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Abstract
While type soundness proofs are taught in every graduate PL class,
the gap between realistic languages and what is accessible to for-
mal proofs is large. In the case of Scala, it has been shown that its
formal model, the Dependent Object Types (DOT) calculus, cannot
simultaneously support key metatheoretic properties such as envi-
ronment narrowing and subtyping transitivity, which are usually re-
quired for a type soundness proof. Moreover, Scala and many other
realistic languages lack a general substitution property.

The first contribution of this paper is to demonstrate how type
soundness proofs for advanced, polymorphic, type systems can
be carried out with an operational semantics based on high-level,
definitional interpreters, implemented in Coq. We present the first
mechanized soundness proofs in this style for System F<: and sev-
eral extensions, including mutable references. Our proofs use only
straightforward induction, which is significant, as the combination
of big-step semantics, mutable references, and polymorphism is
commonly believed to require coinductive proof techniques.

The second main contribution of this paper is to show how
DOT-like calculi emerge from straightforward generalizations of
the operational aspects of F<:, exposing a rich design space of
calculi with path-dependent types inbetween System F and DOT,
which we dub the System D Square.

By working directly on the target language, definitional inter-
preters can focus the design space and expose the invariants that
actually matter at runtime. Looking at such runtime invariants is an
exciting new avenue for type system design.
Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features
Keywords Definitional interpreters, type soundness, dependent ob-
ject types, DOT, Scala

1. Introduction
The main contribution of this paper is to demonstrate how type
soundness for advanced, polymorphic, type systems can be proved
with respect to an operational semantics based on high-level, defi-
nitional interpreters, implemented directly in a total functional lan-
guage like Coq. While this has been done before for very simple,
monomorphic, type systems [49, 17], we are the first to demon-
strate that, with some additional machinery, this approach scales to
realistic, polymorphic type systems that include subtyping, abstract
types, types with binders, mutable references, exceptions, and cer-
tain forms of dependent types.

Our motivation is twofold. The first is intellectual: It is com-
monly believed that proofs based on big-step semantics (of which
definitional interpreters are a proper sub-category) are difficult or
unsatisfactory. One criticism is that big-step semantics do not dis-
tinguish errors from nontermination. Thus, if taken as the basis of
a type soundness proof, what is shown is only preservation, but not
progress. Hence, the result is significantly weaker than a compa-
rable small-step proof. Another commonly held belief is that ad-
vanced features such as mutable references require coinduction or
other non-standard proof techniques in big-step.

With this paper, we present convincing evidence that, contrary
to this view, definitional interpreters have no inherent drawbacks to
small-step semantics for deterministic languages: making evalua-
tion functional, instead of relational, and parameterizing over a step
counter to make evaluation total, enables precise distinction be-
tween timeouts, errors, and normal values, leading to strong sound-
ness results. Established techniques like monads [36] can be used to
abstract over these case distinctions and keep the interpreter imple-
mentation elegant [54]. Furthermore, auxiliary invariants such as
store typings can be used in the same way as in small-step proofs
to eliminate the need for non-standard proof techniques, and grad-
ually extend proofs for simple languages with multiple advanced
features, without any disruptive changes to the proof structure.

Our second motivation is pragmatic: While type soundness
proofs are taught in every graduate PL class, the gap between re-
alistic languages and what is accessible to formal proofs is large.
In the case of Scala, it has been shown that its formal model, the
Dependent Object Types (DOT) calculus, cannot simultaneously
support key metatheoretic properties such as environment narrow-
ing and subtyping transitivity, which are usually required for a
type soundness proof. Moreover, Scala and many other realistic
languages lack a general substitution property. Thus, applying the
Wright & Felleisen method [56] requires ingenuity to extend the
language syntax and type system with auxiliary constructs to sup-
port subject reduction. It also requires at least an informal argument
of adequacy, showing that the syntactic theory faithfully models the
intended language semantics.

In the case of Scala, developing a sound formal model that
captures the essence of its type system was an open problem for
more than a decade. Over the years, a handful of talented post-
docs and students tried many variations of syntactic theories, but
ultimately failed to find one they could prove sound. The situa-
tion changed when looking at definitional interpreters. The split
between the static and the runtime world exposed the key invari-
ants that had to be maintained, identified problems with previous
proof attempts that were not apparent in small-step, and finally lead
to the first soundness proof for DOT. Moreover, starting from the
runtime invariants has lead to a simpler and more regular calcu-
lus. The resulting proof is easily translated to small-step, and has
been presented in detail elsewhere. While the resulting syntactic
theory looks pleasant and blindingly obvious in hindsight, nobody
had thought of this particular variant before.



The lesson we draw from this is again two-fold: First, by work-
ing directly on the target language (instead of an augmented ver-
sion) definitional interpreters can constrain the design space in a
good way and expose the invariants that actually matter at runtime.
Second, looking at such runtime invariants is an exciting new av-
enue for type system design. In this paper, we illustrate how DOT-
like calculi emerge as generalizations of the static typing rules to fit
the operational typing aspects of the F<: based system—in some
cases almost like removing artificial restrictions. We expose a rich
design space of calculi with path-dependent types inbetween Sys-
tem F and DOT, which we dub the System D Square. By this, we
put Scala and DOT on a firm theoretical foundation grounded in
existing, well-studied, type systems, alluding to Wadler’s point that
“good languages are discovered, not invented” [55].
We make the following contributions:

• We discuss limitations of the syntactic approach to soundness
and review a proof strategy based on high-level definitional
interpreters (Section 2).
• We demonstrate that this proof strategy scales to advanced

polymorphic type systems, presenting the first soundness proof
for F<: in this style (Section 3).
• We further show that extensions such as mutable references and

exceptions can be added gradually and without much difficulty,
requiring only straightforward induction, and effectively sepa-
rating failures from divergence (Section 4).
• We now take the opposite direction and investigate how the in-

ternal invariants in the F<: proof yield new static type systems.
Enabling lower-bounded quantification (System F<:>) leads to
user-definable subtyping theories. Unifying term and type vari-
ables (System D) leads to path-dependent types (Section 5).
• We discuss how the combination of these two extensions (Sys-

tem D<:>) can be identified as the core of Scala and DOT,
which we have rediscovered from first principles. We thus
put DOT on a firm theoretical grounding, by showing how it
emerges as a generalization of the static typing rules of F<: to
its runtime typing aspects (Section 6).

Our mechanized proofs are available from: popl17.namin.net

2. Definitional Interpreters for Type Soundness
Today, the dominant method for proving soundness of a type sys-
tem is the syntactic approach of Wright and Felleisen [56]. Its
key components are the progress and preservation lemmas with re-
spect to a small-step operational semantics based on term rewriting.
While this syntactic approach has a lot of benefits, as described
in great detail in the original 1994 paper [56], there are also some
drawbacks. An important one is that reduction semantics often pose
a question of adequacy: realistic language implementations do not
proceed by rewriting, so if the aim is to model an existing language,
at least an informal argument needs to be made that the given re-
duction relation faithfully implements the intended semantics. Fur-
thermore, few realistic languages actually enjoy the subject reduc-
tion property. If simple substitution does not hold, the syntactic ap-
proach is more difficult to apply and requires stepping into richer
languages in ways that are often non-obvious. Again, care must be
taken that these richer languages are self-contained and match the
original intention.

To motivate a substitution-free semantics, we present three ex-
amples next where naive substitution does not preserve types:

Example 1: Return statements Consider a simple program in a
language with return statements:
def fun(c) = if (c) return x; y
fun(true)

Taking a straightforward small-step execution strategy, this pro-
gram will reduce to:
→ if (true) return x; y

But now the return has become unbound. We need to augment the
language and reduce to an auxiliary construct like this:
→ scope { if (true) return x; y }

This means that we need to work with a richer language than
we had originally intended, with additional syntax, typing, and
reduction rules like the following:
scope E[ return v ] → v scope v → v

Example 2: Private members As another example, consider an
object-oriented language with access modifiers.
class Foo { private val data = 1; def foo(x) = x * this.data }

Starting with a term
val a = new Foo; a.foo(7) / S

where S denotes a store, small-step reduction steps may lead to:
→ l0.foo(7) / S, (l0 -> Foo(data=1))
→ x * l0.data / S, (l0 -> Foo(data=1))

But now there is a reference to private field data outside the scope
of class Foo.

We need a special rule to ignore access modifiers for ‘runtime’
objects in the store, versus other expresssions that happen to have
type Foo. We still want to disallow a.data if a is a normal variable
reference or some other expression.
Example 3: Method overloading Looking at a realistic language,
many type preservation issues are documented in the context of
Java, which were discussed at length on the Types mailing list [53],
back in the time when Java’s type system was an object of study.

Most of these examples relate to static method overloading,
and to Java’s conditional expressions c ? a : b, which require a
and b to be in a subtype relationship because Java does not have
least upper bounds. It is worth noting that these counterexamples
to preservation are not actual type safety violations.

2.1 Alternative Semantic Models
So what can we do if our object of study does not naturally fit a
rewriting and substitution model of execution? Of course one op-
tion is to make it fit (perhaps with force), but an easier path may be
to pick a different semantic model. Before the syntactic approach,
denotational semantics [48] and Kahn’s natural semantics (or ‘big-
step’ semantics) [30] were the tools of the trade.

Big-step semantics in particular has the benefit of being more
‘high-level’, in the sense of being closer to actual language im-
plementations. Environment-based formulations are as natural as
substitution-based ones, and have the additional advantage of work-
ing with unmodified syntax of the target language. The downside
of big-step semantics for soundness proofs is that failure cases and
nontermination are not easily distinguished. This often requires te-
diously enumerating all possible failure cases, which may cause a
blow-up in the required rules and proof cases. Moreover, in the his-
tory of big-step proofs, advanced language features such as recur-
sive references have required specific proof techniques (e.g. coin-
duction) [51] which made it hard to compose proofs for different
language features. In general, polymorphic type systems pose diffi-
culties for substitution-free semantics, because type variables need
to be related across different contexts.

But the circumstances have changed since 1994. Today, most
formal work is done in proof assistants such as Coq, and no longer
with pencil and paper. This means that we can use software imple-
mentation techniques like monads (which, ironically were devel-
oped in the context of denotational semantics [36]) to handle the
complexity of failure cases [54]. Moreover, using simple but clever
inductive techniques such as step counters we can avoid the need
for coinduction and other complicated techniques in many cases.

popl17.namin.net


In the following, we present our approach to type soundness
proofs with definitional interpreters in the style of Reynolds [44]:
high-level evaluators implemented in a (total) functional language.
As we will see, in a functional system such as Coq or Agda, we can
implement such evaluators quite naturally.

2.2 Simply Typed Lambda Calculus: Siek’s 3 Easy Lemmas
We build our exposition on Siek’s type safety proof for a dialect
of simply typed lambda calculus (STLC) [49], which in turn takes
inspiration from Ernst, Ostermann and Cook’s semantics in their
formalization of virtual classes [23].

The starting point is a fairly standard definitional interpreter
for STLC, shown in Figure 1 together with the STLC syntax and
typing rules. We opt to show the interpreter in actual Coq syntax,
but stick to formal notation for the language definition and typing
rules. The interpreter consists of three functions: one for primitive
operations (which we elide), one for variable lookups, and one main
evaluation function eval, which ties everything together. Instead
of working exclusively on terms, as a reduction semantics would
do, the interpreter maps terms to a separate domain of values v.
Values include primitives, and closures, which pair a term with an
environment.
Notions of Type Soundness What does it mean for a language to
be type safe? We follow Wright and Felleisen [56] in viewing a
static type system as a filter that selects well-typed programs from
a larger universe of untyped programs. In their definition of type
soundness, a partial function evalp defines the semantics of untyped
programs, returning Error if the evaluation encounters a type error,
or any other answer for a well-typed result. We assume here that the
result in this case will be Val v, for some value v. For evaluations
that do not terminate, evalp is undefined.

The simplest soundness property states that well-typed pro-
grams do not go wrong.

Definition 1 (Weak soundness).

∅ ` e : T

evalp e 6= Error

A stronger soundness property states that if the evaluation ter-
minates, the result value must have the same type as the program
expression, assuming that values are classified by types as well.

Definition 2 (Strong soundness).

∅ ` e : T evalp e = r

r = Val v v : T

In our case, assigning types to values is achieved by the rules in
the lower half of Figure 1.
Partiality Fuel To reason about the behavior of our interpreter,
and to implement it in Coq in the first place, we have to get a
handle on potential nontermination, and make the interpreter a total
function. Again we follow Siek [49] by first making all error cases
explicit by wrapping the result of each operation in an option data
type with alternatives Val v and Error. This leaves us with possible
nontermination. We parameterize the interpreter over a step index
or ‘fuel value’ n, which bounds the amount of work the interpreter
is allowed to do. If it runs out of fuel, the interpreter returns Timeout,
otherwise Done r, where r is the option type introduced above.

It is convenient to treat this type of answers as a (layered)
monad and write the interpreter in monadic do notation (as done in
Figure 1). The FUEL operation in the first line desugars to a simple
non-zero check:

match n with
| z⇒TIMEOUT
| S n1⇒...

end

Syntax

T ::= B | T → T
t ::= c | x | λx : T.t | t t
v ::= c | 〈H,λx : T.t〉
r ::= Timeout | Done (Error | Val v)
Γ ::= ∅ | Γ, x : T
H ::= ∅ |H,x : v

Type assignment Γ ` t : T
Γ ` c : B

Γ 3 x : T

Γ ` x : T

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

Γ ` t1 : T1 → T2 , t2 : T1

Γ ` t1 t2 : T2

Consistent environments Γ � H
∅ � ∅

Γ � H v : T

Γ, x : T � H,x : v

Value type assignment v : T
c : B

Γ � H Γ, x : T1 ` t : T2

〈H,λx : T1.t〉 : T1 → T2

Definitional Interpreter
(* Coq data types and auxiliary functions elided *)
Fixpoint eval(n: nat)(env: venv)(t: tm){struct n}:
option (option vl) :=
DO n1⇐ FUEL n; (* totality *)
match t with
| tcst c ⇒DONE VAL (vcst c) (* constant *)
| tvar x ⇒DONE (lookup x env) (* variable *)
| tabs x ey ⇒DONE VAL (vabs env x ey) (* lambda *)
| tapp ef ex ⇒ (* application *)
DO vf⇐ eval n1 env ef;
DO vx⇐ eval n1 env ex;
match vf with
| (vabs env2 x ey)⇒
eval n1 ((x,vx)::env2) ey

| _⇒ERROR
end

end.

Figure 1. STLC: Syntax and Semantics

There are other ways to define monads that encode partiality (e.g.
a coinductively defined partiality monad [17]), but this simple
method has the benefit of enabling easy inductive proofs about
all executions of the interpreter, by performing a simple induction
over n. If a fact is proved for all executions of length n, for all
n, then it must hold for all finite executions. Specifically, infinite
executions are by definition not ‘stuck’.

Proof Structure For the type safety proof, the ‘three easy lemmas’
[49] are as follows. There is one lemma per function of the inter-
preter.

Lemma 1 (Primitives). Well-typed primitive operations are not
stuck and preserve types.

We are omitting primitive operations for simplicity, so we skip
this lemma.



Lemma 2 (Lookup). Well-typed environment lookups are not stuck
and preserve types.

Γ � H lookup x Γ = Some T
lookup x H = Val v v : T

Proof. By structural induction over the environment and case dis-
tinction on whether the lookup succeeds.

Lemma 3 (Eval). For all n, if the interpreter returns a result that
is not a timeout, then the result is a value (i.e. not stuck) and it is
well-typed.

Γ ` e : T Γ � H eval n H e = Done r
r = Val v v : T

Proof. By induction on n, and case analysis on the term e.

It is easy to see that this lemma corresponds to the strong
soundness notion (Definition 2). In fact, we can define a partial
function evalp e to probe eval n ∅ e for all n = 0, 1, 2, ... and return
the first non-timeout result, if one exists. Restricting to the empty
environment then yields exactly Wright and Felleisen’s statement
of strong soundness [56]:

Theorem 1 (Soundness of STLC).

∅ ` e : T evalp e = r

r = Val v v : T

Using classical reasoning we can conclude that either evaluation
diverges (i.e. it times out for all n), or there exists an n for which
the result is well-typed.

3. Type Soundness for System F<:

We now turn our attention to System F<: [13], moving beyond
type systems that have been previously formalized with definitional
interpreters. We pick F<: because it combines a range of interesting
features, because its type soundness is well-studied, in particular
through the POPLmark challenge [10], and because F<: can serve
as a basis for extensions that lead up to formalizations of key Scala
features (see Sections 5 and 6).

The syntax and static typing rules of F<: are defined in Figure 2.
In addition to STLC, we have type abstraction and type application,
and subtyping with upper bounds. The calculus is more expressive
than STLC and more interesting from a formalization perspective,
in particular because it contains type variables. These are bound in
the environment, which means that we need to consider types in
relation to the environment they were defined in.

3.1 Operational Semantics: The Definitional Interpreter
What would be a suitable runtime semantics for passing type ar-
guments to type abstractions? The usual small-step semantics uses
substitution to eliminate type arguments (Figure 3):

(ΛY <: T1.t)[T2] −→ [T2/Y ]t

We could do the same in our definitional interpreter, which we
extend from Figure 1 to add a new case for type application:
(* ... *)

| ttapp ef T⇒
DO vf⇐ eval n1 env ef;
match vf with
| (vtabs env2 x ey)⇒

(* ... first attempt ... *)
eval n1 env2 (substitute ey x T)

| _⇒ERROR end
(* ... *)

Syntax

X ::= Y | Z
T ::= X | > | T → T | ∀Z <: T.TZ

t ::= x | λx : T.t | ΛY <: T.t | t t | t [T ]
Γ ::= ∅ | Γ, x : T | Γ, X <: T

Subtyping Γ ` S <: U

Γ ` S <: >

Γ ` X <: X

Γ 3 X <: U Γ ` U <: T

Γ ` X <: T

Γ ` S2 <: S1 , T1 <: T2

Γ ` (S1 → T1) <: (S2 → T2)

Γ ` S2 <: S1

Γ, Z <: S2 ` TZ
1 <: TZ

2

Γ ` (∀Z <: S1.T
Z
1 ) <: (∀Z <: S2.T

Z
2 )

Γ ` T1 <: T2 Γ ` T2 <: T3

Γ ` T1 <: T3

Type assignment Γ ` t : T

Γ 3 x : T

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx : S.t : S → T

Γ ` t1 : S → T , t2 : T

Γ ` t1 t2 : T

Γ, Y <: S ` t : TY

Γ ` ΛY <: S.t : ∀Z <: S.TZ

Γ ` t1 : ∀Z <: U.TZ , T2 <: U

Γ ` t1[T2] : TT2

Γ ` t : S , S <: T

Γ ` t : T

Figure 2. F<:: syntax and static semantics

Value Syntax
v ::= λx : T.t | ΛY <: T.t

Reduction t → t′

t1 → t′1
t1 t2 → t′1 t2

t2 → t′2
v1 t2 → v1 t2

t1 → t′1
t1[T2] → t′1[T2]

(ΛY <: T1.t1)[T2] → [T2/Y ]t1

(λx : T1.t1) v2 → [v2/x]t1

Figure 3. F<:: small-step semantics (call-by-value)



But then, the interpreter would have to modify program terms at
runtime. This would be odd for an interpreter, which is meant to
be simple, and it would conflict with our goal of a substitution-
free semantics, to circumvent difficulties in formal reasoning due
to substitution in small-step semantics (see Section 2).
Types in Environments A better idea, more consistent with an
environment-passing interpreter, is to put the type argument into
the runtime environment as well:

(* ... second attempt ... *)
eval n1 ((x,vty T)::env2) ey

However, this leads to a problem: the type T may refer to other type
variables that are bound in the current environment at the call site
(env), while evaluation switches to the environment at definition site
(env2) of the type abstraction called. We could potentially resolve
all the references, and substitute their occurrences in the type, but
this will no longer work if types can be recursive. In any case, we
wouldn’t want to do such type resolution and manipulation in the
interpreter, i.e. during evaluation. So instead, we pass the caller
environment along with the type.

(* ... final attempt ... *)
eval n1 ((x,vty env T)::env2) ey

In effect, type arguments 〈H,T 〉 (written vty env T in the code
above) become very similar to function closures, in that they close
over their defining environment. Intuitively, this makes a lot of
sense, and is consistent with the overall workings of our interpreter.
Semantic Equivalence As a reassurance that our definitional in-
terpreter faithfully implements the well-known small-step call-by-
value semantics of F<: (Figure 3), we prove a semantic equivalence
theorem.

We first define a correspondence relation ∼ between closure
values of the interpreter and closed lambda terms and type abstrac-
tions, such that the closure environment is recursively substituted
into the term. This makes the nature of the runtime environment as
delayed substitution explicit. The ∼ relation is then lifted to inter-
preter results r, such that Done (Val v) corresponds to a term value
v, Done Error to any stuck term (irreducible non-value), and Timeout
to any term.

Theorem 2 (Semantic Equivalence). If e→∗ e′, then ∃n.eval n ∅ e ∼
e′, and if eval n ∅ e = r, then ∃e′.e→∗ e′ with r ∼ e′.

Proof. The first direction is by induction over the →∗ derivation,
the second direction is by induction over n.

3.2 Runtime Invariants
Having defined a suitable interpreter, the next step is to identify and
model runtime invariants including value typing that will enable
our soundness proof. For F<:, the key novel features compared to
STLC are subtyping and abstract types.
Runtime Subtyping Since we model runtime type arguments as
closure, we need to account for each defining environment when
comparing types at runtime. In our approach, on each side, the
runtime subtyping judgement takes not only a type but also its
defining environment:

J ` H1 T1 <: H2 T2

The judgement pairs each type T with a corresponding runtime
environmentH . Each runtime environmentH maps a term variable
x to a value v or a type variable Y to a “type” closure, which
pairs a (runtime) environment with a type. In the Coq code above,
we use the vty marker to distinguish between term variables and
type variables in the mapping. We will explain the role of the J
environments shortly, in the section on abstract types below.

The runtime typing rules are shown in Figure 4. Note that
the rules labeled ‘concrete type variables’ are entirely structural:

Syntax

v ::= 〈H,λx : T.t〉 | 〈H,ΛY <: T.t〉
H ::= ∅ |H,x : v |H,Y = 〈H,T 〉
J ::= ∅ | J, Z <: 〈H,T 〉

Runtime subtyping J ` H1 T1 <: H2 T2

J ` H1 T <: H2 >

J ` H2 S2 <: H1 S1 J ` H1 T1 <: H2 T2

J ` H1 (S1 → T1) <: H2 (S2 → T2)

J ` H2 S2 <: H1 S1

J, Z<:〈H2, S2〉 ` H1 T
Z
1 <: H2 T

Z
2

J ` H1 (∀Z<:S1.T
Z
1 ) <: H2 (∀Z<:S2.T

Z
2 )

Abstract type variables

J ` H1 Z <: H2 Z

J 3 Z <: 〈H,U〉 J ` H U <: H2 T

J ` H1 Z <: H2 T

Concrete type variables

H1 3 Y1 = 〈H,T 〉 H2 3 Y2 = 〈H,T 〉
J ` H1 Y1 <: H2 Y2

H1 3 Y = 〈H,U〉 J ` H U <: H2 T

J ` H1 Y <: H2 T

J ` H1 T <: H S H2 3 Y = 〈H,S〉
J ` H1 T <: H2 Y

Transitivity

J ` H1 T1 <: H2 T2 H2 T2 <: H3 T3

J ` H1 T1 <: H3 T3

Consistent environments Γ � H J

∅ � ∅ ∅

Γ � H ∅ H ` v : T

Γ, x : T � (H,x : v) ∅

Γ � H ∅ ∅ ` H1 T1 <: H T

Γ, Y <: T � (H,Y = 〈H1, T1〉) ∅

Γ � H J

Γ, Z <: T � H (J, Z <: 〈H,T 〉)

Value type assignment H ` v : T

Γ � H ∅ Γ, x : S ` t : T

H ` 〈H,λx : S.t〉 : S → T

Γ � H ∅ Γ, Y <: S ` t : TY

H ` 〈H,ΛY <: S.t〉 : ∀Z <: S.TZ

H1 ` v : T1 ∅ ` H1 T1 <: H2 T2

H2 ` v : T2

Figure 4. F<:: runtime typing



different type variables Y1 and Y2 are treated equal if they map to
the same H T pair. In contrast to the surface syntax of F<:, there is
not only a rule for Y <: T but also a symmetric one for T <: Y ,
i.e. with a type variable on the right hand side. This symmetry is
necessary to model runtime type equality through subtyping, which
gives us a handle on those cases where a small-step semantics
would rely on type substitution.

Another way to look at this is that the runtime subtyping relation
removes abstraction barriers (nominal variables, only one-sided
comparison with other types) that were put in place by the static
subtyping relation.

We further note in passing that formal reasoning involving sub-
typing transitivity becomes more difficult in the runtime subtyping
compared to the static F<: subtyping, because of type variables in
the middle of a chain T1 <: Y <: T2, which should contract to
T1 <: T2. We will get back to this question and related ones in
Section 3.3 and specifically Lemma 11.

Abstract Types So far we have seen how to handle types that
correspond to existing type objects. We now turn to subtyping for
∀ types. In the static subtyping relation, this rule introduces a new
type binding: in the premise that compares the result types, the
context is extended with a binding for the quantified type variable.

How can we support this rule at runtime? We cannot quite use
only the facilities discussed so far, because this would require us
to ‘invent’ new hypothetical objects 〈H,T 〉, which are not actu-
ally created during execution, and insert them into another runtime
environment. Furthermore, the premise subtyping the result types
should hold not just for some hypothetical object, but for all hypo-
thetical objects that satisfy the bound on the type variable. Seman-
tically, we do not have an exact type instantiation, only an upper
bound, and we should be careful about the distinction.

Our solution is rather simple: we split the runtime environment
into abstract (J) and concrete (H) parts. While the environments
H , as discussed above, map type variables to concrete type values
created at runtime, we use a shared environment J , that maps type
variables to hypothetical objects: 〈H,T 〉 pairs that may or may not
correspond to an actual object created at runtime. For clarity, we
use two disjoint alphabets for type variable names: Y for variables
bound in terms and Z for variables bound in types. We useX when
referring to either kind. The concrete environment (H) is indexed
by variables bound in terms (Y ) and extended during evaluation or
typing. The abstract environment (J) is indexed by variables bound
in types (Z) and extended during subtyping.

Implementation-wise, this approach fits quite well with a locally
nameless representation of binders [14] that already distinguishes
between free and bound identifiers.

The runtime subtyping rules for abstract type variables in Fig-
ure 4 correspond more or less directly to their counterparts in the
static subtype relation (Figure 2), modulo addition of the two run-
time environments. In particular, like in static subtyping but unlike
for concrete type variables in runtime subtyping, there is no sub-
typing rule for abstract type variables on the right.

3.3 Metatheory: Soundness Proof

How do we adapt the soundness proof from Section 2.2 to work
with this form of runtime subtyping? We need to show that the
runtime rules are consistent with the static rules (Lemma 5) and,
due to the possibility of subsumption, the main proof can no longer
just rely on case analysis of value typing derivations. Hence, we
require proper canonical forms lemmas (Lemmas 6,7,8,9).

Relating Static and Runtime Subtyping First, the runtime subtyp-
ing should be consistent with the static subtyping.

Lemma 4 (Static to Runtime Subtyping). Static subtyping implies
runtime subtyping in well-formed consistent environments.

Γ ` T1 <: T2 Γ � H J

J ` H T1 <: H T2

Proof. By straightforward structural induction over the static sub-
typing derivation. Static rules on Z variables map to corresponding
abstract runtime rules. Static rules on Y variables map to corre-
sponding concrete runtime rules.

Second, for the cases where F<: type assignment relies on
substitution in types – specifically, in the result of a type application
– we need to replace a hypothetical binding with an actual value.

Lemma 5 (Abstract to Concrete Substitution for Subtyping).

Z <: 〈H,T 〉 , ∅ ` H1 T
Z
1 <: H2 T

Z
2

∅ ` H1, Y1 = 〈H,T 〉 TY1
1 <: H2, Y2 = 〈H,T 〉 TY2

2

Proof. By induction and case analysis, first strengthening to allow
more type variables in abstract context on the right of type variable
Z, to be substituted.

We actually prove a slighty more general lemma that incorpo-
rates the option of weakening, i.e. not extending Hi if Z does not
occur in Ti, for each side i = 1, 2.
Inversion of Value Typing (Canonical Forms) Due to the presence
of the subsumption rule, the main proof can no longer just rely on
case analysis of the typing derivation, but we need proper inversion
lemmas for term and type abstractions.

Lemma 6 (Inversion of Value Typing for Term Abstraction).

H ` v : S2 → T2

v = 〈Hc, λx : S1.t〉 Γc � Hc ∅
Γc, x : S1 ` t : T1 ∅ ` Hc (S1 → T1) <: H (S2 → T2)

Lemma 7 (Inversion of Value Typing for Type Abstraction).

H ` v : ∀Z <: S2.T
Z
2

v = 〈Hc,ΛY <: S1.t〉 Γc � Hc ∅
Γc, Y <: S1 ` t : TY

1

∅ ` Hc (∀Z<:S1.T
Z
1 ) <: H (∀Z<:S2.T

Z
2 )

We further need to invert the resulting subtyping derivations, so
we need additional inversion lemmas for function and ∀ types.

Lemma 8 (Inversion of Runtime Subtyping for Function Types).

∅ ` H1 (S1 → T1) <: H2 (S2 → T2)

∅ ` H2 S2 <: H1 S1 , H1 T1 <: H2 T2

Lemma 9 (Inversion of Runtime Subtyping for ∀ Types).

∅ ` H1 (∀Z<:S1.T
Z
1 ) <: H2 (∀Z<:S2.T

Z
2 )

∅ ` H2 S2 <: H1 S1

∅, Z<:〈H2, S2〉 ` H1 T
Z
1 <: H2 T

Z
2

The inversion lemmas we need here depend in a crucial way
on transitivity and narrowing properties of the subtyping relation
(similar to small-step proofs for F<: [10]).
Transitivity Pushback and Cut Elimination For the static subtyp-
ing relation of F<:, transitivity can be proved as a lemma, together
with narrowing, in a mutual induction on the size of the middle
type in a chain T1 <: T2 <: T3 (see e.g. the POPLmark challenge
documentation [10]).

Unfortunately, for the runtime subtyping version, the same
proof strategy fails, because runtime subtyping may involve a type
variable as the middle type: T1 <: Y <: T3. This setting is very
similar to issues that arise with path-dependent types in Scala and
DOT, but here it surprisingly arises already when just looking at
the runtime semantics of F<:. Since proving transitivity becomes



much harder, we adopt a strategy from previous DOT developments
[7]: admit transitivity as an axiom, but prove a ‘pushback’ lemma
that allows to push uses of the axiom further up into a subtyping
derivation, so that the top level becomes invertible. We denote this
as precise subtyping T1 <! T2.

Definition 3 (Precise Subtyping). If J ` H1 T1 <: H2 T2 and
the derivation does not end in the transitivity rule, then we say that
J ` H1 T1 <! H2 T2.

Such a strategy is reminiscent of cut elimination in natural
deduction, and in fact, the possibility of cut elimination strategies
is already mentioned in Cardelli’s original F<: paper [13].

Lemma 10 (Narrowing).

J1 ` H1 T1 <: H2 T2 J2 ` H3 T3 <: H4 T4

J1 = J2(Z → 〈H1 T1〉) J2 3 Z <: 〈H2 T2〉
J1 ` H3 T3 <: H4 T4

Proof. By structural induction, and using the transitivity axiom.

Lemma 11 (Transitivity Pushback).

∅ ` H1 T1 <: H2 T2

∅ ` H1 T1 <! H2 T2

Proof. By structural induction on the derivation using narrowing
(Lemma 10) in the case for ∀ types.

This completes the proofs for the inversion Lemmas 6,7,8,9.
Inversion of subtyping is only required in a concrete runtime

context, without abstract component (J = ∅). Therefore, transitiv-
ity pushback is only required then. Transitivity pushback requires
narrowing, but only for abstract bindings (those in J , never in H).
Narrowing requires these bindings to be potentially imprecise, so
that the transitivity axiom can be used to inject a step to a smaller
type without recursing into the derivation. In summary, we need
both (actual, non-axiom) transitivity and narrowing, but not at the
same time. This is a major advantage over a purely static setting
where these properties can become much more entangled, with no
obvious way to break cycles. Though transitivity pushback can be
shown to hold in a mixed concrete/abstract runtime context for F<:,
the insight that it is only required in a concrete-only runtime con-
text is crucial for extensions, in which subtyping can collapse in
unrealizable contexts (see Section 5.1).
Finishing the Soundness Proof We now have everything in place
to complete the soundness proof.

Theorem 3 (Soundness of F<:). For all n, if the interpreter returns
a result that is not a timeout, then the result is a value (i.e. not
stuck), and it is well-typed.

Γ ` e : T Γ � H eval n H e = Done r
r = Val v H ` v : T

Proof. By induction over n. The interesting case is the one for
type application. We use the inversion lemma for type abstractions
(Lemma 7) and then invert the resulting subtyping relation on ∀
types to relate the actual type at the call site with the expected type
at the definition site of the type abstraction. In order to do this,
we invoke pushback (Lemma 11) once and obtain an invertible
subtyping on ∀ types. But inversion then gives us evidence for
the return type in a mixed, concrete/abstract environment, with J
containing the binding for the quantified type variable. Since the
abstract component J is non-empty, we cannot apply transititivy
pushback again directly. So we first apply the substitution lemma
(Lemma 5) to replace the abstract variable reference with a concrete

reference to the actual type in a runtime environmentH . After that,
the abstract component is gone (J = ∅) and we can use pushback
again to further invert the inner derivations.

4. Standard Type System Extensions
In this section we consider two type system extensions that are rel-
evant for practical languages: mutable references and exceptions.
While the functionality of these extensions are standard, they are
thought to require different proof methods or pose other signifi-
cant challenges in big-step style. Here we show that our definitional
interpreter approach scales gracefully, and that straightforward in-
ductive proofs are sufficient.

4.1 Mutable References
We extend the syntax to support ML-style mutable references:

T ::= · · · | Ref T
t ::= · · · | ref t | !t | t:= t
v ::= · · · | loc i

The extension of the syntax and static typing rules is standard,
with a new syntactic category of store locations. The evaluator
is threaded with a runtime store ρ, and reading or writing to a
location accesses the store. How do we assign a runtime type to
a store location? The key difficulty is that store bindings may
be recursive, which has lead Tofte to discover coinduction as a
proof technique for type soundness [51]. We sidestep this issue by
assigning types to values (in particular store locations) with respect
to a store typing S instead of the store itself. Store typings consist
of H T pairs, which can be related through the usual runtime
subtyping judgements. The value type assignment judgement now
takes the form S H ` v : T and since subtyping depends on
value type assignment, it is parameterized by the store typing as
well: S J ` H1 T1 <: H2 T2. The type assignment rule for store
locations simply looks up the correct type from the store typing:

S(i) = 〈H,T 〉
S H ` loc i : Ref T

When new bindings are added to the store, they are assigned the
type and environment from their creation site in the store typing.
When accessing the store, bindings in the store typing are always
preserved, i.e. store typings are invariant under reads and updates.

Objects in the store ρ must conform to the store typing S at all
times: S � ρ. With that, an update only has to provide a subtype
of the type in the store typing, and it will not change the type of
that slot. So if an update creates a cycle in the store, this does not
introduce circularity in the store typing.

A canonical forms lemma states that if a value v has type Ref T ,
v must be a store location with type T in the store typing.

Lemma 12 (Inversion of Value Typing for Store Location).

S H ` v : Ref T
v = loc i S(i) = 〈Hi, Ti〉

S ∅ ` Hi Ti <: H T , H T <: Hi Ti

The main soundness statement is modified to guarantee that
the interpreter threads a store that corresponds to an extension of
the initial store typing, regardless of whether it terminates or not.
Thus, the store typing is required to grow monotonically, while the
values in the store may change arbitrarily within the constraints
given by the store typing. Furthermore, as before, if the interpreter
terminates, then the result is a value (i.e. not stuck), and it is well-
typed.

Theorem 4 (Soundness of F<: with Mutable References).



Γ ` e : T Γ � S H S � ρ eval n ρ H e = (ρ′, r)

S ′ = S . . . S ′ � ρ′

r = Timeout ∨ (r = Done Val v ∧ S ′ H ` v : T )

We believe that the ease with which we were able to add mu-
table references is a further point in favor of definitional inter-
preters. Back in 1991, the fact that different proof techniques were
thought to be required for references in big-step style was a ma-
jor criticism by Wright and Felleisen and a problem their syntac-
tic approach sought to address [56]. While there is precedent for
a simply-inductive big-step soundness proof of polymorphic refer-
ences [27], this earlier proof omits explicit wrong and nonterminat-
ing cases (see followup note [28]) and thus suffers from the usual
criticism towards big-step arguments of proving only preservation
but not progress, and furthermore, of giving no guarantees for non-
terminating evaluation (while, like in small step, we still ensure the
invariant on store typing).

Finally, note that the store typing is just another invariant of
runtime typing. We do not need to expose store typing in the static
typing of terms, since locations are not surface terms.

4.2 Exceptions

While strong soundness promises to guarantee the absence of all
runtime errors in well-typed programs, realistic languages need
to support a well-defined set of benign runtime failures. These
commonly include division-by-zero or file-not-found conditions,
which are hard to check with static type systems.

We extend the language with support for exceptions, which
abort the current flow of execution and potentially resume at an
enclosing exception handler:

t ::= · · · | raise | try t catch t
r ::= · · · | Done Raise

To the term syntax, we add a facility to raise an exception, as well as
try/catch blocks. The set of possible interpreter results now includes
the option of returning a (benign) exception, in addition to values,
timeouts, and actual errors, which we still seek to prevent.

The interpreter itself requires very little changes, as it already
supports abortive behavior due to timeout and error conditions.
We can modify the monadic DO v ⇐ eval notation to abstract over
exceptions in exactly the same way. But in addition to the bind
operator DO, which can be viewed as targeting the innermost level of
a layered monad, we also need another operator DOE, which extracts
either Val v or Raise, conceptually one level up in the layered
monad. With that, the only modification to the interpreter is adding
new cases for raise and catch:
(* ... *)

| traise ⇒ DONE RAISE
| tcatch et ec ⇒
DOE rt⇐ eval n1 env et;
match vf with
| VAL v ⇒DONE VAL v
| RAISE ⇒eval n1 env ec

end
(* ... *)

If the ‘try’ part of a try/catch block raises an exception, control
resumes at the ‘catch’ block.

The soundness statement changes as follows to include the
possibility of runtime exceptions:

Theorem 5 (Soundness of F<: with Exceptions). For all n, if the
interpreter returns a result that is not a timeout, then the result is
either an exception or a well-typed value (but it is not stuck)

Γ ` e : T Γ � H eval n H e = Done r
r = Raise ∨ (r = Val v ∧ H ` v : T )

In conclusion, actual errors are excluded, but benign exceptions
are allowed. The proof requires no additional lemmas, just handling
the two new syntactic cases in the main proof.

The key take-away is that while distinguishing between non-
termination, actual errors, and benign errors is a big problem with
relational big-step semantics, a total functional interpreter deals
with all these outcomes uniformly and eliminates this entire class
of problems by design.

5. Novel Type System Extensions
In the preceding sections we have studied the ingredients of type
soundess proofs with definitional interpreters, the application of
this approach to known and well-studied type system such as F<:,
as well as to standard extensions. In addition to the static typing
of terms on the surface, the approach involves defining runtime
invariants such as typing on values. For the latter, we have some
leeway: runtime typing needs to be strong enough for the inductive
cases in the type safety proof, but also can be more relaxed than the
surface static typing.

Up to now, we always started from given static type systems,
and we tried to fit the runtime invariants to support a proof. In this
section, we take the opposite route. Starting from the interpreter se-
mantics and its runtime invariants, we derive novel and interesting
static type systems.

5.1 System F, F<:, and F<:>

The fact that runtime typing can be more relaxed than the surface
static typing is particularly striking for subtyping. Depending on
how closely the static typing tracks the runtime typing, we can
model a spectrum of polymorphic λ-calculi.
System F At one end of the spectrum, we can just not expose
subtyping in the static semantics – by restricting the surface rules
to System F. In this case, the runtime rules are more powerful than
actually needed. They can be tightened by replacing the runtime
subtyping relation with a runtime type equality relation. We leave
this as an exercise to the reader.
System F<:> At the other end of the spectrum, we can explore
what emerges from propelling more of the runtime typing to the
surface. Abstract types in F<: can only be bounded from above. But
internally, runtime subtyping already needs to support symmetric
rules, for (concrete) type variables on either side. We can easily
expose that facility on the static level as well, extending upper-
bounded quantification to “translucent” quantification, which is
both lower- and upper-bounded.

On the left, Figure 5 summarizes the changes in syntax and
static semantics for System F<:>, showing the progression from
System F to F<:> as this dimension exposes more subtyping in
quantification over types. In particular, we generalize the upper-
bounded type variables of F<: from X <: U to X : S..U , where
the type S is the lower bound and the type U is the upper bound –
changing the syntax of type abstraction, ∀ type, and binding of type
variables in the static environment Γ. We also add a bottom type ⊥
to recover the usual upper-bounded quantification of F<: by setting
the lower bound to ⊥.
User-Defined Subtyping Relations Now, a key question is what
constraints should be put on lower and upper bounds at their decla-
ration site in type abstractions. If we do not enforce “good bounds”,
i.e. do not require S <: U for bounds S..U , then we can use this
facility to enable fully user-defined subtyping relations between ab-
stract types. Here is an example: in a context

Γ = A : ⊥..>, B : ⊥..>, C : ⊥..>
where A,B,C are fully abstract, we can add new bindings via

ΛU : A..C. ΛV : A..B.t



System F
T ::= > | X | T → T | ∀Z.TZ

t ::= x | λx : T.t | ΛY.t | t t | t [T ]

System F<:

T ::= > | X | T → T | ∀Z <: T.TZ

t ::= x | λx : T.t | ΛY <: T.t | t t | t [T ]

System F<:>

T ::= ⊥ | > | X | T → T | ∀Z : T..T.TZ

t ::= x | λx : T.t | ΛY : T..T.t | t t | t [T ]

System D
T ::= > | x.Type | {Type = T} | {Type} | (z : T )→ T z

t ::= x | {Type = T} | λx : T.t | t t

System D<:

T ::= > | x.Type | {Type = T} | {Type <: T} | (z : T )→ T z

t ::= x | {Type = T} | λx : T.t | t t

System D<:>

T ::= ⊥ | > | x.Type | {Type : T..T} | (z : T )→ T z

t ::= x | {Type = T} | λx : T.t | t t

System F<:> −→ System D<:> ←− System D
adding lower bounds to System F<: adding first-class type values to System F

Subtyping... Γ ` S <: U

Γ ` S1 <: S2 , U2 <: U1

Γ, Z : S2..U2 ` TZ
1 <: TZ

2

Γ ` (∀Z : S1..U1.TZ
1 ) <: (∀Z : S2..U2.TZ

2 )

Γ 3 X : S..U Γ ` U <: T

Γ ` X <: T

Γ 3 X : S..U Γ ` T <: S

Γ ` T <: X

(same as System D)

Γ ` S2 <: S1 Γ ` U1 <: U2

Γ ` {Type : S1..U1} <: {Type : S2..U2}

Γ ` x : {Type : ⊥..U}
Γ ` x.Type <: U

Γ ` x : {Type : S..>}
Γ ` S <: x.Type

Γ ` S2 <: S1

Γ, z : S2 ` T z
1 <: T z

2

Γ ` (z : S1)→ T z
1 <: (z : S2)→ T z

2

Γ ` {Type = T} <: {Type}

Γ ` x : {Type = T} , T <: U

Γ ` x.Type <: U

Γ ` x : {Type = T} , S <: T

Γ ` S <: x.Type

Type assignment... Γ ` t : T

Γ, Y : S..U ` t : TY

Γ ` ΛY : S..U.t : ∀Z : S..U.TZ

Γ ` t1 : ∀Z : S..U.TZ , S <: T2, T2 <: U

Γ ` t1[T2] : TT2

(same as System D)

(same as System D)

Γ ` {Type = T} : {Type : T..T}

Γ, x : S ` t : Tx

Γ ` λx : S.t : (z : S)→ T z

Γ ` t : (z : S)→ T z , t2 : S

Γ ` t1 t2 : T t2

Γ ` {Type = T} : {Type = T}

Figure 5. The System D Square: syntax and static semantics

such that in the body t of this abstraction, A is a subtype of both B
and C via transitivity, while B and C remain incomparable. With
only upper-bounded quantification as in F<:, we could not achieve
the same flexibility.

But of course this absence of constraints on bounds also means
that user-defined subtyping relations might be contradictory. Under
a type abstraction with bad bounds, for example X : >..⊥, we can
effectively collapse the subtyping relation via transitivity chains on
X and subsumption. So why does this work at all?

Soundness Interestingly, we do not need to enforce “good bounds”
for soundness. The key is that we do check that the instantiated type
is in between the lower bound and upper bound during a type appli-
cation. Therefore, any code path that was type checked using bad
bounds will never be executed. The proof strategy from Section 3
already only needs canonical forms and subtyping inversion in an
empty abstract context, so bad bounds do not pose any particular
difficulty. In fact, the whole proof setup for F<: and the runtime
invariants suggest at no point that checking bounds would be nec-
essary, so the unconstrained system comes out as a natural choice.

In runtime subtyping (not shown in Figure 5), we do not need
to change the concrete variable rules, while the other changes (on
abstract type variable and ∀ type) are analogous to static subtyping.
For example, bindings in the runtime environment J change from
Z <: 〈H,U〉 to Z : 〈H,S..U〉.

It is instructive to compare this with a small-step proof strategy.
Since there is no a priori distinction between type assignment
time and runtime, the unconstrained System F<:> would not fall
out naturally as an extension of F<:’s soundness proof, which
makes key use of transitivity and narrowing lemmas that need
to work in arbitrary contexts. Of course the small-step proof can
be adapted to follow a transitivity pushback strategy in empty
contexts, similar to Section 3, but such a strategy would require
a radical departure from the small-step proof whereas it is self-
suggesting with a definitional interpreter approach.

More generally, with the definitional interpreter approach, we
can first generalize runtime typing, and then find a way to incorpo-
rate a consistent set of changes back into static typing.

Language Design Trade-Offs We have seen that we gain expres-
siveness by not checking bounds at declarations sites, but what do
we lose? First, a type checker cannot decide whether user-defined
subtyping relations make sense. Hence, errors might only mani-
fest when trying (and failing) to instantiate the type abstractions.
Second, while F<: permits arbitrary beta-reduction, F<:> is more
restricted. For example, F<:> cannot support a normal-order re-
duction strategy which would require reductions under type lamb-
das, to transform a term into head normal form. With conflicting
bounds, such as String <: Int, a term like 3 + “d’oh” would be
well-typed but stuck.



5.2 System D, D<:, and D<:>

We now consider an extension that starts with relaxing the inter-
preter semantics itself. We observe that type arguments, imple-
mented as 〈H,T 〉 pairs, are already treated de-facto as first-class
values at runtime. So why not let them loose and make their status
explicit?
Refactoring the Interpreter In the interpreter, we do not strictly
need the distinction between term and type abstraction. Closures
for term abstraction vabs and closures for type abstraction vtabs
below hold the same data:
(* ... *)

| tabs x ey ⇒DONE VAL (vabs env x ey) (* lambda *)
| ttabs x ey ⇒DONE VAL (vtabs env x ey) (* type lambda *)
| tapp ef T⇒ (* application *)
DO vf⇐ eval n1 env ef;
DO vx⇐ eval n1 env ex; match vf with
| (vabs env2 x ey)⇒ eval n1 ((x,vx)::env2) ey
| _⇒ERROR end

| ttapp ef T⇒ (* type app *)
DO vf⇐ eval n1 env ef; match vf with

| (vtabs env2 x ey)⇒ eval n1 ((x,vty env T)::env2) ey
| _⇒ERROR end

(* ... *)

Thus, we can do with only one data type, and settle for vabs. To
also fuse term and type application, we need to make the evaluation
of the argument uniform, regardless of whether it is a type or a
term. We thus introduce a new syntactic form {Type = T}, for a
term that holds a type (ttyp T below) and evaluate it to a vty env T,
which gains status as first-class value:
(* ... *)

| tapp ef T⇒
DO vf⇐ eval n1 env ef;
DO vx⇐ eval n1 env ex; match vf with
| (vabs env2 x ey)⇒ eval n1 ((x,vx)::env2) ey
| _⇒ERROR end

| ttyp T⇒(vty env T)
(* ... *)

First-Class Type Values and Path-Dependent Types What hap-
pens at the type level? In System D<:>, the term {Type = T}
introduces a corresponding type {Type : T..T}. Now, since we
unify term and type abstraction at the term level, we also unify
function type and universal type into one dependent function type:
(x : S) → T x. How can T depend on the term variable x? In-
stead of a universal type ∀X : S..U.TX , we write (x : {Type :
S..U})→ T x, where x is a regular term variable. For occurrences
of type variableX in T , we need to be able to select the type within
the term variable x – eliminating a term holding a type at the type
level: x.Type. We have re-discovered path-dependent types, like in
Scala and DOT but with a unique, global label Type.

On the right and center, Figure 5 summarizes the changes in
syntax and static semantics for System D and System D<:>, show-
ing the progression in the System D Square along this second di-
mension: by adding first-class types, System D, D<:, and D<:>

unify the term and type abstractions of System F, F<:, and F<:>.
Note that even System D requires a bit of subtyping (even though
System F does not) to account for matching a concrete type value
with an abstract type value type: {Type = T} <: {Type}, which
we motivate next.
“D-ing F”: Encoding of System F, F<:, F<:> The modified in-
terpreter semantics trivially generalizes evaluation of System F and
its variants, but we still need to show how that the static typing of
System D, D<:, D<:> generalizes System F, F<:, and F<:>.

To establish this encoding, we replace references to type vari-
ables X with path-dependent types x.Type. Type abstractions be-
come term lambdas with a type-value argument, universal types
become dependent function types, and type application becomes

Syntax

v ::= 〈H,λx : T.t〉 | 〈H,T 〉
H ::= ∅ |H,x : v
J ::= ∅ | J, z : 〈H,T 〉

Runtime Subtyping... J ` H1 T1 <: H2 T2

J ` H2 S2 <: H1 S1 J ` H1 U1 <: H2 U2

J ` H1 {Type : S1..U1} <: H2 {Type : S2..U2}

J(z) = 〈H,T 〉 J ` H T <: H2 {Type : ⊥..U}
J ` H1 z.Type <: H2 U

J(z) = 〈H,T 〉 J ` H T <: H1 {Type : S..>}
J ` H1S <: H2 z.Type

H1(x)=v H ` v : T J ` H T <: H2 {Type : ⊥..U}
J ` H1 x.Type <: H2 U

H2(x)=v H ` v : T J ` H T <: H2 {Type : S..>}
J ` H1 S <: H2 x.Type

. . .
Value type assignment H ` v : T

Γ � H ∅ Γ ` {Type = T} : {Type : S..U}
H ` 〈H,T 〉 : {Type : S..U}

Γ � H ∅ Γ, x : S ` t : T x

H ` 〈H,λx : S.t〉 : (z : S)→ T z

Figure 6. D<:>: runtime typing (excerpt)

dependent function application with a concrete type value:

ΛX.tX ; λx : {Type}.tx.Type

∀X.TX ; (x : {Type})→ T x.Type

t [T ] ; t {Type = T}
But how do we actually type check a type application? Let us

assume that f is the polymorphic identity function, and we apply
it to type T . Then we would like the following to be an admissible
type assignment:

f : (x : {Type})→ (z : x.Type)→ x.Type
f {Type = T} : (z : T )→ T

In most dependently typed systems there is a notion of reduction
or normalization on the type level. Based on our definitional inter-
preter construction, we observe that we can just as well use sub-
typing. For this application to type check using standard depen-
dent function types, we need to establish T <: x.Type <: T and
{Type = T} <: {Type}, using the rules on the right in Figure 5.

It is easy to show that System D encodes System F, but not vice
versa. For example, the following function does not have a System
F equivalent: λx : {Type}.x
Runtime Typing For System D<:>, we also present modified run-
time typing rules in Figure 6. Type objects 〈H,T 〉 are now first-
class values, just like closures. We no longer need two kinds of
bindings in H environments, which now bind variables to values.
For J environments, we still consider only abstract structures, that
is, only type values, now.
Delta in Meta-Theory (Type Soundness) Most of the changes to
the soundness proof are rather minor. However, one piece requires



further attention: the previous transitivity pushback proof relied
crucially on being able to relate types across type variables:

H1 T1 <! H Y <! H3 T3

Inversion of this derivation would yield another chain

H 3 Y = 〈H2, T2〉 H1 T1 <: H2 T2 <: H3 T3,

which, using an appropriate induction strategy, can be further col-
lapsed into H1T1 <! H3T3. But now the situation is more compli-
cated: inversion of H1 T1 <! H x.Type <! H3 T3 yields

H(x) = v H2 ` v : T2

H2 T2 <: H1 {Type : T1..>} H2 T2 <: H3 {Type : ⊥..T3},
but there is no immediate way to relate T1 and T3! We would
first have to invert the subtyping relations with T2, but this is
not possible because these relations are imprecise and may use
transitivity. Recall that they have to be, because they may need to be
narrowed—but wait! Narrowing is only required for abstract types,
and we only need inversion and transitivity pushback for fully
concrete contexts. So, while the imprecise subtyping judgement is
required for bounds initially in the presence of abstract types, we
can replace it with the precise version once we move to a fully
concrete context.

This idea leads to a solution involving another conversion layer.
We define an auxiliary relation T1 <<: T2, which is just like
T1 <: T2, but with precise lookups, e.g. for a concrete variable
on the left:

H1(x)=〈H,T 〉 ∅ ` H T <<: H2 U

∅ ` H1 x.Type <<! H2 U

For this relation, pushback and inversion work as before, but
narrowing is not supported. To make sure we do not need narrowing
inductively for subtyping with precise lookup, we delegate to usual
subtyping <: with imprecise lookup and built-in transitivity in the
body of the dependent function rule:

J ` H2 S2 <: H1 S1

J, z : 〈H2, S2〉 ` H1 T
z
1 <: H2 T

z
2

J ` H1 (x : S1)→ T x
1 <<! H2 (x : S2)→ T x

2

In this new relation, we can again remove top-level uses of
the transitivity axiom. A derivation T1 <: T2 can be converted
into T1 <<: T2 and then further into T1 <<! T2. With that,
we can again perform all the necessary inversions required for the
soundness proof.

6. Scaling from F to DOT
The DOT (Dependent Object Types) calculus [6, 7, 5, 45] has been
proposed as a new type-theoretic foundation for blending func-
tional and object-oriented programming, as well as ML modules,
based on path-dependent types. Historically, DOT was designed as
a formal model of Scala [6], based on various rewriting seman-
tics, but very little progress was made towards a soundness proof.
The shift to big-step semantics has been instrumental in focusing
the requirements, leading to the first soundness results, grounding
the theory into known territory, and ultimately resulting in a much
cleaner calculus [45]. In this section, we sketch how the techniques
of this paper apply to DOT, showing the insights gained from look-
ing at runtime invariants, and from exploiting abstractions becom-
ing transparent at runtime.
From D<:> to DOT DOT consolidates all type and function values
into objects, which contain type and method members with distinct
labels. Object members can refer to the object itself and its other
members through a recursive self reference:

t ::= x | t.m(t) | {x⇒ d}
d ::= L = T | m(x : T ) = t

We could also add mutable fields based on the handling of refer-
ences (Section 4.1) but we disregard this option for simplicity.

At the type level, DOT adds intersection and union types, as
well as recursive self types, which are similar to equi-recursive
types but quantify over a term instead of a type. Individual labeled
methods and types remain separate at the type level:

T ::= ⊥ | > | T ∧ T | T ∨ T | x.L
{L : T..T} | m(z : T ) : T z | {z ⇒ T}

An object creation term introduces a recursive self type intersect-
ing the member types. We present a few key examples of DOT’s
expressiveness next.
Objects and First-Class Modules Consider the type of an object
containing a type A and a method f that returns an A:

{c⇒ (A : ⊥..>) ∧ (f(u : >) : c.A)}
We can create a package object or module that provides a type alias
C for this type and a way to create objects of such a type:

{p⇒ C = {c⇒ (A : ⊥..>) ∧ (f(u : >) : c.A)};
m(t : {A : ⊥..>}) = {_⇒ m(a : t.A) = {c⇒
A = t.A; f(u : >) = a}}}

Nominality through Ascription We can give the package object
a type which is transparent for the type member C, using the
shorthand = T for : T..T :

{p⇒ (C = {c⇒ (A : ⊥..>) ∧ (f(u : >) : c.A)})∧
(m(t : {A : ⊥..>}) : (m(a : t.A) : p.C ∧ {A = t.A}))}

However, then, given a package object p, anyone could struc-
turally create a type p.C even by-passing the method m from the
package – for example, this term would type-check as type p.C:

{c⇒ A = >; f(u : >) = u}
We can ascribe a more abstract type to a package object. By

making the lower bound of the type member C abstract, the type
p.C becomes nominal from the outside enabling the package to
fully control the creation of objects of types p.C:

{p⇒ (C : ⊥..{c⇒ (A : ⊥..>) ∧ (f(u : >) : c.A)})∧
(m(t : {A : ⊥..>}) : (m(a : t.A) : p.C ∧ {A = t.A}))}

Records and Refinements as Intersections The package could
also provide a refinement of type p.C, for example one with addi-
tional methods. By closing over a recursive type, one can concisely
refer to type members from the refined type.

{c⇒ p.C ∧ (g(a : c.A) : p.C)}
6.1 Historical Challenges and Fresh Perspective
Extending the D<:> soundness proof to DOT poses only few chal-
lenges. The main source of complication are recursive self types,
which create mutual dependencies between various previously in-
dependent considerations, e.g., between the additional layer with
precise lookup (see meta-theory in Section 5.2) and abstract to con-
crete substitution for subtyping (see Lemma 5). These complica-
tions are resolved with clever induction metrics and contractive-
ness restrictions as presented elsewhere [45]. Since the details do
not yield further insights into proof techniques with definitional in-
terpreters, we do not repeat them here. Instead, we present the his-
torical challenges in proving ‘invented’ versions of DOT sound and
discuss their ‘discovered’ solutions thanks to the bottom-up explo-
ration with definitional interpreters.
Substitution – translating back to small-step For path-dependent
types, substitution should preserve syntactic validity of paths. In
our approach, we do not need substitution of terms, and we only
need substitution of a concrete variable for an abstract one in types,



so this syntactic preservation is straightforward. What happens
when we translate the proof back to small-step? For call-by-value,
we need substitution in terms of a value for a variable. So we
can either allow values in paths, i.e. relax the syntax from x.L to
(x | v).L, or we can put all values in a store, so that variables are
only substituted with other variables, which are bound in the store.
In this case, subtyping takes the form S Γ ` T1 <: T2 to track
the store S. Both options lead to sound and clean syntactic theories
[45], which look blindingly obvious in hindsight, but have not been
discovered directly despite focused efforts of several person-years.
Abstraction vs Preservation – exploiting the runtime Branding is
an identity function which changes the type, usually from some-
thing concrete, e.g.>, to something abstract, e.g. z.L. This is valid
e.g. if z : {L : >..>}. However, we might only know a less pre-
cise type z : {L : ⊥..>}. In that case, even though we can brand
a term x : > as x : z.L via z.brand(x) → x, we cannot estab-
lish x : z.L directly given only the more abstract information. In
our approach, thanks to the distinction between static and runtime
typing, we can effectively access the most precise information at
run-time, thus keeping evaluation and preservation in sync instead
of in tension. In small-step, this strategy translates to also bring-
ing down abstraction barriers selectively, i.e. keeping more precise
information about values or store locations.
Transitivity vs Narrowing – pushback in empty abstract context
In previous DOT developments, narrowing and subtyping transitiv-
ity were a major headache. In fact, a key step was to show that in
the presence of intersection types, both statements cannot hold at
the same time [7] in full generality. With the approach of extending
F<: towards DOT in this paper, we discovered that we only need to
pushback or invert subtyping transitivity in an empty abstract con-
text, and so we can tolerate lattice collapses in non-empty abstract
contexts. We have already taken a lenient strategy with respect to
“bad bounds” in Section 5.1, and therefore adding intersection and
union types poses no particular difficulty. However, the distinction
between concrete and abstract context is unusual and essential to
the strategy here.
Monotonicity Matters – embrace subsumption Finally, in the his-
torical invented as opposed to discovered model of DOT [6], the
type system had many more judgements: not just typing and sub-
typing, but also expansion, membership and well-formedness. In
the discovered model, well-formedness is so lenient that a judge-
ment is not needed, a type merely needs to follow the syntax and
have well-bound variables. For membership, the discovered model
relies on subtyping, comparing to the member type. Expansion was
used for membership, but also for collecting all member require-
ments when creating an object (while this remains structural in the
discovered model). Because some uses of expansion needed to be
precise (e.g. for object creation or for ensuring good bounds), sub-
sumption had to be controlled. However, this was untenable at the
end, because such a strategy broke several monotonicity properties.
By having a lenient strategy towards bad bounds and embracing
subsumption, the design not only finally proved sound but became
more principled, powerful, and less tied to Scala.

7. Related Work
Semantics and Proof Techniques There is a vast body of work
on soundness and proof techniques. The most relevant here is
Wright and Felleisen’s syntactic approach [56], Plotkin’s struc-
tural operational semantics [43], Kahn’s Natural Semantics [30],
and Reynold’s Definitional Interpreters [44]. We build our proof
technique on Siek’s Three Easy Lemmas [49]. Other work that dis-
cusses potential drawbacks of term rewriting techniques includes
Midtgaard’s survey of interpreter implementations [35], Leroy and
Grall’s coinductive natural semantics [33] and Danielsson’s seman-
tics based on definitional interpreters with coinductively defined

partiality monads [17]. Coinduction also was a key enabler for
Tofte’s big-step soundness proof of core ML [51]. In our setting,
we get away with purely inductive proofs, thanks to numeric step
indexes or depth bounds, even for mutable references. We believe
that ours is the first purely inductive big-step strong soundness
proof in the presence of mutable state. As discussed earlier (Sec-
tion 4.1), Harper proves preservation of polymorphic references in
big-step using only induction [27], though not strong soundness
as we do. The use of step counters in natural semantics to distin-
guish between divergence and errors goes back to at least Gunter
and Rémy’s partial proof semantics [26] and has recently been ad-
vocated in the context of compiler verification [41]. Step counters
also play a key role in proofs based on logical relations [8, 3, 4].
Our runtime environment construction bears some resemblance to
Visser’s name graphs [38] and also to Flatt’s bindings as sets of
scopes [24]. Big-step evaluators can be mechanically transformed
into equivalent small-step semantics following the techniques of
Danvy et al. [18, 19, 2].

Small-step techniques are well known to scale to full imple-
mentations of well-behaved but realistic languages such as ML. A
notable result is the mechanized soundness result by Lee, Crary
and Harper [31] for an internal language that can serve as elabo-
ration target for all of Standard ML. A much earlier partially suc-
cessful attempt at mechanizing ML was by van Inwegen [52]. To
the best of our knowledge, ML is the only widely used language
whose metatheory has been mechanized to a similar degree.
Scala Foundations Much work has been done on grounding
Scala’s type system in theory. Early efforts included νObj [40],
Featherweight Scala [16] and Scalina [37], all of them more com-
plex than what is studied here. None of them lead to a mecha-
nized soundness result, and due to their inherent complexity, not
much insight was gained why soundness was so hard to prove.
DOT [6] was proposed as a simpler core calculus, focusing on
path-dependent types but disregarding classes, mixin linearization
and similar questions. The original DOT formulation [6] had actual
preservation issues because lookup was required to be precise. This
prevented narrowing, as explained in Section 6.1.

The µDOT calculus [7] is the first calculus in the line with a
mechanized soundness result, (in Twelf, based on total big-step se-
mantics), but the calculus is much simpler than what is studied in
this paper, and there is no connection to systems like F<:. Most im-
portantly, µDOT lacks bottom, intersections and type refinement.
Amin et al. [7] describe in great detail why adding these features
causes trouble. Because of its simplicity, µDOT supports both nar-
rowing and transitivity with precise lookup. The soundness proof
for µDOT was also with respect to big-step semantics. However,
the semantics had no concept of distinct runtime type assignment
and would thus not be able to encode F<: and much less full DOT.

Soundness for full DOT has been established more recently [45,
5]. The proofs are presented with respect to small-step semantics,
and without connecting DOT to well-studied calculi such as F<:.
ML Module Systems 1ML [46] unifies the ML module and core
languages through an elaboration to System Fω based on earlier
such work [47]. Compared to DOT, the formalism treats recursive
modules in a less general way and it only models fully abstract vs
fully concrete types, not bounded abstract types. Although an im-
plementation is provided, there is no mechanized proof. In good
ML tradition, 1ML supports Hindler-Milner style type inference,
with only small restrictions. Path-dependent types in ML modules
go back at least to SML [34], with foundational work on translu-
cent signatures by Harper and Lillibridge [29] and Leroy [32].
MixML [20] drops the stratification requirement and enables mod-
ules as first-class values.
Other Related Languages Other calculi related to path-dependent
types include the family polymorphism of Ernst [21], Virtual



Classes [23, 22, 39, 25], and ownership type systems like Tribe [15,
12]. Like System D, pure type systems [11] unify term and type
abstraction. Extensions of System F<: related to DOT include in-
tersection types and bounded polymorphism [42] and higher-order
subtyping [50, 1]. Subtyping has also been combined with depen-
dent types albeit without polymorphism [9], motivated by applica-
tions in the context of logical frameworks.

8. Conclusions
We presented type soundness proofs with definitional interpreters,
reviewing a proof strategy on STLC, scaling it to System F<:, and
leading all the way to DOT via the System D Square. For this
approach, one defines static typing on terms and runtime typing
on values, ensuring that static typing approximates runtime typing.
For existing systems, the approach thus focuses the creative search
for a soundness proof in devising an appropriate runtime typing on
values. For novel systems or extensions, the approach suggests first
working out the runtime typing and gradually exposing it into the
static typing. We have seen how DOT emerges from System F<:

through relatively gentle extensions in the System D Square. This
naturally raises the question what other interesting type systems
can arise by devising suitable static rules from the runtime ones
given by the interpreter and environment structures of interesting
languages. We believe this is an exciting new research angle.
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A. Mechanization in Coq
We outline the correspondence between the formalism on paper and its implementation in Coq (popl17.namin.net). The Coq package
contains individual files for each of the type system variants described in this paper (fsub.v, fsubsup.v, etc).

A.1 Model

A.1.1 Syntax
The syntax in the paper maps to Coq definitions as follows:

ty S, T, U ::= Type
TTop > top type
TBot ⊥ bottom type
TMem S U Type : S..U type member
TFun S U (x : S)→ Ux (dependent) function type
TSel X x.Type type selection
TBind T {z ⇒ T z} recursive self type
TAnd T T T ∧ T intersection type
TOr T T T ∨ T union type

tm t, u ::= Term
tvar b x x variable reference
ttyp T Type T type value
tabs T t λx : T.t function abstraction
ttabs T t ΛX <: T.t type function abstraction
tapp t t t t function invocation
ttapp t T t [T ] type function invocation

dms d
For representing variable names in relation to an environment, we use a reverse de Bruijn convention, so that the name is invariant under

environment extension. An environment is a list of right-hand sides. The older the binding, the more to the right, the smaller its number name.
The name is uniquely determined by the position in the list as the length of the tail (see indexr ).

In addition, for types, we use a locally-nameless de Bruijn convention for variables under dependent types so that it’s easy to substitute
binders without variable capture. A variable x bound in T x by a dependent function type (x : S) → T x (or type abstraction for F<:) is
represented by TVarB i where i is the de Bruijn level, i.e. the number of other binders in scope in between a bound variable occurrence and
its binder.

A.1.2 Type System Judgements

stp Γ S U n Γ ` S <: U Subtyping
has_type Γ t T Γ ` t : T Typing
stp2 b H1 T1 H2 T2 J n J ` H1 T1 <: H2 T2 Runtime Subtyping (b: transitivity, n: size)
val_type H v T H ` v : T Runtime Value Typing

The argument n in the runtime subtyping judgement denotes the size of the derivation. The boolean flag b denotes whether transitivity can be
used at the top level of the derivation.

As we mention in Section 2, we omit routine well-formedness checks from the rules on paper for readability. In Coq, these correspond to
closed conditions, which ensure that all the variables in a type are well-bound for the given environment and binding structure. The relation
closed k |J | |H| T ensures that T is well-bound in a context H , abstract environment J and under at most ≤ k binders.

A.2 Soundness Proofs
The Coq package contains the following source files:

1. stlc.v — Simply-Typed Lambda Calculus

2. fsub.v — F<: type soundness

3. fsub_equiv.v — F<: equivalence with Small-Step

4. fsub_mut.v — F<: with Mutable References

5. fsub_exn.v — F<: with Exceptions

6. fsubsup.v — F<:> from the System D Square

7. dsubsup.v — D<:> from the System D Square

8. dot.v — DOT type soundness

These correspond to individuals Definitions, Lemmas, and Theorems in the paper as outlined below.

A.2.1 Figures and Definitions
1. (STLC: syntax and semantics) — file stlc.v

2. (F<:: syntax and static semantics) — file fsub.v

3. (F<:: small-step semantics (call-by-value)) — file fsub_equiv.v
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4. (F<:: runtime typing) — file fsub.v

5. (The System D Square: syntax and static semantics) — files fsubsub.v, dsubsub.v

6. (D<:>: runtime typing (excerpt)) — file dsubsub.v

A.2.2 Lemmas
1. (Primitives) — not used, since we do not model primitive operations

2. (Lookup) — corresponds to Lemma indexr_safe_ex

3. (Eval) — corresponds to Theorem full_safety

4. (Static to Runtime Subtyping ) — corresponds to Lemma stp_to_stp2

5. (Abstract to Concrete Substitution for Subtyping ) — corresponds to Lemma stp2_substitute

6. (Inversion of Value Typing for Term Abstraction ) — corresponds to Lemma invert_abs

7. (Inversion of Value Typing for Type Abstraction) — corresponds to Lemma invert_tabs

8. (Inversion of Runtime Subtyping for Function Types ) — corresponds to Coq’s Inversion after eliminating transitivity via Lemma stpd2_upgrade

9. (Inversion of Runtime Subtyping for ∀ Types ) — same as above

10. (Narrowing) — corresponds to Lemma stpd2_narrow

11. (Transitivity Pushback) — corresponds to Lemma stpd2_untrans

12. (Inversion of Value Typing for Store Location) — corresponds to Lemma invert_loc in file fsub_mut.v

A.2.3 Theorems
1. (Soundness of STLC) — corresponds to Theorem full_safety in file stlc.v

2. (Semantic Equivalence) — file fsub_equiv.v: in Coq, we first prove equivalence between big-step environment and substitution-based evaluators
(Theorem big_env_subst) and then equivalence of big-step substitution with small-step evaluation (big_to_small, small_to_big). We plan to make
this clearer in the paper.

3. (Soundness of F<:) — corresponds to Theorem full_safety in file fsub.v:

4. (Soundness of F<: with Mutable References) — corresponds to Theorem full_safety in file fsub_mut.v

5. (Soundness of F<: with Exceptions) — corresponds to Theorem full_safety in file fsub_exn.v
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