
79

Compiling with Continuations, or without? Whatever.

YOUYOU CONG, Tokyo Institute of Technology, Japan

LEO OSVALD, Purdue University, USA
GRÉGORY ESSERTEL, Purdue University, USA
TIARK ROMPF, Purdue University, USA

What makes a good compiler IR? In the context of functional languages, there has been an extensive debate

on the advantages and disadvantages of continuation-passing-style (CPS). The consensus seems to be that

some form of explicit continuations is necessary to model jumps in a functional style, but that they should

have a 2nd-class status, separate from regular functions, to ensure efficient code generation. Building on

this observation, a recent study from PLDI 2017 proposed a direct-style IR with explicit join points, which

essentially represent local continuations, i.e., functions that do not return or escape. While this IR can work

well in practice, as evidenced by the implementation of join points in the Glasgow Haskell Compiler (GHC),

there still seems to be room for improvement, especially with regard to the way continuations are handled in

the course of optimization.

In this paper, we contribute to the CPS debate by developing a novel IR with the following features. First, we

integrate a control operator that resembles Felleisen’s C, eliminating certain redundant rewrites observed in

the previous study. Second, we treat the non-returning and non-escaping aspects of continuations separately,

allowing efficient compilation of well-behaved functions defined by the user. Third, we define a selective CPS

translation of our IR, which erases control operators while preserving the meaning and typing of programs.

These features enable optimizations in both direct style and full CPS, as well as in any intermediate style with

selectively exposed continuations. Thus, we change the spectrum of available options from “CPS yes or no” to

“as much or as little CPS as you want, when you want it”.

CCS Concepts: •Hardware→Hardware description languages and compilation; • Theory of compu-
tation → Control primitives; Functional constructs.

Additional Key Words and Phrases: control operators, CPS translation, compiler intermediate languages

ACM Reference Format:
Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf. 2019. Compiling with Continuations, or without?

Whatever.. Proc. ACM Program. Lang. 3, ICFP, Article 79 (August 2019), 29 pages. https://doi.org/10.1145/3341643

1 INTRODUCTION
The year 2018 marked the 40th anniversary of Steele’s Rabbit compiler [Steele 1978], the first

compiler for Scheme. Rabbit was influential in demonstrating that a lexically-scoped dialect of LISP

could be compiled efficiently. In particular, it served as an existence proof that the λ-calculus, with
its scoping rules as in the mathematical formalism, is a useful foundation for practical programming

languages. Rabbit also pioneered the use of a continuation-passing style (CPS) language as an

intermediate representation. In a CPS IR, every computation receives a continuation representing

what to do next. This makes both control flow and evaluation order explicit in the IR, allowing us to

produce machine code without much effort. On the other hand, the presence of continuations and

inflexibility of evaluation order can also be an obstacle to optimization. Thus, the birth of Rabbit

marked the beginning of the great “CPS or not CPS” debate.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/8-ART79

https://doi.org/10.1145/3341643

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

https://doi.org/10.1145/3341643
https://doi.org/10.1145/3341643

79:2 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

CPS vs. Direct Style. On the CPS side, Rabbit inspired several compilers for the dialects of Scheme

and SML languages, including Orbit [Kranz et al. 1986a] and the SML/NJ compiler [Appel 1992]. In

these compilers, many optimizations can be described as a sequence of full β and η steps, which

are always sound and often come with shrinking guarantees. While this is a direct benefit obtained

from explicit continuations, they may as well make it harder to recover specific information from

the source program. An instance of this is the uniform representation of ordinary functions and

continuations as jumps. Since the latter are guaranteed not to escape, a compiler must avoid

allocating closure records for them.

To address the downsides of CPS, Flanagan et al. [1993] proposed to replace CPS intermediate

languages with Administrative Normal Form (ANF). ANF makes control flow explicit by let-binding

intermediate results, rather than λ-binding them. Since an ANF-based IR remains in direct style, we

can more easily identify parts of the program that are subject to optimization. Nevertheless, ANF

suffers from two problems that would not arise in CPS. First, ANF is not closed under reduction,

and hence requires an additional re-normalization step for subsequent optimizations. Second, ANF

lacks a facility for modeling jumps, which is crucial for converting recursive functions into loops,

and for representing join points that arise in case-like constructs.

As a remedy, Kennedy [2007] proposed to go back to CPS, but in a very specific way. The

idea is to make a syntactic distinction between regular functions and continuations, and enforce

continuations to behave in a 2nd-class manner. This allows us to compile continuations as jumps,

and use them as a representation of join points. However, if the CPS IR is the only one on which

optimizations are performed, a number of rewrites — such as common subexpression elimination,

code motion, and other high-level rewrites defined by the user — would be much harder than in

direct style. The problem is particularly severe in non-strict languages like Haskell, as their CPS

semantics is highly involved [Okasaki et al. 1994].

To address this problem, Maurer et al. [2017] proposed to go back to direct style, but with a

special form of functions for representing join points. Calls to join points are jumps, and join points

“return” to their scope of declaration. Thus, there is no need to CPS-translate the source program if

the purpose is to perform commuting conversions, contification, etc.; these can all be performed on

their direct-style IR extended with join points.

Is This the End of Story? Maurer et al.’s IR can work well in practice, as evidenced by a corre-

sponding implementation in the Glasgow Haskell Compiler (GHC). But in our view, informed by

an attempt to re-implement the join point construct and corresponding transformation rules in the

MiniScala compiler (which is used for teaching compiler construction at one of our institutions), it

suffers from two kinds of inflexibility. First, the IR does not give the optimizer enough control over

evaluation contexts. This results in a kind of redundancy when performing commuting conversions,

and, viewed from a different angle, breaks the independence among individual rewrite rules. Second,

the IR only supports optimizations in direct style. While Maurer et al. conjectured that the fixed

strategy should not limit optimization opportunities, our experiment shows that a subsequent CPS

pass may have a positive impact on the overall performance of the compiler.

Our Proposal. In this paper, we would like to settle the “CPS or not CPS” debate once and for all

with a decisive “it depends!”

Instead of looking for a universal truth, we believe that we must provide more nuanced recom-

mendations for compiler writers. In that sense, “CPS or not CPS” is asking the wrong question.

Requirements for compilers differ wildly, and in particular, we have to consider whether we are

compiling a low-level vs. high-level language, or, viewed another way, whether we are building a

compiler front-end or back-end. At some point in the pipeline, a form of CPS translation is inevitable

to turn functional code into basic blocks and jumps. This may well be the last step, directly emitting

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:3

assembly code, but many functional language compilers target a low-level backend that operates

on a control flow graph (CFG) based IR on which additional passes of dataflow analysis (such as

register allocation) are run. It is widely appreciated that CFG-based IRs in SSA-form are isomorphic

to CPS [Appel 1998; Kelsey 1995]. Even in the setting of Maurer et al. [2017], who reject CPS as

high-level IR, GHC compiles to C-- or LLVM, effectively performing CPS translation as part of this

lowering. Hence, for a particular optimization, “before or after CPS” seems to be a more appropriate

question to ask, and the more choice an IR provides in this regard, the better job a compiler does.

We argue that the essence of “Compiling without Continuations” [Maurer et al. 2017] is not to

get rid of continuations, but to be selective in which continuations are made explicit in the IR of a

high-level compiler. With this key realization, we can set the whole enterprise on a firmer footing.

There is no need to introduce a separate language construct to model join points; we can simply use

a well-understood facility, namely control operators, to expose some selected continuations. That is,

we want something like call/cc, but restricted to introduce Kennedy-style 2nd-class continuations.

Of course, call/cc is not the only possible control operator, so having identified the need for a
control operator as a building block we can consider some alternatives. Semantically, Maurer-style

join points behave like call/cc (as the paper notes in passing [Maurer et al. 2017]), in that a program

silently continues after the call/cc block even if the continuation is not invoked explicitly. We

show that, a slightly different control operator, closer to the one proposed by Felleisen et al. [1987],

is more appropriate for a compiler IR. In particular, the absence of the silent fall-through property

helps us avoid redundant optimization steps we mentioned earlier.

As is typical in calculi with control operators, our IR has a type- and meaning-preserving CPS

translation, which converts programs into a form suitable for low-level optimizations. This allows

to represent the pre- and post-CPS versions of the same program in a single IR. That is to say, we

can optimize programs with no continuation (direct style), or all continuations (full CPS), or any

number of continuations exposed via the control operator.

What remains to be discussed is how to distinguish continuations from ordinary functions. In

our IR, we separate the non-returning and non-escaping aspects of continuations, and build a type

system that keeps track of each expression’s behavior. The design principle enables modelling

non-escaping values that are not continuations. As a result, we can avoid unnecessary allocation of

user-defined functions, eliminating one main source of inefficiency in functional programming

languages. Furthermore, non-escaping values have many other practical uses, such as representation

of temporary access tokens and formation of co-effect systems [Osvald et al. 2016].

Contributions. To sum up, this paper makes the following contributions:

• We present λ1/2⊥ , a λ-calculus-based IR extended with a control operator (Section 3). In our

IR, we describe a function’s behavior using value / ⊥ types and 1st / 2nd-class status. In

particular, we ensure that continuations are used as jumps, and that they never escape their

defining scope.

• We define a CPS translation of λ1/2⊥ , which targets a restricted subset of the source language

(Section 4). The translation is selective in that it only manipulates parts of the program

where continuations are implicit. We then show that CPS programs follow a stack-based call

discipline: function calls are always accompanied by a shrinking event of the stack.

• We show that our control operator simplifies optimization steps for case-like constructs,

thanks to its flexible semantics (Section 2). We also provide examples illustrating the benefit

of treating non-returning and non-escaping behaviors as independent properties (Section 6).

• We evaluate the proposed approach through two different implementations of our IR (Section

7). By running various benchmarks, we confirm that 2nd-class functions and continuations

lead to faster execution and better memory usage.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:4 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

2 MOTIVATION AND KEY IDEAS
In this section, we show how we use control operators to perform optimizations, highlighting the

similarities and differences with Maurer et al.’s join points.

2.1 Representing Join Points
Let us begin with a simple program that uses a short-circuit boolean operator:

// source expression

if (e1 && e2) then e3 else e4

When we desugar the && operator, we obtain the following program:

// after desugaring

if (if e1 then e2 else false) then e3 else e4

Notice that the desugaring resulted in nested if expressions, which cannot be simplified if e1 does

not statically reduce to a boolean value. On the other hand, if we reorganize the conditional in an

appropriate way, we will obtain an opportunity for simplification:

// commuting conversion

if e1 then (if e2 then e3 else e4)

else (if false then e3 else e4)

The flattening step, called a commuting conversion, moved the outer if to the branches of the inner

if. This exposes a new redex if false ..., allowing us to simplify the program to:

// simplification

if e1 then (if e2 then e3 else e4) else e4

The above program is however not optimal, in that it has duplicated occurrences of the branch e4.

This motivates us to name the branch as follows:

// join points as regular functions

def j4() = e4

if e1 then (if e2 then e3 else j4()) else j4()

The name j4 represents a join point, i.e., the place where the execution of branches joins up. Here,

the join point is defined as an ordinary function, which will be heap-allocated as a closure. The

allocation is however unnecessary, because the function does not escape its defining scope. Then,

how can we avoid such redundant allocation?

Past Solution 1: CPS. To address the above problem, Kennedy [2007] proposed to perform opti-

mizations in a CPS IR, where continuations are 2nd-class citizens that never escape. In the case

of our specific example, we perform optimizations after translating the source program to the

following one:

// continuation-passing style

defcont k(x) = ...

defcont j3() = k(e3)

defcont j4() = k(e4)

defcont k2(x2) = if x2 then j3() else j4()

defcont j2() = k2(e2)

defcont k1(x1) = if x1 then j2() else j4()

defcont j1() = k1(e1)

The program uses a special binder defcont for continuations. This prevents us from capturing them

in a closure or storing them in a mutable reference.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:5

Past Solution 2: Direct Style + Explicit Join Points. While Kennedy solved the issue with allocation,

the solution is still not satisfactory, because CPS makes certain class of optimizations harder to

apply. For instance, in direct style, it is easy to find a nested application like xs.map(f).map(g), and

turn it into a single application xs.map(g◦f). If we translate the original application into CPS, we

would need to carefully analyze the program and spot the place to apply such rewrites.

For this reason, Maurer et al. [2017] suggest that we should work in a direct-style IR, where we

have built-in facilities for representing join points. If we take this approach, our example will be

rewritten to the following program:

// join points as special constructs

defjoin j4() = e4

if e1 then (if e2 then e3 else j4()) else j4()

The defjoin binding form introduces a join point without allocating it on the heap. This construct

has been incorporated into the Glasgow Haskell Compiler (GHC) [Peyton Jones and Marlow 2002],

and proven effective in reducing expensive allocations.

Our Solution: Direct Style + Control Operator. Our approach can be thought of as a combination

of the two solutions discussed so far. The idea is to define join points by means of 2nd-class

continuations, just like Kennedy does, while allowing optimizations in direct style, as in Maurer

et al.’s IR. What makes this possible is a control operator, and a type system that can express

non-returning and non-escaping values. For instance, the example we have been discussing is

represented as follows:

// control operator

C(k =>

defcont j4() = k(e4)

if e1 then (if e2 then k(e3) else j4()) else j4())

Operationally, the C operator captures and clears the surrounding context, and binds the variable

k to a function representing the captured context. Type-wise, we classify k as a 2nd-class value, and

assign it a type of the form T → ⊥, where ⊥ represents the non-returning nature of k. Since the

type system does not allow 2nd-class values to escape, we can safely allocate continuations on the

stack, and by appropriately restricting occurrences of ⊥ in the typing rules, we can guarantee that

continuations are only used as jumps.

As the reader might have imagined, it is the optimizer’s job to handle continuations via the C
operator. In general, the optimizer inserts C whenever a continuation needs to be made explicit. To

decide where to insert C , we can reuse Maurer et al.’s techniques for inserting join point constructs,

including the contification transformation [Kennedy 2007].

2.2 Optimizing and Preserving Join Points
In simple cases like the above example, the C -based approach works almost the same way as

Maurer et al.’s. Now, we look at a more complex example discussed by Maurer et al., where our IR

allows for a simpler and more resilient optimization process. Consider the following (source or

intermediate) program, which already has a join point inserted, but in a nested position
1
:

// source expression (nested pattern match)

(defjoin j(x) = BIG

v match { case A => j(1); case B => j(2); case C => true })

match { case true => false; case false => true }

If we naïvely apply a commuting conversion, the program will be rewritten to the following one:

1
For readers unfamiliar with the Scala syntax, e match { case pi => ei } means matching e against patterns pi.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:6 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

// undersired transformation (join point destroyed)

defjoin j(x) = BIG

v match {

case A => j(1) match { case true => false; case false => true }

case B => j(2) match { case true => false; case false => true }

case C => false }

The resulting program is problematic in two ways. First, j is not tail-called, hence it cannot be

compiled as a join point. Second, the pattern matching constructs in the A and B branches scrutinize

an application of j, which means no further simplification is available for these constructs.

Past Solution. Maurer et al. claim that the source program should be transformed as follows:

// desired transformation (join point preserved)

defjoin j(x) = BIG match { case true => false; case false => true }

v match {

case A => j(1)

case B => j(2)

case C => false }

Here, the join point is preserved, and the match construct inspects BIG, which might be a data

constructor or another match expression. Maurer et al. arrive at this desired program in four steps,

using the rewrite rules listed below:

E[defjoin j (x) = e1; e2] = defjoin j (x) = E[e1]; E[e2] (jfloat)

E[e match{pi → ei }] = e match{pi → E[ei]} (casefloat)

E[j (e)] = j (e) (abort)

First, we use (jfloat) to move the outer match to the right-hand side and the body of defjoin.

defjoin j(x) = BIG match { case true => false; case false => true }

(v match { case A => j(1); case B => j(2); case C => true })

match { case true => false; case false => true }

Next, we use (casefloat) to move the outer match to the branches of the inner match.

defjoin j(x) = BIG match { case true => false; case false => true }

v match { case A => j(1) match { case true => false; case false => true }

case B => j(2) match { case true => false; case false => true }

case C => true match { case true => false; case false => true }}

We then use (abort) to discard the context surrounding jumps.

defjoin j(x) = BIG match { case true => false; case false => true }

v match { case A => j(1)

case B => j(2)

case C => true match { case true => false; case false => true }}

Lastly, we simplify the C branch using the standard reduction rule for pattern matching.

An important observation is that the above process involves redundant steps, namely the copying

and dropping of the outer match. The redundancy stems from the fact that (jfloat) automatically

inserts the enclosing context E into the body e2 of the defjoin construct. While the extra rewrites

do not affect the ultimate result, they make (jfloat) and (abort) more like a combined rule, and in

fact, GHC does eagerly apply the two rules in pair when it encounters a non-tail-called join point.

In our view, GHC is doing the right thing, and the formal development of Maurer et al. allows too

much freedom to decide how to apply rewrite rules.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:7

Our Solution. If we use the C operator, we can achieve the above optimization in fewer steps.

The key is the following rewrite rule, which plays a similar role as (jfloat):

E[C (λj .e)] = C (λk .defcont j (x) = k (E[x]); e) (cfloat)

We start by wrapping the inner match around C , and inserting a call to k into non-jumping subterms:

(C { k => defcont j(x) = k(BIG)

v match { case A => j(1); case B => j(2); case C => k(true) }})

match { case true => false; case false => true }

After applying (cfloat), we are very close to our goal:

C { k =>

defcont j(x) = k(BIG match { case true => false; case false => true })

v match {

case A => j(1)

case B => j(2)

case C => k(true match { case true => false; case false => true })}}

Now, we obtain exactly what we want by simply reducing the C branch.

Notice that our optimization does not have the copy-and-drop steps observed in Maurer et al.’s

treatment. This is because (cfloat) moves the context only to the continuation k , not to the body e .
Since we can now freely choose where to inject a captured context, we no longer need to eagerly

apply the (abort) rule to cancel this action. Thus, having (cfloat) makes the formal development

more coherent with the actual implementation.

2.3 Further Advantages
While we have been focusing on the rewrite steps in the above example, our IR has two more

advantages over Maurer et al.’s proposal. First, in our IR, we can perform optimizations both in

direct style and in CPS. This is due to the succinct CPS semantics of the C operator, and leads to

better performance of the output code. Second, we can model 2nd-class regular functions to further

reduce expensive allocation. This comes from the fact that we keep track of escaping capabilities in

the type system, instead of distinguishing continuations at the level of syntax. More detail on these

benefits can be found in Sections 6 and 8.

3 λ1/2⊥ : THE PROPOSED IR

We now describe λ1/2⊥ , our proposed IR. As already touched upon in the previous section, we design

the IR based on the following ideas:

• To handle continuations in direct style, we integrate a control operator C into our IR, and give

it a semantics that is suited for compiler optimization. This helps us avoid redundant rewrites

observed in Maurer et al.’s IR.

• To account for the non-returning nature of continuations, we incorporate the empty type ⊥, and

assign continuations a type of the form T → ⊥. This allows us to identify jumping terms by

looking at their type.

• To efficiently compile non-escaping functions, including continuations and user-defined ones,

we employ a distinction between 1st- and 2nd-class values. This enables us to avoid unnecessary

allocation of closures.

3.1 Syntax
In Figure 1, we present the syntax of λ1/2⊥ . The term language includes ordinary λ-terms as well as

constants (of base type), pairs, if, let, and the C operator. To explicitly state whether a term can

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:8 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

Syntax
n ::= 1 | 2 Annotations

t ::= c | xn | λxn .t | t t | (t n ,n t) | fst t | snd t Terms

| if t then t else t | let xn =t in t | C t
T ::= B | T n → U | T n ×T n

Value Types

U ::= ⊥ | T Expression Types

Fig. 1. λ1/2⊥ Syntax

Values, Evaluation Contexts, and Single-Frame Contexts
v ::= c | λxn .t | (v n ,n v) Values

E ::= □ | E t | v E | (E n ,n t) | (v n ,n E) | fst E | snd E Evaluation Contexts

| if E then t else t | let xn =E in t | C E
F ::= □ t | v □ | (□ n ,n t) | (v n ,n □) | fst □ | snd □ Single-Frame Contexts

| if □ then t else t | let xn =□ in t | C □

High-level Operational Semantics E[t]⇒ E[t ′]

E[(λx .t) v]⇒ E[t[v/x]]

E[fst (v1 n1
,n2

v2)]⇒ E[v1]

E[snd (v1 n1
,n2

v2)]⇒ E[v2]

E[if true then t2 else t3]⇒ E[t2]

E[if false then t2 else t3]⇒ E[t3]

E[let x =v in t2]⇒ E[t2[v/x]]

E[F [C (λk .t)]]⇒ E[C (λj .t[λx .j F [x]/k])] if F [C (λk .t)] : T

C (λk .k t) ⇒ t if k < FV (t)

Fig. 2. λ1/2⊥ High-level Operational Semantics

escape or not, we annotate certain language constructs with their class information: for instance, x1

is a 1st-class variable, and (v1 2,2v2) is a pair consisting of two 2nd-class values. These annotations

are either given by the programmer (if the source language has support for value classification), or

inserted by the compiler (via e.g. contification). Note that, when a let construct binds a 2nd-class

variable, it serves as the defcont keyword from the previous section.

The type language is designed to express the returning and non-returning behavior of programs.

Observe that we define value types T (which consist of base types, arrow types, and pair types)

separately from expression typesU (which include ⊥). We use this distinction to constrain occur-

rences of jumps in programs. For instance, a function may have jumping subterms in its body,

since the co-domain of a function type can be the ⊥ type. In contrast, a pair may only be built with

non-jumping terms, as both components of a pair type are value types.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:9

3.2 Operational Semantics
The λ1/2⊥ language has a left-to-right, call-by-value semantics, as defined in Figure 2. We omit class

annotations in the reduction rules because they do not affect the high-level behavior of programs.

The only interesting rules are those dealing with the C operator. When the argument of C has

reduced to a function λk .t , one of the following reductions can happen. First, if C is surrounded by

a non-empty context E[F []], it “bubbles up” by moving F inside the continuation k . We require F
to have a non-⊥ result type to ensure the well-typedness of the reduct. Second, if C is invoked at

top-level, and its argument has the form λk .k t , the whole construct is replaced by the term t . In
other words, capturing and immediately applying the continuation has no computational effect.

Comparison with Felleisen’s Control Operator. As mentioned earlier, our C operator is inspired by

Felleisen’s control operator (here denoted as C), which has the following reduction rule:

E[C (λk .t)] ⇒ t[λx .A E[x]/k]

where A is an aborting operation defined as λx .C (λk .x). There are two differences between the

ways C and C behave. First, while C captures the whole evaluation context at one time, C captures

one context frame per step. In an untyped language, the former reduction works perfectly, but in a

typed language, it causes a mismatch between the type of the continuation (which targets ⊥) and

that of the whole program (which cannot be ⊥). If we consume the context piece by piece, we will

end up with a program of the form C t , which, as we will see in Section 3.3, must have a value type.

The second difference is that, whereas C inserts an abort operator into the continuation, C does

not. In a typed setting, adding an abort means allowing non-tail calls to continuations. As we saw

in Section 2.2, the (jfloat) rule of Maurer et al. may bring such calls into programs, but our (cfloat)

rule does not, since it gives us full control over where to inject a captured context.

3.3 Typing
In λ1/2⊥ , whether a term is used in the right way depends on its 1st / 2nd-class status. Therefore, to

obtain safety guarantees, we must explicitly handle class information in the type system. Following

Osvald et al. [2016], we use a typing judgment of the form G ⊢ t :n U , which reads: under typing

environment G, term t is of typeU and has a n-class status.
Let us look at the typing rules in Figure 3, focusing our attention to the class information. In

(TVar), we see a premise xm : T ∈ G[≤n]
, demanding the surface annotationm to be smaller than

or equal to the concluding annotation n. This essentially allows us to use a 1st-class variable as a

2nd-class value, which is safe because 2nd-class values are used in a more restricted manner.

Another important rule is (TAbs). We see that the rule requires a 1st-class body t , making it

impossible to return a 2nd-class value by a λ. We also find that the body must be typable under a

restricted environment G[≤n]
, guaranteeing that 1st-class functions do not refer to 2nd-class values

through free variables.

The class distinction is also relevant in the (TCtrl) rule. The premise has a type (T n → ⊥)2 → ⊥,
stating that the continuation captured by C must be used in a 2nd-class manner. This ensures

efficient compilation of continuations.

We next shift our attention to types. As mentioned earlier, we use the⊥ type to express whether a

function returns or not. In (TCtrl), we have two occurrences of the ⊥ type: the first one represents

the non-returning nature of the captured continuation, while the second one forces the continuation

to be used in the body.

A careful analysis of other rules reveals that the type system forces continuations to be used as

jumps. Observe the judgments in the premises: they have an expression type only if the subject is a

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:10 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

Type Environments

G ::= ∅ | G,xn : T

G[≤n] = {xm : T ∈ G | m ≤ n}

Typing Rules G ⊢ t :n U

G ⊢ c :n B (TCst)

xm : T ∈ G[≤n]

G ⊢ xm :
n T

(TVar)

G[≤n],xm : T ⊢ t :1 U

G ⊢ λxm .t :n Tm → U
(TAbs)

G ⊢ t1 :
2 Tm → U G ⊢ t2 :

m T

G ⊢ t1 t2 :
n U

(TApp)

G ⊢ t1 :
n1 T1 G ⊢ t2 :

n2 T2

G ⊢ (t1 n1
,n2

t2) :
max (n1,n2) T n1

1
×T n2

2

(TPair)

G ⊢ t :n T n1

1
×T n2

2

G ⊢ fst t :n1 T1
(TFst)

G ⊢ t :n T n1

1
×T n2

2

G ⊢ snd t :n2 T2
(TSnd)

G ⊢ t1 :
2 bool G ⊢ t2 :

n U G ⊢ t3 :
n U

G ⊢ if t1 then t2 else t3 :n U
(TIf)

G ⊢ t1 :
m T1 G,xm : T1 ⊢ t2 :

n U

G ⊢ let xm =t1 in t2 :
n U

(TLet)

G ⊢ t :2 (T n → ⊥)2 → ⊥

G ⊢ C t :n T
(TCtrl)

Fig. 3. λ1/2⊥ Type System

subterm appearing in a tail position (e.g., the branches of if and the body of let). This rules out

uses of a jumping term as an argument to a function or an element of a pair.

3.4 Optimizations
Lastly, we present optimization rules in Figure 4. These rules can be applied to any matching part

of the program at any time, according to the decision made by the optimizer. The most important

one is the floating rule (cfloat) of the C operator. As noted earlier, the rule only inserts the captured

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:11

General Contexts

C ::= □ | λxn .C | C t | t C | (C n ,n t) | (t n ,n C) | fst C | snd C

| if C then t else t | if t then C else t | if t then t else C

| let xn =C in t | let xn =t in C | C C

Optimizations t = t ′

(λxn .t) v = (let xn =v in t) (beta)

fst (v1 n1
,n2

v2) = v1 (fst)

snd (v1 n1
,n2

v2) = v2 (snd)

if true then t2 else t3 = t2 (iftrue)

if false then t2 else t3 = t3 (iffalse)

(let xn =v in C[xn]) = let xn =v in C[v] (let)

F [C (λk2.t)] = C (λj2.let k2=λxn .j2 F [xn] in t) (cfloat)

if F has an n-class hole, and F [C (λk2.t)] : T

C (λk2.k2 t) = t (celim)

only at top-level and if k < FV (t)

Fig. 4. Optimizations

context frame into the body of the continuation j, and thus helps us avoid redundant rewrites that

would happen in Maurer et al.’s IR.

3.5 Type Safety
Having presented the specifications of our IR, let us discuss its metatheory. One of the properties

we are interested in is type safety with regard to the semantics in Figure 2. Following Wright and

Felleisen [1994], we decompose our goal into two propositions: preservation and progress.

Proposition 3.1 (Preservation). If G ⊢ t :n U and t ⇒∗ t ′, then G ⊢ t ′ :n U .

Proof. The proof is by induction on the derivation of t . We first prove preservation under

single-step reduction, and then extend the result to multiple steps by induction on the length of the

reduction sequence. As usual, we need substitution and inversion lemmas, and in addition to those,

we need a lemma stating that 1st-class values can be judged as 2nd-class.

Lemma 3.2 (Class Conversion). If G ⊢ t :1 U , then G ⊢ t :2 U .

Now we show two sub-cases of the application case.

Case 1 (β reduction). Suppose we have the following derivation:

G ⊢ λxm .t :2 Tm → U G ⊢ v :
m T

G ⊢ (λxm .t) v :
n U

(TApp)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:12 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

We must show G ⊢ t[v/xm] :n U . If n = 1, the goal easily follows by the substitution lemma,

because functions must have a 1st-class body. If n = 2, the goal follows by an additional appeal to

Lemma 3.2.

Case 2 (C reduction). Suppose we have the following derivation:

G ⊢ v :
2 Tm

1
→ T2 G ⊢ C (λk2.t) :m T1

G ⊢ v (C (λk2.t)) :n T2
(TApp)

We must show G ⊢ C (λj2.t[λxm .j2 (v xm)/k2]) :n T2. By inversion, we know that G,k2 : Tm
1
→

⊥ ⊢ t :2 ⊥. To derive what we want, j2 must have type T n
2
→ ⊥, and when assuming xm is of type

T1, the function λxm .j2 (v xm) can be given the type Tm
1
→ ⊥, validating the substitution for the

continuation variable
2
. This implies that the post-reduction term has the expected type.

□

Note that the preservation property can be stated for the optimization rules (Figure 4) as well,

because they are essentially a variant of reduction rules that operate on open terms.

Proposition 3.3 (Progress). If ∅ ⊢ t :n U , then either t is a value, or it is a stuck term of the form
C t (where t is not convertible to λk2.k2 t ′), or there is some t ′ such that t ⇒ t ′.

Proof. The proof is again by induction on the derivation. The value cases are trivial. In the

application, projection, if, and C cases, we need a canonical forms lemma, which tells us the shape

of a closed value by looking at its type.

Lemma 3.4 (Canonical Forms). Suppose ∅ ⊢ v : T .
(1) If T = bool, then v = true or v = false.
(2) If T = T n

1
→ U , then v = λxn .t for some xn and t .

(3) If T = T n1

1
×T n2

2
, then v = (v1 n1

,n2
v2) for some v1 and v2.

□

One thing we would like to note here is that, while we do not syntactically enforce the argument

of C to be a continuation-awaiting function λk2.t , the canonical forms lemma guarantees that it

always reduces to the expected form — remember that the argument must have an arrow type.

4 CPS TRANSLATION
Using the C operator, we can fruitfully perform all the direct-style optimizations that are possible

in the join points IR of Maurer et al. [2017]. However, depending on the circumstances, a subsequent

CPS optimization step may help us produce even more efficient code. Therefore, it is ideal to allow

both direct-style and CPS optimizations in the same IR.

In this section, we present a CPS translation of λ1/2⊥ . Thanks to the clean separation between

returning and escaping behaviors, we can guarantee that the result of the translation is as efficient

as Kennedy [2007]’s. Specifically, we define our translation based on the following principles:

• We translate programs in a selective3 manner, by leaving C -captured continuations as is.

• We give continuations a 2nd-class status, by fixing their introduction form to λk2.
2
The argument implicitly assumes that the top-level program is 1st-class. This does not lead to loss of generality, because

the only situation in which a term cannot be judged 1st-class is when it has free variables that are 2nd-class.

3
Our selective translation should not be confused with the selective CPS translations in the continuations literature [Asai

and Uehara 2018; Nielsen et al. 2001; Rompf et al. 2009], which turn effectful terms into CPS and keeps pure terms in direct

style.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:13

Term Translation JG ⊢ t :n T K, JG ⊢ t :n ⊥K′

JG ⊢ c :n BK = λk2.k2 c (CCst)

xm : T ∈ G[≤n]

JG ⊢ xm :
n T K = λk2.k2 xm

(CVar)

JG[≤n],xm : T1 ⊢ t :1 T2K = t ′

JG ⊢ λxm .t :n Tm
1
→ T2K = λk2.k2 (λ(xm m ,2 k

2

1
)2.t ′ k2

1
)

(CAbs1)

JG[≤n],xm : T ⊢ t :1 U K′ = t ′

JG ⊢ λxm .t :n Tm
1
→ T2K = λk2.k2 (λxm .JtK′)

(CAbs2)

JG ⊢ t1 :
2 Tm

1
→ T2K = t ′

1
JG ⊢ t2 :

m T1K = t ′
2

JG ⊢ t1 t2 :
n T2K = λk2.t ′

1
(λv2

1
.t ′
2
(λvm

2
.v2

1
(vm

2
m ,2 (λx

1.k2 x1))))
(CApp)

JG ⊢ t1 :
2 Tm → ⊥K = t ′

1
JG ⊢ t2 :

m T K = t ′
2

JG ⊢ t1 t2 :
n T2K′ = t ′

1
(λv2

1
.t ′
2
(λvm

2
.v2

1
vm
2
))

(DApp)

JG ⊢ t1 :
n1 T1K = t ′

1
JG ⊢ t2 :

n2 T2K = t ′
2

JG ⊢ (t1 n1
,n2

t2) :
max (n1,n2) T n1

1
×T n2

2
K = λk2.t ′

1
(λvn1

1
.t ′
2
(λvn2

2
.k2 (vn1

1
n1
,n2

vn2

2
)))

(CpPir)

JG ⊢ t :n T n1

1
×T n2

2
K = t ′

JG ⊢ fst t :n1 T1K = λk2.t ′ (λvn .let vn1

1
= fst vn in k2 vn1

1
)

(CFst)

JG ⊢ t :n T n1

1
×T n2

2
K = t ′

JG ⊢ snd t :n2 T2K = λk2.t ′ (λvn .let vn2

2
=snd vn in k2 vn2

2
)

(CSnd)

Fig. 5. CPS Translation

4.1 The Translation
In Figures 5 and 6, we define our selective CPS translation. The translation is a source-to-source

mapping; more precisely, its target language is the fragment of λ1/2⊥ without the C operator. As we

translate programs selectively, we use two kinds of translation J K and J K′. The former takes care

of terms having a value type, and generates a CPS term as the result. The latter applies to terms

of type ⊥, and produces a direct-style term. Since the type information is not available from the

syntax, we define these translations on the typing judgment.

Let us walk through individual rules. Constants and variables are translated the same way as in

a non-selective, call-by-value translation. Abstractions are uniformly turned into CPS, but there are

two possible forms of the post-translation body. If the source abstraction is an ordinary function

that returns, the target abstraction requires a function argument xm and a return continuation k2
1
.

If the abstraction is a jumping function that does not return, the target abstraction has a direct-style

body. The two possibilities are present in the type translation J K as well: the CPS counterpart of

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:14 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

Term Translation JG ⊢ t :n T K, JG ⊢ t :n ⊥K′

JG ⊢ t1 :
2 boolK = t ′

1
JG ⊢ t2 :

n T K = t ′
2

JG ⊢ t3 :
n T K = t ′

3

JG ⊢ if t1 then t2 else t3 :n T K = λk2.t ′
1
(λv2

1
.if v2

1
then t ′

2
k2 else t ′

3
k2)

(CIf)

JG ⊢ t1 :
2 boolK = t ′

1
JG ⊢ t2 :

n ⊥K′ = t ′
2

JG ⊢ t3 :
n ⊥K′ = t ′

3

JG ⊢ if t1 then t2 else t3 :n ⊥K′ = t ′
1
(λv2

1
.if v2

1
then t ′

2
else t ′

3
)

(DIf)

JG ⊢ t1 :
m T1K = t ′

1
JG,xm : T1 ⊢ t2 :

n T2K = t ′
2

JG ⊢ let xm =t1 in t2 :
n T2K = λk2.t ′

1
(λvm

1
.let xm =vm

1
in t ′

2
k2)

(CLet)

JG ⊢ t1 :
m T1K = t ′

1
JG,xm : T1 ⊢ t2 :

n T2K′ = t ′
2

JG ⊢ let xm =t1 in t2 :
n T2K′ = t ′

1
(λvm

1
.let xm =vm

1
in t ′

2
)

(DLet)

JG ⊢ t :2 (T n → ⊥)2 → ⊥K = t ′

JG ⊢ C t :n T K = λk2.t ′ (λv2.v2 k2)
(CCtrl)

Type Translation JT K

JBK = B

JTm
1
→ T2K = (JT1Km × (JT2K1 → ⊥)2)2 → ⊥

JTm → ⊥K = JT Km → ⊥
JT n1

1
×T n2

2
K = JT n1

1
K × JT n2

2
K

Fig. 6. CPS Translation (continued)

T n
1
→ T2 has a subcomponent T2

1 → ⊥ representing the return continuation, which is missing in

the CPS counterpart of T n → ⊥.

Similarly to abstraction, we have two rules for translating application. The first is used for

ordinary function calls. The resulting term requires a return continuation k2, and uses it to continue
the execution after the application. The second rule accounts for continuation calls, i.e., jumps.

Since there is no “rest of the work” after jumps, the resulting term does not take in a continuation.

Pairs and projections have one translation per construct, because they cannot inhabit the ⊥ type.

The rules for if and let shares the same pattern with those for application.

Lastly, we have a single rule for the control construct C t . Recall that t is a non-returning

function that demands a continuation. On the right-hand side of the translation, v2
is a function

that requires a continuation as its argument but not a return continuation. By feeding it with the

top-level continuation k2, we obtain the result of the entire program.

Before we move on, let us visit the (CApp) rule again. We see that the return continuation k2 is η-
expanded to λx1.k2 x1. The trick is necessary for guaranteeing the stack discipline of CPS programs.

Since we would like the stack to shrink at every return, we must make sure that application of a

return continuation does not make the stack grow. The growing can be avoided by imposing a

restriction on return continuations: they always accept a 1st-class argument that is allocated on the

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:15

heap. Note that this requirement cannot break typability of the resulting term, since every function

is guaranteed to have a 1st-class body.

Remark. The CPS translation we presented above yields administrative redexes, i.e., applications
that are not present in the source program. We could avoid these redexes by adapting the translation

to a higher-order one, following the recipe of Danvy and Filinski [1992].

4.2 Properties of CPS Translation
Our CPS translation preserves the meaning and typing of programs. In this section, we sketch the

proof of these properties, using the following abbreviation for readability:

JtK = t ′
def

≡ JG ⊢ t :n T K = t ′

JtK′ = t ′
def

≡ JG ⊢ t :n ⊥K′ = t ′

Proposition 4.1 (Correctness). Let = be the least congruence relation containing the reduction
rules in Figure 2 and the η rule (i.e., λxn .t xn ⇒ v if xn < FV (t)). The following propositions hold.

(1) If G ⊢ t :n T and t ⇒∗ t ′, then JtK = Jt ′K.
(2) If G ⊢ t :n ⊥ and t ⇒∗ t ′, then JtK′ = Jt ′K′.

Proof. Similarly to the preservation property from Section 3.5, we first prove correctness with

regard to single-step reduction, by cases on t ⇒ t ′. This requires two lemmas, telling us how to

translate terms involving substitution and plugging operations.

Lemma 4.2 (Commutativity). Let JG ⊢ v :
n T Kv be a translation on values, defined as follows:

JG ⊢ c :n BKv = c (CvCst)

xm : T ∈ G[≤n]

JG ⊢ xm :
n T Kv = xm

(CvVar)

JG[≤n],xm : T1 ⊢ t :1 T2K = t ′

JG ⊢ λxm .t :n Tm
1
→ T2Kv = λ(xm m ,2 k

2

1
)2.JtK k2

1

(CvAbs1)

JG[≤n],xm : T ⊢ t :1 U K′ = t ′

JG ⊢ λxm .t :n Tm
1
→ T2Kv = λxm .JtK′

(CvAbs2)

JG ⊢ v1 :n1 T1Kv = v ′1 JG ⊢ v2 :n2 T2Kv = v ′2
JG ⊢ (v1 n1

,n2
v2) :

max (n1,n2) T n1

1
×T n2

2
Kv = (v ′

1 n1
,n2

v ′
2
)

(CvPair)

(1) If G ⊢ t :n T , then Jt[v/x]K = JuK[JvKv/x].
(2) If G ⊢ t :n ⊥, then Jt[v/x]K′ = JuK′[JvKv/x].

Lemma 4.3 (Compositionality). Let JFK be a translation on context frames, defined as follows:

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:16 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

J□ t2K = λv2

1
.λk2.Jt2K (λvm2 .v

2

1
((vm

2 m ,2 k
2)))

Jv1 □K = λvm
2
.λk2.Jv1Kv (vm

2 m ,2 k
2)

J(□ n1
,n2

t2)K = λvn1

1
.λk2.Jt2K (λvn2

2
.k2 (vn1

1
n1
,n2

vn2

2
))

J(v1 n1
,n2
□)K = λvn2

2
.λk2.k2 (Jv1Kv n1

,n2
vn2

2
)

Jfst □K = λvn .λk2.let vn1

1
= fst vn in k2 vn1

1

Jsnd □K = λvn .λk2.let vn2

2
= snd vn in k2 vn2

2

Jif □ then t2 else t3K = λv2

1
.λk2.if v2

1
then Jt2K k2 else Jt3K k2

Jlet xm =□ in t2K = λxm .λk2.Jt2K k2

JC □K = λv2.λk2.v2 k2

We have JF [t]K = λk2.JtK (λvn .JFK vn k2).

Using these lemmas, we can show that the CPS image of a β / C redex is semantically equivalent

to the CPS image of its reduct.

Case 1 (β reduction (of type T)).

J(λx .t) vK
= λk .(λk .k (λ(x , k1).JtK k1)) (λv1.JvK (λv2.v1 (v2 , λx .k x))) by translation

= λk .(λ(x , k1).JtK k1) (JvKv , λx .k x) by β

= λk .JtK[JvKv/x] (λx .k x) by β

= λk .JtK[JvKv/x] k by η

= JtK[JvKv/x] by η

= Jt[v/x]K by Lemma 4.2

Case 2 (C reduction (non-top level)).

JF [C (λk .t)]K
= λk ′.J(C (λk .t)K (λv .JFK v k ′) Lemma 4.3

= λk ′.(λk ′′.(λk .JtK′) k ′′) (λv .JFK v k ′) by translation and β

= λk ′.(λk .JtK′) (λv .JFK v k ′) by η

= λk ′.(λk .JtK′) (λv .JF [v]K k ′) by translation

= λk ′.JtK′[λv .JF [v]K k ′/k] by β

= λk ′.JtK′[λv .JF [v]K (λv2.k ′ v2)/k] by η

= λk ′.JtK′[λv .Jk ′ F [v]K′/k] by translation

= λk ′.JtK′[Jλv .k ′ F [v]Kv/k] by translation

= λk ′.Jt[λv .k ′ F [v]/k]K′ by Lemma 4.2

= λk ′.(λj .Jt[λv .j F [v]/k]K′) k ′ by β

= λk ′.(λv .v k ′) (λj .Jt[λv .j F [v]/k]K′) by β

= λk ′.Jλj .t[λv .j F [v]/k]K (λv .v k ′) by β

= JC (λj .t[λv .j F [v]/k])K by translation

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:17

Case 3 (C reduction (top-level)).

JC (λk .k t)K
= λk ′.Jλk .k tK (λv .v k ′) by translation

= λk ′.(λv .v k ′) (λk .JtK (λv2.k v2)) by β

= λk ′.JtK (λv2.k ′ v2) by β

= λk ′.JtK k ′ by η

= JtK by η

After proving other cases, we derive the main statement by induction on the reduction steps. □

Proposition 4.4 (Type Preservation).

(1) If G ⊢ t :n T , then JGK ⊢ JtK :n (JT Kn → ⊥)2 → ⊥.
(2) If G ⊢ t :n ⊥, then JGK ⊢ JtK′ :n ⊥.

Proof. By induction on the derivation of t . We show some representative cases.

Case 1 (TApp).

Sub-Case 1 (t1 t2 :
n T2). We must show

JGK ⊢ λk2.Jt1K (λv2

1
.Jt2K (λvm2 .v

2

1
(vm

2 m ,2 (λx
1.k2 x1)))) :n (JT2Kn → ⊥)2 → ⊥

By the induction hypothesis, we have

JGK ⊢ Jt1K :2 (((JT1Km × (JT2K1 → ⊥)2)2 → ⊥)2 → ⊥)2 → ⊥ , and

JGK ⊢ Jt2K :m (JT2Km → ⊥)2 → ⊥

It is not hard to see that the application of v2

1
to the value-continuation pair has type ⊥; remember

that the η expansion on the top-level continuation k2 is type safe. This implies that the CPS-

translated function and argument are passed a correct continuation.

Sub-Case 2 (t1 t2 :
n ⊥). We must show

JGK′ ⊢ Jt1K (λv2

1
.Jt2K (λvm2 .v

2

1
vm
2
)) :n ⊥

By the induction hypothesis, we have

JGK ⊢ Jt1K :2 ((JT1Km → ⊥)2 → ⊥)2 → ⊥ , and JGK ⊢ Jt2K :m (JT1Km → ⊥)2 → ⊥

The goal easily follows by (TAbs) and (TApp).

Case 2 (TCtrl). We must show

JGK ⊢ λk2.JtK (λvn .vn k2) :n (JT Kn → ⊥)2 → ⊥

By the induction hypothesis, we know that

JGK ⊢ JtK :2 (((JT Kn → ⊥)2 → ⊥)2 → ⊥)2 → ⊥

Assuming v2
:
2 (JT Kn → ⊥)2 → ⊥, we can easily see that the application JtK (λvn .vn k2) is

well-typed. This immediately implies the goal.

□

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:18 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

Values

v ::= c | a | (v n ,n v)

Evaluation Contexts

E ::= □ | Arg(t , ρ,E) | Fun(v,E)

| Pair1(t ,n, ρ,E) | Pair2(v,n, ρ,E) | Fst(ρ,E) | Snd(ρ,E)

| If(t , t , ρ,E) | Let(xm , t2, ρ,E)

Stores
ρ ::= ∅ | ρ,xn : v Environments

H ::= ∅ | H ,a :

〈
ρ, i, λxm .t

〉
Heaps

S ::= ∅ | S,a :

〈
ρ, i, λxm .t

〉
Stacks

S [≤a] = {b : _ ∈ S | b ≤ a}

Fig. 7. Values, Evaluation Contexts, and Stores for Low-Level Semantics

4.3 Stack Discipline of CPS Programs
In the previous subsection, we examined the soundness of our CPS translation with regard to the

high-level semantics and typing. Now, we focus our attention to the low-level behavior of CPS

programs, and show that they follow a stack discipline.

In direct-style programs, it is easy to see that calls and returns make the stack grow and shrink,

but in CPS, this matching is harder to spot, because every function application is a tail call. Working

with our IR involves further complications, as we do not syntactically distinguish continuations,

and we have 2nd-class functions taking in 2nd-class arguments.

Fortunately, we can recover the stack discipline by exploiting the following observation: every

time we call a function that accepts a 1st-class argument, we can revert the stack to the one with

which the function was defined. This relies on the fact that 1st-class values can never refer to

2nd-class values, and that every function is tail-called in CPS programs.

To formally analyze the stack behavior of CPS programs, we define a low-level operational

semantics for the post-CPS language. Figure 7 shows the refined notion of values, evaluation

contexts, and stores. In the low-level semantics, a value is either a constant or an address, which

we use to indirectly access closures. These are both stored in the value environment ρ. A closure〈
ρ, i, λxm .t

〉
carries a value environment ρ and a stack pointer i . To avoid unnecessary allocation,

we only store 1st-class closures on the heap, and keep 2nd-class closures on the stack. Note that

heaps and stacks are both ordered, i.e., larger addresses appear later in the binding sequence.

The low-level semantics is defined in the style of an abstract machine, as shown in Figure 8. A

configuration contains a subset of the following elements: a term t , an environment ρ, a heap H , a

stack S , an evaluation context E, and a number n representing the 1st/2nd-class status of t . Among

the transition rules, evals- and evale-rules define how to search for a redex, whereas cont-rules tell
us what to do when we obtain a value. Note that the separation between evals and evale comes

from the syntactic invariant of CPS programs: application, if, and letmay only appear in a tail

position.

Turning the viewpoint to the stack space, there are four rules that are particularly important.

Let us first look at the evale-rules of abstraction. We see that the generated closure keeps the

largest stack address a in the current stack S , helping us remember which 2nd-class references were

available at the function definition time. We next observe the cont-rules dealing with a Fun-context,

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:19

Operational Semantics ⟨t ; ρ; H ; S ; E⟩evals ⇒ v , ⟨t ; ρ; H ; S ; E; n⟩evale ⇒ v

⟨t1 t2; ρ; H ; S ; E⟩evals ⇒ ⟨t1; ρ; H ; S ; Arg(t2, ρ,E); 2⟩evale
⟨if t1 then t2 else t3; ρ; H ; S ; E⟩evals ⇒ ⟨t1; ρ; H ; S ; If(t2, t3, ρ,E); 2⟩evale
⟨let xm =t1 in t2; ρ; H ; S ; E⟩evals ⇒ ⟨t1; ρ; H ; S ; Let(xm , t2, ρ,E); m⟩evale

⟨c; ρ; H ; S ; E; n⟩evale ⇒ ⟨E; c; H ; S ; n⟩cont

⟨xm ; ρ; H ; S ; E; n⟩evale ⇒ ⟨E; v ; H ; S ; n⟩cont

if xm : v ∈ ρ

⟨λxm .t ; ρ; H ; S ; E; 1⟩evale ⇒ ⟨E; aH + 1; (H ,aH + 1 :
〈
ρ,aS , λx

m .t
〉
); S ; 1⟩cont

where aH /aS are the largest addresses in H /S

⟨λxm .t ; ρ; H ; S ; E; 2⟩evale ⇒ ⟨E; aS + 1; H ; (S,aS + 1 :
〈
ρ,aS , λx

m .t
〉
); 2⟩cont

where aS is the largest address in S

⟨(t1 n1
,n2

t2); ρ; H ; S ; E; n⟩evale ⇒ ⟨t1; ρ; H ; S ; Pair1(t2,n2, ρ,E); n1⟩evale
where n =max (n1,n2)

⟨fst t ; ρ; H ; S ; E; n⟩evale ⇒ ⟨t ; ρ; H ; S ; Fst(ρ,E); n⟩evale
⟨snd t ; ρ; H ; S ; E; n⟩evale ⇒ ⟨t ; ρ; H ; S ; Snd(ρ,E); n⟩evale

⟨□; v ; H ; S ; n⟩cont ⇒ v

⟨Arg(t2, ρ,E); a; H ; S ; n⟩cont ⇒ ⟨t2; ρ; H ; S ; Fun(a,E); m⟩evale
if a :

〈
ρ ′,a′, λxm .t

〉
∈ H/S

⟨Fun(a,E); v ; H ; S ; 1⟩cont ⇒ ⟨t ; ρ ′,x1 : v ; H ; S [≤i]; E⟩evals

if a :

〈
ρ ′, i, λx1.t

〉
∈ H/S

⟨Fun(a,E); v ; H ; S ; 2⟩cont ⇒ ⟨t ; ρ ′,x2 : v ; H ; S ; E⟩evals

if a :

〈
ρ ′, i, λx2.t

〉
∈ H/S

⟨Pair1(t2,n2, ρ,E); v1; H ; S ; n1⟩cont ⇒ ⟨t2; ρ; H ; S ; Pair2(v1,n1, ρ,E); n2⟩evale
⟨Pair2(v1,n1, ρ,E); v2; H ; S ; n2⟩cont ⇒ ⟨E; (v1 n1

,n2
v2); H ; S ; max (n1,n2)⟩cont

⟨Fst(ρ,E); (v1 n1
,n2

v2); H ; S ; n⟩cont ⇒ ⟨E; v1; H ; S ; n1⟩cont

⟨Snd(ρ,E); (v1 n1
,n2

v2); H ; S ; n⟩cont ⇒ ⟨E; v2; H ; S ; n2⟩cont

⟨If(t2, t3, ρ,E); true; H ; S ; 2⟩cont ⇒ ⟨t2; ρ; H ; S ; E⟩evals

⟨If(t2, t3, ρ,E); false; H ; S ; 2⟩cont ⇒ ⟨t3; ρ; H ; S ; E⟩evals

⟨Let(xm , t2, ρ,E); v ; H ; S ; m⟩cont ⇒ ⟨t2; ρ,x
m
: v ; H ; S ; E⟩evals

Fig. 8. Low-level Operational Semantics of CPS Programs

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:20 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

⟨C t ; ρ; H ; S ; E; n⟩eval ⇒ ⟨t ; ρ; H ; S ; Ctrl(E,n); 2⟩eval

⟨Fun(a,E); v ; H ; S ; 1⟩cont ⇒ ⟨t ; ρ ′,x1 : v ; H ; S ; E; 1⟩eval

if a :

〈
ρ ′, i, λx1.t

〉
∈ H/S

⟨Ctrl(E[F],n); a; H ; S ; 2⟩cont ⇒ ⟨C (λj2.t); (ρ,k2 : aS + 1); H ;

(S,aS + 1 :
〈
ρ,aS , λx

n .j2 F [xn]
〉
); E; 2⟩

if a :

〈
ρ, i, λk2.t

〉
∈ S

⟨Ctrl(□,n); a; H ; S ; 2⟩cont ⇒ ⟨t ; ρ; H ; S ; □; n⟩eval

if a :

〈
ρ, i, λk2.k2 t

〉
∈ S and k2 < FV (t)

Fig. 9. Low-level Operational Semantics of Direct-Style Programs (excerpt)

which let us evaluate a function’s body with an appropriate stack. When the argument is 1st-class,

we know that it cannot be stored on the stack, nor can it access stack-allocated values through

free variables. This means, the function will never use any pre-existing stack memory beyond its

own defining scope. Therefore, we discard all the closures whose address is larger than i . If the
argument is 2nd-class, on the other hand, we use the current stack to allow arbitrary 2nd-class

references from the argument.

Using this semantics, we can easily check that CPS programs follow a stack discipline. Suppose

we have an application (λx1.x1) true in the source language. The CPS translation will convert the

application into the following term:

λk2
0
.(λk2

1
.k2

1
(λ(x1 1,2 k

2

2
)2.(λk2

3
.k2

3
x1) k2

2
))

(λv2

1
.(λk2

4
.k2

4
true) (λv1

2
.v2

1
(v1

2 1,2 (λy
1.k2

0
y1))))

The translation has generated five continuation variables, which means five continuation closures

will be allocated on the stack when the program is run with an initial continuation k (which serves

as the return continuation of the application). However, at the last step of evaluation, where k is

called with true, we can reset the stack to an empty one, because the stack was empty when k
was defined. It is important to note that this example follows the literal translation rules as given

in Figures 5 and 6, which introduce extraneous administrative redexes. As noted at the end of

Section 4.1, these administrative redexes can be eliminated using standard techniques [Danvy and

Filinski 1992].

As a final remark, since local continuations are also allocated on the stack, a CPS program may

use more stack space compared to its direct-style counterpart. However, the difference must be

a constant factor, because the CPS translation introduces at most one continuation per language

construct. Furthermore, it is possible to remove the extra stack overhead by identifying purely local

continuations (via a syntactic check) and compiling them into direct jumps.

4.4 From CPS Semantics to Direct-Style Semantics
It is straightforward to adjust the low-level semantics to one that accounts for direct-style terms.

First, we merge evals- and evale-rules into a single set of eval-rules, allowing non-tail occurrences

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:21

of application, if, and let constructs. Second, in the β reduction rule with a 1st-class argument, we

do not shrink the stack but keep all the 2nd-class bindings for the rest of the computation. Third,

we add new transition rules for the C operator. We show these changes in Figure 9. Note that we

can expect shrinking events of the stack in this setting, too, although it is not observable from the

transition rules.

4.5 Equivalence of Semantics
We have defined three semantics: a high-level semantics for direct-style terms (Figure 2), a low-level

semantics for direct-style terms (Figure 9), and a low-level semantics for CPS terms (Figure 8). We

would naturally like to show that these semantics are all equivalent, i.e., they always produce the

same result for a given program.

Let us begin by comparing the low-level semantics for direct-style and CPS programs, restricting

ourselves to the C -free fragment. If we ignore the evals / evale-distinction, the two semantics

basically consist of the same set of transition rules. The only difference is in the β rule for functions

receiving a 1st-class argument, which involves stack adjustment in the CPS semantics. This does

not affect the observational behavior however; we may just have more elements in the stack when

using the direct-style semantics.

We next discuss the high-level and low-level semantics for direct-style programs. It is easy to

see that the semantics work the same for conditionals and projections. In the case of β , let, and
C reductions, the high-level semantics immediately applies substitution, whereas the low-level

semantics extends the environment with a new binding. Again, these treatment has the same effect

on the program’s behavior.

5 EXTENSIONS
So far, we have integrated into λ1/2⊥ a minimal set of language features and rewrite rules. To make

the IR more realistic, we must support more advanced computation forms, typing facilities, and

optimization techniques. In this section, we describe some of the interesting extensions.

Data Types and Recursion. Conditionals, which we included in our IR, are the simplest language

construct to which we can apply commuting conversions. If we generalize them to pattern matching

on data types, we must allow join point functions to take constructor arguments as parameters,

instead of uniformly representing them as thunks.

Data types also give rise to the notion of recursion. It is instructive to show what the low-level

semantics of a let rec construct would look like, especially in the case where the recursive function

is 2nd-class:

⟨LetRec(f 2, t ,n, ρ,E); a; H ; S ; 1⟩cont ⇒ ⟨t ; ρ, f
2
: a; H ; (S,a :

〈
(ρ ′, f 2 : a),a, λxm .t ′

〉
); E; n⟩eval

if a :

〈
ρ ′,a − 1, λxm .t ′

〉
∈ S

When evaluating the body t , we bind the address a of f 2 to a closure whose stack pointer is also a.
This is because the function’s body refers to the function itself, which is stored in a.

Control Constructs. While the C operator is useful for optimization purposes, it is not powerful

enough to express other control constructs found in the mainstream languages. For instance, semi-

corountines and generators (such as yield and foreach) require 2nd-class delimited continuations,

which means we need a control delimiter for the C operator. In the case of proper coroutines,

continuations are stored in mutable references, hence we must relax the (TCtrl) rule so that it can

introduce 1st-class continuations.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:22 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

Polymorphism. Shifting our attention to the type system, one important extension would be

supporting parametric polymorphism in the style of System F [Girard et al. 1989]. To enable

reasoning about programs in the presence of type variables, we must make sure that they can

never be instantiated to the ⊥ type. This restriction makes the selective CPS translation and its

type preservation proof easy to scale.

Subtyping. Another type-side extension to look at is subtyping, especially its interaction with 1st

/ 2nd classes. As we showed in Section 3.5, 1st-class values can always be treated as 2nd-class, hence

we can incorporate this conversion into a subtyping relation. It is also possible to allow conversion

from ⊥ to a value type, which, in essence, amounts to adopting the abort operator. However, this

conversion must be explicit at the level of syntax, because otherwise the selective CPS translation

may yield different output for the same expression depending the typing derivation.

Tail-Call Optimization. We can recognize and optimize source-level tail calls even after the CPS

translation, via a simple syntactic analysis. For a given function call site, we need to check if all

2nd-class arguments (including the continuation) are also arguments of the caller. If this is the case,

none of the arguments can have been allocated by the caller; they all must have existed before the

caller stack frame was created. Therefore, we can shrink the stack and allow the callee to overwrite

the caller stack frame. This check is similar to Kennedy [2007], but accounts for the fact that, in our

approach, a tail call may need to pass freshly stack-allocated arguments, in which case we need to

preserve the current stack frame.

6 CASE STUDY
6.1 Control-Based Language Features
Even in a language that does not provide continuations at the surface level, having 2nd-class

continuations in the IR provides tangible benefits in supporting control features such as exceptions,

return statements, and loops with break and continue. In particular, the combination with explicit

2nd-class functions enables some useful programming idioms. Consider the following foreach

function for list traversal:

def foreach(xs: List[A])(@local f: A => Unit): Unit = {

var xs1 = xs; while (xs1 != Nil) { f(xs1.head); xs1 = xs1.tail }

}

Observe that the argument f has an annotation @local, which is a Scala keyword for declaring

2nd-class values. Using foreach, we can build other useful functions such as find:

def find[A](xs: List[A])(@local p: A => Boolean) = {

xs foreach (x => if (p(x)) return Some(x))

return None

}

Invocations of both find and foreach never need to heap-allocate a closure for the argument

functions, as they are guaranteed not to escape. Moreover, we can use an explicit return statement

to exit find non-locally from within the function passed to foreach. This is safe because return is a

2nd-class function. Using return in a 1st-class context where it might escape is prohibited by the

type system. This gain in expressiveness is due to exposing 2nd-class values at the user level, and

is a direct benefit of separating non-returning and non-escaping aspects of continuations.

6.2 Recursive Join Points vs. Non-Local Returns
Let us compare this implementation with an example from Maurer et al. [2017]. Maurer et al.

introduced recursive join points as a means to gain more optimization opportunities. For example,

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:23

in the program below, find is implemented using an auxiliary go function, which can be contified

as a recursive join point:

def find[A](xs: List[A])(p: A => Boolean): Option[A] = {

def go(xs: List[A]): Option[A] = xs match {

case x :: xs => if (p(x)) Some(x) else go(xs)

case Nil => None

}

go(xs)

}

This allows us to compile go into a jump, but more exciting optimizations are possible when find is

used in the following way, as part of another function any:

def any[A](xs: List[A])(p: A => Boolean): Boolean = {

find(xs)(p) match {

case Some(_) => true

case None => false

}

}

When inlining find, the match expression within any can be cancelled by exploiting the join-point

nature of go:

def any[A](xs: List[A])(p: A => Boolean): Boolean = {

def go(xs: List[A]): Boolean = xs match {

case x :: xs => if (p(x)) true else go(xs)

case Nil => false

}

go(xs)

}

In our model, we can do the same, but we are also considerably more flexible. Let us implement any

using our foreach-based find function:

def find[A](xs: List[A])(p: A => Boolean): Option[A] = {

xs foreach (x => if (p(x)) return Some(x))

return None

}

def any[A](xs: List[A])(p: A => Boolean): Boolean = {

find(xs)(p) match {

case Some(_) => true

case None => false

}

}

We first inline find, making the implementation of return explicit using C :

def any[A](xs: List[A])(p: A => Boolean): Boolean = {

(C \ (k => xs foreach (x => if (p(x)) k(Some(x))); k(None))) match {

case Some(_) => true

case None => false

}

}

Then, we contract the C redex by absorbing the match expression into the continuation:

def any[A](xs: List[A])(p: A => Boolean): Boolean = {

C(k => xs foreach (x => if (p) k(true)); k(false))

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:24 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

}

Observe that we do not rely on an exposed structurally-recursive traversal; put differently, there is no

need to inline foreach, or know anything about its implementation. Therefore, our approach works

for any iterable structure (trees, hash maps, etc.) that has a foreachmethod, not just singly-linked

lists.

7 EVALUATION
We implemented our approach in two very different compilers, the LMS runtime code generation

and DSL compiler framework [Rompf and Odersky 2010], and the MiniScala Scala to native compiler

used for teaching compiler construction at Purdue University. These implementations illustrate the

flexibility of our approach and highlight how to adapt to the respective design goals and constraints.

7.1 LMS: Pattern Matching, Regexp and Automata
LMS (Lightweight Modular Staging) [Rompf and Odersky 2010] is a DSL compiler framework,

embedded as a library in Scala. LMS features a graph-based IR. All intermediate results are given a

name, but execution order is flexible up to control dependencies expressed in the graph [Rompf

2012]. User-defined rewrites in direct style are pervasive, and for end-to-end performance of user

programs, such rewrites are even more important than in GHC. Likewise, direct-style optimizations

such as common subexpression elimination and various code motion techniques are implemented

as part of most LMS compiler pipelines. Since LMS emits source code (typically in Scala or C),

performing a global CPS translation would be impractical.

We have extended LMSwith a local control operator, as well as support for 2nd-class continuations

that map to labels and goto statements in C. To use these new facilities, we have also modified a

pre-existing regexp compiler [Rompf 2016; Rompf et al. 2013]. The original version would emit

top-level C functions for each DFA state along with a driver loop (Figure 10, left). The new version

emits local labels and gotos instead (Figure 10, right), leading to an overall 23% speedup on a mix

of regex benchmarks.

7.2 MiniScala
MiniScala is a compiler from a restricted subset of Scala to x86 assembly. The initial implementation

was based on the L3 (Lisp-Like Language) compiler developed by Michel Schinz at EPFL. The inter-

mediate representation is directly modeled after Kennedy’s paper, including 2nd-class continuations

and the overall optimization strategy, but without the union-find-based graph representation. We

have replaced the IR with ours, while being faithful to Kennedy’s design of performing optimiza-

tions after CPS. We have verified that optimization outcomes remain the same. But going beyond

the old IR, we can now model 2nd-class functions that are not continuations, and even make them

accessible at the surface level.

In this experiment, we used 2nd-class functions to replace heap allocations with stack allocations.

We ported a series of benchmarks from the Computer Languages Benchmarks Game
4
and Scala

Native
5
. The former set of benchmarks is compelling as it is used frequently in the literature

[Adams et al. 2014; Gerakios et al. 2014; Kalibera et al. 2014; Morandat et al. 2012; Redondo and

Ortin 2013]. The latter is also interesting because Scala Native shares much of the same goal as

we do: supporting cheap allocation of objects on par with languages such as C and Rust, which

compile to native code.

4
https://benchmarksgame.alioth.debian.org/

5
https://github.com/scala-native/scala-native

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

https://benchmarksgame.alioth.debian.org/
https://github.com/scala-native/scala-native

Compiling with Continuations, or without? Whatever. 79:25

// generated code (old)

DFAState x13 = { x1, FALSE };

DFAState x17 = { x4, FALSE };

DFAState x10 = { x7, FALSE };

DFAState x12 = { x1, TRUE };

DFAState* x1(char x2) {

if (x2 == 'A') return &x17;

else return &x13;

}

DFAState* x7(char x8) {

if (x8 == 'A') return &x10;

else if (x8 == 'B') return &x12;

else return &x13;

}

DFAState* x4(char x5) {

if (x5 == 'A') return &x10;

else return &x13;

}

DFAState* start = &x13;

// driver loop

int match(char *str) {

DFAState* state = start;

while (*str)

state = state->func(*str++);

return state->flag;

}

// generated code (new)

int match(char *str) {

int flag = FALSE;

char x2; // arg for x1

char x8; // arg for x7

char x5; // arg for x4

// start: x1, false

x1: if (!*str) return flag;

x2 = *str++;

if (x2 == 'A') {

flag = FALSE; goto x4;

} else {

flag = FALSE; goto x1

};

x7: ... // elided

x4: if (!*str) return flag;

x5 = *str++;

if (x5 == 'A') {

flag = FALSE; goto x7;

} else {

flag = FALSE; goto x1

};

}

Fig. 10. C code generated by LMS regexp matcher for regexp ’AAB’

We did not change the algorithms from the reference implementation. Nevertheless, we some-

times had to change the code slightly to introduce 2nd-class functions. In each benchmark, we

measured the amount of heap and stack memory consumed by the program, using a medium-sized

input that makes the program run for a few seconds. The results are shown in Table 11. We see an

asymptotically significant improvement in memory usage in the pidigits and list benchmarks.

A particularly interesting fact is that, in the pidigits benchmark, the CPS translation enabled us

to replace all dynamic allocations of big integers by allocation of 2nd-class arrays of integers. In

contrast, the improvement is less remarkable in the bounce benchmark. This is because the code

has variables stored in an array, as well as higher-order functions using those variables, which

cannot be made 2nd-class. For the same reason, the storage benchmark shows no improvement at

all.

8 INSTANTIATION CHOICES AND DISCUSSION
An appealing aspect of our IR is that it leaves many optimization choices open. In this section, we

discuss various possible options and their respective advantages.

Naming Intermediate Results. We can easily change the IR to flatten out expressions and require

all intermediate results to be named as in ANF. Assigning names is, of course, useful for referring

to things. For example, many dataflow analyses rely on identifiers for expressions. In particular,

common subexpression elimination and global value numbering are basically just hash-consing in

a graph-based IR [Click 1995; Ershov 1958]. On the other hand, retaining nested expressions can be

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

79:26 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

benchmark

heap

(B/#)

stack

(B/#)

% stack-

alloc

B
e
n
c
h
m
a
r
k
s

G
a
m
e

fannkuchredux 60588/15129 0 0

fannkuchredux2 0 60588/15129 100

pidigits 30852336/2302070 0 0

pidigits2 500/33 30761576/2279472 99

S
c
a
l
a
N
a
t
i
v
e

bounce 24232/5557 0 0

bounce2 4208/553 20024/5004 82

list 22732/5655 0 0

list2 0 42408/2144 100

storage 139060/8192 0 0

storage2 117220/6827 21844/1336 15

towers 84/6 0 0

towers2 0 84/6 100

Fig. 11. Memory profile for baseline and modified (suffix “2”) benchmark programs. For both heap and stack
memory we show the total allocation amount in bytes (B) and the number of allocations (#).

useful for simplicity. Instruction selection and register assignment can work very well in a setting

where expression nesting defines lifetime.

Naming Control Points. We can also change the IR after CPS to require all continuations to be

named. This is again useful in dataflow analysis, because named local continuations correspond to

basic blocks and continuation arguments correspond to ϕ functions in SSA [Kelsey 1995]. On the

other hand, the ability to use continuations anonymously can be beneficial as well. In particular, if

a function or continuation is used anonymously, we know that it is used only in one place, without

tracking all uses of an identifier in a program.

Direct-Style First, Then CPS. Since our IR supports both direct-style and CPS programs, it can be

used to build either compiler front-ends that feed into an external downstrown compiler (as was

the case with LMS in Section 7.1), or compiler back-ends based on dataflow analysis and low-level

optimizations (as in MiniScala in Section 7.2). In our view, it is beneficial if optimizations can be

done either before or after CPS, or both, in the same base IR.

9 RELATEDWORK
Compiling with Continuations. The idea of using a CPS IR first appeared in the Rabbit com-

piler [Steele 1978], and was later incorporated into the Orbit compiler [Kranz et al. 1986a] with

several refinements for improving memory usage. These early systems already recognized the need

for distinguishing between lambdas representing functions and those representing continuations;

the Orbit retrospective [Kranz et al. 1986b] contains an illuminating historical perspective. CPS

IRs are also adopted into dialects of the SML language [Appel 1992; Kennedy 2007]. In particular,

Kennedy [2007] solved the issue with additional redexes and expensive allocation by employing

two-level λ abstractions and a special binder for continuations.

Compiling without Continuations. Meanwhile, the past decades have also seen various arguments

for non-CPS IRs. Flanagan et al. [1993] showed that the effect of naïve CPS and accompanying

simplification / optimization can be achieved by the ANF translation. As noted earlier, working in a

direct-style IR is convenient for rewriting particular patterns of expressions, because the structure

of the source program remains more or less the same. Also, leaving evaluation order unspecified

is a key benefit when compiling lazy languages like Haskell. By adding join points in the style

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

Compiling with Continuations, or without? Whatever. 79:27

of Maurer et al. [2017], we can further avoid code duplication that would result from careless

treatment of case-like constructs.

Monadic intermediate languages [Benton et al. 1998; Benton 1993] are another popular choice for

compilers. Like ANF, monadic IRs use let constructs to make control flow explicit, but unlike ANF,

they allow nested let constructs, which are flattened via commuting conversions when necessary.

Monadic IRs distinguish between pure values and effectful computations, and this distinction is

used to decide whether it is safe to eliminate a let binding or an exception handler.

Compiling with Some Continuations. In our IR, we use C as a means to selectively expose

continuations. For a similar purpose, the Moby compiler [Reppy 2001] uses a local CPS conversion to
convert non-tail calls into CPS, improving the performance of nested loops. Another related device

can be found in Sequent Core [Downen et al. 2016], an IR based on sequent calculus. Sequent Core

has special binders for abstracting and creating continuations, and interestingly, they work more

like our C operator than Maurer et al.’s join points. Specifically, when there are nested conditionals,

the continuation binder pushes the outer conditional only into the definition of the join point. This

is an advantage of being able to handle certain continuations explicitly.

1st- and 2nd-Class Values. Osvald et al. [2016] re-introduced 2nd-class functions into modern

languages, and showed a number of practical applications such as capabilities and co-effects. They

also formally proved that 2nd-class values follow a strict stack discipline, and conjectured that this

could make them cheaper to implement, although their system, implemented as a compiler plug-in

for Scala, does not provide 2nd-class values at the level of a compiler IR.

10 CONCLUSIONS
Over the past decades, the debate on “CPS or not CPS” has attracted great attention in the program-

ming languages community, exploring various perspectives on compiler design. In this paper, we

claim that the right question to ask is “how much CPS would you like”, and propose an IR in which

one can compile with an arbitrary number of continuations, using a carefully designed control

operator and an optional CPS translation.

With the ability to perform direct-style and CPS optimizations in the same IR, the compiler

writer can make design decisions in a more flexible way, possibly changing those decisions in a

later phase of development. We intend to explore the benefits of this flexibility when combined

with language features and optimizing transformations we did not address in this paper. We also

hope that our proposal will stimulate further advances in the CPS debate.

ACKNOWLEDGMENTS
We gratefully acknowledge the anonymous reviewers for their valuable feedback, which improved

the paper in various ways. This work was supported in part by NSF awards 1553471 and 1564207,

DOE award DE-SC0018050, as well as gifts from Google, Facebook, and VMware.

REFERENCES
Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski, Brett Simmers, Edwin Smith, and Owen

Yamauchi. 2014. The HipHop Virtual Machine. In Proceedings of the 29th ACM International Conference on Object-
Oriented Programming Systems Languages, and Applications (OOPSLA ’14). ACM, New York, NY, USA, 777–790. https:

//doi.org/10.1145/2660193.2660199

Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press.

Andrew W. Appel. 1998. SSA is Functional Programming. SIGPLAN Notices 33, 4 (1998), 17–20.
Kenichi Asai and Chihiro Uehara. 2018. Selective CPS transformation for shift and reset. In Proceedings of the ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation. ACM, 40–52.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

https://doi.org/10.1145/2660193.2660199
https://doi.org/10.1145/2660193.2660199

79:28 Youyou Cong, Leo Osvald, Grégory Essertel, and Tiark Rompf

Nick Benton, Andrew Kennedy, and George Russell. 1998. Compiling Standard ML to Java Bytecodes. In ICFP. ACM,

129–140.

Peter Nicholas Benton. 1993. Strictness Analysis of Lazy Functional Programs. Ph.D. Dissertation. University of Cambridge.

Cliff Click. 1995. Global code motion/global value numbering. ACM Sigplan Notices 30, 6 (1995), 246–257.
Oliver Danvy and Andrzex Filinski. 1992. Representing control: A study of the CPS transformation. Mathematical structures

in computer science 2, 4 (1992), 361–391.
Paul Downen, Luke Maurer, Zena M. Ariola, and Simon Peyton Jones. 2016. Sequent calculus as a compiler intermediate

language. In ICFP. ACM, 74–88.

Andrei P. Ershov. 1958. On programming of arithmetic operations. Commun. ACM 1, 8 (1958), 3–6.

Matthias Felleisen, Daniel P Friedman, Eugene Kohlbecker, and Bruce Duba. 1987. A syntactic theory of sequential control.

Theoretical computer science 52, 3 (1987), 205–237.
Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.

In PLDI. ACM, 237–247.

Prodromos Gerakios, Nikolaos Papaspyrou, and Konstantinos Sagonas. 2014. Static safety guarantees for a low-level

multithreaded language with regions. Science of Computer Programming 80 (2014), 223–263. https://doi.org/10.1016/j.

scico.2013.06.005

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Vol. 7. Cambridge University Press.

Tomas Kalibera, Petr Maj, Floréal Morandat, and Jan Vitek. 2014. A fast abstract syntax tree interpreter for R. In Proceedings
of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE ’14). ACM, New York,

NY, USA, 89–102. https://doi.org/10.1145/2576195.2576205

Richard Kelsey. 1995. A Correspondence between Continuation Passing Style and Static Single Assignment Form. In

Intermediate Representations Workshop. ACM, 13–23.

Andrew Kennedy. 2007. Compiling with continuations, continued. In ICFP. ACM, 177–190.

David A. Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, and James Philbin. 1986a. ORBIT: an optimizing compiler for

scheme. In SIGPLAN Symposium on Compiler Construction. ACM, 219–233.

David A. Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and Norman Adams. 1986b. Orbit: an optimizing

compiler for scheme (with retrospective). In Best of PLDI. ACM, 175–191.

Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. 2017. Compiling without continuations. In PLDI.
ACM, 482–494.

Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. 2012. Evaluating the Design of the R Language: Objects and

Functions for Data Analysis. In ECOOP 2012 — Object-Oriented Programming: 26th European Conference. Proceedings
(Lecture Notes in Computer Science). Springer Berlin Heidelberg, Germany, 104–131.

Lasse R Nielsen et al. 2001. A selective CPS transformation. Electronic Notes in Theoretical Computer Science 45 (2001),
311–331.

Chris Okasaki, Peter Lee, and David Tarditi. 1994. Call-by-need and continuation-passing style. Lisp and Symbolic
Computation 7, 1 (1994), 57–81.

Leo Osvald, Grégory M. Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. 2016. Gentrification gone too far?

affordable 2nd-class values for fun and (co-)effect. In OOPSLA. ACM, 234–251.

Simon L. Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell Compiler inliner. J. Funct. Program. 12, 4&5
(2002), 393–433.

Jose M. Redondo and Francisco Ortin. 2013. Efficient support of dynamic inheritance for class- and prototype-based

languages. Journal of Systems and Software 86, 2 (2013), 278–301. https://doi.org/10.1016/j.jss.2012.08.016

John Reppy. 2001. Local CPS conversion in a direct-style compiler. In Proceedings of the Third ACM SIGPLAN Workshop on
Continuations (CW ’01). 13–22.

Tiark Rompf. 2012. Lightweight Modular Staging and Embedded Compilers: Abstraction Without Regret for High-Level
High-Performance Programming. Ph.D. Dissertation. EPFL. https://doi.org/10.5075/epfl-thesis-5456

Tiark Rompf. 2016. The Essence of Multi-stage Evaluation in LMS. In A List of Successes That Can Change the World (Lecture
Notes in Computer Science), Vol. 9600. Springer, 318–335.

Tiark Rompf, Ingo Maier, and Martin Odersky. 2009. Implementing first-class polymorphic delimited continuations by a

type-directed selective CPS-transform. In ACM Sigplan Notices, Vol. 44. ACM, 317–328.

Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: a pragmatic approach to runtime code generation

and compiled DSLs. In Conference on Generative programming and component engineering (GPCE). 127–136. https:

//doi.org/10.1145/1868294.1868314

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin Brown, Vojin Jovanovic, HyoukJoong Lee, Manohar Jonnalagedda,

Kunle Olukotun, and Martin Odersky. 2013. Optimizing Data Structures in High-Level Programs (POPL).
Guy L. Steele, Jr. 1978. Rabbit: A compiler for Scheme. Technical Report. Massachusetts Institute of Technology.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

https://doi.org/10.1016/j.scico.2013.06.005
https://doi.org/10.1016/j.scico.2013.06.005
https://doi.org/10.1145/2576195.2576205
https://doi.org/10.1016/j.jss.2012.08.016
https://doi.org/10.5075/epfl-thesis-5456
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1868294.1868314

Compiling with Continuations, or without? Whatever. 79:29

Andrew K Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Information and computation 115,

1 (1994), 38–94.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 79. Publication date: August 2019.

	Abstract
	1 Introduction
	2 Motivation and Key Ideas
	2.1 Representing Join Points
	2.2 Optimizing and Preserving Join Points
	2.3 Further Advantages

	3 1/2: The Proposed IR
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Typing
	3.4 Optimizations
	3.5 Type Safety

	4 CPS Translation
	4.1 The Translation
	4.2 Properties of CPS Translation
	4.3 Stack Discipline of CPS Programs
	4.4 From CPS Semantics to Direct-Style Semantics
	4.5 Equivalence of Semantics

	5 Extensions
	6 Case Study
	6.1 Control-Based Language Features
	6.2 Recursive Join Points vs. Non-Local Returns

	7 Evaluation
	7.1 LMS: Pattern Matching, Regexp and Automata
	7.2 MiniScala

	8 Instantiation Choices and Discussion
	9 Related Work
	10 Conclusions
	Acknowledgments
	References

