The 800 Pound Python in the Machine Learning Room

James M. Decker!, Dan Moldovan?, Guannan Wei!, Vritant Bhardwaj!, Gregory Essertel!, Fei Wang?,
Alexander B. Wiltschko?, Tiark Rompf?! (*Purdue University, 2Google Brain)

Abstract

Modern machine learning frameworks have one common-
ality: the primary interface, for better or worse, is Python.
Python is widely appreciated for its low barrier of entry due
to its high-level built-ins and use of dynamic typing. How-
ever, these same features are also often attributed to causing
the significant performance gap between the front-end in
which users are asked to develop, and the highly-optimized
back-end kernels which are ultimately called (generally writ-
ten in a lower-level language like C). This has led to frame-
works like TensorFlow requiring programs which consist
almost entirely of API calls, with the appearance of only
coincidentally being implemented in Python, the language.

All recent ML frameworks have recognized this gap be-
tween usability and performance as a problem and aim to
bridge the gap in generally one of two ways. In the case of
tools like PyTorch’s JIT compiler, executed tensor operations
can be recorded via tracing based on operator overloading.
In the case of tools like PyTorch’s Torch Script, Python func-
tions can be marked for translation entirely to a low-level
language. However, both tracing and wholesale translation
in this fashion have significant downsides in the respective
inability to capture data-dependent control flow and the
missed opportunities for optimization via execution while a
low-level IR is built up.

In this paper, we demonstrate the ability to overcome these
shortcomings by performing a relatively simple source-to-
source transformation, that allows for operator overloading
techniques to be extended to language built-ins, including
control flow operators, function definitions, etc.

We utilize a preexisting PLT Redex implementation of
Python’s core grammar in order to provide assurances that
our transformations are semantics preserving with regard
to standard Python. We then instantiate our overloading ap-
proach to generate code, which enables a form of multi-stage
programming in Python. We capture the required transfor-
mations in a proof-of-concept, back-end agnostic, system
dubbed Snek, and demonstrate their use in a production
system released as part of TensorFlow, called AutoGraph.
Finally, we provide an empirical evaluation of these systems
and show performance benefits even with existing systems
like TensorFlow, Torch Script, and Lantern as back-ends.

1 Introduction

Python remains the language of choice for machine learn-
ing practitioners. Due to Python’s high-level interface and
“beginner friendly” dynamic typing system which provide a

Preprint, November 2018.
Copyright held by the authors.

relatively low barrier of entry, the performance detriments
are largely seen as a necessary trade-off for wider accessi-
bility. Even proposals like Swift for TensorFlow [32], which
bridge this gap as well as providing a number of other static
analysis benefits, have not yet been widely adopted due to
the effort and expense required in migrating to a new lan-
guage or framework.

Many machine learning frameworks targeting Python
were initially designed under the perception that there ex-
ists a strict and unavoidable dichotomy that such a system
must be either easy to use, xor performant. PyTorch [20],
for example, was developed with the goals of interactivity
and ease-of-expression first, thus foregoing opportunities
for whole-program optimization. On the other side of this
perceived fence are systems like TensorFlow [1]. TensorFlow
programs consist almost entirely of API calls (in an effort
to involve the Python interpreter as little as possible) which
build a computation graph for later execution.

This dichotomy is untenable for users, and is one which
we aim to resolve. Indeed, PyTorch, TensorFlow, and others
are now exploring mechanisms by which users may write
code in idiomatic Python, without the expected performance
loss incurred from the Python interpreter [2]. These efforts
tend towards one of two solutions. The first is to translate
entire Python ASTs to another language; the second is trac-
ing via operator overloading. However, neither solution is
without its flaws, ultimately leading to missed optimization
opportunities or usability concerns.

Looking beyond Python, we can see that many of the
problems posed have already been solved in statically-typed
languages. Of particular relevance is Lightweight Modular
Staging (LMS) [24], which provides users the ability to do
multi-stage programming in Scala. LMS uses “staging based
on types,” exposing a type annotation to users to explicitly
mark computations for current or future execution: Rep[T]
types will generate code; all other types will be executed as
normal. This is similar to tracing with the added ability to
capture data-dependent control flow, as well as providing
native code generation [10]. The capabilities provided by
LMS meet all of the requirements of a machine learning
audience except one: it is unavailable in Python [39].

Existing efforts such as Torch Script [22] aim to provide a
high-level interface for users, while ultimately generating
a computation graph of user programs. Efforts mix tracing
methods with a translation of idiomatic Python to a Python
subset (Torch Script), ultimately generating code. Such ef-
forts generally rely on Python’s mechanism for metaprogam-
ming: decorators. Decorators in Python are function annota-
tions which allow for arbitrary code to be evaluated both at

Preprint, November 2018

the time of function definition and at each function invoca-
tion.

However, current efforts are not always informed by proper
Python semantics, thus having no guarantees of correct-
ness beyond the developers’ intuition. Furthermore, these
efforts in many cases miss optimization opportunities due
to a lack of generality. A key example of this can be seen
in efforts which perform tracing (e.g., Torch Script, Open
Neural Network eXchange (ONNX) [18]): such methods lose
all information regarding control flow in the generated code.

In this paper, we examine the metaprogramming capabil-
ities provided by Python, and utilize decorators to enable
multi-stage programming in Python. The key insight is that
a decorator inherently breaks decorated functions into two
stages: one at function definition, another at function invoca-
tion. This allows for manipulation of the function body code
upon definition, and allowing for a specialized execution at
function invocation (including code generation).

We provide a set of source code transformations able to
enable generative programming in Python. We implement
these transformations in a system called Snek, and use a core
grammar of Python (4,; [21]) to provide assurances of seman-
tic preservation. We then extend these transformations to
enable multi-stage programming in the style of Lightweight
Modular Staging, targeting (and implemented entirely in)
Python. We further describe the challenges of implementing
a system “based on types” in a dynamically-typed language,
as well as other challenges which arise from differences be-
tween Scala and Python (i.e., Python’s use of statements
vs. Scala’s restriction of expressions, some Python-specific
scoping rules, etc.). This notably does not require any ad-
ditional compiler plug-ins or modifications to the Python
interpreter. Snek is also back-end agnostic, ultimately gen-
erating S-Expressions capable of being easily parsed by any
system. To illustrate this, we target both Torch Script and the
Lantern engine [38] as back-ends, using a Lisp parser written
in Scala for interfacing with Lantern. We also show the use
of these transformations in a production system, AutoGraph,
in which the generation of S-Expression is bypassed in fa-
vor of directly generating TensorFlow API calls. AutoGraph
also utilizes more sophisticated analysis methods in order to
better inform more specialized code generation; we discuss
these in Section 5.7. We note that AutoGraph is slated to be
incorporated in the TensorFlow 2.0 release.!

This paper makes the following contributions:

e We examine the techniques currently in use to bridge the
ease-of-use and performance gap in Python, and show the
need for source code transformations in addition to these
techniques (Section 2).

e We present a series of source code transformations target-
ing Python, including providing Scala-style virtualization

https://pgaleone.eu/tensorflow/gan/2018/11/04/tensorflow-2-models-
migration-and-new-design/

James M. Decker et al.

def foo(x):

ret = None @
if args.train: # Check hyperparameter

if x > 0: ret = train(x) .
else: ret = train(0) b)a = e
ret = inf(x)

else: ret = inference(x)
return ret
ret = train(x)

a)
false true
ret = train(s)
)

return ret j

[rst = train(0) ret = traintxa

M

return ret

return ret

Figure 1. Control Flow Graphs generated from function foo
(top) using a) @torch.jit.trace with a sample value of x
= 5 and args.train set to True, b) Snek with args.train
set to True, and ¢) @torch.jit.script.

for control flow operators (Section 3), and introduce Snek,
an implementation of these transformations.

e We adopt the formal semantics defined in A, a gram-
mar which captures the core semantics of Python [21],
and formally present our virtualization function, [],
in reduction semantics. We further present a semantic
preservation property as a convergence relation to A,
(Section 4).

e We extend our transformations to provide staging in Python
in the manner of Lightweight Modular Staging, utilizing
Python’s dynamic dispatch to resolve type information,
and introduce Snek: an implementation of these trans-
formations and staging capabilities (Section 5). We also
discuss a production system, AutoGraph, built using trans-
formations in the style of Snek, and show the design deci-
sions which may change when targeting a single back-end.

e We evaluate Snek and AutoGraph, comparing with current
state-of-the-art systems (Section 7).

2 Translation, Tracing, and the Need for
Virtualization
We begin by examining existing techniques used to allow
users to program in idiomatic Python, while still achieving
competitive performance. We focus primarily on systems
which perform either source-to-source (STS) translation or
operation tracing, paying special attention to tools like Torch
Script which provide these techniques in the setting of ma-
chine learning applications.
2.1 AST Translation
A number of existing systems [5, 14, 19, 22, 35] make use of
STS translation in order to bypass the overhead inherent in
the Python interpreter [2] altogether. These instead operate
on Python ASTs, which are then translated to a different,
generally lower-level, language. We examine two systems
which perform STS translation targeting Python here, and
provide a more exhaustive analysis in Section 8.

The 800 Pound Python in the Machine Learning Room

Cython. Perhaps the most well-known Python translation
tool is Cython [5]. Cython accepts as input a Python pro-
gram, and generates from it an equivalent program using
C as a “host” language. Cython is not a simple Python-to-C
translation engine: it interfaces with the Python runtime
so as to enable the use of Python objects should Cython be
unable to generate the appropriate C code.

Given the Python program? in Figure 2 (left) as input,
Cython will produce a .c file which runs approximately 35%
faster than in Python [6]. Notably, this file is just over 3300
LOC, with the majority of lines being constant definitions
and other preprocessor directives (the original Python code
is contained within a comment, but is otherwise difficult to
find). Cython is able to generate even faster code by supply-

ing type annotations, as show in Figure 2.

def f(x): return x **x 2 - x def f(double x): return x *x 2 - X
def integrate_f(a, b, N): def integrate f(double a, double b, int N):
s=0 cdef int i
dx=(b-a) /N cdef double s, dx
for i in range(N): s=0
s += f(a + 1 * dx) dx=(b-a) /N
return s * dx for i in range(N): s += f(a + i * dx)
return s * dx

@)
Figure 2. Cython tutorial code with (left) and without (right)
type annotations provided by users.

Running this annotated code with Cython yields slightly
(~50 LOC) reduced code, but provides a speedup of approxi-
mately 4X over the original Python version [6].

While these results are impressive, even in the trivial ex-
ample shown, there may exist additional optimization op-
portunities which are currently unavailable. If, for example,
the value of N can become known at compile time (i.e., when
Cython is invoked), Cython would not need to generate a
for loop: rather, it could directly assign
s="f(a) + f(a+dx) + ... + f(a+ (N - 1) *x dx),
thus removing the required jump operations inherent in the

generated for loop.
Torch Script: torch.jit.script. Translations of the na-

ture depicted here are desirable when looking to capture data-
dependent control flow in the original user code. PyTorch’s
Torch Script [22] framework provides a translation mech-
anism in the form of a new decorator: @torch.jit.script
(we refer to this as @script for the remainder of the pa-
per). Torch Script’s @script decorator behaves similarly to
Numba [14]: it takes as input a Python function which will
be interpreted as a specialized subset of Python, in this case,
Torch Script. Whereas tools like Cython typically require
translation of entire programs (and, in the case of any errors,
may require users to be proficient in the generated language),
@script instead allows users to mix these translations into
their code where appropriate and with greater control (with
errors appearing in a language similar to the original func-
tion). Torch Script is intended to be used in accomplishing
machine learning tasks, and provides the benefit of allowing

2Taken from http://docs.cython.org/en/latest/src/quickstart/cythonize html.

Preprint, November 2018

users to more easily save models for later use in the form of
a computation graph.

In order to achieve this flexibility, Torch Script (at the time
of writing) imposes a number of limitations upon users. Of
particular relevance here are the limitations that all functions
decorated with @script must return a value of type tensor,
a function may only have a single return statement, and that
control flow conditionals are only defined over tensor values.
For example, the following code throws an error that a_num

is a Number, rather than a tensor value:
@torch.jit.script
def foo():

X =3

ret = None

if x > 2: # currently unsupported in Torch Script

ret = tensor.rand(1, 2)
else: ret = tensor.rand(2, 3)
return ret
Furthermore, although Torch Script in its current iteration

does provide the benefit of increased usability for users, as
with Cython, @script’s current method of translation does
not utilize any data independent information. Consider, for
example, the function in Figure 1 (top). This produces a
computation graph expressible as the control flow graph
in Figure 1 (c)). A decision point regarding args.train is
present, despite the fact that this value will be static for the
length of the program. Indeed, such a branching statement
can and should be entirely removed. It should be noted that
Torch Script already implements some dead code elimination
through the use of liveness analysis, but opportunities such

as this are currently overlooked.
Multi-stage programming. Cython, Torch Script, and sim-

ilar systems which perform wholesale translation in this
fashion fail to utilize known data to specialize code gener-
ation and to take advantage of the ability to execute code
during the translation. However, this is a well-studied tech-
nique known as multi-stage programming or staging, and
existing work shows that this technique can be successfully
implemented in higher-level languages [23, 24] in addition
to the translation techniques currently used by systems like
Cython and Torch Script.

2.2 Tracing

Rather than performing the wholesale translation described
above, other systems elect to perform tracing: running opera-
tions and recording them in order to build up a representation
of a program. We examine perhaps the most well-known
machine learning framework which performs tracing in this
fashion: PyTorch [20].

Torch Script: torch.jit.trace. PyTorch [20] performs
tracing in this manner, though in order to provide other
opportunities for optimization, PyTorch has also introduced
a new method, torch.jit.trace (we refer to this as trace for
the remainder of the paper), as part of the Torch Script frame-
work. Like @script, trace allows users to create models to
be used at a later time, rather than, as with most tracing ef-
forts, immediately upon completing the trace. Tracing in this
fashion is typically accomplished via operator overloading,

Preprint, November 2018

thus requiring no additional effort on the part of the user,
though trace does require users to provide sample input
data for any traced functions. Consider the code in Figure 1
(top). Invoking trace on foo yields the control flow graph
shown in Figure 1 (a)). As with all CFGs produced via tracing,
this graph is entirely linear; reusing a model generated in
this fashion with a different value of x may produce invalid
results.

Language Virtualization. Simply overloading operators
is not enough to capture all relevant information: overload-
ing of control flow constructs is also required. Chafi et al.
[7] proposed to “virtualize” such built-in language features
by making them overloadable as virtual methods, much like
operator overloading. In this virtualized form, language con-
structs yield the same high-level interface to which users are
accustomed, but are also able to provide custom behavior.
Such virtualization is not immediately available in Python:
there is no notion of overloading a magic __if__ method as
with many constructs. Instead, we propose extending the
operator overloading found in systems like PyTorch to also
include such virtualization through the use of source code
transformations on the original program, effectively choos-
ing to generate Python (rather than e.g., Torch Script) via
preprocessing. In this generated, intermediate Python, we
aim to produce constructs which will ultimately generate a
computation graph through the use of operator overloading,
based on the type(s) of the operand(s). Performing virtual-
ization in this manner allows for data independent control
flow to be removed in any extracted computation graphs,
while still capturing data dependent control flow, as shown
in Figure 1 (b).

This technique is similar to the notion of “staging based
on types” exhibited by systems such as Lightweight Modular
Staging [25]. Such type-based staging efforts rely heavily
on having a static type system; in a dynamically typed lan-
guage like Python, however, it becomes impossible to know
statically which operations will generate code. Consider, for

example, the following Python function:
def bar(n):

x=0

while x < n: x=x+1

return x

Here, if n can be known during the tracing phase of our

staging (also called “current” stage), the value of x will also
be known: it may be an unmodified Python integer. However,
if n’s value will only become known at a future stage, we
must have some custom type to not only represent n, but we
must also assign x this type. Failing to do so would cause
x = x + 1to evaluate a single time, which would lead to an

incorrect result in nearly all cases.

3 Snek: Python Generating Python

Having determined the necessity for virtualization (with a
desire to ultimately enable staging in Python), we now ex-
amine how such virtualizations may be built. We create a

James M. Decker et al.

|.I def then$1(): [s1llo

ix cond: s = def elsesl(): [s2llo

L P2 _if([[cond]l,, ,then$1,else$1)
def body$1(): [s1 Jlo

while cond: sq = def cond$1(): return [[cond],

lo _while(cond$1, body$1)

def body$1(i): [s2]lo

for i dn si: s = _for([ei]lo, bodysl)

]]v

| def fun(py,..., Pn):

X _ try: [[si]o

(]i]ef fun(py, ..., Pn)i st = except NonLocalReturnValue as r:

v return r.value

[return s] = _return([[s1]lo)

- _ x=_var()

[x=ely ~ _assign(x, [eills)

[[X]]v = _read(x)

(1. =

Figure 3. Virtualization rules in Snek. Note that we use fresh
names for all extracted function names. Rules modifying vari-
ables apply only to those which require lifting (i.e., multiple
assignment). All statements listed may represent multiple
statements; we elide proper Python whitespace rules for
presentation only.

virtualization function [[s], which takes some Python state-
ment s and virtualizes it according to the rules in Figure 3,
taking care to preserve the original semantics (see Section 4).
We devote the remainder of this section to the further expla-
nation of these virtualization rules, paying special attention
to examine those features of Python which require additional
consideration.

3.1 Virtualizing if/else

In virtualizing 1f/else statements, we have two statements
we need to transform. We elect to extract the then and else
branches (e$_1$ and e$_2$, respectively) into standalone func-
tions, though the conditional cond does not require any trans-
formation. The entire if block is then replaced with the ex-
tracted functions, followed by a call to our virtualized _if

function, shown here:

def _if(test, body, orelse):
if test: return body()
else: return orelse()

However, consider the following program:
x = my_int_fun() # returns some integer
cond = my_fun() # returns some bool
if cond: x =x +1
else: x =x -1
Transforming this program via function extraction in the

manner described yields the following:
x = my_int_fun() # returns some integer

cond = my_fun() # returns some bool

def then$l(): x =x -1

def else$l(): x =x + 1

_if(cond, then$l, else$l)

This code is semantically incorrect, and causes the Python
interpreter to exit with an exception that x has been used
without having been initialized (in either then$1 or else$1,
depending on the value of x). This is due to the fact that
in Python, functions have implicit permission to read all
variables accessible in the containing scope, but do not have
permission to write to them. As such, Python views the

bodies of the extracted functions as attempting to define

The 800 Pound Python in the Machine Learning Room

a new variable x, rather than updating the x provided as a
parameter of foo.

To resolve this, we choose to lift variables which behave
as mutable variables (i.e., do not satisfy SSA). Snek contains a
context which tracks lifted variables in order to comply with
proper Python semantics (and generated the appropriate
code). Note that we determine the necessary variables before
performing any transformations. With lifting in place, our

transformed foo is as follows:
X0 = my_int_fun()

x = _var()

_assign(x, x0)

cond = my_fun()

def then$l(): _assign(x, _read(x) - 1)
def else$l(): _assign(x, _read(x) + 1)
_if(cond, then$l, else$l)

We note that this is not specific to virtualization of i f/else
statements; we encounter such a problem with all transla-
tions which extract functions. We thus apply lifting in each
of these cases, though we elide these details when discussing

future transformations.

3.2 Virtualizing while

Similar to if, virtualizing a while loop requires the extrac-
tion of a function containing the body of the loop (body$1).
However, due to the fact that the condition (cond) may be
evaluated multiple times (potentially with a different result),
we must also extract a function returning the result of evalu-
ating the conditional (cond$1). The original while construct
is then replaced with the extracted functions, followed by a

call to the virtualized _while function, shown below:

def _while(test, body):
ret = None
while test() and ret is None: ret = body()
return ret

3.3 Virtualizing for
The virtualization of for follows mechanically, with the only
notable difference being the requirement that we must add a
parameter to the extracted function representing the loop
body. Note that this parameter must have the same name
as the original iteration variable: we accomplish this by ex-
tracting the name at transformation time. We present _for,
as follows: def _for(it, body): for i in it: body(i)

Generalizing this beyond a single iteration variable (i.e.,
implicit object deconstruction) is trivial; we elide these de-
tails for a cleaner presentation.

3.4 Virtualizing Function Definitions

We encounter some difficulty in virtualizing function def-

initions due to our need to propagate return values from

generated functions. As an example, consider the following

function: def foo(x): if x > @: return 1 else: return 0
Transforming the body of foo using only the if/else rules

in Figure 3 results in the following:

def foo(x):
def then$l(): return 1
def else$l(): return 0
_if((x > 0), then$l, else$l)

While the extracted functions contain return statements,
these values will not be returned from foo. Upon first glance,
it seems the solution is to wrap all calls to _if in a return.

Preprint, November 2018

def g(): def g():
x = ‘not affected' x = ‘not affected by h'
def h(): def h():
x = “inner x' nonlocal x
return x x = “inner x'

return (h(), x) return x

return (h(), x)
g() # = (‘inner x', ‘not affected')

g() # = (‘inner x', ‘inner x')
Figure 4. Example of nested function scopes in Python
(left) and the effect of nonlocal (right). Originally appeared

in Politz et al. [21].

However, the astute reader will note that while this is suffi-
cient in the trivial example shown, in the general case this
would lead to functions returning prematurely, as if state-
ments need not contain return statements. Thus, it becomes
necessary to introduce the notion of a nonlocal return value,
which may arise at any point in execution and be handled by
the containing scope. Python contains a construct with the
desired semantics: Exceptions. We introduce the following

class:
class NonLocalReturnValue(Exception):
def __init__(self, value): self.value = value

We then virtualize all return statements, with _return de-
ﬁned as fOHOWSZ def _return(value): raise NonLocalReturnValue(value)

Finally, in order to “catch” the return value, we surround
the function body with a try/except block. Correctly trans-
formed, then, our trivial example is as follows:

def foo(x):
try:
def then$1(): _return(l)
def else$l(): _return(0)

_if(x > 0, then$l, else$l)
except NonLocalReturnValue as r: return r.value

3.5 Introducing @1lms

To provide these transformations to users with minimal mod-
ifications, Snek provides a decorator, @lms, which serves as
the entry point for Snek’s metaprogramming capabilities.
@1ms uses a custom ast.NodeTransformer object to per-
form in-place modifications on the ASTs extracted from user
code. As shown in Section 2, use of a decorator is consistent
with the current state-of-the-art production systems due to
their ease of use and ability to be used at the granularity
of functions. Snek may be configured such that the entirety
of a user’s program is wrapped within a dummy function
and transformed, though this becomes undesirable with the
addition of staging (Section 5).

4 Preservation of Semantics

We wish to have some assurance that these virtualizations are
semantics- preserving for all programs without staged values.
In this section, we present elements of the Python semantics
which pose some difficulty in transforming in the manner
hitherto presented, and show a formal correspondence using
reduction semantics that all transformations in [], have
this desired semantic preservation property.

4.1 Scope

In perhaps the most comprehensive formal PL view of Python
to date, Politz et al. [21] demonstrate a number of features in
Python’s semantics which may appear unintuitive to many

Preprint, November 2018

users. Python contains three types of variables in relation to
scoping rules: global, nonlocal, and local, with the majority
of identifiers falling into the local category. A simplified
view is simply that all scopes have read-only access to all
variables declared in any enclosing scopes. For example, con-
sider the code in Figure 4, left. Here, we can examine an
assignment to x in h, which defines a new variable (also
named x), rather than updating the value of the outermost x.
Using the nonlocal keyword, however, provides h with write
access on x (Figure 4, right).

Snek does not currently allow for variable shadowing
(and, therefore, nonlocal and global declarations), but this is
planned for a future release.

4.2 The Full Monty

A as presented by Politz et al. [21] is an executable small-
step operational semantics written in PLT Redex [11] for
Python®, with an accompanying interpreter implemented
in Racket. A, is also provided in the current implementa-
tion?, which serves as a set of desugaring rules capable of
transforming any Python program into its core syntax.

As discussed in Section 4.1, Python’s scoping rules, in
particular, cause difficulty in performing transformations
on Python code, requiring some form of variable lifting in
order to correctly capture the intended Python semantics.
A, introduces a special value, &, which is used to represent
uninitialized heap locations. All identifier declarations are
lifted to the top of their enclosing scope and given an initial
value of ;9;: if this value is ever read, it signals the use of an
uninitialized identifier. A, provides a desugaring of nonlocal
a global scopes and keywords which serves to fully capture
the scoping semantics of Python.

In order to formally examine our virtualization transfor-
mation []l,,, we implement the rules in Figure 3 in the form
of reduction semantics. We accomplish this by adopting the
reduction semantics presented in A, and formulating our
semantic preservation property in conformance thereof. The
general form of the reduction relation (—) is a pair of triples
(e, €,%) — (e, ¢, %) where e are expressions, ¢ are global en-
vironments, and ¥ are heaps. We denote the multiple step
relation as —*. Snek does not currently allow for variable
shadowing: we thus assume that all variables in the Python
expression e must have fresh names.

We begin by introducing dom, a return set of variable ref-
erences given a heap object: ¥ — P(ref). We also introduce
two auxiliary functions which capture the side effects in-
troduced in [J,. Given an expression, the first function
MV : e — P(ref) returns the existing variable references
modified by our transformation:

MV(x =e)={x}, MV(deff...)={f}, MV()=1{}

The second function NV : e — P(ref) returns the variable

references created by our transformations:

3Python version 3.2.3
4https://github.com/brownplt/lambda-py

James M. Decker et al.

(— ((in-hole E (if eel e 2 e.3)) ¢ %)

((in-hole E
(let (thn-f local = (fun () (no-var) e_2)) in
(let (els-f local = (fun () (no-var) e_3)) in

(app (fun (test thn els)
(no-var)
(if (id test local)
(return (app (id thn local) ()))
(return (app (id els local) ())))
(e_1
(id thn-f local)
(id els-f local))))))) € X)
(where thn-f (gensym 'then))
(where els-f (gensym 'else))
“E-VirtIf")

Figure 5. PLT Redex implementation of []|, applied to a
Python if/else statement in 4.

NV(if...) = {fresh(then), fresh(else)}

NV (while...) = {fresh(body), fresh(cond)}
NV(for...) = {fresh(body)}

NV(Q)=1{)

Definition (=,): given a well-formed Python program e,
e =, [el, iff

1. e diverges and [e]l,, diverges, or

2. e is stuck and [[e],, is stuck, or

3. starting from ¢ and 3, there exists some value v and
heaps such that (e,&,%) =" (v,¢,2" U Zpy) and
([ello,&,2) =* (v,e,2 U Zpy« UXny), dom(2) N
dom(Zpv) = @, dom(Zpv) = dom(Bprv+) = MV(e),
dom(Z)Ndom(Zprv+)Ndom(Zny) = &, and dom(Zny) =
NV (e).

The third case specifies the behavior after transformation:
First, X', the variable references not contained in MV (e) U
NV (e) remain untouched, and our transformation preserves
the effects on that part. Second, the variable references in
MV (e) will be updated to the new heap Xy+. Third, the
variable references in NV (e) exist in the new heap Zyv,
but not in the one before transformation. And lastly, these
heaps are disjoint (i.e., there is no overlap in the respective
domains).

Proposition: =, is a congruence. If e is a well-formed
Python program and e ~, [[e],, then for any evaluation
context E, we have E[e] ~, E[[[e]l,]. As an example of this,
we provide []|, for if statements expressed as a reduction
rule implemented in PLT Redex (Figure 5).

5 Multi-Stage Programming

With the virtualizations described in Section 3 in place, we
now have the ability to overload the functionality of built-
in operations in Python. However, these transformations
alone do not provide any notable benefit to users. As we
have modeled our virtualization rules after those found in
Lightweight Modular Staging [17, 24], we may now turn
our attention to incorporating the multi-stage programming
capabilities offered there.

5.1 Lightweight Modular Staging

Lightweight Modular Staging (LMS) [23, 24] is a multi- stage
programming framework which enables “staging based on
types” LMS provides users with a type annotation Rep which

The 800 Pound Python in the Machine Learning Room

@lms def run(x): (def runX (inl)
def run(x): try: (begin
def power(n, k): def power(n, k): (let x0 (*x inl 1)
if k == 0: return 1 try: (let x1 (* inl x0)
else: def thens$l(): x1))))
return n * _return(1)

def else$l():
_return((n * power(n, (k - 1))))
_if((k == 0), then$l, else$l)
except NonLocalReturnValue as r: return r.value
_return(power(x, 2))
except NonLocalReturnValue as r: return r.value

power(n, k - 1)
return power(x, 2)

Figure 6. Python implementation of power with base staged
and exponent fixed to 2 (left), generated Python IR (middle),
and resultant S-Expr (top-right).

allows the explicit demarcation of objects which will gen-
erate code (i.e., may not be known at compile time). LMS
uses advanced operator overloading to accomplish this code
generation: types marked with the Rep annotation gener-
ate (highly specialized) code at each operation, with values
known at the time of compilation becoming constant values
in the generated code. Notably, the result of any computa-
tion involving a Rep value must always be a Rep value, but
any value known at compile time may be lifted to a Rep as
needed.

5.2 Staging Based on Types..Without Types?

def addOne(x): return x + 1 (begin

a=1; b=Rep('in'); c =2.0 (let x0 (+ in 1)
addOne(a) # — 2 x0))

addone(b) # — in + 1

addOne(c) # — 3.0

Figure 7. Generating code in pure idiomatic Python (left),
and the resultant S-Expression (right).

While LMS has the functionality we wish to use, staging
operations in LMS rely entirely on the use of static type
information. This information is unavailable in a dynamic
language, however.

One could add type annotations in Python: however, this
is at odds with idiomatic Python as currently found in nearly
all implementations of popular machine learning models.
Indeed, this removes the dynamic typing capability which is
core to Python. We require a solution which allows users to
think of staging as one would expect in Python: values which
are known at either compile- or runtime, rather than types.
We introduce a new class Rep with the intent of overloading
operations of this class to generate code in place of normal
computation. In this manner, the original definition of addOne
need not be modified: its behavior (as with every function
in Python) is dependent on the value actually given to the
function. In fact, this function can be used by any type which
can perform addition with an integer, as shown in Figure 7
(left).

While this example is trivial, we provide an implemen-
tation of power in Figure 6 (left). Here, power is contained
within a driver function run, which takes some parameter
x. We perform the transformations described in Section 3,
which results in the virtualized code shown in Figure 6 (cen-
ter). Upon execution of this code, if x is of type Rep, Snek
generates code for this type (shown in Figure 6, right).

Preprint, November 2018

5.3 Generating S-Expressions

In generating S-Expressions, we note that our transformed
Python code satisfies SSA, with mutability expressed through
the use of lifted variables (Section 3.1). Due to our initial
design being heavily influenced by Scala, we elect to have
all expressions in the generated S-Expression have a return
value, with this value being the final value in a let-binding.
To facilitate this, we define a function reflect capable of

generating let-bindings (fresh returns a fresh variable name):

def reflect(s):
global stBlock
id = fresh()
stBlock += [[*let", id, s]|
return id

We can thus define Rep as follows:

class Rep(object):
def __init__(self, n): self.n =n
def __add__(self, m): return reflect(["+",self,m])
.. # other implementations are mechanical, we elide them here

With these in place, we are now able to generate code for sim-
ple programs, using the code in Figure 7 (center), ultimately
generating the S-Expression in Figure 7 (right).

5.4 Staging Virtualized Functions

def _if(test, body, orelse):
if not isinstance(test, Rep):
if test: return body()
else: return orelse()
else:
def capture(f):
try: return (False, reify(f))
except NonLocalReturnValue as e: return (True, e.value)
thenret, thenp = capture(body)
elseret, elsep = capture(orelse)
rval = reflect(["if", test, thenp, elsep])
if thenret & elseret: raise NonLocalReturnValue(rval)
elif (not thenret) & (not elseret): return rval
else:
raise Exception('if/else: must return in all or no branches')

Figure 8. Virtualized function of Python if when adding

staging functionality to generate S-Expression.
We present the modifications which must be made in our

virtualized functions in order to enable staging in Figure 8.
We note that the majority of these are mechanical, with the
addition of a capture function. capture serves to propagate
return statements through staged constructs, as well as to
detect instances of return statements which are disallowed
(i.e., in control flow structures).

5.5 Recursive Functions with Rep Conditionals

@rep_fun def f(ay,...,an):
def f(ag,..., an): _ Sq

Sy — _def_staged(f, p1,...,Pn)
flp1,..., Pn) _call_staged(f, p1,..., Pn)

Figure 9. Transformation rules for staging functions.

Consider the implementation of power in Figure 6 (left).
Due to the deferred execution of Rep values, calling this func-
tion with a Rep value for parameter k will yield an infinite
chain of recursive calls, as then\pyd1 will never yield a
value (see Figure 8, _if), and instead will generate code in-
definitely. As such, all recursive functions which rely on a
staged recursive conditional must also be staged. In order
to provide such functionality, we introduce a new decorator,
@rep_fun, which allows users to mark a function to be staged.

Preprint, November 2018

We present the staging transformations which must be added
to support this in Figure 9, with the virtualized _def_staged
and_call_staged as follows (reflectDef is a slightly modified

reflect as shown in Section 5.3):

def _def_staged(f, *args):
nargs = [fresh() for _ in args]
return reflectDef(f.__name__, nargs, reify(f, *nargs))

def _call_staged(f, *args):
return reflect([f.__name__, xargs])

One interesting difficulty replacing function invocations
with calls to _def_staged and _call_staged is that the con-
text in which the invocation occurs may not allow for a
simple transformation. Consider, for example, the following

recursive implementation of power:
@rep_fun
def power(x, n):
if n == 0: return 1
else:
return x * power(x, n - 1)
A naive replacement strategy yields the following generated
Python code (we elide our other virtualizations for simplic-
ity):
@rep_fun
def power(x, n):
if n == 0: return 1
else:
return x x _def_staged(power,x,n-1)_call_staged(power,x,n-1)
As a current limitation of Snek, we simply require all calls to
staged functions to be captured in a variable, as follows (note

that Python does not perform tail recursion optimization®):
@rep_fun

def power(x, n):
if n == 0: return 1
else:

ret = power(x, n - 1)

return x * ret

We note for completeness that not all back-ends are ca-
pable of reasoning about recurrent functions: in tailoring a
production system to such a back-end, we may detect such in-
compatibilities during virtualization (see Section 5.7). Some
back-end systems (e.g., Lantern [38]) may require return
types for recursive functions: Snek does not currently pro-
vide type inference for Rep types, but is able to generate type
annotations for recursive functions if provided.
5.6 Introducing @stage
With the functionality now in place such that Snek enables
users to perform multi-stage programming, we provide a new
decorator, @stage. @stage allows for users to provide a list
of Rep parameters and call a previously transformed function
(i-e., decorated with @1ms) easily. For example, given the
program in Figure 10 (left), a user may add the the required
staging function with a Rep parameter (Figure 10 (right)).

The __init__ method defined in @stage immediately exe-
cutes the body of the decorated function, generating the ap-
propriate code wrapped within a def statement in the corre-
sponding S-Expression. @stage may be provided with a hook
into the downstream back-end, such that @stage._call__
will trigger the execution of the resultant code. We provide
an example of this in Section 5.8.

Shttp://neopythonic.blogspot.com/2009/04/tail-recursion-
elimination.html

James M. Decker et al.

@lms @stage
def aggregate(x): def stage aggregate(x):
ret =0 return aggregate(x)
while x > 0:
ret = ret + x
x=x-1
return ret

Figure 10. A sum function implemented in Python and dec-
orated with @1ms (left), and the corresponding staging call
(right).

5.7 AutoGraph

def foo(): # ... here

returns an integer def if_true():
x = my_int_fun() with ag__.function_scope('if_true'):
returns a bool x1, = x

cond = my_fun() x1=x1+1
if cond: x =x + 1 return x_1
else: x =x -1
def if_false():
with ag__.function_scope('foo'): with ag__.function_scope('if_false'):
x = my_int_fun() X2, =X,
cond = my_fun() x2=x2-1
cond_1 = cond return x_2
continue on the right... x = ag__.if_stmt(cond_1, if_true, if_false)

Figure 11. Code which requires lifting in Snek (left), and
code generated using AutoGraph (right).

We implement a production system targeting the Tensor-
Flow runtime, which we dub AutoGraph.

Analysis Techniques. AutoGraph contains a number of
analyses aimed at providing more specialized code genera-
tion. These include control flow graph construction between
each transformation, activity analysis to track multiple as-
signments, liveness analysis, type and value analysis, and
more [16]. Of particular interest is type and value analy-
sis: this, combined with some decisions concerning our in-
termediate Python, enables AutoGraph to forgo the lifting
transformations required in Section 3 (see Section 3.1 for im-
plementation details), which simplifies the generated Python
code. Consider the first example given in Section 3.1 (shown
in Figure 11, left). Running this code in AutoGraph yields the
intermediate Python code found in Figure 11, right. Of note
here is the absence of any lifting constructs, while x is now
assigned the result of the if/else statement (i.e., AutoGraph
treats all virtualized operators as expressions). AutoGraph’s
if_stmt function returns values for all variables which are
updated within the extracted functions: this can only be
known through the use of the various analyses presented.

Back-end Code Generation. AutoGraph in its current in-
carnation is designed to be a front-end tool specifically used
for easier interaction with TensorFlow [1]. TensorFlow pro-
grams consist almost entirely of API calls which generate
computation graphs to be interpreted by the highly-optimized
TensorFlow runtime. While TensorFlow is typically consid-
ered to be among the best performing machine learning
back-ends for programs expressible in TensorFlow, the in-
terface of API-centric programming poses difficult for many
new users (especially regarding control flow, which also must
be expressed through provided TensorFlow APIs [16]). How-
ever, with the ability to perform source code transformations
and staging in the manner described in Snek, AutoGraph

The 800 Pound Python in the Machine Learning Room

elects to generate code which will directly build a Tensor-
Flow computation graph, while allowing users to program
in idiomatic Python. Consider the following program which

contains data-dependent control flow:

def square_if positive(x): if x > 0: x = x * x else: x = 0.0
return x

This can be transformed and run using the following:
tf_square_if_positive = autograph.to_graph(square_if_positive)
with tf.Graph().as_default():

g-outl = tf_square_if_positive(tf.constant(9.0))

g_out2 = tf_square_if_positive(tf.constant(-9.0))

with tf.Session() as sess:

print('Graph results: %2.2f, %2.2f\n' \
% (sess.run(g-outl), sess.run(g_out2)))

This produces the expected results of 81.00 and 6.06°.

However, these results are not computed in an eager fash-
ion, though this is a possibility in TensorFlow [31]. Inspect-
ing the generated TensorFlow graph shows the expected
nodes, including all data-dependent control flow nodes.’

As stated in Section 5.5, AutoGraph is designed with the
capability of verifying that input programs can be expressed
in TensorFlow. Programs which contain recurrent functions
are examples which will not pass this compatibility checking
phase due to TensorFlow’s lack of support for expressing
in-graph functions [1, 16]. However, as shown in Snek, this
limitation is solely on the part of TensorFlow: any modifica-
tion which results in TensorFlow’s ability to express in-graph
computations will simply require implementing @rep_fun
as shown in Section 5.6. Due to the benefits AutoGraph
provides, as well as the required coupling with TensorFlow
back-end properties, AutoGraph will be incorporated in the
TensorFlow 2.0 release.

5.8 Integrating with Lightweight Modular Staging

In order to examine Snek’s ability to interface with genera-
tive programming frameworks as downstream back-ends, we
chose to utilize an existing parser from the LMS-Black project
on GitHub [3] which is capable of taking S-Expression and
generating Scala ASTs. With these ASTs in place, we are
able to target the Lantern engine [38], which is implemented
using Lightweight Modular Staging, as a back-end. We con-
figure Lantern to utilize LMS’s generative capabilities to
produce C code, and use an off-the-shelf tool® to link to this
generated code from Snek, thus allowing our @stage deco-
rator (Section 5.6) to directly execute the final result. Given
the program shown in Figure 6 (left), we add the required
staging function decorated with @stage (Figure 12 (left)).

@stage int x1(int x2) {
def stage_x(x): int32_t x3 = x2 * x2;
return run(x) return x3;

Figure 12. Staging using @stage (left), and the generated
C code from Lantern (right).

Ohttps://www.tensorflow.org/guide/autograph
"We elide this graph for presentation.
Shttp://www.swig.org/

Preprint, November 2018

This results in the remainder of the code from Figure 6
being generated, with C code shown in Figure 12 generated
using Lantern (bootstrapping code elided for simplicity). We
can then call this from Python: stage x(10) yields the ex-
pected result of 100.

6 Staging in Snek: The Hard Parts

In this section, we present features of Python which may
impact design decisions when implementing staging in the
style of Lightweight Modular Staging. We also list limitations
and detail how these limitations may be overcome either in
future work, where applicable, or the workarounds currently
(and perhaps permanently) in place within Snek.

6.1 Statements

Due to its functional nature, Scala (and therefore, Light-
weight Modular Staging) contains no notion of statements
(i.e., only expressions), even control flow structures like
if/else. This allows users to use if/else expressions any-
where a normal expression would be used:

def aFunc(x: Int) = { val a =if (x >0) x; a }

Here, aFunc is of type (Int = AnyVal), as a is of type Anyval:
the (implicit) branch in which the conditional does not hold
will, by default, evaluate to the unit literal () to a. As such, the
type of a must the closest common ancestor type to which
both x and () conform: Anyval. However, we can complicate
things further through the use of a return in a single branch:
def aFunc2(x: Int): AnyVal = { val a = if (x > 0) return x else "str"; a }
Again, aFunc? is of type (Int = AnyVal), but a is of type
String, as the return keyword in Scala bypasses the default
evaluation behavior in Scala which causes the enclosing scope
to evaluate to the given value, instead causing the enclosing
function to evaluate to the argument of return (i.e., return in
Scala has side-effects).

In Python, however, if/else blocks are treated as state-
ments, and do not evaluate to a value as in Scala. Indeed,
there is no notion of “returning” a value to the enclosing
scope, as all returns must be explicitly marked via the return
keyword, returning a value from the enclosing function. This
becomes of particular importance when we examine the
staging of control flow structures.

Consider, for example, the following Python code:

def example_if(x): if x >= 0: return x else: print('negative')
If x is not a staged value, this function will either return x or
None; as these values both exist at compile time, we encounter
no problem. However, if we aim to stage this structure, Snek
must know whether to propagate the return beyond the
enclosing function through the use of a NonLocalReturnValue
(Section 3.4), or if the value being returned should simply be
staged (i.e., the result of reifying a function generated via a
Snek transformation). With a function such as example_if, it
seems trivial to simply move the “remainder” of the function
(in this case, the implicit return None which exists after the
if/else) into the else branch. However, one can imagine
such an if/else statement contained within a loop:

Preprint, November 2018

def example_while(x):
while x > 0:
if x is 3: return x
x=x-1
return x
While instances such as this may be resolved using various
forms of analysis (including dataflow analysis or CPS-style
transformations), Snek elects to simply impose the restriction
upon users that return statements may not exist within loops,
and if/else statements must either have a return statement
in every branch, or contain no return statements. We note
that this is consistent with the behavior currently exhibited

by AutoGraph [16].

6.2 External Libraries.

A difficulty arises in dealing with function calls to external
libraries to which we pass Rep values, such as using an ex-
isting PyTorch function call. In these instances, we use an
overload of Rep’s __getattr__ method to generate the library
call.

6.3 Staging while Loops.

@lms def staged_while(n):
def staged_while(n): try:
X =0 X = _var(); _assign(x, 0)
while x < n: x=x+ 1 def cond$1(): return (_read(x) < n)

return x def body$1(): _assign(x, _read(x) + 1)

_while(cond$1, body$1)
_return(_read(x))

except NonLocalReturnValue as r:
return r.value

Figure 13. A while loop in Python before (left) and after
(right) Snek transformations.

Consider the code in Figure 13. If n is a Rep value, this
while loop should be present in the generated code. In order
to determine the return type of cond$l, we must run this
operation. However, running this operation will generate
code if n is a Rep value. As such, Snek generates code for
the conditional twice: once before the loop, and once in the
correct location. Running staged_while with a Rep parameter

thus yields S-Expression as follows:

(def staged_while ...
(let x10 (< x9 inl) ... ; determining whether the loop is staged
(while ... (let x12 (< x11 inl) x12)...))...) ; staging the conditional

6.4 Limitations
Ternary Operators. The use of Python’s ternary operators
are currently disallowed in Snek, due to the fact that [],
would require extracting multiple functions, but ternary op-
erators must be a single expression.
lambda Functions. Using a lambda function in Snek with-
out modification is permitted, and functions as one may
expect: the function executes as normal for unstaged values,
and generates code for Rep values based on the operations
executed. However, due to Python’s restriction that lambda
functions may contain at most one statement, and may not
contain return statements or assignments, the only control
flow structures which may appear in a lambda are the ternary
operators which are currently disallowed in Snek.

Snek also provides the ability to stage lambda functions.
However, simply virtualizing lambda is insufficient, as Python

10

James M. Decker et al.

Table 1. Training 5 Epochs of MNIST Using Figure 14 With
Different Front-End Systems

PyTorch 122.4
Snek + Pytorch, Unstaged 124
Snek + Pytorch, Staged 119.8
Torch Script 128.8
Snek + Torch Script 127.2

does not provide syntax to differentiate between calling a
lambda on a Rep value and staging the lambda itself. As such,
users must explicitly call Snek’s provided stageLambda on
lambdas they wish to appear in the generated code.

Miscellaneous. Snek does not currently stage yield state-
ments, Exceptions, or class definitions, due to the inability
of many back-ends to implement this functionality.

7 Evaluation

class Net(nn.Module):
def forward(self, x):
x1 = x.view([-1, 784])
if self.activateFunc == 1:
x2 = F.relu(self.fcl(x1))
x3 = self.fc2(x2)
x4 = F.log_softmax(x3, dim=1)
return x4
else:
X6 = F.tanh(self.fcl(x1))
x7 = self.fc2(x6)
x8 = F.log_softmax(x7, dim=1)
return x8

def __init__(self):
super(Net, self).__init__()
self.fcl = nn.Linear(784, 50)
self.fc2 = nn.Linear(50, 10)
self.activateFunc = args.activateFunc

Figure 14. Simplified implementation of MNIST in PyTorch,
with optional hyperparameter to specify activation function.

In this section, we assess the performance effects of both
virtualization and staging in Snek and AutoGraph. We aim
to quantify what overhead arises as a result of applying [],
comparing an implementation of the standard MNIST bench-
mark in PyTorch with the same model decorated with @1ms.

We compare these with a model generated via @torch.jit.script,

as well as a model generated from Snek using @stage which
is then reinterpreted as Torch Script code. Finally, we present
an evaluation of AutoGraph on a simple, realistic reinforce-
ment learning training task.

7.1 Generating PyTorch/Torch Script from Snek

To evaluate the performance benefits of staging in Snek, we
implement a parser which generates Python code from S-
Expression. To provide a more direct comparison with Torch
Script, we elect to only generate the model, and leave all
training code unmodified. We note that a number of special-
izations could occur (e.g., unrolling the training loop), but
do not capture them in this evaluation.

7.2 Environment

All Snek experiments were conducted on a single NUMA
machine with 4 sockets, 24 Intel Xeon Platinum 8168 CPUs
per socket, and 750 GB of RAM per socket. We use Python
3.5.2, Scala 2.11.6, gcc 5.4.0, torch 0.4.1, and Ubuntu 16.04. All
AutoGraph experiments were conducted on a single machine
with one 6-core Intel Xeon E5-1650 CPU running at 3.60GHz,
and 64 GB or RAM, using Python 2.7, and Debian 4.18.

The 800 Pound Python in the Machine Learning Room

7.3 MNIST Dataset

MNIST [15] is a standard introductory program for ma-
chine learning programmers to perform image classification.
MNIST consists of 70,000 handwritten digits (60,000 training
examples, 10,000 test examples), which machine learning
models aim to learn to classify correctly (i.e., correctly iden-
tifying the number pictured in an image). For presentation,
we elect to simplify the implementation provided by Py-
Torch °, using a single fully-connected layer (consisting of
two Linear layers). However, we also allow users to define
which activation function they wish to use via a hyperparam-
eter, yielding the implementation !° found in Figure 14. We
use this as the starting point for all of our implementations
tested in Table 1, with Snek and Torch Script annotations
requiring minor modifications.

7.4 MNIST in PyTorch

We train the model from Figure 14 using a naive PyTorch
implementation, Snek without staging (just virtualization),
and Torch Script, as well as the performance of staging in
Snek on both the PyTorch and Torch Script implementations
(utilizing the code generated from the parser described in
Section 7.1). We target the PyTorch runtime as a back-end
in all these experiments, and report the wall clock times (in
seconds) of training for 5 epochs in Table 1 (average of 5
runs). We note that all observable behavior (e.g., training
loss) appears identical between the implementations (except
performance).

Virtualization Overhead. 1t is expected that Snek’s func-
tionality modulo staging will introduce some level of over-
head. This is primarily due to the indirection introduced via
our virtualization functions, including isinstance checks to
determine whether to stage a particular operation. As seen
in Table 1 (a) and (b), we see results as expected. However,
the introduced overhead is limited to only a 1.30% average
performance loss.

Staging Benefits with Snek. Due to the fact that nearly all
operations in the implementation provided in Figure 14 are
data- dependent, Snek is unable to “stage away” much in the
generated code. Indeed, the only operation absent in the gen-
erated code is data-independent conditional. However, while
in our application and in our environment there is little other
specialization which can occur, in general even staging data-
dependent operations may yield significant performance
gains. Of particular note is the situation in which one wishes
to access a tensor’s value when that tensor lives on another
device. By staging the relevant control flow constructs to
target the appropriate device, this cost is mitigated. Indeed,
even the simple removal of the single if/else branching
statement in our implementation yields a 2.10% performance
benefit on average.

“https://github.com/pytorch/examples/blob/master/mnist/main.py
10We elide all training details.

11

Preprint, November 2018

Torch Script Results. The results in Table 1 show a 5.20%
performance degradation on average in the translated Torch
Script model. However, when generating Torch Script from
Snek, we find an average loss of only 3.90%, again due to
Snek’s ability to remove the data-independent control flow
from the generated model. We note that Torch Script [22] is
designed primarily for usability, with the main benefit being
that users may generate graphs to be used at a later point,
and is not yet in a production state.

7.5 Targeting Lantern

In order to evaluate using Snek with a statically-typed back-
end, we elect to target the Lantern engine [38] as a machine
learning back-end. We use the parser provided by Amin
et al. [3] to convert the S-Expression generated by Snek
into a Scala AST upon which Lantern may reason. Due to
the fact that Lantern is built using Lightweight Modular
Staging (LMS) [23], and that Scala is statically typed, all ex-
pressions must be given some type (possibly a Rep[T] type,
for staged expressions). This differentiation alone allows for
some staging opportunities which are impossible in Snek
without further analysis, including no longer always requir-
ing the lifting of variables which may be assigned multiple
values (in LMS, it is impossible to assign a value of type
Rep[T] to an identifier with type T).

With the ability to run the MNIST example shown in Fig-
ure 14 using Lantern as a back-end, we implement the same
program in Lantern for comparison as a baseline. Indeed, the
resultant performance is identical between the two imple-
mentations, as the added stage between Snek and Lantern
enables us yet another stage for optimization (both imple-
mentations require 25.1 seconds on average). We note that
in a production system, this code which interprets the Scala
ASTs and translates the calls to machine learning kernels
present in the front-end system into corresponding calls
available in the back-end system would typically be imple-
mented by a domain expert over the relevant back-end. As
such, it is not intended that end users need to implement (or
even know about) these back-end functions when designing
from a higher level of abstraction.

7.6 AutoGraph

We evaluate the use of AutoGraph in a reinforcement learn-
ing (RL) benchmark. Applications in RL typically involve
non-trivial control flow and book-keeping, as well as dis-
patch to a simulation environment. Specifically, we train a
two-layer policy network on the cart-pole problem, using
AutoGraph, and two equivalent unstaged implementations:
one in TensorFlow Eager and another in PyTorch. The train-
ing procedure requires both data-dependent control flow (e.g.
the episode loop) and data-independent control flow (e.g. it-
erating over the model parameters and gradients). To ensure
identical work loads, we use a fake environment that ensures
the episode length is kept constant. For the purpose of bench-
marking, we disregard any learning and generate random

Preprint, November 2018

Table 2. Two-Layer Policy Network Training On Cart-Pole
With Policy Gradients

Hidden Layer Size ~ 10 100 1000

AutoGraph 0.39 0.40 0.46
TF Eager 0.91 0.93 1.06
PyTorch 0.56 0.58 0.68

observations and actions. We vary the size of the hidden
layer in the network, while keeping the episode length fixed,
providing random rewards. Each training step averages the
gradients scaled by the cumulative discounted rewards over
20 forward plays. We report the wall clock time (in seconds)
it takes to perform 10 steps of learning in Table 2.

While the source code is largely similar between all three
implementations, the AutoGraph implementation shows speed
improvements of 30-57% over the unstaged counterparts.
This is expected due to the significant potential for opti-
mization in the staged environment (the TensorFlow graph),
as well as the elimination of data-independent control flow
from the graph.

8 Related Work

Multi-stage Programming. Multi-stage programming is a
well-studied area. Tools like Terra [9] showcase the ability
to metaprogram to an intermediate language specifically
designed to integrate between user-facing code and highly-
optimized machine code. Of most relevance to Snek is Light-
weight Modular Staging (LMS) [25], upon which Snek is
based. LMS uses a specialized type annotation Rep[T] to al-
low users to mark values as being known at runtime, with
all other values known at compile time, and relies on virtu-
alization of Scala built-ins [17]. A number of existing works
have shown LMS’s ability to provide users with an extremely
high-level interface while generating highly specialized low-
level code [10, 26, 27, 29, 30, 40]. Of most relevance here is
Lantern [38, 39], which uses LMS to provide a differentiable
programming interface. Amin and Rompf [4] also showed
how multi-stage programming can be used to reduce the
overhead inherent in different interpreter boundaries.

Partial Evaluation. Partial evaluation is closely related to
multi-stage programming: both are specialization approaches,
but partial evaluation aims to be entirely automatic in this
specialization [13]. Snek attempts to specialize based on user
intent, with this intent expressed through the use of function
decorators.

Metaprogramming for ML. A number of machine learn-
ing systems also apply source code transformations to Python
in order to provide users an easier-to-use, high-level pro-
gramming interface targeting specialized back-ends. PyTorch’s
Torch Script [22] provides users with @torch.jit.trace and
@torch.jit.script in order to extract computation graphs
from PyTorch code (which is designed to be as close to id-
iomatic Python as possible).

James M. Decker et al.

Other frameworks rely on source code transformations
to accelerate machine learning targeting Python: Myia [35]
converts Python to a differentiable programming language;
Cython [5] translates Python functions into C where possi-
ble; Tangent [36] generates Python functions which calculate
derivatives (i.e., automatic differentiation through source
code transformations); Weld [19] aims to provide a univer-
sal IR for high-performance computing libraries in Python;
Theano [2] constructs a computation graph and performs
symbolic differentiation; and Keras [8] is built on Theano and
provides an open source neural network library for users.
Frameworks like Tensor Comprehensions [37] also exist,
though these operate on mathematical descriptions of com-
putation graphs, and do not directly transform Python in the
manner described here.

The Open Neural Network eXchange (ONNX) [18] also
allows users to extract computation graphs for later usage
through the use of tracing. ONNX provides encoding and
decoding APIs for a number of popular machine learning
front-ends and back-ends, respectively. torch-autograd [34]
and Chainer [33] also perform tracing, though neither focus
primarily on the extraction of computation graphs.

Python Semantics. A, [21] is a formal grammar describing
the core semantics in Python as an executable small-step
operational semantics. The work of A,; presents a number of
features within Python worthy of examination, especially in
works like Snek and AutoGraph which perform source code
transformations. A, is not a formal proof of Python seman-
tics, nor is conformance to A, a guarantee of a correct model
of Python semantics. However, A, exposes an extensive test
suite modeled after the Python unittest suite, including a
number of tests which examine many non-evident features
in Python (e.g., functions declared within class definitions
not having access to variables declared within the enclos-
ing class without the use of self). Other works include an
executable operational semantics for a subset of Python in
Haskell [12], as well as in the K semantic framework [12, 28].

9 Conclusions

In this paper, we presented a virtualization rules which en-
able “staging based on types” in Python. This staging does
not require any type annotations on the part of users, and
in most cases, the code changes required are to annotate the
desired functions with the @lms decorator. Virtualization
in this fashion gives the full expressive power of Python as
well as the efficiency of arbitrary back-ends through the use
of back-end agnostic code generation strategies. These capa-
bilities are provided in a prototype called Snek, as well as a
production system targeting TensorFlow, called AutoGraph.
In future work, we aim to increase the coverage of Python
constructs which Snek may virtualize, as well as providing
greater coverage of popular machine learning libraries and
constructs. We also look to serve additional domains, rather
than the current focus on machine learning libraries.

The 800 Pound Python in the Machine Learning Room

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale

Machine Learning.. In OSDI, Vol. 16. 265-283.

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Anger-

miiller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin

Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Ar-

naud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher

Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier

Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre Luc Car-

rier, Kyunghyun Cho, Jan Chorowski, Paul F. Christiano, Tim Cooij-

mans, Marc-Alexandre C6té, Myriam Coté, Aaron C. Courville, Yann N.

Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins,

Sander Dieleman, Laurent Dinh, Melanie Ducoffe, Vincent Dumoulin,

Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Math-

ieu Germain, Xavier Glorot, Ian J. Goodfellow, Matthew Graham,

Caglar Gilgehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng,

Balazs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail

Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen,

César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas

Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin,

Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert

McGibbon, Roland Memisevic, Bart van Merriénboer, Vincent Michal-

ski, Mehdi Mirza, Alberto Orlandi, Christopher Joseph Pal, Razvan

Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew

Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier,

Francois Savard, Jan Schliiter, John Schulman, Gabriel Schwartz, Tu-

lian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Etienne Simon,

Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski,

Jérémie Tanguay, Gijs van Tulder, Joseph P. Turian, Sebastian Ur-

ban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-

Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li

Yao, Saizheng Zhang, and Ying Zhang. 2016. Theano: A Python

framework for fast computation of mathematical expressions. CoRR

abs/1605.02688 (2016).

[3] Nada Amin et al. 2015. LMS Black aka Purple. https://github.com/
namin/Ims-black.

[4] Nada Amin and Tiark Rompf. 2018. Collapsing towers of interpreters.
PACMPL 2, POPL (2018), 52:1-52:33.

[5] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K.
Smith. 2011. Cython: The Best of Both Worlds. Computing in Science
Engineering 13, 2 (2011), 31 -39. https://doi.org/10.1109/MCSE.2010.
118

[6] R.Bradshaw, S.Behnel, D. S. Seljebotn, G.Ewing, and et al. 2011. The
Cython compiler. http://cython.org. Accessed: 2018-11-05.

[7] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan,
M. Odersky, and K. Olukotun. 2010. Language Virtualization for Het-
erogeneous Parallel Computing (Onward!).

[8] Francois Chollet et al. 2015. Keras. https://github.com/fchollet/keras.

[9] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan

Vitek. 2013. Terra: a multi-stage language for high-performance com-

puting. In PLDI. ACM, 105-116.

Grégory M. Essertel, Ruby Y. Tahboub, James M. Decker, Kevin J.

Brown, Kunle Olukotun, and Tiark Rompf. 2018. Flare: Optimizing

Apache Spark with Native Compilation for Scale-Up Architectures

and Medium-Size Data. In OSDI. USENIX Association, 799-815.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009.

Semantics Engineering with PLT Redex. MIT Press.

Dwight Guth. 2013. A Formal Semantics of Python 3.3. Master’s thesis.

University of Illinois at Urbana-Champaign.

[13] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial

evaluation and automatic program generation. Prentice Hall.

—
oo
—

(11]

[12

—

13

Preprint, November 2018

[14] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba:
A LLVM-based Python JIT Compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM ’15).
ACM, New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/
2833157.2833162
Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit
database. http://yann.lecun.com/exdb/mnist/. (2010). http://yann.
lecun.com/exdb/mnist/
Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson,
Brian K. Lee, Zachary Nado, D. Sculley, Tiark Rompf, and Alexan-
der B. Wiltschko. 2018. AutoGraph: Imperative-style Coding with
Graph-based Performance. CoRR abs/1810.08061 (2018).
Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. 2012.
Scala-Virtualized. In Proceedings of the ACM SIGPLAN 2012 workshop
on Partial evaluation and program manipulation (PEPM).
ONNX Contributors. 2018. Open Neural Network Exchange. https:
//github.com/onnx/onnx. Accessed: 2018-09-24.
Shoumik Palkar, James J. Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte
Schwarzkopf, Holger Pirk, Saman P. Amarasinghe, Samuel Madden,
and Matei Zaharia. 2018. Evaluating End-to-End Optimization for
Data Analytics Applications in Weld. PVLDB 11, 9 (2018), 1002-1015.
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. 2017. Automatic differentiation in pytorch. (2017).
[21] Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner War-
ren, Daniel Patterson, Junsong Li, Anand Chitipothu, and Shriram
Krishnamurthi. 2013. Python: the full monty. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA 2013, part of
SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, Antony L.
Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). ACM, 217-
232. https://doi.org/10.1145/2509136.2509536
PyTorch Contributors. 2018. Torch Script. https://pytorch.org/docs/
master/jit.html. Accessed: 2018-09-24.
Tiark Rompf. 2012. Lightweight Modular Staging and Embedded Com-
pilers: Abstraction Without Regret for High-Level High-Performance
Programming. Ph.D. Dissertation. EPFL. https://doi.org/10.5075/
epfl-thesis-5456
Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging:
a pragmatic approach to runtime code generation and compiled DSLs.
In Conference on Generative programming and component engineering
(GPCE). 127-136. https://doi.org/10.1145/1868294.1868314
Tiark Rompf and Martin Odersky. 2012. Lightweight modular staging:
a pragmatic approach to runtime code generation and compiled DSLs.
Commun. ACM 55, 6 (2012), 121-130.
Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin Brown, Vojin
Jovanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun,
and Martin Odersky. 2013. Optimizing Data Structures in High-Level
Programs (POPL).
Tiark Rompf, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Has-
san Chafi, and Kunle Olukotun. 2014. Surgical precision JIT compilers.
In PLDI ACM, 41-52.
[28] Grigore Rosu and Traian-Florin Serbanuta. 2010. An overview of the
K semantic framework. J. Log. Algebr. Program. 79, 6 (2010), 397-434.
[29] Alen Stojanov, Ivaylo Toskov, Tiark Rompf, and Markus Piischel. 2018.
SIMD intrinsics on managed language runtimes. In CGO. ACM, 2-15.
[30] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to
Architect a Query Compiler, Revisited. In SIGMOD Conference. ACM,
307-322.
[31] TensorFlow Contributors. 2018. Eager Execution.
tensorflow.org/guide/eager. Accessed: 2018-10-31.
[32] TensorFlow Contributors. 2018, howpublished=https://www.
tensorflow.org/swift/. Swift for TensorFlow. Accessed: 2018-10-31.

[15]

[16]

[17]

(18]
[19]

[20]

[22]

[23]

[24]

[25]

[26]

[27]

https://www.

https://github.com/namin/lms-black
https://github.com/namin/lms-black
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
http://cython.org
https://github.com/fchollet/keras
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://doi.org/10.1145/2509136.2509536
https://pytorch.org/docs/master/jit.html
https://pytorch.org/docs/master/jit.html
https://doi.org/10.5075/epfl-thesis-5456
https://doi.org/10.5075/epfl-thesis-5456
https://doi.org/10.1145/1868294.1868314
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/swift/
https://www.tensorflow.org/swift/

Preprint, November 2018

[33] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. 2015.
Chainer: a next-generation open source framework for deep learning.
In NIPS 2015 LearningSys Workshop, Vol. 5.

[34] Torch Autograd Contributors. 2018. torch-autograd. https://github.
com/twitter/torch-autograd. Accessed: 2018-09-25.

[35] Bart van Merrienboer, Olivier Breuleux, Arnaud Bergeron, and Pascal
Lamblin. 2018. Automatic differentiation in ML: Where we are and
where we should be going. In Advances in neural information processing
systems.

[36] Bart van Merriénboer, Dan Moldovan, and Alexander B. Wiltschko.

2018. Tangent: Automatic differentiation using source-code trans-

formation for dynamically typed array programming. CoRR

abs/1809.09569 (2018).

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya

Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew

(37

—

14

[38]

[39]

[40]

James M. Decker et al.

Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. CoRR
abs/1802.04730 (2018).

Fei Wang, James Decker, Xilun Wu, Gregory Essertel, and Tiark Rompf.
2018. Backpropagation with Callbacks: Foundations for Efficient and
Expressive Differentiable Programming. In NIPS.

Fei Wang and Tiark Rompf. 2018. A Language and Compiler View
on Differentiable Programming. ICLR Workshop Track (2018). https:
//openreview.net/forum?id=S)xJtYkPG

Guannan Wei, James M. Decker, and Tiark Rompf. 2018. Refunc-
tionalization of abstract abstract machines: bridging the gap between
abstract abstract machines and abstract definitional interpreters (func-
tional pearl). PACMPL 2, ICFP (2018), 105:1-105:28.

https://github.com/twitter/torch-autograd
https://github.com/twitter/torch-autograd
https://openreview.net/forum?id=SJxJtYkPG
https://openreview.net/forum?id=SJxJtYkPG

	Abstract
	1 Introduction
	2 Translation, Tracing, and the Need for Virtualization
	2.1 AST Translation
	2.2 Tracing

	3 Snek: Python Generating Python
	3.1 Virtualizing if/else
	3.2 Virtualizing while
	3.3 Virtualizing for
	3.4 Virtualizing Function Definitions
	3.5 Introducing @lms

	4 Preservation of Semantics
	4.1 Scope
	4.2 The Full Monty

	5 Multi-Stage Programming
	5.1 Lightweight Modular Staging
	5.2 Staging Based on Types...Without Types?
	5.3 Generating S-Expressions
	5.4 Staging Virtualized Functions
	5.5 Recursive Functions with Rep Conditionals
	5.6 Introducing @stage
	5.7 AutoGraph
	5.8 Integrating with Lightweight Modular Staging

	6 Staging in Snek: The Hard Parts
	6.1 Statements
	6.2 External Libraries.
	6.3 Staging while Loops.
	6.4 Limitations

	7 Evaluation
	7.1 Generating PyTorch/Torch Script from Snek
	7.2 Environment
	7.3 MNIST Dataset
	7.4 MNIST in PyTorch
	7.5 Targeting Lantern
	7.6 AutoGraph

	8 Related Work
	9 Conclusions
	References

