
Conditional independence testing based on a nearest-neighbor
estimator of conditional mutual information

Abstract

Conditional independence testing is a funda-
mental problem underlying causal discovery
and a particularly challenging task in the
presence of nonlinear and high-dimensional
dependencies. Here a fully non-parametric
shuffle test based on conditional mutual
information is presented. Through a near-
est neighbor scheme it efficiently adapts
to highly heterogeneous distributions due
to strongly nonlinear dependencies. Nu-
merical experiments demonstrate that the
test reliably simulates the null distribution
even for small sample sizes and with high-
dimensional conditioning sets. Especially
for sample sizes below 2000 the test is bet-
ter calibrated than kernel-based tests and
reaches the same or higher power levels.
While the conditional mutual information
estimator scales more favorably with sam-
ple size than kernel-based approaches, a
drawback of the test is its computational
expensive shuffle scheme making more theo-
retical research to analytically approximate
the null distribution desirable.

1 Introduction

Conditional independence testing lies at the heart
of causal discovery (Spirtes et al., 2000) and at the
same time is one of its most challenging tasks. For
observed random variablesX,Y, Z, measuring thatX
and Y are independent given Z, denoted asX ⊥⊥ Y |Z,
implies that no causal link can exist between X and Y
under the relatively weak assumption of faithfulness
(Spirtes et al., 2000). In most real applications, a
finding of conditional independence is, thus, much
more trustworthy than the finding of dependence

from which a causal link only follows under stronger
assumptions (Spirtes et al., 2000).

Here we focus on the difficult case of continuous vari-
ables. While various conditional independence (CI)
tests exist if assumptions such as linearity or addi-
tivity are justified (for a numerical comparison see
Ramsey (2014)), here we focus on the general defini-
tion of CI implying that the conditional joint density
factorizes: p(X,Y |Z) = p(X|Z)p(Y |Z). Note that
wrong assumptions can lead to incorrectly detecting
CI (type II error, false negative), but also to wrongly
concluding on conditional dependence (type I error,
false positive).

Recent research has focused on the general case with-
out assuming a functional form of the dependencies as
well as the data distributions. One approach is to dis-
cretize the variable Z and make use of easier uncondi-
tional independence tests X ⊥⊥ Y |Z = z (Margaritis,
2005; Huang, 2010). However, this method suffers
from the curse of dimensionality for high-dimensional
conditioning sets Z.

On the other hand, kernel-based methods are known
for their capability to deal with high dimensions. A
popular test is the Kernel Conditional Independence
Test (KCIT) (Zhang et al., 2011) which essentially
tests for zero Hilbert-Schmidt norm of the partial
cross-covariance operator, or the Permutation CI
test (Doran et al., 2014) which solves an optimiza-
tion problem to generate a permutation surrogate on
which kernel two sample testing can be applied. Ker-
nel methods suffer from high computational complex-
ity since large kernel matrices have to be computed.
Strobl et al. (2017) present an orders of magnitude
faster CI test based on approximating kernel methods
using random Fourier features, called Randomized
Conditional Correlation Test (RCoT). Last, Wang
et al. (2015) proposed a conditional distance correla-
tion (CDC) test based on the correlation of distance



matrices between X,Y, Z which have been linked to
kernel-based approaches (Sejdinovic et al., 2013).

Kernel and distance methods in general require care-
fully adjusted bandwidth parameters that character-
ize the length scales between samples in the different
subspaces of X,Y, Z. These bandwidths are global
in each subspace in the sense that they are applied
on the whole range of values for X,Y, Z, respectively.
Additionally, the theoretical null distributions de-
rived for RCoT (Strobl et al., 2017) and CDC (Wang
et al., 2015) require potentially violated assumptions
for their finite sample approximations.

Our approach to testing CI is founded in an
information-theoretic framework. The conditional
mutual information is zero if and only if X ⊥⊥ Y |Z.
Our test combines the well-established Kozachenko-
Leonenko k-nearest neighbor estimator (Kozachenko
and Leonenko, 1987; Kraskov et al., 2004; Frenzel
and Pompe, 2007; Vejmelka and Paluš, 2008) with
a nearest-neighbor permutation shuffle test. Their
main advantage is that nearest-neighbor statistics are
locally adaptive: The hypercubes around each sample
point are smaller where more samples are available.
Unfortunately, few theoretical results are available for
the complex mutual information estimator. While
the Kozachenko-Leonenko estimator is asymptoti-
cally unbiased and consistent (Kozachenko and Leo-
nenko, 1987; Leonenko et al., 2008), the variance and
finite sample convergence rates are unknown. Hence,
our approach relies on a local permutation test that
is also based on nearest neighbors and, hence, data-
adaptive.

Our numerical experiments comparing our test with
KCIT, RCoT, and CDC show that the test reliably
simulates the null distribution even for small sample
sizes and with high dimensional conditioning sets.
It yields a better calibrated test than asymptotics-
based kernel tests such as KCIT or RCoT while
reaching the same or higher power levels. While
the conditional mutual information estimator scales
more favorably with sample size than kernel-based ap-
proaches or CDC by making use of KD-tree neighbor
search methods, a major drawback is its computa-
tionally expensive permutation scheme making more
theoretical research to analytically approximate the
null distribution desirable.

2 Conditional independence test

2.1 Conditional mutual information

Conditional mutual information (CMI) for contin-
uous and possibly multivariate random variables
X,Y, Z is defined as

IX;Y |Z

=

∫∫∫
dxdydz p(x, y, z) log

p(x, y|z)
p(x|z) · p(y|z)

(1)

= HXZ +HY Z −HZ −HXY Z , (2)

where H denotes the Shannon entropy. We wish to
test the following hypotheses:

H0 : X ⊥⊥ Y | Z (3)

H1 : X ��⊥⊥ Y | Z (4)

From the definition of CMI it is immediately clear
that IX;Y |Z = 0 if and only if X ⊥⊥ Y |Z. Shannon-
type conditional mutual information is theoretically
well-founded and its value is well interpretable as
the shared information between X and Y not con-
tained in Z. While this does not immediately matter
for a conditional independence test’s p-value, causal
discovery algorithms often make use of the test statis-
tic’s value, for example to sort the order in which
conditions are tested. CMI here readily allows for an
interpretation in terms of the relative importance of
one condition over another.

2.2 Nearest-neighbor CMI estimator

Inspired by Dobrushin (1958), Kozachenko and Leo-
nenko (1987) introduced a class of differential entropy
estimators that can be generalized to estimators of
conditional mutual information. This class is based
on nearest neighbor statistics as further discussed
in Kozachenko and Leonenko (1987); Frenzel and
Pompe (2007). For a DX -dimensional random vari-
able X the nearest neighbor entropy estimate is de-
fined as

ĤX = ψ(n) +
1

n

n∑
i=1

[
−ψ(kX,i) + log(εDX

i )
]

+ log(VDX
)

(5)

with the Digamma function as the logarithmic deriva-
tive of the Gamma function ψ(x) = d

dx ln Γ(x), sam-
ple length n, volume element V depending on the
chosen metric, i.e., VDX

= 2DX for the maximum
metric, VDX

= πDX/2/Γ(DX/2 + 1) for euclidean
metric with Gamma function Γ. For every sam-
ple with index i, the integer kX,i is the number of



points in the DX -dimensional ball with radius εi.
Formula (5) holds for any εi and the corresponding
kX,i, which will be used in the following definition of
a CMI estimator. Based on this entropy estimator,
Kraskov et al. (2004) derived an estimator for mutual
information where the epsilon balls with radius εi are
hypercubes. This estimator was generalized to an
estimator for CMI first by Frenzel and Pompe (2007)
and independently by Vejmelka and Paluš (2008).
The CMI estimator is obtained by inserting the en-
tropy estimator Eq. (5) for the different entropies
in the definition of CMI in Eq. (2). For all entropy
terms HXZ , HY Z , HZ , HXY Z in Eq. (2), we use the
maximum norm and choose as the side length 2εi
of the hypercube the distance εi to the k = kXY Z,i-
nearest neighbor in the joint space X ⊕ Y ⊕ Z. The
CMI estimate then is

ÎXY |Z

= ψ(k) +
1

n

n∑
i=1

[ψ(kZ,i)− ψ(kXZ,i)− ψ(kY Z,i)] .

(6)

The only free parameter k is the number of near-
est neighbors in the joint space of X ⊕ Y ⊕ Z and
kxz,i, kyz,i and kz,i are computed as follows for every
sample point indexed by i:

1. Determine (here in maximum norm) the distance
εi to its k-th nearest neighbor (excluding the
reference point which is not a neighbor of itself)
in the joint space of X ⊕ Y ⊕ Z.

2. Count the number of points with distance
strictly smaller than εi (including the reference
point at i) in the subspace X ⊕ Z to get kxz,i,
in the subspace Y ⊕ Z to get kyz,i, and in the
subspace Z to get kz,i.

Similar estimators, but for the more general class of
Rényi entropies and divergences, were developed in
Wang et al. (2009); Schneider and Póczos (2012). Es-
timator (6) uses the approximation that the densities
are constant within the epsilon environment. There-
fore, the estimator’s bias will grow with k since larger
k lead to larger ε-balls where the assumption of con-
stant density is more likely violated. The variance,
on the other hand, is the more important quantity
in conditional independence testing and it becomes
smaller for larger k because fluctuations in the ε-balls
average out. The decisive advantage of this estima-
tor compared to fixed bandwidth approaches is its
data-adaptiveness.

The Kozachenko-Leonenko estimator is asymptoti-
cally unbiased and consistent (Kozachenko and Leo-
nenko, 1987; Leonenko et al., 2008). Unfortunately,
at present there are no results, neither exact nor
asymptotically, on the distribution of the estimator
as needed to derive analytical significance bounds.
In Goria and Leonenko (2005), some numerical ex-
periments indicate that for many distributions of
X, Y the asymptotic distribution of MI is Gaussian.
But the important finite size dependence on the di-
mensions DX , DY , DZ , the sample length n and the
parameter k are unknown.

Some notes on the implementation: Before estimating
CMI, we rank-transform the samples individually in
each dimension: Firstly, to avoid points with equal
distance, small amplitude random noise is added
to break ties. Then, for all n values x1, . . . , xn, we
replace xi with the transformed value r, where r is
defined such that xi is the rth largest among all x
values. The main computational cost comes from
searching nearest neighbors in the high dimensional
subspaces which we speed up using KD-tree neighbor
search. Hence, the computational complexity will
typically scale less than quadratically with the sample
size. Kernel methods, on the other hand, typically
scale worse than quadratically in sample size (Strobl
et al., 2017). Further, the CMI estimator scales
roughly linearly in k and D, the total dimension of
X,Y, Z.

2.3 Nearest-neighbor permutation test

X

Y

Z

Figure 1: Schematic of local permutation scheme.
Each sample point i’s x-value is mapped randomly
to one of its kshuff -nearest neighbors in subspace Z.
The hypercubes with length scale εi locally adapt to
the density making this scheme more data efficient
than fixed bandwidth techniques. By keeping track of
already ‘used’ indices j, we approximately achieve a
random draw without replacement, see Algorithm 1.



Since no theory on finite sample behavior of the CMI
estimator is available, we resort to a permutation-
based generation of the distribution under H0.

Typically in CMI-based independence testing, CMI-
surrogates to simulate independence are generated
by randomly shuffling all values in X. The problem
is, that this approach not only destroys the depen-
dence between X and Y , as desired, but also destroys
all dependence between X and Z. Hence, this ap-
proach does not actually test X ⊥⊥ Y | Z. In order
to preserve the dependence between X and Z, we
propose a local permutation test utilizing nearest-
neighbor search. To avoid confusion, we denote the
CMI-estimation parameter as kCMI and the shuffle-
parameter as kshuff .

As illustrated in Fig. 1, we first identify the kshuff -
nearest neighbors around each sample point i (here in-
cluding the point itself) in the subspace of Z using the
maximum norm. With Algorithm 1 we generate a per-
mutation mapping π : {1, . . . , n} → {π(1), . . . , π(n)}
which tries to achieve draws without replacement.
Since this is not always possible, some values might
occur more than once, i.e., they were drawn with
replacement as in a bootstrap. In Paparoditis and
Politis (2000) a bootstrap scheme that always draws
with replacement is described which is used for the
CDC independence test. Since we rank-transform the
data in the CMI estimation, which is also based on
nearest-neighbor distances, we try to avoid tied sam-
ples as much as possible to preserve the conditional
marginals.

Algorithm 1 Algorithm to generate a nearest-
neighbor permutation π(·) of {0, 1, . . . , n}.
1: Denote by dkshuff

i the distance of sample point zi
to its kshuff -nearest neighbor (including i itself,
i.e., dkshuff=1

i = 0)
2: Compute list of nearest neighbors for each sample

point: Ni = {l ∈ {0, . . . , n} : ‖zl − zi‖ ≤ dkshuffi }
with KD-tree algorithm in maximum norm of
subspace Z

3: Shuffle Ni for each i
4: Initialize empty list U = {} of used indices
5: for all i ∈ random permutation of {1, . . . , n} do
6: j = Ni(0)
7: m = 0
8: while j ∈ U and m < kshuff − 1 do
9: m = m+ 1

10: j = Ni(m)

11: π(i) = j
12: Add j to U
13: return {π(1), . . . , π(n)}

The permutation test is then as follows:

1. Generate random permutation x∗ =
{xπ(1), . . . , xπ(n)} with Algorithm 1

2. Compute surrogate CMI Î(x∗; y|z) via Eq. (6)

3. Repeat steps (1) and (2) B times, sort the sur-

rogate values Îb and obtain p-value by

p =
1

B

B∑
b=1

1Îb≥Î(x;y|z) , (7)

where 1 denotes the indicator function.

The CMI estimator holds for arbitrary dimensions
of all arguments X,Y, Z and also the local permuta-
tion scheme can be used to jointly shuffle all of X’s
dimensions. In the following numerical experiments,
we focus on the case of univariate X and Y and uni-
or multivariate Z.

3 Experiments

3.1 Choosing kCMI and kshuff

Our approach has two free parameters kCMI and
kshuff . The following numerical experiments indicate
that restricting kshuff to only very few nearest neigh-
bors already suffices to reliably simulate the null
distribution in most cases while for kCMI we derive
a rule-of-thumb based on the sample size n.

Figure 2 illustrates the effect of different kshuff . If
kshuff is too large or even kshuff = n, the shuffle distri-
bution under independence (red) is negatively biased.
As illustrated by the red markers, this would lead to
an increase of false positives (type-I error). On the
other hand, for the dependent case, if kshuff = 1..3,
the shuffle distribution is positively biased yielding
lower power (type-II errors). For a range of optimal
values of kshuff , the shuffled distribution perfectly
simulates the true null distribution.

To evaluate the effect of kCMI and kshuff numeri-
cally, we followed the post-nonlinear noise model
described in Zhang et al. (2011); Strobl et al.

(2017) given by X = gX(εX + 1
DZ

∑DZ

i Zi), Y =

gY (εY + 1
DZ

∑DZ

i Zi), where Zi, εX , εY have jointly
independent standard Gaussian distributions, and
gX , gY denote smooth functions uniformly chosen
from (·), (·)2, (·)3, tanh(·), exp(|| · ||2). Thus, we have
X ⊥⊥ Y | Z = (Z1, Z2, . . .) in any case. To simulate
dependent X and Y , we used X = gX(cεb + εX),
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Figure 2: Simulation to illustrate the effect of the
nearest-neighbor shuffle parameter kshuff . The true
null distribution of CMI is depicted as the orange
surface with the 5% quantile marked by a red straight
line. The true distribution under dependence is
drawn as a grey surface. The red and black distribu-
tions and markers give the shuffled null distributions
and their 5% quantiles for different kshuff for the
independent (red) and dependent (black) case, re-
spectively. Here the sample size is n = 1000 such
that kshuff = 1000 corresponds to a full non-local
permutation.

Y = gY (cεb + εY ) for c > 0 and identical Gaussian
noise εb and keep Z independent of X and Y .

In Fig. 3, we show results for sample size n =
1000. The null distribution was generated with
B = 1000 surrogates in all experiments. The re-
sults demonstrate that a value kshuff ≈ 5..10 yields
well-calibrated tests while not affecting power much.
This holds for a wide range of sample sizes as shown
in Fig. 9.

Larger kCMI yield more power and even for kCMI ≈
n/2 the tests are still well calibrated. But power
peaks at some value of kCMI and slowly decreases
for too large values. Still, the dependency of power
on kCMI is relatively robust and we suggest a rule-
of-thumb of kCMI ≈ 0.1..0.2n. Note that, as shown
in Fig. 4, runtime increases linearly with kCMI while
kshuff does not impact runtime much.

3.2 Comparison with KCIT and RCoT

In Fig. 5 we show results comparing our CMI test
(CMIT) to KCIT and RCoT (Strobl et al., 2017). We

used the rule-of-thumb kCMI = 0.2n and kshuff = 5
with B = 1000 permutation surrogates. As a met-
ric for type-I errors, as in Strobl et al. (2017) we
evaluated the Kolmogorov-Smirnov (KS) statistic to
quantify how uniform the distribution of p-values
is. For type-II errors we measure the area under
the power curve (AUPC). All metrics were evalu-
ated from 1000 realizations and error bars give the
boostrapped standard errors.

Figure 5 demonstrates that CMIT is better cali-
brated with the lowest KS-values for almost all sam-
ple sizes tested. KCIT is especially badly calibrated
for smaller sample sizes or higher dimensions DZ and
RCoT better approximates the null distribution only
for n ≥ 500 for DZ = 1 and for n ≥ 1000 for DZ = 8.
Note that this is also expected (Strobl et al., 2017)
since the analytical approximation of the null distri-
bution for KCIT and RCoT requires large sample
sizes. The power as measured by AUPC is, thus only
comparable for n > 500 for DZ = 1 and CMIT has
the highest power throughout. Also for DZ = 8 and
n ≥ 1000 CMIT has higher power than RCoT. The
other side of the story is that the runtime of CMIT
is much higher due to the computationally expensive
permutation scheme. Note that each single CMI es-
timate comes at a lower computational complexity
compared to KCIT, but not necessarily compared to
RCoT whose runtime also depends on the number
of random Fourier features used (here the default
of 25 for subspace Z and 5 for subspaces X and Y
was used). If a permutation scheme is utilized for
KCIT and RCoT, their advantage of a faster runtime
vanishes.

Another drawback of kernel-based methods is illus-
trated in Fig. 6 where we consider a multiplica-
tive noise case with the model X = gX(0.1ε′X +

εX
1
DZ

∑DZ

i Zi), Y = gY (0.1ε′Y + εY
1
DZ

∑DZ

i Zi)
with all variables as before and ε′X,Y another indepen-
dent Gaussian noise term. Even though the density
is highly localized in this case, CMIT is still well
calibrated for kshuff ≈ 5. On the other hand, RCoT
(shown with blue markers in Fig. 6) cannot control
false positives even if we vary the number of Fourier
features to much higher values (which takes much
longer) because it doesn’t resolve the heterogeneous
density.

For an extremely oscillatory sinusoidal dependency
like X = sin(λZ) + εX and Y = sin(λZ) + εY , shown
in Fig. 7, kshuff needs to be set to a very small value
in order to control false positives. Here RCoT does
not work at all.
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Figure 3: Numerical experiments with post-nonlinear noise model (Zhang et al., 2011; Strobl et al., 2017).
The sample size is n = 1000 and 1000 realizations were generated to evaluate false positives (fpr) and true
positives (tpr) for c = 0.5 at the 5% significance level. Shown are fpr and tpr for DZ = 1 (two left panels)
and DZ = 8 (two right panels).
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Figure 4: Runtime for the same setup as in the right
panel of Fig. 3. For kshuff = n a computationally
cheaper full permutation scheme was used.

3.3 Comparison with CDC

In Tab. 1 we repeat the results from Wang et al.
(2015) proposing the CDC test together with results
from RCoT and our CMI test. The experiments are
described in Wang et al. (2015). Examples 1–4 cor-
respond to conditional independence and Examples
5–8 to dependent cases. CMIT has well-calibrated
tests except for Example 4 (as well as Example 8)
which is based on discrete Bernoulli random vari-
ables while the CMI test is designed for continuous
variables. For Examples 5–8 CMIT has competitive
power compared to CDC and outperforms KCIT in
all and RCoT in all but Example 5 where they reach
the same performance. Note that the CDC test also
is based on a computationally expensive local per-
mutation scheme since the asymptotics break down
for small sample sizes.

4 Real data application

We apply CMIT in a time series version of the PC
causal discovery algorithm [reference hidden in review
to preserve anonymity] to investigate dependencies
between hourly averaged concentrations for carbon

monoxide (CO), benzene (C6H6), total nitrogen ox-
ides (NOx), nitrogen dioxide (NO2), as well as tem-
perature (T), relative humidity (RH) and absolute
humidity (AH) taken from De Vito et al. (2008)1.
The time series were smoothed using a Gaussian ker-
nel smoother with bandwidth σ = 1440 hours and
we limited the analysis to the first three months of
the dataset (2160 samples). After accounting for
missing values we obtain an effective sample size of
n = 1102. As in our numerical experiments, we used
the CMIT parameters kCMI = 200 and kshuff = 5
with B = 1000 permutation surrogates. The causal
discovery algorithm was run including lags from τ = 1
up to τmax = 3 hours. The resulting graph at a 10%
FDR-level shown in Fig. 8 indicates that tempera-
ture and relative humidity influence Benzene which
in turn affects NO2 and CO concentrations.

5 Conclusion

We presented a novel fully non-parametric conditional
independence test based on a nearest neighbor esti-
mator of conditional mutual information. Its main
advantage lies in the ability to adapt to highly lo-
calized densities due to nonlinear dependencies even
in higher dimensions. This feature results in well-
calibrated tests with reliable false positive rates. We
tested setups for sample sizes n = 50 to n = 2000
and dimensions of the conditional set of DZ = 1..10.
The power of CMIT is comparable to advanced ker-
nel based tests such as KCIT or its faster random
Fourier feature version RCoT, which, however, are
not well-calibrated in the smaller sample limit. CMI
has a lower computational complexity than KCIT
since efficient nearest-neighbor search schemes can
be utilized, but relies on a permutation scheme since
no analytics are known for the null distribution. The
permutation scheme leads to a higher computational
load which, however, can be easily parallelized. Nev-

1http://archive.ics.uci.edu/ml/datasets/Air+Quality
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Figure 5: Numerical experiments with post-nonlinear noise model and similar setup as in Strobl et al. (2017).
Shown are KS (left column), AUPC (center column), and runtime (right column) for a sample size experiment
with DZ = 1 (top row) and DZ = 8 (center row), as well as an experiment for different condition dimensions
DZ with fixed n = 1000 (bottom row). In all experiments we set kCMI = 0.2n and kshuff = 5. CMIT is
better calibrated also for small sample sizes and has power on par or higher than RCoT. Note that the higher
runtime of CMIT is due to the permutation scheme, each single CMI estimate is much faster than KCIT, but
still mostly slower than RCoT depending on RCoT’s parameters.

ertheless, more theoretical research is desirable to
obtain approximate analytics for the null distribu-
tion.
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Figure 6: Example of multiplicative dependence of X
and Y on Z leading to strongly nonlinear structure
(top panel). Here X ⊥⊥ Y | Z and the nearest-
neighbor scheme of CMIT can better adapt to the
very localized density for DZ = 1 (left) and DZ = 2
(right) with kshuff < 7 while RCoT cannot control
false positives for DZ = 2 even if we resolve smaller
scales better using a larger number of Fourier features
(blue markers) in Z.
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Figure 7: Example of sinusoidal dependence X =
sin(λZ) + εX and Y = sin(λZ) + εY leading to
strongly oscillatory structure (top panel for λ = 20).
The bottom shows results for frequencies λ = 20 (left)
and λ = 30 (right). Here again X ⊥⊥ Y | Z and
the nearest-neighbor scheme of CMIT only works for
very small kshuff = 3 while RCoT cannot be made to
control false positives at all.
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the cross-CMI with the link labels denoting the time
lag in hours.



Table 1: Results from Wang et al. (2015) together with results from RCoT and our CMI test. The experiments
are described in Wang et al. (2015). Examples 1–4 correspond to conditional independence showing false
positives and Examples 5–8 to dependent cases showing true positives at the 5% significance level. CMIT
was run with kCMI = 0.2n and kshuff = 5, 10.

Example 1 Example 2
Test 50 100 150 200 250 50 100 150 200 250
CDIT 0.035 0.034 0.05 0.057 0.048 0.046 0.053 0.055 0.048 0.058
CI.test 0.041 0.051 0.037 0.054 0.041 0.062 0.046 0.044 0.045 0.039
KCI.test 0.039 0.043 0.041 0.04 0.046 0.035 0.004 0.037 0.047 0.05
Rule-of-thumb 0.017 0.027 0.028 0.033 0.033 0.034 0.052 0.044 0.042 0.045
RCoT 0.074 0.059 0.055 0.043 0.050 0.056 0.056 0.069 0.055 0.073
CMIT (kshuff = 5) 0.064 0.055 0.050 0.053 0.045 0.076 0.060 0.074 0.061 0.065
CMIT (kshuff = 10) 0.058 0.061 0.057 0.058 0.046 0.075 0.066 0.053 0.057 0.071

Example 3 Example 4
Test 50 100 150 200 250 50 100 150 200 250
CDIT 0.035 0.048 0.055 0.053 0.043 0.049 0.054 0.051 0.058 0.053
CI.test 0.222 0.363 0.482 0.603 0.677 0.043 0.064 0.066 0.05 0.053
KCI.test 0.058 0.047 0.057 0.061 0.054 0.037 0.035 0.058 0.039 0.049
Rule-of-thumb 0.019 0.038 0.032 0.039 0.039 0.037 0.04 0.055 0.059 0.053
RCoT 0.074 0.047 0.046 0.053 0.054 0.115 0.072 0.066 0.061 0.053
CMIT (kshuff = 5) 0.044 0.043 0.046 0.046 0.054 0.084 0.071 0.067 0.079 0.070
CMIT (kshuff = 10) 0.063 0.065 0.061 0.076 0.067 0.101 0.113 0.106 0.098 0.084

Example 5 Example 6
Test 50 100 150 200 250 50 100 150 200 250
CDIT 0.898 0.993 1 1 1 0.752 0.995 1 1 1
CI.test 0.978 1 1 1 1 0.468 0.434 0.467 0.476 0.474
KCI.test 0.158 0.481 0.557 0.602 0.742 0.296 0.862 0.995 1 1
Rule-of-thumb 0.368 0.793 0.927 0.983 0.994 1 1 1 1 1
RCoT 0.817 0.986 0.998 1 1 0.301 0.533 0.679 0.807 0.860
CMIT (kshuff = 5) 0.782 0.981 0.998 1 1 0.806 0.997 0.999 1 1
CMIT (kshuff = 10) 0.855 0.995 1 1 1 0.805 0.995 1 1 1

Example 7 Example 8
Test 50 100 150 200 250 50 100 150 200 250
CDIT 0.918 0.998 1 1 1 0.361 0.731 0.949 0.977 0.994
CI.test 0.953 0.984 0.983 0.995 0.987 0.456 0.476 0.464 0.461 0.485
KCI.test 0.574 0.947 0.998 1 1 0.089 0.401 0.685 1 1
Rule-of-thumb 0.073 0.302 0.385 0.514 0.515 0.043 0.233 0.551 0.851 0.972
RCoT 0.594 0.880 0.962 0.985 0.991 0.275 0.392 0.470 0.624 0.654
CMIT (kshuff = 5) 0.753 0.963 0.992 0.997 1 0.302 0.644 0.804 0.916 0.958
CMIT (kshuff = 10) 0.798 0.976 0.999 0.999 0.999 0.323 0.680 0.832 0.920 0.971
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Figure 9: Same as in Fig. 3, but for more sample sizes from n = 50 (top) to n = 1000 (bottom).
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