMA that applies

essentially the same approach to C code. Compared to the formal model, there are several challenges

posed by a large and realistic language. Two important features that IMP does not include are

functions, and intraprocedural control flow other than if and while. These include in particular

goto, break, continue, switch/case, etc.

SIGMA uses the C parser from the Eclipse project to obtain an AST from C source. SIGMA then

computes a control-flow graph for each function in the AST, and converts it back into a structured

loop form using standard algorithms [Ramshaw 1988; Yakdan et al. 2015]. We chose this approach

for its relative simplicity and consistency with the formal description. It would also be possible

to adapt the fixpoint algorithm from Section 4 to work directly on control-flow graphs. As part

of the iterative translation to a slightly extended FUN language, SIGMA resolves function calls and

inlines the function body at the call site, which provides a level of context-sensitivity. A potentially

more scalable and performant alternative would be to compute FUN summaries for each function

separately, leading to a more modular analysis approach. SIGMA currently does not support recursive

functions at the C source level, beyond inlining them up to a variable cutoff.

Our simplification approach is based (1) on normalizing rewrites using smart constructors, e.g.

pushing a constant in a product to the right, and (2) on an explicit simplification procedure. The

main ingredient here is a solver for linear inequalities over integers, which in our case consists of a

custom implementation of the Omega test [Pugh 1991]. Other algorithms would also be feasible

[Dillig et al. 2011a]. Instead of this integrated implementation one could also consider invoking an

external SMT solver. However, care must be taken to faithfully encode FUN terms, since the current

generation of SMT solvers cannot directly represent collective operators.

Another feature that is required for realistic analysis is dealing with nondeterministic input,

often called havoc or rand?. SIGMAmodels this in a manner very similar to dynamic allocations: each

call to rand? is parameterized with the program context rand?(path), so that the results of different

rand? calls can be uniquely identified even on the symbolic level. We use this in Figures 10, 11, 12.

While Section 3 has focused on a formal soundness property for IMP, we do not make such claims

for the full C language. In particular, SIGMA does not accurately model integer overflow, pointer

arithmetic (beyond arrays), floating point computation, concurrency, and undefined behavior.

Analysis and verification of C code using SIGMA can currently only be considered sound for

programs that do not use such features. These restrictions are not unreasonable, and are, for

example, reflected in certain categories of the SV-COMP verification benchmarks.

Figure 10 and 11 illustrate complex control flow within loops. In Figure 10, SIGMA manages to

infer the polynomial form of the variable agg during the approximation phase. However, in Figure

11, there is no such polynomial form, thus SIGMA generates a generic sum for variable a and b.

While this generic form does not provide a lot of information about either a or b, it can be used

to prove, through the algebraic properties of the sum, that the condition a + b == 3*n is always

evaluated to true.
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int main() {

// path p1

int n = __VERIFIER_nondet_int();

// path p2

int m = __VERIFIER_nondet_int();

int agg = 0; int i = 0;
__VERIFIER_assume(0 < m && 0 <= n);

while (i < n) {

// path p3(x18?) = <...>.while[x18?]
if (i < m) agg += 3;

else agg += 1;

i += 1;

}

return 0;

}

Store σx18? after iteration x18? (constant values elided):

"&i" 7→ [ (x18? + 1) : "int" ]

"&agg" 7→ [ if ((x18? < rand?(p2))) { ((x18? * 3) + 3) }

else { ((rand?(p2) * 2) + (x18? + 1)) } : "int" ]

Loop termination: u = #(x18?).!(x18? < rand?(p1))

Final store σf = σu−1 =
"&n" 7→ [ rand?(p1) : "int" ]

"&m" 7→ [ rand?(p2) : "int" ]

"&i" 7→ [ rand?(p1) : "int" ]

"&agg" 7→ [ if ((rand?(p1) < (rand?(p2) + 1))) { rand?(p1) * 3 }

else { ((rand?(p1) * 2) + rand?(p1)) } : "int" ]

"return" 7→ [ 0 : "int" ]

Fig. 10. SIGMA analysis result for a program with a conditional in a loop where the result can be expressed as

a polynomial. Left: C source code. Right: the store inferred within the loop and the final store.

int main() {

int i, n, a, b;

i = 0; a = 0; b = 0;

// path p1

n = __VERIFIER_nondet_int();
__VERIFIER_assume(n >= 0 && n <= 1000000);

while (i < n) {

// path p2(x11?) = <...>.while[x11?]
if (__VERIFIER_nondet_int()) {

a = a + 1; b = b + 2;

} else { a = a + 2; b = b + 1; }

i = i + 1;

}
__VERIFIER_assert(a + b == 3*n);

return 0;

}

Final store:

"&i" 7→ [ rand?(p1) : "int" ]

"valid" 7→ 1

"&a" 7→ [ sum(rand?(p1)) { x11? =>

if (rand?(p2(x11?))) 1 else 2

} : "int" ]

"&n" 7→ [ rand?(p1) : "int" ]

"&b" 7→ [ sum(rand?(p1)) { x11? =>

if (rand?(p2(x11?))) 2 else 1

} : "int" ]

"return" 7→ [ 0 : "int" ]

Fig. 11. SIGMA analysis result for a program with a conditional in a loop where the result can not be expressed

as a polynomial (sv-comp benchmark loop-lit/bhmr2007_true-unreach-call.c.i). We show the C source on the

left. On the right, we show the final store.

int main() {

// path p1

int n = __VERIFIER_nondet_int();

int agg = 0;

int i = 0;
__VERIFIER_assume(0 <= n);

while (i < n) {

agg += i; i += 4;

}

return 0;

}

Store σx11? after iteration x11? (constant values elided):

"&agg" 7→ [ (x11? * (x11? * 2)) + (x11? * 2)) : "int" ]

"&i" 7→ [ (x11? * 4) + 4: "int" ]

Loop termination: u = #(x11?).!((x11? * 4) < rand?(p1))

Final store σf = σu−1 =
"&n" 7→ [ rand?(p1) : "int" ]

"&i" 7→ [ ((rand?(p1) + 3) / 4) * 4 : "int" ]

"&agg" 7→ [ (rand?(p1) + 3) / 4) * (((rand?(p1) + 3) / 4) * 2)

+ ((rand?(p1)+3)/4)* -2 : "int" ]

"return" 7→ [ 0 : "int" ]

Fig. 12. SIGMA analysis result for a program with a loop increment different from 1. We show the C source on

the left. On the right, we show the store inferred within the loop and the final store.
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6 EVALUATION
We evaluate SIGMA in three different categories: program verification, program equivalence, and

transformation of legacy code to DSLs. We use an Intel Core i7-7700 CPU with 32GB of RAM

running Ubuntu 16.04.3 LTS.

Verification. We compare SIGMA with CPAchecker [Beyer and Keremoglu 2011] and SeaHorn

[Gurfinkel et al. 2015] on programs from or similar to the SV-COMP benchmarks [Beyer 2012]. We

used the programs from the loop-lit, loop-invgen, and recursive-simple-∗ categories of SV-COMP.

CPAchecker won the 2018 SV-COMP competition, and both state-of-the-art tools scored highly in

previous years. The goal is to assess the reachability of a given function call __VERIFIER_error()

(an assertion evaluated to false triggers a call to this function as well). The expected result of the

analysis is encoded in the filename, e.g., false-unreach-call means that the call marked unreachable

can actually be executed, whereas a true-unreach-call means that the error can never be triggered.

The example in Figure 11 is a program from the loop-lit category.

Name CPAchecker SeaHorn SIGMA

simple_built_from_end_true-unreach-call.i TIMEOUT 250 273

list_addnat_false-unreach-call.i 2890 190 215

list_addnat_true-unreach-call.i 305560 170 215

loop_addnat_false-unreach-call.i 2830 190 285

loop_addnat_true-unreach-call.i TIMEOUT 200 285

loop_addsubnat_false-unreach-call.i 3140 210 364

loop_addsubnat_true-unreach-call.i TIMEOUT 230 364

nestedloop_mul1_true-unreach-call.i OUT OF MEMORY 7280 405

nestedloop_mul2_true-unreach-call.i TIMEOUT 240 365

Fig. 13. Results are in ms (TIMEOUT is set at 900s). The red cells indicate incorrect results (false positives).

First, we highlight nine challenging programs of our benchmark: three programs operate on

singly linked lists, four programs use more than one non-nested loop and two other programs have

nested loops. The results for these programs are shown in Figure 13. At first glance we can see two

distinct behaviors between CPAchecker and SeaHorn. CPAchecker, while being quite slow, never

gives an incorrect answer. SeaHorn, on the other hand, is fast and can sometimes give an incorrect

(false positive) result. All three tools manage to handle the false-unreachable-call case, which can

be seen as the easy problem as it only requires to find a counterexample. However in the case of

true-unreachable, the prover needs to check all possible values. The very big search space explains

CPAchecker’s timeouts. For SeaHorn, the true case appears to be difficult, as the internal logic may

overapproximate the problem and give an incorrect (false positive) result. SIGMA, by contrast, is

very precise and can verify all the examples while being almost as fast as SeaHorn.

In order to have a more general idea of the performance of SIGMA, we look at three SV-COMP

suites: loop-lit, loop-invgen, and recursive-simple-∗. Figure 14 shows a summary view of the running

time of the analysis, and compares SIGMA to CPAChecker and SeaHorn. In these graphs, inspired by

a similar visualization by [Zhu et al. 2018], each dot represents one program. The dots are placed at

coordinates representing their analysis times. The samples under the identity line are the programs

where SIGMA is faster then the other tool. The complete list of programs is shown in Figure 15. On

the loop-* benchmark, which is composed of programs with loops and computation over scalar

values, SIGMA performs very well. It proves most of the reachability goals quickly. Out of the 37

programs, it times out on 3 programs that have complex control flow (jumps from within the then

branch to the else branch). There are also 4 programs where SIGMA cannot make a decision; this is

when the valid flag is not simplified to 0 or 1. This situation is indicated by a yellow box in Figure 15.

For the recursive-simple-∗ benchmark, even though SIGMA is not designed to handle recursion, on
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Fig. 14. Verification time of CPAChecker vs SIGMA, and SeaHorn vs SIGMA. Each point represents a program

and is placed at coordinates (analysis time CPACHecker/SeaHorn, analysis time SIGMA).

many of the programs, the verification is successful. SIGMAmanages to verify the assertions through

pure symbolic execution driven by inlining of function calls. We did not implement any additional

analysis for recursive functions. For the programs where it fails, the execution dependents on

an unknown value thus a simple symbolic execution can not terminate and SIGMA gives up after

exhausting its internal inlining limit.

Program Equivalence. Since SIGMA computes exact symbolic descriptions of the program state

post-execution, it can also be used to test program equivalence. In the absence of side effects that

read external input, we can run SIGMA on both programs and verify that the post-execution states

have the same symbolic representation, up to symbolic rewriting. Let s1 and s2 be the two symbolic

states, then we want to test whether s1 = s2 simplifies to true. Since errors are explicit at the

symbolic level, this test not only applies to programs that independently verify, but can also relate

the error behavior of two programs. In our evaluation, we manage to prove equivalence between

the two functions below: one using a while loop, and the other one using GOTOs. For example,

given the same random input, these two code snippets produce the same symbolic forms for the

return value:

int main() {

int a = nondet_int();

int b = 0;

while (b < a)

b = b + 1;

return b;

}

int main() {

int a = nondet_int();

int b = 0; goto cond;

more: b = 1 + b;

cond: if (b < a) goto more;

return b;

}

This method can be generalized to global variables and even I/O. In the case of I/O, the different

streams of input data can be modeled as data stored on the heap (see earlier discussion of rand?(p),

and the symbolic forms need to match to prove equivalence.

In addition, we have verified that SIGMA can demonstrate equivalence of programs in the style

of Section 2: (1) a program that computes the sum of n nondeterministic inputs in a loop; (2) a

program that stores these value in an array and then computes the sum; (3) a program that stores

these values in a linked list and then computes the sum.

Legacy Code to DSLs. SIGMA can also be used to analyze legacy optimized C code and translate

it to high-level performance-oriented DSLs. In addition, the symbolic representation obtained

from the analysis can be used to better understand the program behavior. An interesting case is

Stencil codes, which are patterns for updating array elements according to their neighbors. Many

stencil codes are written in Fortran or C and heavily optimized for performance on a particular

architecture, which precludes porting to GPUs, parallelizing and distributing across a cluster, or in

general foward-porting the code to other emerging architectures.
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Name CPAchecker SeaHorn SIGMA Name CPAchecker SeaHorn SIGMA

linv/apache-escape-[...]_true-unreach-call.i 848638 1329 TIMEOUT rec/fibo_2calls_25_false-unreach-call.c TIMEOUT 91274 47

linv/apache-get-tag_true-unreach-call.i TIMEOUT 851 TIMEOUT rec/fibo_2calls_25_true-unreach-call.c TIMEOUT 154521 38

linv/down_true-unreach-call.i TIMEOUT 650 98 rec/fibo_2calls_4_false-unreach-call.c 6500 763 46

linv/fragtest_simple_true-unreach-call.i TIMEOUT 766 978 rec/fibo_2calls_4_true-unreach-call.c 6322 980 10

linv/half_2_true-unreach-call.i TIMEOUT 717 142 rec/fibo_2calls_5_false-unreach-call.c 6751 790 57

linv/heapsort_true-unreach-call.i TIMEOUT 2237 3275 rec/fibo_2calls_5_true-unreach-call.c 6531 1265 10

linv/id_build_true-unreach-call.i 6632 661 78 rec/fibo_2calls_6_false-unreach-call.c 7328 883 24

linv/id_trans_false-unreach-call.i 7268 692 462 rec/fibo_2calls_6_true-unreach-call.c 6679 1349 52

linv/large_const_true-unreach-call.i 16748 448736 305 rec/fibo_2calls_8_false-unreach-call.c 8138 946 37

linv/MADWiFi-[...]_true-unreach-call.i TIMEOUT 754 2232 rec/fibo_2calls_8_true-unreach-call.c 7730 2611 44

linv/nest-if3_true-unreach-call.i TIMEOUT 746 740 rec/fibo_5_false-unreach-call.c 6557 795 60

linv/nested6_true-unreach-call.i TIMEOUT 1272 2853 rec/fibo_5_true-unreach-call.c 6134 1873 5

linv/nested9_true-unreach-call.i TIMEOUT TIMEOUT 3267 rec/fibo_7_false-unreach-call.c 7209 1190 28

linv/NetBSD_loop_true-unreach-call.i TIMEOUT 631 177 rec/fibo_7_true-unreach-call.c 6745 3332 31

linv/sendmail-[...]_true-unreach-call.i TIMEOUT 680 279 rec/id_b2_o3_true-unreach-call.c 6330 705 65

linv/seq_true-unreach-call.i TIMEOUT 681 1101 rec/id_b3_o2_false-unreach-call.c 6915 790 149

linv/SpamAssassin-loop_true-unreach-call.i 867493 923 TIMEOUT rec/id_b3_o5_true-unreach-call.c 6076 668 51

linv/string_concat-noarr_true-unreach-call.i TIMEOUT 732 636 rec/id_b5_o10_true-unreach-call.c 6223 596 53

linv/up_true-unreach-call.i TIMEOUT 621 183 rec/id_i10_o10_false-unreach-call.c 6513 956 35

llit/afnp2014_true-unreach-call.c.i 29254 700 70 rec/id_i10_o10_true-unreach-call.c 6067 678 18

llit/bhmr2007_true-unreach-call.c.i TIMEOUT 769 112 rec/id_i15_o15_false-unreach-call.c 6640 1169 21

llit/cggmp2005_true-unreach-call.c.i 4391 761 32 rec/id_i15_o15_true-unreach-call.c 6118 631 13

llit/cggmp2005_variant_true-unreach-call.c.i TIMEOUT 583 62 rec/id_i20_o20_false-unreach-call.c 6827 1306 66

llit/cggmp2005b_true-unreach-call.c.i 5998 628 201 rec/id_i20_o20_true-unreach-call.c 6197 624 18

llit/css2003_true-unreach-call.c.i 6469 664 127 rec/id_i25_o25_false-unreach-call.c 6728 1484 11

llit/ddlm2013_true-unreach-call.c.i TIMEOUT 934 205 rec/id_i25_o25_true-unreach-call.c 6540 681 35

llit/gj2007_true-unreach-call.c.i 5244 504 49 rec/id_i5_o5_false-unreach-call.c 6327 817 24

llit/gj2007b_true-unreach-call.c.i TIMEOUT 714 136 rec/id_i5_o5_true-unreach-call.c 5832 706 3

llit/gr2006_true-unreach-call.c.i 5692 TIMEOUT 71 rec/id_o10_false-unreach-call.c 7026 996 38

llit/gsv2008_true-unreach-call.c.i TIMEOUT 679 952 rec/id_o100_false-unreach-call.c 11357 6152 58

llit/hhk2008_true-unreach-call.c.i TIMEOUT 620 79 rec/id_o1000_false-unreach-call.c TIMEOUT TIMEOUT 56

llit/jm2006_true-unreach-call.c.i 802315 625 76 rec/id_o20_false-unreach-call.c 7386 1305 83

llit/jm2006_variant_true-unreach-call.c.i TIMEOUT 590 126 rec/id_o200_false-unreach-call.c 21269 23597 46

llit/mcmillan2006_true-unreach-call.c.i TIMEOUT 683 259 rec/id_o3_false-unreach-call.c 6454 777 69

rec/afterrec_2calls_false-unreach-call.c 5296 673 29 rec/id2_b2_o3_true-unreach-call.c 6274 739 55

rec/afterrec_2calls_true-unreach-call.c 4377 534 19 rec/id2_b3_o2_false-unreach-call.c 6476 723 74

rec/afterrec_false-unreach-call.c 5041 659 49 rec/id2_b3_o5_true-unreach-call.c 6169 670 57

rec/afterrec_true-unreach-call.c 4151 629 2 rec/id2_b5_o10_true-unreach-call.c 6313 619 59

rec/fibo_10_false-unreach-call.c 9751 2100 504 rec/id2_i5_o5_false-unreach-call.c 6384 731 23

rec/fibo_10_true-unreach-call.c 9716 9217 58 rec/id2_i5_o5_true-unreach-call.c 6038 895 16

rec/fibo_15_false-unreach-call.c 107274 1772 2292 rec/sum_10x0_false-unreach-call.c 6437 985 47

rec/fibo_15_true-unreach-call.c 134059 25115 1182 rec/sum_10x0_true-unreach-call.c 6678 754 13

rec/fibo_20_false-unreach-call.c TIMEOUT 22148 7934 rec/sum_15x0_false-unreach-call.c 6805 1125 68

rec/fibo_20_true-unreach-call.c TIMEOUT 129764 8049 rec/sum_15x0_true-unreach-call.c 6457 745 10

rec/fibo_25_false-unreach-call.c TIMEOUT 81518 82 rec/sum_20x0_false-unreach-call.c 6859 1393 71

rec/fibo_25_true-unreach-call.c TIMEOUT 223645 37 rec/sum_20x0_true-unreach-call.c 6693 716 8

rec/fibo_2calls_10_false-unreach-call.c 9731 1096 106 rec/sum_25x0_false-unreach-call.c 7189 1625 648

rec/fibo_2calls_10_true-unreach-call.c 11053 3298 105 rec/sum_25x0_true-unreach-call.c 6853 760 11

rec/fibo_2calls_15_false-unreach-call.c 97812 1887 1466 rec/sum_2x3_false-unreach-call.c 6182 717 12

rec/fibo_2calls_15_true-unreach-call.c 175109 11984 686 rec/sum_2x3_true-unreach-call.c 5959 755 3

rec/fibo_2calls_2_false-unreach-call.c 5143 538 32 rec/sum_non_eq_false-unreach-call.c 6739 687 127

rec/fibo_2calls_2_true-unreach-call.c 4213 549 21 rec/sum_non_eq_true-unreach-call.c 6480 685 100

rec/fibo_2calls_20_false-unreach-call.c TIMEOUT 9728 8441 rec/sum_non_false-unreach-call.c 6228 675 232

rec/fibo_2calls_20_true-unreach-call.c TIMEOUT 23486 8053 rec/sum_non_true-unreach-call.c 6352 727 157

Fig. 15. Results are in ms (TIMEOUT is set at 900s). The red cells indicate incorrect results (false positives),

and the yellow cells indicate when SIGMA could not decide (valid flag was not simplified to 0 or 1).

A simple example is Jacobi iteration on a one-dimensional array. At each iteration, the algorithm

updates each location with the arithmetic mean of its left-hand side and right-hand side values.

For the out-of-bound locations, the default value is 1. From the C program on the left, SIGMA will

generate the closed form on the right for the computation of a single iteration:

int i = 0; int ai = a[0];

a[0] = (1 + a[1])/2;

while (i < n-1) {

int tmp = (ai + a[i+1])/2;

ai = a[i]; a[i++] = tmp;

}

a[n-1] = (ai + 1)/2;

// Extracted FUN code of the

// corresponding C code:

let a = ⟨.⟩(i < n).
if (i == 0) then (1 + a[i+1])/2

else if (i == n-1) then (a[i-1] + 1)/2

else (a[i-1] + a[i+1])/2

From the derived closed form, the Jacobi algorithm is immediately apparent, despite the use of

temporaries and loop-carried dependencies in the C source. The closed form FUN code is easily
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mapped to a high-performance DSL such as Halide [Kamil et al. 2016; Mendis et al. 2015], which

supports parallel CPU, GPU, and cluster execution. The process readily generalizes to multi-

dimensional Jacobi iteration.

7 RELATEDWORK
Decompiling to High-Level Languages. A key ingredient of our approach is to transform—in a

sense, “decompile”—a low-level language into a comparatively higher level language. Our approach

has been greatly inspired by previous work in this direction. Some classics are the GOTO-elimination

algorithm by Ramshaw [1988] (newer work in this direction includes [Yakdan et al. 2015]), and the

realization that compilers or analyzers for imperative languages based on SSA form are essentially

using a functional intermediate language [Appel 1998]. Various compiler frameworks (e.g., [Bergstra

et al. 1996]) use rewriting rules to drive simplification and analysis, though these approaches

typically do not address challenges such as those introduced by dynamic allocation.

More recently, there has been a flurry of work that aims to translate low-level imperative code to

high-performance DSLs. Some works are based on a technique described as verified lifting, which

is used to transform stencil codes to the Halide DSL [Kamil et al. 2016; Mendis et al. 2015], or to

transform imperative Java code to Hadoop for cluster execution [Ahmad and Cheung 2016]. Another

line of work uses symbolic execution to parallelize user-defined aggregations [Raychev et al. 2015].

An approach closely related to ours transforms Java code to a functional IR and then to Apache Spark,

after a rewriting and simplification process that, e.g., maps loop-carried dependencies to group-by

operations [Radoi et al. 2014]. There is also work on synthesizing MapReduce programs from

sketches [Smith and Albarghouthi 2016], on defining language subsets that are guaranteed to have

an efficient translation [Rompf and Brown 2017], and work in the space of just-in-time compilers

to reverse-engineer Java bytecode at runtime and redirect imperative API calls to embedded DSLs

[Rompf et al. 2014].

High-Performance DSLs. Some notable works in the DSL space include Delite [Brown et al. 2011;

Lee et al. 2011; Rompf et al. 2011; Sujeeth et al. 2011], Halide [Ragan-Kelley et al. 2013], and

Accelerate [Chakravarty et al. 2011; McDonell et al. 2015; Svensson et al. 2014, 2015; Vollmer et al.

2015]. Most of these systems come with expressive, functional IRs. Some systems focus explicitly

on the intermediate layers, for example Lift [Steuwer et al. 2015, 2017], PENCIL [Baghdadi et al.

2015], or the parallel action language [Llopard et al. 2017].

Analysis and Optimization. Our optimistic fixpoint approach is directly inspired by Lerner et al.’s

work on composing dataflow analyses and transformations [Lerner et al. 2002]. Related work has

aimed to automatically prove the correctness of compiler optimizations [Lerner et al. 2003], and

on generating compiler optimizations from proofs of equivalence and before/after examples [Tate

et al. 2010]. A related line of work models a space of possible program transformations given by

equivalence rules through the notion of equality saturation, based on a program equivalence graphs

(PEGs) [Tate et al. 2011] as IR. The PEG model has heavily inspired early versions of our work. The

reasoning-by-rewriting approach and the avoidance of phase-ordering issues is similar, as is the

overall goal of a flexible semantics-preserving representation as a basis for various kinds of analysis.

However there are important differences: PEGs do not include collective forms except the pass

operator, which is similar to our #. The θ operator in the PEG model describes standard recurrences,

not collective forms. Tate et al. [2011] also do not discuss specifics about heap-allocated data, and

the accompanying Java analysis tool Peggy maps all heap objects into a single summarization

object. Thus, while PEGs can express program equivalence in general, Peggy could not prove the

equivalences in Section 6, nor verify the linked list program in Figure 1. The two innovations we
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propose, collective forms and structured heaps, could be implemented without difficulty in a PEG

setting, and potentially improve precision.

Recurrence Analysis. Analyzing integer recurrences has been an active topic of research. Some

recent works include compositional recurrence analysis (CRA) [Farzan and Kincaid 2015; Kincaid

et al. 2017], which aims to derive closed forms for recurrence equations and inequations. The

approach is based on an algebraic representation of path expressions [Tarjan 1981], refered to

as Newtonian program analysis [Reps et al. 2016]. Earlier works include abstract acceleration of

general linear loops [Jeannet et al. 2014], and a study of algebraic reasoning about P-solvable

loops [Kovács 2008]. Efficient integer linear inequality solvers have been available for some time

[Dillig et al. 2011a; Pugh 1991]. Aligators [Henzinger et al. 2010] is a tool from the static analysis

community, representative for highlighting some of the limitations. Given a simple loop as input,

Aligators can extract quantified scalar invariants, using a recurrence solving technique similar to the

one used in our framework. However, like many other tools, Aligators has limited applicability in

that it only handles linear recurrences (polynomials of degree 1), does not handle nested loops, does

not provide collective forms such as symbolic sums, does not handle dynamic allocation of arrays,

and does not appear to support complex or nested conditions inside loops. Many compilers provide

some form of recurrence analysis as part of their optimization suite, often based on Bachmann et al.

[1994]’s chains of recurrences (CoR) model, and sometimes called scalar evolution. An example is

the SCEV pass in LLVM. These analyses are able to infer closed-form representations for simple

counting loops but are limited in ways similar to tools like Aligators with respect to dynamic

allocations, collective forms, and complex expressions.

Heap Abstraction. Recent work on efficient and precise points-to analysis models the heap by

merging equivalent automata [Tan et al. 2017]. Other works use structured heaps to model container

data structures [Dillig et al. 2011b], and some techniques have been proposed for heap abstractions

that enable sparse global analyses for C-like languages [Oh et al. 2012], similar in spirit to SSA form.

While SSA is typically used for local variables, techniques under the umbrella name Array SSA

exist to extend sparse reasoning to heap data [Knobe and Sarkar 1998]. Our simplificaton rules that

break apart heap objects to expose their fields are inspired by such techniques. Abstracting abstract

machines [Horn and Might 2010] described different kinds of allocation policies parameterized by

an abstract clock. This line of work has been inspirational for our structured heap representation,

which differs in modeling the heap structure after the syntactic structure of the program. Many

other directions exist, e.g., predicate abstraction for heap manipulation programs [Bingham and

Rakamaric 2006].

Shape analysis [Sagiv et al. 2002] provides a parametric framework for specifying different

abstract interpretations. In each instantiation of the framework, a set of possible runtime stores is

represented by a set of 3-valued logical structures. An individual in a 3-valued structure represents

a set of runtime objects: each individual represents all objects in a runtime store that have the

same values for a chosen set of properties of objects. (Different instantiations of the framework

are created by making different choices of which object-properties to use.) A 3-valued structure

does not represent a static partition of the runtime objects; for instance, in a loop the properties of

a given object o can change from iteration to iteration, and hence the individual that represents

o would be different on different iterations. Stated another way, a given individual in a 3-valued

structure can represent different objects when considered to be the abstraction of the runtime

stores that arise on different iterations. Our paper takes a different approach, by indexing objects

via an abstract notion of time: all objects allocated in a loop are considered to be a sequence (i.e., a

collective form) indexed by the (symbolic) loop variable. It remains to be seen whether the two

approaches could be combined, and what the advantages of such a combination might be.
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Shape analysis approaches based on separation logic [Brookes and O’Hearn 2016; Reynolds

2002] improve precision and scale to large codebases [Calcagno et al. 2011; Distefano et al. 2006],

implemented, e.g., in Facebook’s Infer tool [Calcagno et al. 2015]. With its support for reasoning

about linked list and related structures via bi-abduction [Calcagno et al. 2011], Infer should in

principle come close to verifying programs like the one in Figure 1; however it still fails on

this particular example and several variations we tried on the public Infer web interface. Since

Infer does not compute precise symbolic representations, however, it is unsuited for tasks like

translating legacy code to DSLs (Section 6). An interesting avenue for future research is how our

heap representation can form a basis for and interact with separation predicates. This could, e.g.,

enable support for modular analyses that use a precise partial heap model within a function, and

approximate separation predicates for function contracts.

Gopan et al. [2005] extend the ideas from shape analysis à la Sagiv et al. [2002] to indexed

elements in arrays, thereby creating a parametric framework for creating abstract interpreters

that can establish certain kinds of relationships among array elements. Their approach is based

on splitting the collection of array elements into partitions based on index values that satisfy

common properties, e.g., < i , = i , or > i , where i is a loop-counter variable. Additional predicates
are introduced to hold onto invariants of elements that have been coalesced into a single partition.

Instantiations of the framework are capable of establishing that (i) an array-initialization loop

initializes all elements of an array (and that certain numeric constraints hold on the values of the

initialized elements); (ii) an array-copy loop copies all elements from one array to another; and (iii)

an insertion-sort routine sorts all of the elements of an array.

The idea of representing program values in terms of an execution context that captures the

current loop iteration is also present in previous work on dynamic program analysis [Xin et al.

2008] and on polyhedral compilation [Benabderrahmane et al. 2010]. The main difference in our

work is that we push the indexing idea all the way into the store model and allocation scheme,

which permits effective static reasoning about dynamic allocations and linked data structures, and

that we use the indexing scheme as a basis for a generic symbolic representation and static analysis.

Semantics. The proofs and formal models presented in this paper are largely standard, but make

key use of induction over a numeric “fuel metric” that bounds the amount of work (in this case,

loop iterations) a program is allowed to do. Such techniques enable effective proofs for functional

formulations of big-step semantics and have only recently received wide-spread interest [Amin

and Rompf 2017; Owens et al. 2016]. Existentially quantifying over the number of loop iterations in

our IMP semantics is very similar to a recent proposal by Siek [2016, 2017].

8 CONCLUSIONS
In this paper, we identified two key limitations of current progam analysis techniques: (1) the

low-level and inherently scalar description of program entities, and (2) collapsing information per

program point, and projecting away the dimension of time. As a remedy, we proposed first-class

collective operations, and a novel structured heap abstraction that preserves a symbolic dimension

of time. We have elaborated both in a sound formal model, and in a prototype tool that analyzes C

code. The paper includes an experimental evaluation that demonstrates competitive results on a

series of benchmarks. Given its semantics-preserving nature, our implementation is not limited

to analysis for verification, but our benchmarks also include checking program equivalence, and

translating legacy C code to high-performance DSLs.
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