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Abstract

Most causal learning algorithms for time se-
ries data assume that the underlying generative
process operates on approximately the same
timescale as the measurement process (or that
any differences do not impede learning). This
assumption fails in many domains, and so we
first show that undersampling creates learn-
ing challenges at the measurement timescale,
even for simple generative processes. We
then describe four algorithmic generalizations
(some previously proposed, none previously
tested)—two for continuous data, and two for
either continuous or discrete data—and test
them on simulated data. The results suggest
that measurement timescale structure learning
from undersampled time series data is feasi-
ble, but the appropriate model class needs to
be used. Moreover, explicitly representing the
possibility of undersampling can yield valu-
able regularization benefits.

1 INTRODUCTION

Time series data play a key role in many scientific prob-
lems. Standard methods for learning (causal) structure
and parameters in dynamic time series assume that ei-
ther the data generation timescale is approximately sim-
ilar to the data measurement timescale, or any mismatch
does not create novel learning challenges, even at the
measurement level. However, many scientific problems
involve significant differences between the generation
and measurement timescales. For example, standard
fMRI methods measure the brain’s BOLD signal (be-
lieved to be a complex effect of underlying neural activ-
ity) roughly every two seconds, but neural activity almost
certainly operates at a much faster timescale. The ques-

tion thus arises: does timescale mismatch lead to distinc-
tive learning challenges (beyond the “usual” statistical
issues), even at the measurement level?1

More precisely, we focus on cases of undersampling
in which the measurement timescale is slower than the
generation timescale. We first show (in Section 2.1)
that undersampling causes novel learning/parameter es-
timation problems for one of the most common mod-
els of data generation. In light of this result, we de-
scribe (Section 2.2) methods to learn the measurement
timescale dependency structure, and test them in exten-
sive simulations (Section 3.1). Finally, we conclude
(Section 3.2) by examining what can be learned about
the generative timescale structure from these measure-
ment timescale data. Several algorithms have recently
been developed to infer causal timescale structures from
undersampled data [4, 6, 10, 11], but tests of those algo-
rithms used (without evaluation) single methods for mea-
surement timescale learning. We thus ask whether some
of the present algorithms yield outputs that are superior
for causal timescale estimation,2 and whether use of such
algorithms provides a “regularization” benefit that im-
proves measurement timescale estimation.

2 MODELS AND ALGORITHMS

2.1 VAR MODELS AND UNDERSAMPLING

Let X = 〈X(1), . . . , X(v)〉 be a set of random variables.
A standard framework for (discrete-time) dynamical sys-
tems is the Vector AutoRegression (VAR) model, whose
simplest form is:

Xt = A1Xt−1 + . . .+ AlXt−l + et (1)

1Of course, there are many additional challenges in causal
learning from fMRI data.

2In theory, algorithmAmight have more total errors than al-
gorithm B at the measurement timescale, but A’s errors might
be less problematic for causal timescale estimation.



where subscripts denote timesteps; Ai is a matrix encod-
ing the direct impact of Xt−i on Xt; and et is the vector
of serially uncorrelated noise factors with simultaneous
covariance matrix Σ.

Let PM(Xt|Xt−1, . . . ,Xt−l) be the conditional distri-
bution induced by VAR modelM. We follow standard
practice and assume only that PM is stationary; P (Xt)
need not be stationary over time. Σ is assumed to be
diagonal; non-diagonal Σ correspond to structural vec-
tor autoregression models, which we address later. The
maximum l (lmax) such that Ar = 0 for all r > lmax is
the order of the VAR model. Provably, undersampling
does not increase the order of a VAR model, and so the
measurement timescale order is the same as at the causal
timescale [2]. For simplicity, we focus here on first-order
(lmax = 1) VAR models with A1 = A.

A encodes the influence of the previous timestep on the
current time, and can be represented as a directed acyclic
graph G over nodes for Xt and Xt−1 with X(j)t−1 →
X(i)t iff Aij 6= 0. We use both matrix and graph lan-
guage as appropriate. Define the density ρ of A (or G) to
be the fraction of non-zero elements (or present edges).

Let D1 = {X0,X1, . . .} be the data at the timescale of
the underlying VAR model. These data are undersam-
pled at rate u when Du = {X0,Xu, . . . ,Xku, . . .} for
k ∈ Z+. In general, superscripts will denote undersam-
ple rate. We also use superscripts to modify time indices;
for example, (t − 1)u denotes the previous time step in
Du, which corresponds to t− u in D1.

Suppose D1 is generated from PM(Xt|Xt−1) for VAR
modelM. One key question for measurement timescale
learning is whether there is always a VAR model Mu

such that PMu can fit Du (in the large sample limit).
Theorem 2.1 provides a negative answer to this question:
frequently (though not always), there is no VAR model
for undersampled data. That is, VAR models are not gen-
erally “closed” under the operation of undersampling.

Theorem 2.1. Let M be a first-order VAR with
PM(Xt|Xt−1). For u > 1, there is a first-order VAR
Mu such that PMu(Xt|X(t−1)u) = PM(Xt|Xt−u) if
and (almost always) only if there is no c with Aic, Ajc 6=
0 for i 6= j (i.e., G has no X(i)t ← X(c)t−1 → X(j)t
structures).

Proof. LetM be an arbitrary first-order VAR (so multi-
variate Gaussian). After algebra,M undersampled by u
yields (see also [4]):

Xt = (A)uXt−u +

u−1∑
i=0

(A)iet−i (2)

By assumption, Xt−u is independent of et−i for i ≤

u, and so there is a suitable VAR model Mu iff∑u−1
i=0 (A)iet−i = ft has the correct noise properties.

ft must be serially uncorrelated since the et are. Thus,
we must determine if Σf is diagonal, which will hold iff
each e(j)t−i occurs in the expansion for (at most) one
f(k)t.

(⇐) Assume there is no appropriate c. Expansion of the
summed et−i shows that each e(c)t−i occurs in at most
one f(j)t, and so Σf is diagonal.

(⇒) Assume there is such a c. Thus, at least one e(c)t−1
will occur in multiple f(k)t expansions. Those terms
will cancel out of all-but-one f(k)t expansion only if
the relevant A entries (perhaps exponentiated) exactly
balance; such exact parameter balancing happens for
only Lebesgue measure zero of A-parameter space [9].
Hence, there is almost always no such c.

Although VAR models are not closed under undersam-
pling, they might nonetheless be able to approximate
undersampled time series arbitrarily closely. To test
for this possibility, we randomly produced 1000 stable
VAR models with 20 variables and edge/matrix density
ρ = 0.2; generated 4000 samples; undersampled that
datastream at u ∈ {1, 2, 3, 4}; and then used only the
first 1000 datapoints of each data series (regular and un-
dersampled) to estimate an optimal VAR model. Fig-
ure 1 shows BIC scores of the final models for each u,3

where the variability of those scores encodes model se-
lection uncertainty [12]. Notably, the score distributions
for each u are significantly different from each other,
with BIC increasing as u increases. These large differ-
ences in BIC score distributions vividly demonstrate that
undersampling results in data that are outside of the VAR
model class, and sometimes very far outside.
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Figure 1: Model selection uncertainty (distribution of
BIC scores) for VAR models given undersampled data.

Estimation of a VAR model is insufficient for modeling
undersampled time series, even when the data were truly
generated by a VAR model, so we must consider alterna-
tive models. Recall that the qualitative structure of VAR
M can be represented by DAG G1 over 2X (nodes for
every X(i)t−1 and X(i)t), and edges corresponding to

3All models have the same number of parameters, so data
likelihoods would make the same point.



non-zero A entries. In contrast, the relevant graphical
model class for Gu has 2X nodes for Xt and X(t−1)u ,
which need not be Xt−1. More importantly, this graph
can have both (1) X(i)(t−1)u → X(j)t iff there is a di-
rected path X(i)t−u → . . . → X(j)t in G1; and (2)
X(i)t ↔ X(j)t iff there is X(i)t ← . . . X(c)t−k . . .→
X(j)t in G1 for k < u [2]. The bidirected edges cap-
ture the non-diagonal et correlation structure described
in Theorem 2.1.

These graphical models correspond to Structural VAR
(SVAR) models, and there are efficient algorithms for
parameter estimation given the graphical structure. How-
ever, there has been almost no research on SVAR struc-
ture learning algorithms. We now turn to exploring mul-
tiple such methods, and also testing their measurement
timescale performance on simulated data (Section 3.1),
where we are able to determine the “ground truth” for
undersampled structure using the forward inference al-
gorithm of Danks and Plis [2].

2.2 GENERALIZED ALGORITHMS

Prior structure learning research involving undersam-
pled data has focused on algorithms for inferring causal
timescale structure from measurement timescale in-
puts [4, 6, 10, 11]. As such, those papers used
measurement timescale structure learning algorithms,
though none of them tested the performance of those
methods at the measurement timescale. We describe
four generalizations of existing time series structure
learning algorithms—three that have previously been
mentioned—that accomodate the possibility of under-
sampled data.

As noted above, the key graphical impact of undersam-
pling is to produce bidirected edges, and so the general-
ized algorithms all search for not only directed between-
time edges, but also bidirected within-time edges. For
the purposes of this paper, we have assumed that the gen-
erating structure is a VAR model (though we relax that
assumption in Section 3.1), and so all four algorithms can
be used on continuous-valued data. Two algorithms can
also be applied to discrete-valued data, and we explain
the necessary adjustments in the appropriate sections.

2.2.1 SVAR Estimation

For linear Gaussian data, undersampled data can be rep-
resented as a first-order SVAR model [3, 7]:

Xt = BXt + AX(t−1)u + εt (3)

where the diagonal elements of B are normalized to 1
and elements of εt are independent. In general, this
model is underdetermined. When the SVAR results from

undersampling, however, Gu will have only bidirected
within-time edges which are symmetric, and the corre-
sponding within-time matrix B must also be symmetric
(non-zero B entries for bidirected edges). Non-zero A
entries encode between-timestep directed edges.

Given Du, we can directly estimate the SVAR model
structure as done in [10] by finding the A,B that opti-
mize the log-likelihood of the data, subject to two con-
straints: symmetry of B, and small matrix entries made
into (structural) zeroes. Precise mathematical formula-
tions are provided in Eqs. (4)-(6), where X−1 denotes
the values of X shifted one step back relative to X.

lnLc(A,B) ∝ T ln |B| − 1

2
trace(ΣXBTB) (4)

ΣX = YYT (5)
Y = X−AX−1, (6)

2.2.2 Score-based Graph Search

We also examined existing graphical structure search al-
gorithms, though adapted for potentially undersampled
data. Score-based search procedures find the graph that
maximizes some score, typically likelihood-based. We
adapted the FGS algorithm4—a computationally effi-
cient version of Greedy Equivalence Search (GES)—that
searches through the space of (graph) equivalence classes
in a greedy fashion based on BIC score. Despite being
a greedy search, FGS/GES is correct in the large sample
limit [1].

In general, the true measurement timescale graph Gu
can have bidirected edges, but FGS cannot output such
edges. Thus, no simple adaptation can be provably cor-
rect for all possible data. We instead considered more
heuristic adaptations of FGS that might nonetheless be
successful on smaller sample sizes.

The most straightforward way to adapt FGS is to not
search over graphs that posit impossible connections
(e.g., X(i)t → X(j)t−1), and then adjust any within-
time edges. In preliminary investigations, however, we
found that this adjustment led to a fractured search space,
and so the algorithm was frequently trapped at a local
maximum, typically a very sparse graph.

Instead, we adapted FGS by post-processing the output.
We first ran normal FGS for graphs over 2X, without
any constraints encoding temporal information. We then
transformed the FGS output graph GFGS into G by edge-
wise adjustments, as shown in Algorithm 1. The result-
ing algorithm provided the best overall error rates.

Appropriate scores have also been developed for
discrete-valued data, and Algorithm 1 can be easily

4We used the python-wrapped version of FGS from Tetrad.



Algorithm 1: Modified FGS Algorithm
Data: Du = {X0,Xu, . . . ,Xku, . . .} for unknown u
Output: Gu
// run FGS

1 GuFGS ← FGS(D);
// create output Gu

2 Gu ← empty graph over nodes for 2X;
// adjust FGS output

3 forall edges E ∈ GuFGS do
4 if E = X(i)t−1 → X(j)t then
5 add X(i)t−1 → X(j)t to Gu
6 else if E = X(i)t−1 ← X(j)t then
7 add X(i)t−1 → X(j)t to Gu
8 else if E = X(i)t → X(j)t then
9 add X(i)t ↔ X(j)t to Gu

10 return Gu

modified to use a different score in the first step. We
adapted GOBNILP, which uses local scores to find op-
timal graphs, as this adaptation performed best among a
range of potential adjustments that we considered.

2.2.3 Constraint-based Graph Search

Constraint-based search methods find the equivalence
class of graphs that predicts the pattern of indepen-
dencies and associations found in the data [14]. For
computational and statistical reasons, constraint-based
search algorithms do not compute every possible in-
dependence/association, but rather a dynamically deter-
mined set based on earlier results in the search algorithm.

The PC algorithm [14] has previously been adapted for
time series data [8], though that version assumed that the
measurement and causal/generative timescales were ap-
proximately equal. Thus, it will not necessarily work for
learning measurement timescale structure given under-
sampled data.

Instead, we used a version of the PC algorithm that (a)
starts with a graph containing only possible edges (rather
than the usual complete graph); and then (b) sequentially
attempts to remove directed then bidirected edges, in the
usual PC manner. Algorithm 2 provides more specific
details about the resulting algorithm.

For continuous data, we tested for (conditional) indepen-
dence using OLS regression, and judged independence
if the resulting coefficient was not significantly different
from zero. This version was previously used by [11],
though without any exploration of its performance on
measurement timescale data. For discrete-valued data,
we used a conditional χ2 test insted of OLS. These inde-
pendence tests are the same as those used in standard im-

Algorithm 2: Modified PC Algorithm
Data: Du = {X0,Xu, . . . ,Xku, . . .} for unknown u
Output: Gu
// create initial, complete Gu

1 Gu ← empty graph over nodes for 2X;
2 forall i, j ∈ {1, . . . , |X|} do
3 add X(i)t−1 → X(j)t to Gu;
4 if i 6= j then
5 add X(i)t ↔ X(j)t to Gu
// remove directed edges

6 for N ← 0 to |X| − 2 do
7 forall i, j s.t. X(i)t−1 → X(j)t in Gu do
8 forall S ⊆ pa(X(j)t) s.t. |S| = N do
9 if X(i)t−1⊥X(j)t|S then

10 remove X(i)t−1 → X(j)t from Gu;
// remove bidirected edges

11 forall i 6= j ∈ {1, . . . , |X|} do
12 if X(i)t⊥X(j)t|pa(X(i)t) ∪ pa(X(j)t) then
13 remove X(i)t ↔ X(j)t from Gu;
14 return Gu

plementations of the PC algorithm; our adjustment was
only in which independence tests were performed, not
the tests used.

2.2.4 Information-theoretic Search

Finally, we consider graphical model search algorithms
based on information-theoretic measures. Granger
Causality (GC) [5] is one of the most widely-used
“causal” search algorithms for time series data.5 Prior
work has shown that GC provides unreliable information
about the causal timescale given undersampled data [13],
but its performance on measurement timescale data is un-
known, though a similar algorithm was used by [6].

The key intuition underlying GC-based search is that
X(i)t−1 Granger-causes X(j)t just when X(i)t−1 pro-
vides information about X(j)t, even conditioning on
all other variables in the past. More specifically, let
MX(S) be some class of models that predict X given
S as input (e.g., density estimator, mutual information
calculation, etc.). We add X(i)t−1 → X(j)t only if
MX(j)t(Xt−1 \ X(i)t−1) 6= MX(j)t(Xt−1). For bidi-
rected edges, as shown in Algorithm 3, we use a second
round of tests to determine whether to include bidirected
edges in Gu. We tested the modified GC algorithm only
on continuous-valued data. Notably, the modified GC
algorithm is much simpler and faster than the other gen-
eralized algorithms.

5We use scare quotes as GC provides causal information
only under very specific conditions.



Algorithm 3: Modified GC Algorithm
Data: Du = {X0,Xu, . . . ,Xku, . . .} for unknown u
Output: Gu
// create initial empty Gu

1 Gu ← empty graph over nodes for 2X;
// add directed edges

2 forall X(i)t−1, X(j)t ∈ Gu do
3 if MX(j)t(Xt−1 \X(i)t−1) 6= MX(j)t(Xt−1) then
4 add X(i)t−1 → X(j)t to Gu;
// add bidirected edges

5 forall X(i)t, X(j)t ∈ Gu do
6 if MX(j)t(Xt−1) 6= MX(j)t(Xt−1 ∪X(i)t) then
7 add X(i)t ↔ X(j)t to Gu;
8 return Gu

2.2.5 Validating the Generalizations

A generalized algorithm should perform approximately
the same as the original algorithm for any data that sat-
isfy the original algorithm’s assumptions. To validate
these generalizations, we compared outputs for each pair
of continuous-data search algorithms (original vs. gen-
eralized) for 100 randomly generated VAR models with
|X| = V ∈ {10, 15, . . . , 30}, ρ = 0.2, and N = 1000.
For all comparisons, we used u = 1, as that satisfies the
original algorithms’ assumption that the measurement
and causal timescales are the same. Since our interest is
simply whether the outputs are the same, we calculated
the symmetric difference of the edge sets for the out-
puts, which is also the Hamming distance between binary
representations of output graphs. Notice that the output
graphs of the generalized algorithms can include bidi-
rected edges, but those of the original algorithms can-
not. Thus, any bidirected edge is automatically an error
(on this measure). Figure 2 shows that the generalized
algorithms performed almost identically to the original
algorithms, thereby validating the generalizations (and
implementations).
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Figure 2: Hamming distance between outputs of original
and generalized algorithms on D1 data.

3 RESULTS

3.1 SIMULATION TESTS

We first examine the performance of these generalized
algorithms on simulated data for which we can compute
the ground truth undersampled structure, and so algo-
rithm error rates. For all simulation tests, we did the
following for each algorithm A:

1. Generate a random VAR model M with random
graph G and A values (normalized to ensure that
the time series does not diverge)6

2. Sample (non-equilibrium) time series D1 fromM
3. Undersample by u to produce Du

4. Use A to determine Gout given Du

5. Compute errors of commission (i.e., false edge pos-
itives) and omission (false edge negatives) in Gout,
using Gu (the theoretically predicted graph when
undersampling by u)

Figure 3: Estimation error as a function of graph size for
u = 2 & N = 1000.

We first tested algorithm performance as a function of
both graph size and density for continuous data. Figure 3

6For discrete variables, we need transition probabilities—
P (X(i)t|pa(i)t−1)—that are generated as follows (all vari-
ables have m possible values): For the base case of Xt−1 →
Yt, we construct a random 1 − 1 map f : X 7→ Y , and set
P (Y = f(x)|X = x) = A for constant 0 < A < 1, and
P (Y 6= f(x)|X = x) = 1−A

m−1
. If there are multiple parents,

then we first construct parent-specific conditional distributions
as above, and then set P (X(i)t|pa(i)t−1) to be the renormal-
ized product of those parent-specific conditionals. This method
ensures that each parent has a non-neglible impact on the child.
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Figure 4: Estimation error as a function of ρ for different u,N for continuous-data algorithms applied to either 100
10-node (Figure 4a) or 20 20-node (Figure 4b) random graphs.

plots commission and omission errors for 100 random
graphs, N = 1000 post-undersampling datapoints, and
u = 2. As expected, algorithm performance worsened
as both V and ρ increased. Unsurprisingly, edge com-
mission error rates were lower than edge ommission er-
ror rates: undersampling generally leads to weaker asso-
ciations at the measurement timescale (compared to the
causal generative timescale), so false positives should be
less likely than false negatives. Interestingly, though, the
absolute magnitude of the commission error rates was
quite small for all V , ρ. In contrast, omission error rates
grew rapidly as a function of V , particularly for ρ = 0.2.
For example, for N = 30, ρ = 0.2, the generalized (for
undersampling) PC algorithm typically outputs an empty
graph. The GC algorithm outperforms the other general-
ized algorithms in omission error rates, while SVAR is
the best for edge comission.

Given this basic understanding of the algorithms’ per-
formances, we then turned to a more general analysis.
We focused on V ∈ {10, 20}, as the results in Figure 3
indicated that those were sufficiently different in com-
plexity and performance. Figure 4 plots the commission
and omission error rates for all four continuous-data al-
gorithms across multiple values of N, u, ρ, V , with 100
random graphs per simulation setting.

Omission error rates were again higher than commission
error rates, and all of the algorithms exhibited very low
false positive rates (alternately, high specificity). Inter-
estingly, both error rates increased—commission more
slowly than omission—as the total number of edges in
G1 increased, whether due to increases in V or ρ.

Unsurprisingly, omission error rates also increased with

u. An edge in Gu corresponds to a directed path of length
u in G1. In general, the association between endpoints
of a directed path will be smaller than between adjacent
variables on that path. All of these algorithms use associ-
ations to posit edges, so as the lengths of to-be-detected
paths increase (i.e., as u increases), the estimation prob-
lem should become progressively more difficult.

Overall, we find that GC is the best-performing algo-
rithm for these conditions, as its measurement timescale
success occurs across a wide range of simulation param-
eter settings. SVAR is the next best performer for omis-
sion errors and is the best method with respect to comis-
sion errors.

One further question for the continuous-data algorithms
is their robustness to nonlinear relationships. This ques-
tion is particularly salient for SVAR estimation, as it
assumes a linear model. Figure 5 shows commis-
sion and omission errors as a function of sample size
for 100 randomly generated structures with 〈V, ρ〉 ∈
{〈10, 0.2〉, 〈20, 0.1〉} and u = 2. We tested two different
nonlinear transformations, each applied variable-wise af-
ter each time step:
• Hyperbolic tangent: tanh(X)

• Gaussian radial basis function: φ(X) = e
−‖X−µ‖2

2σ2

The Gaussian RBF function significantly worsens per-
formance compared to the tanh nonlinearity. Unsurpris-
ingly, SVAR performance worsens the most, while the
other algorithms are less affected. In particular, GCu
still performs quite well. Commission error rates were
higher for 〈V = 20, ρ = 0.1〉 for both nonlinear func-
tions, even though those graphs were less dense than
〈V = 10, ρ = 0.2〉. Overall performance was, however,



(a) V = 10, ρ = 0.2 (b) V = 20, ρ = 0.1

Figure 5: Estimation error as function of sample size for nonlinear models.

not dramatically worse for certain algorithms, which sug-
gests that nonlinear relationships do not present an insur-
mountable problem.

Finally, Figure 6 shows the performance of the two dis-
crete data algorithmic variants. As with continuous data,
the constraint-based search (DPC) systematically outper-
forms the score-based search (GOBNILP). The discrete
data led to higher omission error rates, though with al-
most zero comission errors: both algorithms are far more
likely to output almost-empty graphs.

N = 1000

N = 2000

Figure 6: Estimation error of a function of ρ for different
u,N for discrete data algorithms for V = 10.

3.2 BEYOND MEASUREMENT TIMESCALE

The different generalized algorithms exhibit substantial
variation in estimation errors for Gu, the measurement
timescale structure. In many contexts, however, we are
also interested in the causal timescale structure. Errors in
measurement timescale estimation need not translate di-
rectly to causal timescale estimation: any particular mea-
surement timescale estimation error could lead to many,
or zero, errors in the causal timescale structure.

Various algorithms have recently been developed to infer
the space of possible G1 from Gu [6, 10, 11]. One chal-
lenge for all of these algorithms is that many potential Gu
inputs have no corresponding G1; we refer to this as the
“reachability” problem. Hence, it can be important to get
“appropriately” close in the Gu learning. The standard
responses to this problem are to either apply the search
algorithm to neighbors of Gu until a reachable graph is
found (as in [10, 11]); or use a constraint satisfaction-
based approach [6]. We used the latter approach, as it is
considerably faster.

We generated 100 random 8-node graphs for each ρ ∈
{0.17, 0.20, 0.25}, and 1000 undersampled datapoints
(u = 2) for each graph. For each measurement timescale
estimation algorithm A, we first applied A to the data
to obtain Gu, and then passed that output to the causal
timescale inference algorithm of Hyttinen et al. [6]. We
computed three types of estimation errors: (i) Gu out-
put by A vs. measurement timescale ground truth; (ii)
inferred G1 vs. causal timescale ground truth; and (iii)
Gu implied by inferred G1 vs. measurement timescale
ground truth. We also measured execution clocktime,
limited to one hour per graph.

Figure 7 shows the results of these simulations, with the
three rows of the Figure corresponding to these three
error calculations. As expected, the top row replicates
the pattern of results from Section 3.1. The middle row
demonstrates that not all measurement timescale estima-
tion algorithms are the same: SVAR and GC provide
notably better performance for G1 inference. Moreover,
the bottom row shows that Gu estimation for SVAR and
GC is improved, though not dramatically, by requiring
there to be a G1 that could yield Gu given undersam-
pling. That is, explicit modeling of undersampling pro-
vides a regularization benefit for Gu estimation. Note,
for the already imprecise GES and PC the omission er-
ror increases. Overall, SVAR has comparably low error
rates to GC, and also provides estimates, for which the
G1 inference works much faster.
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Figure 7: Error rates and clock-time plots as a function
of ρ for 8-node graphs with N = 1000 at u = 2 for Gu
estimation, G1 inference, and implied Gu for inferred G1.

4 CONCLUSION

Time series data are rapidly becoming almost-
ubiquitous. In many of those domains, however, the
relevant measurement processes are often much slower
than the underlying generative or causal processes. As
we showed in Section 2.1, this type of undersampling
can create both theoretical and actual learning problems,
as the undersampled data can have quite different dis-
tributional properties. We thus described and explored
(with simulated data) generalizations of existing time
series learning algorithms to discover measurement
timescale structure from undersampled time series data.

For continuous-valued data, the generalization of
Granger Causality clearly outperformed the other algo-
rithms. The key to its success is almost certainly its focus
on information gain, which is quite robust to the types of
unusual distributions that can result from undersampling.
Moreover, the generalized GC algorithm conducts fewer
statistical tests, so is quite fast. At the same time, the sta-
tistical tests that it does perform can be very high-order,
as they condition on O(|X|) variables. Since high-order
independence tests can be very unreliable for discrete-
valued data, we expect that the generalized GC algorithm
would not be the best choice for such data.

This paper provides the first benchmark results for struc-
ture learning algorithms at the measurement timescale

applied to undersampled timeseries data. Some of these
algorithms had previously been employed in other pa-
pers, but without careful examination of their measure-
ment timescale performance. We obtained reasonably
good results for some of the algorithms. Perhaps more
importantly, the SVAR estimation and GC algorithms
both learned measurement timescale structures that led
to low error rates for causal timescale structure search.
Moreover, the causal timescale structure search pro-
vided further regularization benefits for the measurement
timescale structure search.

Various open problems remain, including the develop-
ment of more generalized algorithms for discrete-valued
data. The relatively high omission error rates are also
cause for some concern, as the output graphs were al-
most always overly sparse. Some of these errors may be
unavoidable, given that causal connections at the mea-
surement timescale will almost always be weaker than
those at the causal timescale. That is, Gu edges may just
be harder to discover. Nonetheless, we are exploring al-
gorithmic variations that allow the user to “tune” the al-
gorithm for the desired trade-off between omission and
comission errors.
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