
Complex Virtual Environments on Thin VR Systems
Through Continuous Near-Far Partitioning

Voicu Popescu*

Purdue University
Seung Heon Lee†

Purdue University
Andrew Shinyoung Choi‡

Purdue University
Sonia Fahmy§

Purdue University

Figure 1: An urban virtual environment (VE) with 3.7M triangles (a) is too large to be rendered on a self-contained VR system.
The VE is partitioned (b) into a near region of 30m radius (red), to be rendered as usual, from geometry, and a far region (green),
to be rendered from an environment map (d). Since the near region contains only 371 triangles, this conventional near-far
partitioning greatly reduces the rendering load, but it produces a visualization discontinuity (c) between the near (red) and far
(green) regions. Our method further partitions the near region (e) into an intermediate region (yellow) and a smaller near region
(red). The intermediate region is rendered with a morph that preserves visualization continuity (f).

ABSTRACT

This paper describes a method for reducing rendering load such
that complex virtual environments (VEs) can be deployed on ”thin”
VR systems with limited rendering power. The method partitions
the VE into four regions: a near region, an intermediate region,
a stationary far region, and a dynamic far region. The stationary
far region, which contains most of the VE’s geometry, is replaced
with an environment map, which brings a substantial rendering load
reduction. The other three regions are rendered from geometry:
the near region is rendered from the user viewpoint, the dynamic
far geometry is rendered from the center of the environment map,
and the intermediate region is rendered with a morph that switches
viewpoint gradually from the user viewpoint to the center of the
environment map. The intermediate region connects the near and far
regions seamlessly. Furthermore, the environment map is enhanced
with per pixel range which allows depth compositing the dynamic
and stationary far geometry. The method brings the significant ren-
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dering load reduction of conventional environment mapping without
its significant loss in visual quality: the environment mapped part of
the frame is well integrated with the part rendered from geometry,
and not just a disconnected and inert background. An IRB approved
user study (N = 22) found significant advantages for our method
over conventional near-far partitioning.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Virtual reality;

1 INTRODUCTION

Advances in virtual reality (VR) technology have produced self-
contained VR systems with on-board rendering, tracking, and power
(e.g., Meta Quest 2 [1]). The user freedom brought by untethered VR
headsets comes at a cost. Compared to desktop workstations, self-
contained VR headsets cannot render complex virtual environments
(VEs) at the high frame rates needed for a comfortable VR user
experience. The power consumption of workstation-grade graphics
processing units (GPUs) precludes their use in battery-powered VR
systems. What is needed is to reduce rendering load while preserv-
ing output frame quality, such that complex VEs can be deployed
on ”thin” VR systems with limited capabilities. Since reducing ren-
dering load inherently reduces the amount of data needed to render
output frames, reducing rendering load is also beneficial in a dis-
tributed VR context, where it reduces bandwidth requirements as
well as download times at startup and after teleportation.



Figure 2: Dynamic far region support. With conventional near-far
partitioning (a, b), the moving car appears in the wrong position
and is not depth composited with the far region (green). With our
method (c, d), the car is integrated accurately within the far region.

Reducing rendering load is a long standing problem in computer
graphics research with no perfect solution. One approach is to
compute the part of the VE that the user could potentially see from
the current region, and to limit rendering to this potentially visible
set [9]. However, computing the potentially visible set in a complex
VE is challenging. Furthermore, the size of the potentially visible set
varies greatly with the user location within the VE, and it can become
intractably large when the user has line-of-sight ”deep” into the VE.
Another approach is to adapt the level-of-detail of the VE [12], for
example by reducing the geometric complexity of distant parts of
the VE that have a small output frame footprint. Like for visibility
computation, adapting the geometric level-of-detail of a complex
VE is challenging, and the rendering load remains unbounded.

A third approach is to partition the VE into a near and a far
region, and to replace the far region geometry with a precomputed
environment map [3]. Computing the partition based on distance
from the user is straight forward, and the rendering load is reduced
to rendering the near region. However, such a conventional near-far
partitioning approach has two fundamental limitations that have to
be overcome for it to be suitable to the VR context.

The first limitation is a visualization discontinuity between the
near region, which is rendered from the user viewpoint, and the
far region, which is rendered from the center of the environment
map. Whereas this discontinuity is acceptable when the environment
map approximates parts of the VE that are very far away, such as
a cloudy sky or mountains at the horizon, the discontinuity creates
objectionable artifacts when the environment map is called upon to
approximate medium distance parts of the VE, as needed to meet the
rendering budget of thin VR systems. In Fig. 1, near-far partitioning
reduces the rendering load of the Manhattan urban VE by four orders
of magnitude, down to a level that can be comfortably handled by
any VR system. However, the near and far regions are disconnected
in the output frame (c), since one is rendered from the user viewpoint
(white dot in b) and one from the center of the near region (white
square in b). The second limitation is that, since the environment
map is precomputed, the far region cannot be dynamic. In Fig. 1,
a car moving in the far region would be frozen in the environment
map (d), and therefore in the output frame (c).

In this paper, we describe a method for the near-far partitioning
of a VE that maintains visualization continuity between the near and
far regions and supports dynamic far region objects. The method

partitions the VE into four regions: a near region, an intermediate
region, a stationary far region, and a dynamic far region. The near
region is rendered conventionally, from geometry. The stationary far
region is rendered through environment mapping. The intermediate
region is rendered from geometry, with a 3D morph that changes
viewpoint gradually from the user viewpoint to the center of the envi-
ronment map, maintaining visualization continuity. The dynamic far
region is rendered from geometry, which allows updating its position
at each frame. The dynamic far region is rendered from the center of
the environment map and the environment map is enhanced with per-
pixel range, which allows for accurate per-pixel depth compositing
of the dynamic and stationary parts of the far region.

In Fig. 1, all of the far region is stationary so there are only three
regions (e), with the intermediate region connecting the near and far
regions (f). In Fig. 2, a car moves through the far region. Conven-
tional near-far partitioning has several options, none acceptable: do
not render the car at all, freeze the car by capturing it in the envi-
ronment map, or, as shown in Fig. 2 (a, b), render it from the user
viewpoint, on top of the environment mapped region of the frame,
without depth compositing. Our approach renders the dynamic far
region, i.e., the car in this example, at the appropriate location rela-
tive to the stationary far region, while resolving visibility correctly
(c, d). In summary, our method brings the significant rendering load
reduction of conventional environment mapping without its signif-
icant loss in visual quality. On a Quest 2 VR headset, the frame
rate for the Manhattan VE is restored from 12fps to a full 70fps
matching the refresh rate, while the environment mapped part of the
frame remains well integrated with the part rendered from geometry,
and not just a disconnected and inert background.

We have conducted a user study (N = 22) with our Institutional
Review Board’s (IRB) approval. The study confirmed that our ap-
proach has a significant advantage over conventional near-far parti-
tioning in terms of avoiding a gap between the near and far regions,
of conveying directions consistently across the near-far boundary,
and of projecting dynamic far geometry correctly relative to station-
ary far geometry rendered through environment mapping. Further-
more, in a majority of cases (56%), participants did not notice the
curvature of trajectories crossing the intermediate region. We also
refer the reader to the accompanying video.

2 PRIOR WORK

Computer graphics research has approached the problem of render-
ing load reduction from two directions. One is through visibility
computation, which aims to find all and only the parts of the scene
that are visible from a given view region. Visibility algorithms fall
into two categories. One category is that of sampled-based visibility
algorithms, which probe the scene with rays that originate in the
view region and accumulate the visible set from the visible triangles
found by each ray [9]. Sampled-based algorithms are fast, but the
resulting visible set might miss some visible triangles, because ray
probing is heuristic, and because no triangle that is not in the visible
set can be confirmed as hidden, as that would require an infinite
number of rays. A second category of visibility algorithms analyze
the space of rays originating in the view region continuously, for
example by beam tracing [28]. The resulting visible set is complete,
but continuous visibility algorithms are slow. The camera offset
space approach formulates a hybrid visibility solution by investigat-
ing the camera translations under which an image plane sampling
location is covered by a triangle. The resulting visible set contains
most and not only visible triangles, i.e., false negatives and false
positives are possible. The visibility approach to rendering load
reduction has the advantage of quality: when all visible triangles are
found, the output frames are indistinguishable from those obtained
from the entire scene. However, even when the visible set contains
only and all visible triangles, the visible set is unbounded and can
be large. For the example in Fig. 1, the avenues and streets that



intersect the near region provide line-of-sight deep into the urban
VE, and the resulting visible set can have a large number of trian-
gles. Another disadvantage is that visibility computation is complex,
which requires pre- or co-processing.

A second direction from which rendering load reduction has been
approached is level-of-detail (LoD) adaptation. Given a view region,
the goal is to compute an alternate, simpler representation of the
scene geometry that produces similar results to the original, full-
complexity representation [12]. LoD adaptation on a continuum
scale, that meets a given triangle budget, and that minimizes output
image quality loss is a challenging problem.

Despite decades of research, the only LoD adaptation scheme
used in practice is environment mapping, which approaches its fifti-
eth anniversary [3]. Environment mapping approximates the far
region with a panoramic image that captures the scene appearance
in all directions, using, for example, a spherical, equirectangular, or
cube map ray parameterization. Environment mapping has the ad-
vantages of: (1) versatility, as it is guaranteed to work with any scene,
no matter how complex; (2) fast construction, as it can be rendered
with the help of graphics hardware; and (3) bounded complexity, as
it replaces the far region with an image of fixed resolution. However,
environment mapping suffers from limitations that preclude its use
outside rendering reflections on curved surfaces, or rendering very
distant geometry. The limitations are: (1) lack of motion parallax in
the output frame in response to user viewpoint translates, as the 3D
geometry of the far region was replaced with a 2D image; (2) lack
of continuity between the near and far regions, which are rendered
from different viewpoints; (3) lack of support for dynamic scenes, as
the far region is frozen in time at the moment when the environment
map was constructed. In this paper we propose a near-far partition-
ing scheme that addresses the lack of continuity and lack of dynamic
scene support of conventional environment mapping.

Leveraging the environment mapping premise that distant parts
of the scene have an approximately constant projection under small
viewpoint translations, researchers have developed a method that
reduces rendering load in VR by reserving the stereoscopical render-
ing to the near parts of the scene, and by rendering the distant parts
monoscopically [5]. Since most of the scene complexity is in the far
region, the method can achieve a rendering load reduction of up to
a factor of two, which is not sufficient for complex scenes such as
the urban environment from Fig. 1. The frame discontinuity at the
transition between the cyclopean eye, from where the far region is
rendered, and the user eyes, from where the near region is rendered,
is easily handled with a small overlap between the three frusta, lever-
aging the small viewpoint translation caused by the interpupillary
distance. Our method has to maintain near-far continuity for large
translations between the user and the environment map viewpoints,
which is done by morphing the intermediate region geometry.

Reducing rendering load has also been investigated in the dis-
tributed VR context, where the VE is stored on a server and the
application is deployed on clients connected to the server via a
wireless network. In addition to making VR applications tractable
on thin clients such as phones, tablets, and VR headsets, reducing
rendering load and thereby the amount of data needed to render
output frames also reduces the bandwidth requirements over the
unpredictable wireless networks. In 360◦ VR, reducing the data
that has to be transferred to and rendered at the client is imple-
mented through view-frustum culling, i.e., the transfer is limited
to the part of the 360◦ frame encompassed by the predicted user
view [7,18]. View-frustum culling provides sufficient data reduction
in this context since, like a conventional video frame, a 360◦ video
frame has a depth complexity of one. In the case of volumetric video
streaming, the pixels are 3D points with color, which also allows the
user to change viewpoint and not just view direction. Since depth
complexity is not one anymore, view frustum culling was enhanced
hierarchical LoD schemes (e.g., an octree) to reduce the detail of

occluded and distant parts of the scene [6, 11, 17, 27].
When the VE geometric model contains triangle meshes, which is

the standard for modeling 3D VEs, view frustum culling and simple
LoD schemes are insufficient. One solution is to restrict the user to
a set of possible viewpoints, e.g., by discretizing the ground plane
with uniform 2D grid, and to precompute environment maps for
the set of viewpoints surrounding the current user position on the
server [10]. Since the VE geometry is replaced by an environment
map, rendering load at the client is reduced to the few objects with
which the user interacts. The shortcomings are lack of support for
continuous viewpoint translation, as the user has to jump from one
available viewpoint to the next, and reliance on a server to compute
environment maps. As the number of clients increases, so does the
bandwidth required to transfer their environment maps from the
server. This bottleneck is alleviated by increasing the similarity–and
therefore the compression efficiency–of nearby environment maps
[14]. The near-far discontinuity is avoided by again clamping the
user viewpoint to a discrete set of possible locations.

Our method bridges the gap between the user viewpoint and the
environment map center, and the resulting frame is multiperspective.
Previous VR research has used multiperspective images to increase
VE exploration efficiency by allowing the user to see around the
corner [26], to improve collaboration in VR by alleviating the differ-
ence in occlusion between the collaborators’ view of the VE [24],
and to facilitate selection by increasing the frame footprint of se-
lection candidates [23]. Prior work [25] has established that user
disorientation and cybersickness are alleviated if the part of the VE
close to the user is rendered conventionally, responding as expected
to the user’s view changes. Our method adheres to this rule as it
renders the near region conventionally, from the user viewpoint.

One approach developed by VR research for controlling the ren-
dering time of complex VEs is based on discretizing the VE to
facilitate level-of-detail (LoD) adaption. One method represents
the VE as a point cloud with a continuous level-of-detail [20]. The
method leverages state of the art GPUs to handle over 17 billion
points per millisecond. Another server-client streaming solution uses
voxels for transmission, which are then converted to meshes using
marching cubes for rendering [21]. A technique specifically aimed
at large urban environments represents the VE with a collection of
images [16]. The temporal and spatial coherence of the VR output
frames has been exploited by 3D image-warping to improve frame
rate and to generate the left and right eye frames at a cost smaller
than that of rendering the VE twice [19]. These VE discretization ap-
proaches are complex and therefore not suitable for thin VR systems.
Furthermore, although the VE discretization brings data uniformity
which aids with LoD adaptation, the discretization also makes the
output frame reconstruction more challenging.

3 CONTINUOUS NEAR-FAR VE PARTITIONING

We have developed a method that provides good control of the ren-
dering load in a VR application. The VE is partitioned into a near, an
intermediate, and a far region using two co-axial cylinders of radius
r1 and r2 (Fig. 3) . In a preprocessing step, a cube map is rendered
from a viewpoint O on the cylinder axis using the stationary far
region triangles . Then, at run time, each output frame is initialized
from the cube map and the VE triangles not used to render the cube
map are rendered as follows: (1) near region triangles are rendered
as usual; (2) intermediate region triangles are rendered with a vertex
morph that ensures continuity between the near and far regions, as
described in Sec. 3.1; (3) far region dynamic triangles are rendered
as described in Sec. 3.2.

3.1 Near to Far Morphing
Given a 3D vertex Pi in the intermediate region (Fig. 3), its position is
first morphed to 3D point Qi, and then Qi is projected conventionally.
Qi is computed with the steps shown in Eq. 1.



Figure 3: Intermediate region vertex morphing.

Qi =U +dt
d = dU wU +dOwO; d = d/∥d∥

wU = a/(r2 − r1); wO = 1−wU

t = ∥UPi∥wU +∥OPi∥wO

(1)

Qi is placed at distance t from the user viewpoint U along direc-
tion d. d is computed by interpolating the directions dU and dO in
which Pi is seen from U and O. The interpolation weights wU and
wO are defined by the relative position of Pi in between the two cylin-
ders. Distance t is computed similarly by interpolating the distances
from U and O to Pi. The morph switches gradually from a projection
from U , when Pi is close to the near region, to a projection from
O, when Pi is close to the far region, providing continuity across
the near-to-intermediate and intermediate-to-far boundaries. Indeed,
the morph does not displace a vertex Pn on the near-to-intermediate
boundary, i.e., Qn = Pn, which ensures continuity with the near re-
gion geometry that is rendered conventionally. Furthermore, the
morph displaces a vertex Pf on the intermediate-to-far boundary to
Q f , which maps to Pf in the cube map, ensuring continuity with the
far region geometry that is rendered through environment mapping.

3.2 Dynamic Far Region Support
The triangles of the far region that are dynamic have to be rendered
from geometry, such that their position can be updated for every
frame. These dynamic triangles belong to the same VE region as the
stationary triangles from which the cube map was rendered, so the
dynamic triangles have to be rendered in a way that is consistent with
the cube map. Consistency requires meeting two conditions. The
first condition is that a dynamic far region vertex P be projected as
if it were looked up in the cube map, by displacement to Q followed
by conventional projection. The displacement is given in Eq. 2, and
it is a special case of the intermediate region vertex morph from
Eq. 1 with wU = 0 and wO = 1.

Q =U +P−O (2)

The second condition is that the stationary and dynamic far re-
gion triangles be depth composited accurately, as it can happen that
stationary triangles are closer than dynamic triangles, so it is no
longer the case that the cube map background can always be safely
overwritten. The first step is to enhance the cube map with per
pixel range. Range is defined as the Euclidean distance between a
viewpoint and a surface point. Unlike z which is measured perpen-
dicularly to the image plane, range is independent of view direction
and it allows for direct depth comparisons along the same ray. The

Figure 4: Rendering load dependence on the radius r2 of the far
region boundary.

z-buffers obtained when the cube map is pre-rendered are converted
to range buffers and provided as a depth cube map to the fragment
program that renders the far region dynamic triangles. The program
culls a fragment whose range rU is greater than the range rO in the
cube map at the same location, as shown in Eq. 3.

rU = ∥Q−U∥; d = (Q−U)/rU ; rO =CubeMap(d).range (3)

The range rU of the current fragment is the distance from the
viewpoint U to the displaced world position Q of the fragment
passed down from the vertex shader that implements Eq. 2. The
cube map range rO is looked up using the direction from the user
viewpoint U to the displaced fragment Q.

4 RESULTS AND DISCUSSION

We have implemented our method using Unity [2] and deployed it on
a Quest 2 all-in-one VR headset [1]. Our implementation processes
all run-time geometry, i.e., the near, intermediate, and dynamic
far geometry, with a unified pipeline: a vertex is classified in the
near, intermediate, and far region, near vertices are not displaced
(wU = 1 and wO = 0 in Eq. 1), intermediate vertices are morphed
(wU > 0, wO > 0, wU + wO = 1), far vertices are displaced for
environment mapped projection (wU = 0 and wO = 1). All fragments
are compared with the environment map depth channel and culled if
hidden by the environment mapped geometry (Eq. 3).

4.1 Rendering Load Reduction
The recommended upper limit on the number of triangles for Quest
2 is 750k-1M [15]. Quest 2 cannot render our Manhattan model
that has 3M triangles–the sluggish frame rate and the flickering
induces cybersickness even after a short exposure. Since our method
renders the parts of the VE in the near and intermediate regions from
geometry and the parts in the far region from an environment map,
rendering load is controlled through parameter r2 that defines the
intermediate to far boundary. r2 is selected based on the rendering
capabilities of the VR system: the smaller r2, the fewer triangles
have to be processed, but also the more of the VE is approximated
with environment mapping. Fig. 4 shows the number of triangles
that have to be rendered as a function of r2 for our Manhattan VE, as
well as the rendering load reduction. The rendering load reduction
is the percentage of the VE triangles that are in the far region and
thus are not rendered. The user region is in Times Square as shown
in Fig. 1, where r2 = 50m and the rendering load is below 1,000
triangles. Rendering load remains well within the capabilities of
the Quest 2 headset even when the far region starts at r2 = 1,000m.
Conversely, for r2 = 50m, near-far partitioning allows rendering a
much higher density model.



Figure 5: Comparison between the three methods (columns) for
three viewpoint translations (rows), on an auditorium VE.

Given a value for r2, the VE geometry is partitioned into two bins:
the static triangles in the far region (SF bin), and all the other VE
triangles (NSF bin, NSF = V E −SF). To avoid hairline fractures
between the environment mapped part of the frame and the part
rendered from geometry, both SF and NSF contain the triangles
with vertices on both side of the r2 boundary. The SF triangles are
prerendered to a cube map conventionally. The NSF triangles are
rendered with a vertex shader and a fragment shader that implement
the morph and the depth compositing with the cube map. The
vertex shader displaces the input vertex based on its location within
the near, intermediate, or far regions of the VE. Near vertices are
not displaced. Far vertices are displaced with a simple translation
(Eq. 2). The main computational cost of the morph comes from
the displacement of the intermediate region vertices using Eq. 1,
which implies a small number of 3D vector operations. The extra
computational cost brought by the fragment shader is small, and
it is dominated by the additional cube map range lookup (Eq. 3).
Whereas rendering the entire Manhattan VE from geometry runs
at 12fps, with constant flickering due to missing frames, with our
continuous near-far partitioning scheme the frame rate is 70fps.

4.2 Visual Quality

Our method brings the rendering load reduction of conventional
near-far partitioning while improving the output visual quality.

Near-far continuity. A first aspect of visual quality is achieving
continuity between the part of the frame rendered from geometry
and the part rendered with environment mapping. Conventional
near-far partitioning leaves a gap between the near and far regions
which results in objectionable visual artifacts (Fig. 1 c and Fig. 2 a
and b). Of course, one cannot hide the gap with an environment map
that is rendered from all the triangles in the VE and not just from
those in the far region, as this would fill in the gap by repeating parts
of the VE, resulting in a redundant visualization. Our intermediate
region morph guarantees continuity between the near and far regions,
without any redundancy (Figs. 1, 2, 5, and 6).

Support for dynamic far geometry. A second aspect of visual
quality is whether dynamic far geometry is supported, and how.
Conventional near-far partitioning does not have any good option for

Figure 6: Comparison between the three methods on a medieval
city. The near-far partitioning boundary is beyond the city walls,
so the ground plane discontinuity is not visible in ”Conventional”;
however, the boundary passes through building C, breaking it apart in
”Conventional”. Furthermore, ”Ours” conveys the relative position
of buildings A and B more accurately than ”Conventional” because
B is in the intermediate region and is morphed towards A, which is
in the far region.

rendering dynamic far geometry: one option is to omit the dynamic
geometry; another option is to render the dynamic far geometry
from the environment map viewpoint, but then geometry that moves
from near to far will have a trajectory discontinuity as the viewpoint
switches abruptly at the near-far boundary; a third option is to render
the dynamic far geometry from the user viewpoint, which provides a
continuous trajectory, but which projects the dynamic far geometry
at a frame location inconsistent with that of the static far geometry
rendered through environment mapping, and with no depth com-
positing (Fig. 2 a and b). With our method, geometry moving from
near to far has a continuous trajectory in the frame, and the projec-
tion of the moving geometry is consistent with the static geometry
it passes by. Furthermore, with our method the environment map
is not just a 2D background image, but rather a range image that
allows for accurate depth compositing at pixel level (Fig. 2 c and d).

Geometric distortion. A third aspect of visual quality is the
distortion introduced by our morph at the intermediate region. The
morph switches visibility from the user to the environment map
viewpoint. The gradual viewpoint change distorts the intermediate
region geometry, i.e., straight lines have a non-linear projection
in the output frame. In Fig. 7, a street-level red tape starts in the
near region and ends in the far region. The tape is straight in the
3D VE, but it has a non-linear projection in the output frame. The
projection is a 2D line segment in the near region and a 2D line
segment in the far region, but the two segments are not aligned. The
segments are connected by the curved projection at the intermediate
region. In addition to the linear interpolation given in Eq. 1, non-
linear interpolation strategies are also possible, such as a quadratic
interpolation (Eq. 4), or an S-curve interpolation (Eq. 5). Fig. 7
shows that the three interpolation options produce similar results,
with the S-curve option producing the smoothest curve.



Figure 7: Non-linear connection of near-far regions through inter-
mediate region morphs using linear (a), quadratic (b), and s-curve
(c) interpolations.

wU = (a/(r2 − r1))
2 (4)

x = a/(r2 − r1); wU =

{
2x2, 0.0 ≤ x < 0.5
1−2(x−1)2, 0.5 ≤ x ≤ 1.0

(5)

In addition to the interpolation type, the distortion introduced
by the morph is also controlled by the intermediate region size
r2 − r1. The larger the intermediate region, the slower the pace of
the viewpoint change, but also the larger the region where distortions
occur. For the images in Figs. 1, 2, and 7, r1 = 30m and r2 = 50m,
which provides a sufficiently large transition region of 20m.

Approximations introduced by environment mapping. A fourth
aspect of visual quality are the various approximations introduced
by environment mapping. While our method integrates seamlessly
the environment mapped part of the frame with the part rendered
from geometry, the limitations of environment mapping remain.

One is that the environment mapped part of the frame is not
rendered from the user viewpoint, but rather from the center of the
environment map, so the environment mapped geometry appears in
the frame at an approximate location. The approximation error is
minimized by rendering the environment map from a viewpoint O
at a typical VE viewing height. This is done such that the cube map
approximates the user’s view of the far region as well as possible,
and it does not restrict the user to the height of O.

A second environment mapping limitation is the lack of motion
parallax as the user viewpoint translates. When the user view change
is a pure translation, i.e., without any rotation, the part of the frame
rendered by environment mapping does not change. However, such
a pure translation is atypical in VR where the user selects the view
by moving their head and by walking. The rotation present in such
view changes helps hide the environment mapping approximation
better than, for example, when using a ”WASD” keyboard interface
of a desktop interactive visualization application.

A third limitation is that the environment mapped part of the frame
does not provide correct depth cues when viewed stereoscopically,
i.e., the left and right eye image disparity is not correctly modulated
by the variable depth of the various parts of the environment map.
Although our method enhances the environment map with per pixel
range, the additional channel is only used for depth compositing and
not to render the environment map in 3D. Doing so would increase
the rendering load, as each environment map pixel becomes a vertex,
and would create disocclusion errors as at least one of the eyes would
see VE surfaces not captured by the environment map.

4.3 Image Quality Metrics
To compare the conventional, discontinuous near-far partitioning to
our continuous near-far partitioning, the first step is to select a suit-
able image quality metric. The field of image and video processing
has developed several image quality metrics that quantify the error
introduced by various processing pipelines, such as compression.

Figure 8: Truth image (a), discontinuous partitioning (b), and con-
tinuous partitioning (c). Metrics that assume an identity mapping
from truth to processed image will incorrectly judge b as better than
c because c differs from a over a larger area than b (red rectangle).

Examples include PSNR [8], RMSE [4], structural similarity [8],
or the more recent fovvideovdp [13], which differentiates between
the focus and context regions of the frames. However, these quality
metrics are suitable for in-place image transformations, whereas the
discontinuous and continuous near-far partitioning methods amount
to transformations that displace entire regions of the image, i.e., the
far region is rendered from the center of the environment map. These
conventional quality metrics assume an identity mapping between
the truth and processed images, and do not discern between two
different ways of perturbing this mapping. In Fig. 8, a truth image
a is partitioned into a top and a bottom partition, and the bottom
partition is shifted up and right, which results in a discontinuous
image (b). Image c uses a piece of the bottom partition to define an
intermediate partition that is then warped to connect the bottom and
top partitions continuously. Since the bottom partition is identical
to ground truth, and since the bottom partition shrinks from b to c,
a metric that does not penalize for discontinuities will prefer b to c.
Indeed, the PSNR values for a-b and a-c in Fig. 9 are 34.76 dB and
32.30 dB, respectively. Similarly, fovvideovdp reports a Q JOD of
4.125 for conventional and of 3.466 for our method.

We compare the quality of the two near-far partitioning schemes
with a discerning metric that quantifies image continuity. Image
continuity is based on projection continuity (Eq. 6): as the distance
∥h∥ between two 3D points P+h and P decreases to 0, so does the
distance between their image projections Π(P+h) and Π(P).

lim
∥h∥→0

∥Π(P+h)−Π(P)∥= 0 (6)

Given a processed image I, rendered either with the conventional
or with our near-far partitioning method, and a ground truth image
I0, rendered from geometry, we estimate the discontinuity at pixel p
of I with Eq. 7.

δ (p) =
1

|Np| ∑
q∈Np

∥p−q∥
∥Π0(Π−1(p))−Π0(Π−1(q))∥

−1 (7)

δ (p) is the average discontinuity over the neighborhood Np de-
fined in Eq. 8: a pixel q of I is in Np if its projection Π0(Π

−1(q))
on the ground truth image I0 is within ε of that of p.

Np = {q ∈ I | ∥Π0(Π
−1(q))−Π0(Π

−1(p))∥< ε} (8)

Referring to Eq. 7 again, a pixel q in Np contributes to the dis-
continuity at p the ratio between the distance between p and q in I
and the distance between p and q in I0. If p and q project at nearby
locations in I0 but far apart in I, I is discontinuous at p. Since I0 has
a ratio of 1 over all its pixels, the average is decreased by one for a
discontinuity of 0 for I0.

Fig. 9 shows that conventional near-far partitioning (b) has a large
discontinuity value close to the boundary between near and far; the



Figure 9: Discontinuity δ values at four image locations, for ground
truth (a), for conventional near-far partitioning (b), and for our
method (c). The location is shown with a black dot and the neigh-
borhood over which discontinuity is computed is shown with color,
i.e., red, green, blue, and yellow.

boundary splits the ground plane (blue) and the left building (yellow),
and samples that should project close to one another appear at distant
locations in the image. Our continuous near-far partitioning (c)
projects nearby scene 3D points to nearby image locations, resulting
in small discontinuity values at the yellow and blue locations; the
red location is close to the near region but still in the intermediate
region resulting in a small residual discontinuity value; the green
location is in the far region, resulting in the same small discontinuity
value of b. In the ground truth image a δ is 0 at all four locations,
and all four neighborhoods are perfect disks with the radius equal
to the parameter ε chosen to define the neighborhood (Eq. 8, here ε

= 17 pixels). Fig. 10 illustrates the discontinuity metric over entire
images: compared to conventional near-far partitioning (a), our
method (b) reduces discontinuity by an order of magnitude.

4.4 User Study
Participants. We have recruited N = 22 participants from our uni-
versity campus community. There were 7 participants aged 30 or
more, and the average age of the participants younger than 30 was
23. Five participants were women; 3 participants had never used a
VR system before, 5 once, 9 occasionally, and 5 frequently.

Conditions. The study has a within-subject design where all
participants performed all tasks under all conditions. There were
three conditions. Conventional near-far partitioning was used as a
control condition (CC). Our continuous near-far partitioning was
the experimental condition (EC). Rendering the entire VE from
geometry served as a ground truth condition (TC).

Tasks and Hypotheses. Each participant performed three tasks.
The first task asks the participant to count red spheres in the Man-
hattan VE (Fig. 11). The number of spheres is between 11 and 13.
The participant stands in a default position from where all spheres
are visible, which avoids the need of teleportation or redirection.
Counting spheres has only the role of making the participant inspect
the VE, and is not a differentiating factor between the three condi-
tions. Once the participant selects the number of spheres from three
possible choices, the participant is asked the yes/no question ”Is

Figure 10: Discontinuity δ for conventional (a) and our (b) near-far
partitioning highlighted in red.

Figure 11: Task 1 frames in the control and experimental conditions.

there anything wrong with the environment?” (Q1). This first task
was run only in the CC and EC conditions as rendering the entire
VE from geometry had a low frame rate (12fps) and flickering due
to missing frames, which triggered cybersickness even after a short
exposure. The CC condition shows a gap between near and far, and
the related experimental hypothesis is that participants will find that
there is something wrong for CC and not for EC (H1).

The second task uses a VE with one near red rectangle and
with three distant rectangles, one blue, one green, and one yellow.
The distant rectangles are in the far region, and are thus rendered
with environment mapping. The near rectangle ends short of the
far region, and is thus rendered with the morph for EC and from
the user viewpoint for CC. The participant is asked the question:
”Where does the red tape point?” (Q2). The possible answers are
three colored squares corresponding to the far rectangles. In the CC
condition, the distant and near rectangles are misaligned because
they are rendered from different viewpoints. The misalignment is
sufficient for the near rectangle to appear not aligned with any of the
distant rectangles, e.g., CC1 in Fig. 12, or even to appear well aligned
with an incorrect rectangle, e.g., CC2 in Fig. 12). CC also magnifies
the gap between the near and distant rectangles, e.g., CC1 vs. TC.
In the EC condition, the morph bends the near rectangle over the
intermediate region, aligning it with the correct far rectangle. The
related experimental hypothesis is that participants will choose the
correct far rectangle for EC and TC, and that their answers for CC
will be consistently wrong (H2). A participant repeats Task 2 three
times for each of the three conditions, each time with a different
orientation of the near rectangle.

The third task uses a VE with distant boxes with unique colors,

Figure 12: Task 2 frames in the control (CC1 and CC2), experimental
(EC), and ground truth (TC) conditions.



Figure 13: Task 3 frames in the experimental condition, in chrono-
logical order. The white sphere moves in a straight line in the VE.
The frames are shifted left-right in the figure to align their azimuths
for a better illustration of the curved image space trajectory of the
white sphere, which starts out right of the green box (EC0), then
moves left of it (EC1), to finally land on the green box (EC2).

which are in the far region of the VE and are thus rendered via
environment mapping for EC and CC (Fig. 13). A white sphere flies
from the near region, in a straight line, to land on one of the boxes in
the far region. After it lands, the participant is asked two questions.
The first question is a yes/no question: ”Did the sphere move on
a straight line?” (Q3). The related experimental hypothesis is that
participants will indicate that the CC and TC trajectories are linear
and that the EC trajectories are curved (H3). The second question
is: ”Where did the sphere land?” (Q4), with the possible answers
given by small squares of the color of the boxes (similar to Task 2,
see Fig. 12). The related experimental hypothesis is that participants
will answer correctly for EC and TC, and incorrectly for CC (H4). A
participant repeats Task 3 three times for each of the three conditions,
each time with a different sphere trajectory.

Data collection and analysis. In addition to the demographic
data collected via a pen and paper questionnaire, the system saves
the participant’s answers to each question along with the correct
answer in a file stored on the VR headset. The data is tabulated and
proportions of ”yes” (Q1, Q3) or of correct (Q2, Q4) answers are
computed for each of the three conditions, over all participants.

Our data is paired, i.e., each participant answers questions in all
conditions, and it contains values of a dichotomous variable, i.e.,
”yes”/”no” for Q1 and Q3, and correct/incorrect for Q2 and Q4.
Therefore we investigate the statistical significance of the difference
between pairs of proportions using McNemar’s test . Furthermore,
since the number of participants is rather small, we do not approxi-
mate the distribution of our data with the χ2 distribution, but rather
perform the exact binomial test. We compute McNemar’s exact
test from the 2x2 contingency table, i.e., (condition1, condition2) ×
(answer1, answer2), using the Omni calculator [22].

Results and Discussion. The proportions of ”yes” answers for
Q1 and Q3 and of correct answers for Q2 and Q4 are given in
Fig. 14. For Q1 there is no TC data as the headset cannot render the
entire VE from geometry. Only 9% of EC participants found that
there is something wrong with the environment, a broad question
that encompasses all aspects of visual quality, while for CC the
proportion is 41%. We ran the McNemar’s test for paired proportions
on the 2 × 2 contingency table. The table values are: 1 participant
answered ”yes” for both CC and EC, 12 participants answered ”no”
for both CC and EC, 8 participants answered ”yes” for CC and

”no” for EC, and only 1 participant answered ”no” for CC and
”yes” for EC. The discordant, off-diagonal values of 8 and 1 yield
the McNemar’s test results of χ2 = 5.44 and p = 0.0196, so the
user perception advantage of EC over CC is statistically significant
(α = 0.05), confirming the experimental hypothesis H1.

For TC and EC all participants answered Q2 correctly, whereas
only 15.2% did so for CC. The difference EC-CC is significant (Mc-
Nemar’s test χ2 = 18 and p < 0.001), confirming the experimental
hypothesis H2. For TC, the near rectangle has straight edges, which
are aligned with the straight edges of the far rectangle, which is a
strong cue pointing the participant in the correct direction (Fig. 12
TC). For EC, the projection of the near rectangle is curved but it
was sufficient to point the participant in the right direction(Fig. 12
EC). For CC, performance is worse than chance level, i.e., 33%,
because the visualization consistently points the participant in the
wrong direction.

The responses to Q3 were somewhat surprising. First, not all
CC and TC trajectories were judged as straight, which indicates
that it is difficult to judge trajectories with a great z change as
perspective foreshortening yields a highly non-linear image plane
motion. Indirectly, this is positive for our method which bends
trajectories over the (r1, r2) z range. The second surprising aspect of
the answers to Q3 is that a majority (56%) of EC image trajectories
were judged as straight. Digging deeper into the answers to Q3, two
of the three EC trajectories were consistently judged as straight (82%
and 82% ”yes”), while one was consistently judged as not straight
(4.5% ”yes”). The explanation for this is that the curvature of the
trajectory is easily detectable when the VE line of the trajectory
passes close to the user viewpoint, who then has the vantage point
necessary to see the bend of the trajectory. For example, in Fig. 13,
the sphere has an image plane velocity vector whose horizontal
component switches sign. A trajectory that stays one side of the
view direction might have no velocity component sign changes,
and only have acceleration sign changes which are harder to detect.
Overall, significantly more CC (p < 0.001) and TC (p < 0.001)
trajectories were judged as straight compared to EC, which confirms
the experimental hypothesis H3, althoughparticipants detected the
curvature of EC trajectories in fewer than half of the cases.

The answers to Q4 indicate an even worse performance for CC
than for Task 2 (Q2). Whereas there were only three far rectangles
for Task 2, there were 7 landing boxes for Task 3, so the chances that
in the CC image the sphere lands close enough to the correct box are
low. The differences between EC and CC (p < 0.001), and between
TC and EC (p < 0.001) are significant. CC projects the sphere from
the user viewpoint, which results in an image location substantially
different from the image location of the nearby landing box that is
projected from the environment map center. Answer correctness in
EC is about 10% lower than for TC. 7 of the 3×22 = 66 landing
locations were judged incorrectly for EC and correctly for TC, and
none were judged correctly for EC and not for TC. McNemar’s
test indicates that the difference between TC and EC is significant
(χ2 = 7, p= 0.008). Like TC, EC renders the sphere precisely above
the correct landing box, but, unlike TC, EC does not provide accurate
depth cues. A participant might see the horizontal and vertical (x, y)
image plane alignment but suspect a misalignment in z, hence the
incorrect answers for EC. In conclusion, the experimental hypothesis
H4 is confirmed. Although EC answers were 83.3% correct, the lack
of depth perception for EC leads to a significantly lower proportion
of correct answers compared to TC.

5 CONCLUSIONS. LIMITATIONS. FUTURE WORK

We have presented a method for reducing rendering load to increase
the complexity of the virtual environments that can be rendered
on thin VR systems. Our method is based on the tried and true
approach of rendering the far region from environment mapping,
but instead of limiting the far region to a disconnected background



Figure 14: User study results analyzed with McNemar’s test for paired proportions. Significant differences are indicated with an asterisk.

image, our method integrates seamlessly the environment mapped
part of the frame with the part rendered from geometry. Continuity is
guaranteed by construction and dynamic far geometry is composited
with the environment mapped part of the frame with pixel-level
accuracy. Empirical evidence shows that the visualization continuity
provided by our method translates to significant advantages over
conventional environment mapping in terms of overall perception of
the VE and in terms of answer accuracy to spatial queries.

Our approach is ready to be integrated with VR applications. Our
approach was tested in texture-less VEs which best reveal geometric
discontinuities, as well as the geometric distortions introduced by
our method. We expect that in textured, rich environments, which do
not have the long straight lines of the city blocks of our VE, the dis-
tortion introduced by the morph is even less noticeable. To facilitate
integration into complex VE’s, the morph and depth compositing
should not be added to all vertex and fragment shaders in the VE,
but our method should be integrated into an advanced cube map
construct with parameters O, r1, and r2 that applies the morph and
the depth compositing to all VE geometry.

One limitation of our approach is that, since the dynamic far
region is rendered from geometry, the rendering load might not
be reduced sufficiently if too much of the far region is dynamic.
Similarly, our method might not reduce rendering load sufficiently
in a scene with highly variable complexity. For example, a statue in
a city square with millions of triangles will have to be simplified as
it cannot be included as is in the near region.

Another limitation is that, although our method improves the
quality of the integration of the far region with the rest of the frame,
the far region is still not at par with the parts of the VE rendered from
geometry. For example, the headlights of a car moving in the far
region at night should illuminate the stationary far geometry, which
future work could investigate doing by enhancing the environment
map with additional channels such as normals and material proper-
ties. Another example is that the environment mapped regions of
our left eye and right eye output frames lack the disparity needed for
correct depth perception. One direction of future work is to develop
an image and video sequence quality metric that takes into account
all environment mapping approximations, in the stereo, possibly
foveated, VR rendering context.

Our method works for a ”user region” (i.e., a near region) of
considerable size, e.g., r1 = 30m in the Manhattan VE. It is unlikely
that the physical space available to the VR application exceeds the
near region, so future work will have to examine the integration
of our method with methods for alleviating the virtual/physical
world size mismatch, such as teleportation and redirection. An
important advantage of our method is that it does not require complex
preprocessing. Getting ready for a new user region only requires
rendering the cube map and collecting the triangles within r2 of the

region center, and it does not require complex geometric processing
such as visibility or LoD computation. For example, since the Quest
2 can render the Manhattan VE from geometry at 12fps, rendering
a cube map takes 500ms, and even less if a single pass approach
is used to distribute the triangles to the six faces with a geometry
shader. Getting ready for a new user region in a fraction of a second
is sufficient to support fade-out/fade-in relocation in the VE.

Another direction of future work is to integrate our method into
a distributed VR system where it promises to reduce the amount
that has to be transferred from the server to the client. To reduce
startup times, the server could first transfer the geometry of a small
near region and then increase it progressively, transferring the newly
included triangles to the client. Once additional triangles arrive at
the client, the triangles are moved from the environment mapped to
the geometry-based part of the frame by gradually increasing r1 and
r2. Such a progressive refinement could be hidden from the user by
taking advantage of saccades and of favorable view directions.

Thin VR clients have made rendering load reduction once again
an active area of research. As it was the case for desktop workstation
GPUs, the rendering capability of VR headset GPUs is likely to
continue to increase. As this implies a commensurate increase in
power consumption, we foresee that rendering capability will not
increase as fast for untethered VR systems that are powered by
batteries. Finally, even if battery capacity increases keep up, limiting
rendering to only what is relevant to the application will remain
important such as to avoid wasteful power consumption, towards
alleviating environmental concerns of growing urgency.
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