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Brief outline

Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min

Break 15 min

Katz Diffusion 10 min

Weak Convergence for PageRank 20 min
Monte Carlo methods 15 min

Break 15 min

Implicit Regularization 25 min
Discussion 15 min
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http://education.seattlepi.com/effect-kinetic-energy-relates-diffusion-rate-4870.htm|



Wikipedia: Angiography



Llet G=(V,E)...




Inject dye
here

< A <R
‘\%‘\';‘{\ 7
el

QL
Y

A ):
5 - A
T ‘?\
R
= H, {
- \
\l Ly
1, ’§\ \ ¥
/N // {
i , - : A
N . @ é - )c B . N
- T F Yoy
\/j“» [ Q‘JI\ K i - S\\\\I/’ N
S y ‘s ! > (
e ’ [ F W \
i 1, \ ! :\v\‘—‘,“. y ‘/7\ o
‘ TN Wi\
\ SN / ,"[
) : Ty = < i
e E ‘7” i / Y = "

| £
SV
o Y%




A%v

S\
SN J%{A\\\ —

NES<

e =S
N
N

N =
Z

N
{

[~

Inject dye here

ANy \
2 0 -\

v/ N
SN —
7




... work out sample diffusion on the board ...




Examples




Everything in the world can be The talk ends, you ,
explained by a matrix, and we see believe -- whatever H,f‘
how deep the rabbit hole goes you want to. 8
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Image from rockysprings, deviantart, CC share-alike ’:1 g
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Matrices derived from networks

adjacency A
diag degree matrix D d; =de |
) ' . | Directed
randomwalkk P =AD"’
Laplacian L =D-A
normalized Laplacian £ =D""?(D— AD™'/?

_1_p12ap-1/2 Undirected

normalized adjacency A =D '/2AD™"/?

David Gleich - Purdue Netflix




You'll eee thie again,

A general diffusion definition  «wehscmoe

0
f — Z CkMkS Source
k=0

PageRank Katz scores Heat kernel

i1—a ofPs =i1—@ o A¥s f_Ze‘”t—k!Aks
k=0 k=0
P

I—aPf=(1-a)s (I—aAf=(1—a)s f_exp{ HI — P)}s

Katz, 1953; Page et al. 1999; ??? For Heat Kernel



... not just me ...

Adjacency Kernels L aplacian Kernels
Fuapar(L) = exp(—al)

Fexp(A) = exp(aA) Fugar(£) = exp(—al)

Fexp(A) = exp(aA)

Fyneu(A) = (I—aA)™? Feomr(L) = (I+aL)™

Fyeu(A) = (IT—aA)™! Feomr(£) = (I+al)”
Fecom(L) = Lt

Fecom(L) = LT

Kunegis & Lommatzsch, ICML 2009




... demo ...
github.com/dgleich/diffusion-tutorial

David Gleich - Purdue Netflix



Applications




Applications of localized and
personalized diffusion

Seeds - Scores =2 “Learning”
Graph Kernels
« Kondor & Lafferty, ICML 2002
Link prediction
 Liben-Nowell & Kleinberg, 2005, 2006

* Kunegis, Lommatzsch, 2009

... more ...

“Attribute prediction” “semi-dense vectors”
« GeneRank, Morrison et al. 2005

» ProteinRank, Freschi 2007

* Genes for cancer, Winter et al. 2012

» (Cross-modal discovery, Pan et al. 2004

e Global information diffusion, Venner et al. 2010



PageRank beyond the

SIAM Review, Sept. 2015

VWeb ,

Y




Vertex similarity

Diffusions in Open-Directory graph used for
semantic relatedness

1. Reverse the direction of all edges

2. Compute the seeded PageRank matrix
e.g. “diffuse” from all individual seeds

3. Compute cosine distances between columns.

Bar-Yossef, Ziv and Mashiach, Li-Tal, 2008




Vertex similarity
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Vertex similarity

M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. Guibas, One Point Isometric Matching with the Heat Kernel,
Proc. Eurographics Symposium on Geometry Processing (SGP) 2010.




Network alignment &
near isomorphisms

IsoRank
Diffuse from all potential matches through the Kronecker graph

1/2 0 1/2 1
1/21/3 0 0
0 1/3 0 0
0 0 0 1/4 0] 2
0 0 1/21/4 0 3
0 1/2 0 1/4 0 A
1 1/21/2 0 1
| 0 0 0 1/4 0

A B C D FE

0 1/31/2 0 ]
1 [0.03 0.05 0.05 0.09 0.03]

0.04 0.07 0.07 0.15 0.04
0.03 0.05 0.05 0.09 0.03
0.02 0.03 0.03 0.05 0.02

BlG PROBLEMS' Dataset Size Nonzeros

But structured LCSH-2 59,849 227,464
WC-3 70,509 403,960

Product graph  4,219,893,141  91,886,357,440

Singh et al. PNAS 2008
Gleich et al. SIAM J. Sci. Comp. 2011




Opinion dynamics

Y initial opinions

I—aP")Y. =Y
P gives influences

Friedkin & Johnson, 1990, 1999




Voting in social networks

Vicious democracy

Consider a social network

« Some small fraction of users express a vote ©
« Other users delegate their vote with decay ©
« The others don’t vote at all ®

* Determine a final vote by taking the expected diffusion
where each non-voter picks a neighbor at random
and then diffuse the vote

Boldi et al. CIKM ‘09, CACM ‘11




Communities & Clusters

Theory

Early Fiedler, Anderson & Morley 1985, Mihail, Chung, Pothen et al., Simon et
al., Lovasz & Simonovits, FOCS 1990, Random. Struct. Alg. 1993

Spielman & Teng, 2004, 2013
Andersen, Chung, Lang, FOCS 2006
Chung, PNAS 2007

Ghosh et al. KDD 2014

Practice

Andersen & Lang, WWW 2006

Leskovec et al. Internet Math. 2009

Gargi et al. 2011 (Google, YouTube communities)
Epasto et al. 2014 (Google, Competing advertisers)

... Somany ...




Andersen-
Chung-Lang
personalized
PageRank
community
theorem

[Andersen et al. 2006]

Informally

Suppose the seeds are in a set

of good conductance, then the

personalized PageRank method
will find a set with conductance

that’s nearly as good.

... also, it’s really fast.




Examples

“Gambling

sports

Figure 4: A low-resolution view of part of a very
small version of the Yahoo sponsored search bipar--
tite incidence matrix. The gambling co-cluster con-

tains a sports betting subcluster.

Andersen and Lang, 2006

hetting

Figure 10: A low-resolution view of part of the
movies vs actresses incidence matrix. The Spain
co-cluster lies within a supercluster of Spanish-
and Portuguese-language countries. Also there are
many edges leading from Spain to other Romance-
language countries. See section 3.5.




Overlapping communities via
seed set expansion works nicely.

Flickr social network
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Coverage (percentage)

We can cover 95% of network with
communities of cond. ~0.15.

Whang, Gleich, Dhillon 2013, 2015




... demo ...

github.com/dgleich/diffusion-tutorial




Empirical Evaluation using
Network Community Profiles

10°

Minimum 107}
conductance for
any community of 0

the given size 3|

_2_

-4 |

10

Approximate
canonical shape
found by
eskovec, Lang,
Dasgupta, and
Mahoney

Holds for a variety
of approximations
to conductance.
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David Gleich - Purdue
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Network Community Profile

Facebook Sample - 1.1M verts, 4M edges
10° - e ;

¥ Facebook data
+ from Wilson et
al. 2009

L 107}

Minimum
conductance for | |

any community of

the given size 10|

) max
10 ¢ deg
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Community Size

David Gleich - Purdue MLG2013



Semi-supervised
Learning on Graphs

d; — dj||5
202

A,',j =exXxp | —

Zhou et al. NIPS (2003)



Semi-supervised
Learning on Graphs

Experiment predict unlabeled
images from the labeled ones




Semi-supervised
Learning on Graphs

Ki=(1-p5A)"
2=(D—pA)"!
Y =K,L

y = argmax; Y

Experiment vary number of
labeled images and track perd.




Even more diffusions

SIR and viral thresholds Generalized coefficients

« Wang et al. 2003 « Boldi et al. 2005 - TotalRank

« Berger et al. 2005 » Baeza-Yates et al. 2006 - Generalized
Rumor spreading » Constantine & Gleich, 2007, 2010 —

. Chierichetti et al. 2010 Random alpha PageRank

Information cascades

» Farajtaba et al. 2015
Laplacian variations

« Bridle & Zhu, MLG 2013
Diffusions over semi-rings

« Kepner & Gilbert, 2011 (e.g. Peer-pressure clustering)
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Diffusion vectors
Given a graph G and a set of seed node(s)...

A diffusion vector assigns nodes values that quantify
somehow the relationship of S to the rest of G, by
propagating information from S to the rest of G.

Diffusion coefficients

O
Graph related matrix
f= Z CkMkS P
k=0

Seed vector
Diffusion vector




Another application, another diffusion

Different applications and sources of data call for different
diffusions — change c,, M, s, pre- and post-processing.

Algorithmic approaches
e deterministic

* randomized Diffusion coefficients

* (many)
O
k Graph related matrix
f= Z ckM”s . (APL, more)
k=0 Seed vector
Diffusion vector e constructions
 normalizations e« normalizations

* accuracy




Another application, another diffusion

Different applications and sources of data call for different
diffusions — change c,, M, s, pre- and post-processing.

Algorithms — coordinate relaxation / push, monte carlo

Coefficients — probability, Katz, adaptive, many more
Graph matrix — adjacency, prob trans, Laplacians, more

Seed vector — seed set indicator vector, normalizations

Diffusion post-processing

* Degree scaling

* weak vs strong accuracy
« Sweep-procedure




Coordinate relaxation methods
for graph diffusions




Local node rankings, similarity

Rank nodes with respect to S by taking the largest values
from a diffusion f. More accurate rankings require the
solution to be precise enough that large diffusion values
that are close to each other aren’t mis-ranked:

Ranks Diffusion values agz:;x
4 0.139 0.137] [4
{ 2| ¢ [0251] ; 024 | |3 }
3|  |1025 |’ |[0.245 2
1 - 0.36 1033 | [1




Local node rankings, similarity

Rank nodes with respect to S by taking the largest values
from a diffusion f. More accurate rankings require the

solution to be precise enough ...

GOAL: compute f with accuracy  ||f — f||1 < €

We begin with the popular personalized PageRank
diffusion vector, but will later apply this accuracy setting to
a number of diffusions.




PageRank diffusion
The PageRank diffusion can be defined as the solution to

I —aP)x=(1—a)s

for some alpha in (0,1). The seed vector s should be
normalized to sum to 1. This linear system is equivalent to

our definition for a diffusion: e
f = Z o P*s
k=0




PageRank diffusion
The PageRank diffusion can be defined as the solution to

I —aP)x=(1—a)s

for some alpha in (0,1). The seed vector s should be
normalized to sum to 1. This linear system is equivalent to

our definition for a diffusion: e
f = Z o P*s
k=0

This holds when [|aP]| < 1
because of the Neumann series:

I—aP)' =) P
k=0

proof: geometric series)




Coordinate relaxation for PageRank
For a fast approximation, f, to the following
I—aP)x=(1—a)s =8

we introduce a coordinate relaxation scheme:

Initial solution and residual: XY = 0,9 = (1 —a)s
lterative updates: first pick entry of residual, |

(There are a number of ways of picking an entry

-- for now, assume just that the entry is non-zero)




Coordinate relaxation for PageRank
For a fast approximation, f, to the following

I — aP)x = &

we introduce a coordinate relaxation scheme:

Initial solution and residual: XY = 0,9 = (1 —a)s
lterative updates: first pick entry of residual, |

- Update solution: x5+ = x(k) 4 I - €




Coordinate relaxation for PageRank
For a fast approximation, f, to the following

(I — aP)x =
we introduce a coordinate relaxation scheme:

Initial solution and residual: XY = 0,9 = (1 —a)s
lterative updates: first pick entry of residual, |

- update solution: X&+1) = x(k) 4 ri-e;
- update residual: r**1 = § — (I — aP)x*+")

=% — (I — aP)e

K) _ re:. +r: .
' —rie; + riaPe,




Coordinate relaxation for PageRank

Approximating
I — aP)X =
Initial solution and residual: ~ x© =0,r® = (1 — a)s
lterative updates: first pick entry of reS|duaI ]
- update solution: xK+) — xR 4 [i - €;

- update residual:  r**1 = § — (I — aP)x**1)

(K)

=r" —rie; + riaPe,




Coordinate relaxation for PageRank
Approximating

(I — aP)X =

0) _

Initial solution and residual: ~ x9 =0,r% = (1 — a)s

lterative updates: first pick entry of reS|duaI ]
X(k+1) _ X(k)

- update solution: f f + I
- update residual:
O, ifi=]
k+1 k e
r-(k) , else

/




The push algorithm
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Coordinate relaxation remarks, part 1

This is the fundamental operation underlying many
of the deterministic methods for diffusions

Consists of single update to solution X and a
single column access of matrix P to update r

Because of this, fast for sparse matrices (avoids
O(|E|) work required by full mat-vec!)

Nothing special about PageRank, can be applied
IN other circumstances




Coordinate relaxation remarks, part 1

This is the fundamental operation underlying many
of the deterministic methods for diffusions

Consists of single update to solution X and a
single column access of matrix P to update r

Because of this, fast for sparse matrices (avoids
O(|E|) work required by full mat-vec!)

Nothing special about PageRank, can be applied
IN other circumstances

x+) = x4 re;
(k+1) _ ¢K) _ r@. + 1 .
" =r" —re; + raPe,




Coordinate relaxation remarks, part 2

- Convergence depends on method of choosing
entry, as well as the underlying matrix

- Gauss-Southwell: choose r; to be largest entry in'r
- (Gauss-Seidel: after |, choose j+1, then j+2, ...

- Choose any entry >= average magnitude of r

- Choose any entry above some threshold

- Even random selection can work




Coordinate relaxation remarks, part 2

- Convergence depends on method of choosing
entry, as well as the underlying matrix

- Gauss-Southwell: choose r; to be largest entry in'r
- (Gauss-Seidel: after |, choose j+1, then j+2, ...

- Choose any entry >= average magnitude of r

- Choose any entry above some threshold

- Even random selection can work

- Many methods of entry selection converge for
diagonally dominant and positive definite matrices
(in particular, Gauss-Southwell does).

- Implementation requires intelligent choice of data
structure for r for fast entry selection/updates




PageRank Convergence: error & residual
Approximating a solution to

(I — aP)x =§
residual and error satisfy
r'®) = § — (I — aP)x

= (I — aP)x — (I — aP)x®




PageRank Convergence: error & residual
Approximating a solution to

(I — aP)x =§
residual and error satisfy
r'®) = § — (I — aP)xW

= (I — aP)x — (I — aP)x"
I — aP)" TR = (x — x™))
Ix —x®| <[ —aP)~[|[r]

for any sub-multiplicative matrix norm || || .




PageRank Convergence: residual bound
Approximating a solutionto (I — aP)X =$§
“rror satisfies Ix — x| < || — aP)71||r)

nitial solution and residual: X% =0, 9 = (1 —«)s

k+1) k)

Update residual: r) = v re; + riaPe;




PageRank Convergence: residual bound
Approximating a solutionto (I — aP)X = §
“rror satisfies X — x®|| < || — aP)~ 1| |F"]

nitial solution and residual: X% =0, 9 = (1 —«)s

k+1) k)

Update residual: r) = v re; + riaPe;

Ir5 D < ek — riejll1 + ||riaPejll1  Triangle inequality

k . .
< [[rtR]y — ri+ |ria)||Pejll1  Residual nonnegative
k . .
< Iy — i + |l P is column-stochastic
< |[F9y — r(1 —a) Residual nonnegative




PageRank Convergence: residual bound
Error satisfies Ix — x| < [|(T — aP)~"|||¢®)|
Initial solution and residual: X9 =0, 1% = (1 —a)s
Residual norm:; [0 < 19y — (1 — )

Assume we chose r; to be at least as big as the average
magnitude of the residual entries. Then
ri > |[F ) /nnz(r®))  (definition of average)
> [[f9)4/n (loose bound!)




PageRank Convergence: residual bound
Error satisfies Ix — x| < [|(T — aP)~"|||¢®)|
Initial solution and residual: X9 =0, 1% = (1 —a)s
Residual norm:; [0 < 19y — (1 — )

Assume we chose r; to be at least as big as the average
magnitude of the residual entries. Then

ri > |[F ) /nnz(r®))  (definition of average)

> [[F|4 /n (loose bound!)
IO < Ik = e (1 = a)/n
< [ (1 (17704))
k+1 k+1
< [rO], (1 - “;a>) -(1-a) (1 - “;C”)




PageRank Convergence: back to error
Error satisfies Ix — x| < |@ - aP)~|||r]
Substituting in for residual...

Residual norm:  [[K®]); < (1 — a) (1 _ M)k

n

(T — aP)~! |1 = ﬁ (using Neumann series for inverse)




PageRank Convergence: back to error
Error satisfies Ix — x| < |@ - aP)~|||r]
Substituting in for residual...

Residual norm:  [[K®]); < (1 — a) (1 _ M)k

n

(T — aP)~! |1 = ﬁ (using Neumann series for inverse)

Substitution gives Ix — x¥|; < ﬁ Ir)]
k
(1—o)
<(1-159)
Bounds number of iterations with O(log(1/¢e)n)

(out the bound can be refined to give sublinear work,
depending on the underlying graph.)




Related work: strong coordinate relaxation

- Deterministic coordinate relaxation for diffusion

- [Jeh & Widom '03] Scaling Personalized PageRank

- [McSherry '05] Accelerated PageRank Computation

- [Berkhin ’07] Bookmark Coloring Algorithm for PPR

- [Bonchi et al. ’12] Fast Katz and Commute Times

- [Kloster, Gleich WAW13] Coordinate relaxation for exp(P)e,

- Selecting entry to relax:

- [Dhillon, Ravikumar, Tewari '11] Near neighbor-based greedy
coordinate descent

- [Nutini, et al. 2015] Gauss-Southwell better than random
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From PageRank
to the Katz diffusion




Coordinate relaxation for PageRank
Approximating a solution to

I — aP)X =
Initial solution and residual: ~ x© =0,r® = (1 — a)s
lterative updates: first pick entry of reS|duaI ]
- update solution: xK+) — xR 4 [i - €;

- udpate residual: r**1 = § — (I — aP)x**1)

(K)

=r" —rie; + riaPe,




Coordinate relaxation for Katz diffusion
Approximating a solution to
(I —aA)X=Db

Initial solution and residual:  x© =0,r® = b
lterative updates: first pick entry of residual, |

- Update solution: x\K+1) = x(k) Y
- udpate residual: r**1 = b — (I — ¢ A)x**1)
=% — re; + raAe;

(Not much difference)




Katz diffusion
The Katz diffusion can be defined as the solution to

I— aAXx=s— (I —aA)s
The restrictions on alpha differ from PageRank:
PageRank: 0 < a < 1

Katz: 0<a<1/dnax < 1/X(A)

where lambda, is the dominant eigenvalue, and d
largest degree in the graph.

IS the

Mmax




Katz diffusion
The Katz diffusion can be defined as the solution to

I— aAXx=s— (I —aA)s
The restrictions on alpha differ from PageRank:
PageRank: 0 < a < 1

Katz: 0<a<1/dnax < 1/X(A)

where lambda, is the dominant eigenvalue, and d
largest degree in the graph.

IS the

Mmax

Note: 0 < a < 1/dmax Quarantees |aAlj1 <1 so

f=) ofA's =) (athna) (7= A)s
k=1 k=1




Coordinate relaxation for Katz diffusion
Approximating a solution to
(I — aA)X=Db

Initial solution and residual:  x? =0,r% =b
lterative updates: first pick entry of residual, |
X_(k+1) _ X.(k)

- update solution: ; f I
- udpate residual:
O, ifi=]
K+1 .
r-(k) , else

/




Convergence for PageRank (repeated)
Error satisfies Ix — x| < |[(X — aP)~ ||| r™]
Substituting in for residual...

Residual norm:  |[r®|]; < (1 — a) (1 - M)k

n

(T — aP)~! |1 = ﬁ (using Neumann series for inverse)

Substitution gives Ix — x¥|; < ﬁ Ir)]
k
(1—o)
<(1-159)
Bounds number of iterations with O(log(1/¢e)n)

(out the bound can be refined to give sublinear work,
depending on the underlying graph.)




Convergence for Katz
Error satisfies Ix — x®|| < [[(T = &)~ 1| ||r?|

Differences:

Depending on which norm is desired, scale A by 1/d..,
or 1/lamlbda,. Then, rest of the convergence analysis for
PageRank applies to the scaled adjacency matrix:

|’(I_04A)_1”1 < ‘I—oj—dmax It @ < 1/dmax

(fa < 1 / A1 the method still converges, but analysis is trickier.)




Brief outline

Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min

Break 15 min

Katz Diffusion 10 min

Weak Convergence for PageRank 20 min
Monte Carlo methods 15 min

Break 15 min

Implicit Regularization 25 min
Discussion 15 min




Weak convergence coordinate
relaxation for communities and good
conductance sets.




Weak accuracy for community detection

Local community detection/ finding good conductance
sets from a diffusions vector f:

Seek the largest values in the diffusion vector;

weak accuracy, because identifying the largest values is
the goal, not the precise values themselves

(or even the precise ranking of values).




Weak accuracy for community detection

Local community detection/ finding good conductance
sets from a diffusions vector f:

Seek the largest values in the diffusion vector;

weak accuracy, because identifying the largest values is
the goal, not the precise values themselves

(or even the precise ranking of values).

GOAL: compute f with accuracy  Q < f; — 'f/ < ed]
(entry-wise). Equivalent to
f>f and HD f—fHoo<€




Low-conductance sets

# edges leaving T
min( vol(T), vol(G-T))

conductance( 1) =

seed

vol(S) = » d(v)

veS

= “ chance a random step
frominside T exits T ”




Use a diffusion for good conductance sets

1. Approximate fso ||D™'(f — f)||oo < €
2. Scale by D,
3. Then “sweep” for best conductance set.

Sweep:
1. Sort diffusion vector so fi/d(1) > f/d(2) >
2. Consider the sweep sets S() = {1,2,...,}}

3. Return the set S(j) with the best conductance.




Diffusions used for conductanceoo
Personalized PageRank (PPR) f=> ofP's
k=0

Heat Kernel (HK) =Y LPs




Diffusions used for conductanceoo
Personalized PageRank (PPR) f=> ofP's
k=0

@)

Heat Kernel (HK)  £=3 £ P¥s
k=0

Time-dependent PageRank (TDPR)
00 k

f = Z {(1 — a)aX (1 — e 7 Z 7—:) +e O‘:!Vk P*s
k=0 r=0
Comes from X =(1—-a)s— T — aP)x(t)




Diffusions used for conductanceoo
Personalized PageRank (PPR) f=> ofP's
k=0

Heat Kernel (HK)  £=3 £ P¥s
k=0

Time-dependent PageRank (TDPR)
00 k

f= Z {(1 — a)a (1 —e’ Z 'Vr—,r> +e O‘:!yk

0 k=0 r=0
10"

P‘s

Various diffusions
explore different
T~ < a-08s aspects of graphs.

~

80 100




Diffusions used for conductanceoo
Personalized PageRank (PPR) f=> ofP's
k=0

@)

Heat Kernel (HK)  £=3 £ P¥s
k=0

Time-dependent PageRank (TDPR)
00 k

f= Z {(1 — a)a (1 —e’ Z 7—:) +e O‘:!Vk

k:o I’=0

P‘s

@)
Use other matrices, too: f = Z ¢ L¥s
(Various weightings and scalings k=0

of the Laplacian have been explored, [Ghosh et al. *14])




Diffusions: conductance & algorithms

PR

HK

TDPR

Gen
Diff

good
conductance

fast
algorithm

Local Cheeger Inequality
[Andersen,Chung,Lang 00]

[Andersen Chung Lang 06]
“PPR-push” is O(1/(e(1-)))

Local Cheeger Inequality
[Chung ’07]

[Kloster, Gleich "14]
“HK-push” is O(e'C/e )

Open question

[Avron, Horesh ’15]
Constant-time heuristically

[Ghosh et al. ’14] on L;
open question for general f

INn revision!




Weak convergence for PageRank
Approximating a solution to I —aP)x =58
§ — (I — aP)x®
I — aP)~ ek = (x — xW)
Ix = x| < ||@ = aP)~M||Ir™]
for any sub-multiplicative matrix norm || ||. Scale by D!

residual and error satisty r(K)




Weak convergence for PageRank
Approximating a solution to I —aP)x=8

§ — (I — aP)x®
I — aP)~'r = (x — x¥))
Ix — x| < || —aP)~ || |Ir"]
for any sub-multiplicative matrix norm || ||. Scale by D!
D 'f® =D '§ — (I— aP")D 'x¥
I—aP")" "D ¢ = D1 (x — x)
ID7 (x — x| < | — aPT)7M|[|D~ TR

residual and error satisty r(K)

This requires A Is symmetric:
D 'P=D'(AD 'Y= (D 'AD ' =P ' D!




Weak coordinate relaxation
Approximating a solution to I —aP)x=8
Residual and error satisty

D7 (x = x¥)[loe < 25 max{r;/d}

ID7' (X — X ) [|oo < [T = aP") oo |D” 9| o




Weak coordinate relaxation
Approximating a solution to I —aP)x=8
Residual and error satisty

D7 (x = x¥)[loe < 25 max{r;/d}

D7 (x = xW)[loo < |(F = aP")[loo||D™ ']
Contrast with 1-norm version: here simply track residual

entries (degree normalized) that exceed a threshold.

This suggests a new method of choosing the coordinate |.

The rest of the update operation stays the same.




Weak coordinate relaxation, operation
Approximating a solution to I —aP)x =8

Initial solution and residual:  x9 =0,r% = (1 — a)s
lterative update: a queue stores big entries: r; > 4|
- pick top entry off Q(r), j.
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- update solution: xj(k+1) = xj(
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Weak coordinate relaxation
Approximating a solution to I —aP)x =8

Initial solution and residual:  x9 =0,r% = (1 — a)s
lterative update: a queue stores big entries: r; > 4|
- pick top entry off Q(r), j.

- update solution: xj(k+1) = xj(

- update residual: 0, ifi=]

A = 2 0 4y i~

/
k
f,-() , else

K 4
+ 1]

-for i~j : > ed;, add r, to Q(r) if not present




Weak coordinate relaxation, work bound

1. Every update is on an entry in Q(r) satisfying ed; <
n
2. Sum of updates is Z Fity = Z fi, <1
t=1 k=1

3. Total workis >, iy
t=1




Weak coordinate relaxation, work bound

1. Every update is on an entry in Q(r) satisfying ed; <
n
2. Sum of updates is Z Fity = Z fi, <1
t=1 k=1

3. Total workis >, iy
t=1

All together: ¢ Z di(r) = Z e < iy < 1
t=1

=1 =1

Work is bounded by  1/((1 — a)e)
a constant independent of the graph size!

Andersen, Chung, and Lang, 2006



Weak coordinate relaxation, work bound

1. Every update is on an entry in Q(r) satisfying ed; <
n
2. Sum of updates is Z Fity = Z fi, <1
t=1 k=1

3. Total workis >, iy
t=1

All together: ¢ Z di(r) = Z e < iy < 1
t=1

=1 =1

f
Work is bounded by  1/((1 — a)e) (ciy(rg;e:s(;or_n&)s)

a constant independent of the graph size!




Weak coordinate relaxation remarks

[Ghosh et al *14] proved Cheeger inequalities for
related diffusions that use weighted Laplacians

Is there a related Cheeger inequality, and a
constant-time algorithm, for the degree-
normalized Katz diffusion?

IS there a “best” set of diffusion coefficients for
identifying particular structures”?

Can we improve on the sweep procedure”? Or
bound its performance”

[Kenter et al. ‘15] introduced a randomized subroutine
that improves on sweep in certain conditions




Related work: weak coordinate relaxation
- Deterministic coordinate descent

- [Andersen, Chung, Lang '06] Local Graph Partitioning

- [Andersen, Lang ’06] Communities from Seed Sets

- [Kloster, Gleich '14] Heat Kernel clustering

- [Kloumann, Kleinberg '14] Community membership from seed
- [Ghosh et al. ’14] Interplay between dynamics and networks

- [Avron, Horesh ’15] Time-Dependent PageRank clustering




Brief outline

Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min

Break 15 min

Katz Diffusion 10 min
Weak Convergence for PageRank 20 min
Monte Carlo methods 15 min

Break 15 min

Implicit Regularization 25 min
Discussion 15 min




Monte Carlo methods
for diffusion vectors




Monte Carlo motivation

Benefits of MC over deterministic?

- strong convergence method drastically slows down as
It operates on nodes of large degree

- weak convergence method gets no accuracy when it
encounters nodes of large degree

- MC avoids out-link accesses best




Monte Carlo method for Matrix inversion

[Forsyth & Liebler, 1950]
Matrix Inversion by a Monte Carlo method:

Want (B~");, so design a game such that the expected
value is exactly (B™');. It has inspired other work:




Monte Carlo method for Matrix inversion

[Forsyth & Liebler, 1950]
Matrix Inversion by a Monte Carlo method:

Want (B~");, so design a game such that the expected
value is exactly (B™');. It has inspired other work:

- |K. Avrachenkov '05] MC methods in PageRank

- [Fogaras et al. ’05] Fully scaling personalized PageRank

- [Das Sarma et al. '08] Estimating PageRank on graph streams
- [Bahmani "10] Fast incremental Personalized PageRank

- [Bahmani '10] PageRank & MapReduce

- [Borgs ’12] Sublinear PageRank

- [Chung, Simpson WAW13] Solving systems w/ heat kernel




Designing a game for PageRank

We want a specific entry of f=(1-0a)) ofPfe
say, f. . k=0

GOAL: design a random process for producing f
so that the expected value of each entry is the true value.




Designing a game for PageRank

We want a specific entry of f=(1-0a)) ofPfe
say, f. . k=0

GOAL: design a random process for producing f
so that the expected value of each entry is the true value.

Observe that

fi=(1-a)) of(PY;
k=0
=(1-a) a"(? > > P,-k,,-(k1)---P,-2,,-1Pn,,-)

k=0 pe(ij) MEN() i2EN(1)  ikeN(i(k—1))

where p.(i,)) is the set of all k-walks from jto i (and i, = ).




Designing a game for PageRank
We’ll convert this so it looks like an expected value:

f=(1—a) Za ( > > P,-k,,-(k1)---P,-2,,-1P,-1,j>

P ( // I1€N(j i2eN(i1) IkeN(i(k—1))

Note that P(ik, i(k-1) ) ... P(i1,)), is the probability of taking a
specific walk, w,(i,)).




Designing a game for PageRank
We’ll convert this so it looks like an expected value:

f=(1—a) Za ( > > P,-k,,-(k1)---P,-2,,-1P,-1,j>

P ( // I1€N(j i2eN(i1) IkeN(i(k—1))

Note that P(ik, i(k-1) ) ... P(i1,)), is the probability of taking a
specific walk, w,(i,]). We can rewrite...

f; = (1 —oz)Zozk ( Z P(Wk(isj))>
k=0

Wi (1)) €Pk (1))

=Z( S <1a>ak1@<wk<i,/>>>
Wi (I,)) € Pk (i ))

k=0




Designing a game for PageRank
GOAL: convert so it looks like an expected value.

f,-=z( 3 (1a)a"P<wk<i,j>>-1)

k=0 \ w(i,))€pPk (i)

This is the expected value of:
1. Choose a length k with probability (1 — a)a”
2. Make a random k-walk from j. It lands at node i,

3. Update solution where walk ends, i, by adding 1.

Hence for a single iteration of this, I&(f;) = f;




Monte Carlo vs Deterministic

10 :
— o —=Monte Carlo Node degree=155
—eo— Relaxation 22k node, 2M edge
Facebook graph
:;3 100 | - L — ——
5 T = - Sublinear
| . “in theory”
) I
= gar
X
— 10 1L
nnz(A) gap
Number of edges the
107"° algontrlwm touches How I'd solve it

10* 10° 10°




Monte Carlo Remarks
Accuracy, convergence are problematic (previous slide)

OPEN QUESTION: can we improve on number of

samples / random walks required, or the accuracy
attained?




Related work: Monte Carlo
- Monte Carlo methods:

- [Forsyth Liebler ’50] fore-runner

- |[K. Avrachenkov '05] MC methods in PageRank

- [Fogaras et al. '05] Fully scaling personalized PageRank

- [Das Sarma et al. '08] Estimating PageRank on graph streams
- [Bahmani '10] Fast incremental Personalized PageRank

- [Bahmani '10] PageRank & MapReduce

- [Borgs '12] Sublinear PageRank

- [Chung, Simpson WAW13] Solving systems w/ heat kernel

- Hybrid monte carlo / coordinate relaxation

- [Lofgren et al. 2014], node-to-node PPR estimate




Brief outline

Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min

Break 15 min

Katz Diffusion 10 min

Weak Convergence for PageRank 20 min
Monte Carlo methods 15 min

Break 15 min

Implicit Regularization 25 min
Discussion 15 min




Statistical regularization

Best? known instance: sparsity and the Lasso

Least squares minimize || Ax — b]|3

Lasso minimize [|AX — b||5 + \|| x|
X

The Lasso solution tends to produce sparse solutions.

* ... Candes and Tao formalized the relationship with
the sparsest solution

« Prevents overfitting/overtraining on a given sample
» Related to Bayesian priors




Statistical regularization

Least squares minimize || Ax — b]|3

Lasso minimize ||Ax — b||5 + \||x||
X

Choose the regularizer to counter a given noise type

(s M g betwrmie 2 f NrdTam

See Hastie, Tibshirani, Friedman 2009
The Elements of Statistical Learning: Data
Mining, Inference, and Prediction




Implicit regularization

1. Run an algorithm procedure

2. Show that your algorithm implicitly is tolerant
to a type of noise.




Implementing Regularization Implicitly Via
Approximate Eigenvector Computation

Michael W. Mahoney MMAHONEY@CS.STANFORD.EDU
Department of Mathematics, Stanford University, Stanford, CA 94305

Lorenzo Orecchia ORECCHIAQEECS.BERKELEY.EDU
Computer Science Division, UC Berkeley, Berkeley, CA 94720

Consider a graph diffusion (of our type) these diffusions
implicitly regularize the resulting solution vectors to be
tolerant to noise.

Mahoney & Orecchia 2011




An example theorem

REGULARIZED
SPECTRAL CLUSTERING SPECTRAL CLUSTERING
minimize ;L Xj minimize > _; LjXj + AF(X)
subjectto trace(X) =1 subjectto trace(X) =1
X0 X0

Let F(X) = trace(X log X) — trace(X)
then the solution of regularized spectral is
X=Cexp(—(1/A)L

You do nothing special!
Using the heat kernel implicitly regularizes solutions against

noise characterized by the generalized entropy function
Mahoney & Orecchia 2011




More examples

REGULARIZED
SPECTRAL CLUSTERING SPECTRAL CLUSTERING
minimize ;L Xj minimize > _; LjXj + AF(X)
subjectto trace(X) =1 subjectto trace(X) =1
X0 X0

Let F(X) =logdet X
PageRank  then the solution of regularized spectral is
X=CI—-aL)

Let Fp(X) = 1/p trace(X")
then the solution of regularized spectral is
X =C(A)7 "where 1/p+1/g =1

Truncation

These results should be true up to degree normalization on the solution.




Our question

Why does the “push method” have
such incredible empirical utility?

Answer

Gleich & Mahoney, ICML 2014.
Anti-differentiating approximation algorithms, a case study with min-cuts,
spectral, and flow.




Algorithmic Anti-differentiation

Understanding how and why heuristic procedures

Early stopping
Truncating small entries
etc

are actually algorithms for implicit objectives.




The ideal world

Given Problem P Given “min-cut”
Derive solution Derive “max-flow Is
characterization C equivalent to min-cut”
Show algorithm A Show push-relabel

finds a solution where C solves max-flow
holds

Profit? Profit!




(The ideal world)’

Given Problem P

Derive solution approx.

characterization C’

Show algorithm A
quickly finds a solution
where C’ holds

Profit?

Given “sparest-cut”

Derive Rayleigh-
guotient approximation

Show power-method
finds a good Rayleigh-
guotient

Profit?




The real world?

Given Task P

Hack around until you
find something useful

Write paper presenting
“novel heuristic” H for P
and ...

Profit!

Given “find-communities’

Hack around

277 (hidden) 2?77

Write paper presenting
“three matvecs finds real-
world communities”

Profit!




Algorithmic Anti-differentiation
Given heuristic H, is there a problem P’
such that H is an algorithnm for P’ 7/

. Understand why H works Given “find-communities”
Show heuristic H solves P’ Hack around

Guess and check
until you find something H Write paper presenting
solves “three matvecs finds real-

D e ”
Derive characterization of WOrd communities

heuristic H Profit!

e.g. Mahoney & Orecchia




Algorithmic Anti-differentiation
Given heuristic H, is there a problem P’
such that H is an algorithnm for P’ 7/

If your algorithm is related

to optimization, this is: In an unconstrained
Given a procedure X, CaSQ, th'S IS JL.JSJ[.
what objective does it “anti-differentiation!”
optimize”?




Our question

Why does the “push method” have
such incredible empirical utility?

Answer

Gleich & Mahoney, ICML 2014.
Anti-differentiating approximation algorithms, a case study with min-cuts,
spectral, and flow.




The O(correct) answer

1. PageRank related to Laplacian
2. Laplacian related to cuts

3. Andersen, Chung, Lang provides the
“right” bounds and “localization”

Now the B(correct) answer?
A deeper insight into the relationship




Intellectually indebted to ...

Chin, Madry, Miller & Peng [2013]
Orecchia & Zhu [2014]




The s-t min-cut problem

Unweighted incidence matrix
Diagonal capacity matrix

minimize  |[BX|[c = >_jice CijlXi — Xl
subjectto xs=1,x=0,x> 0.




The localized cut graph

= ads A Oéds

Connect s to vertices
in S with weight « - degree
Connect t to vertices
in S with weight « - degree

Related to a construction
used in “Flowlmprove”
Andersen & Lang (2007); and
Orecchia & Zhu (2014)

"0 adi O

0 adi O




The localized cut graph

3a Connect s to vertices
in S with weight « - degree
Connect ¢ to vertices
20  In Swith weight o - degree

e _IS 0]
Bo=|0 B O
0 —lg e

Solve the s-t min-cut
minimize  ||BsX||g,) -

subjectto xs=1,x=0
X > 0.




The localized cut graph
3a

Connect s to vertices
in S with weight « - degree
Connect t to vertices
20  In Swith weight o - degree

e _IS 0]
Bo=|0 B O
0 -5 e

Solve the “electrical flow’
s-t min-cut

minimize  ||BsX|/g(a)2
subjectto xs=1,x=0




s-t min-cut - PageRank /01

The PageRank vector z that solves Square and expand
the objective into

(aD+ L)z = av a Laplacian, then

: : : apply constraints.
with v = dg/vol(S) is a renormalized PPy

solution of the electrical cut computation: 3a t

minimize ]\Bsx\\c(a),z
subjectto xs=1,x =0.
Specifically, if x is the solution, then

1
X = |vol(S)z
0




PageRank - s-t min-cut

That equivalence works if v is degree-weighted.
What if v is the uniform vector? M) 20 .
A(s) =

0 as’ 0
Qs A a(d—=s)] .
0 ad-s)’ 0




And beyond ...

0 el 0
es 0OA es| - (I+0L)x = eg
0 eg O

Easy to cook up interesting diffusion-like
problems and adapt them to this framework. In
particular, Zhou et al. (2004) gave a semi-
supervised learning diffusion we study soon.




The Push Algorithm for PageRank

Proposed (in closest form) in Andersen, Chung, Lang
(also by McSherry, Jeh & Widom) for personalized PageRank

Strongly related to Gauss-Seidel (as Kyle mentioned!)
Derived to show improved runtime for balanced solvers

1. xMW =0, =(1 - pBle;, k=1

2. while any r; > 70 (d; is the degree of node j)
The 3. xV)=x® 4 (r—7dp)e
Method X . -
rp 4 0T =0nY b —rdp)/d i~
bid otherwise



Back to the push method

Let X be the output from the push method
with0 < 8 <1, v=dg/vol(S),
p=1, and 7 > 0.

Set a = 157, k = 7vol(S)/8, and let z¢ solve:

S 2
minimize  3(|Bsz|/g) 2 + #(|DZ|

subjectto zg=1,2z=0,z>0 " Regularization
for sparsity

Need for
normalization

1

where z = [ZOG} - Proof Write out KKT conditions
Show that the push method

Then X = Dz5/VvoI(S). solves them. Slackness was “tricky”




Some reflections on algorithmic
anti-differentiating

Differentiation

Given f(x), computing g(x) = f’(x) analytically usually isn’t
too hard.

Anti-differentiation

Given f(x), computing F(x) where f(x) = F’(x) can be very
hard and or impossible

Algorithms solve for the KKT conditions (e.g. f(x) = 0)

Algorithmic anti-differentiation finds the objective that the
algorithm solves (e.g. minimize F(x) )

For simple optimization, this analogy is precise.

In general, this is very hard or impossible.
(3-4 years for PageRank)




Your question?
So what”? Why does this matter”?

Answer

Gleich & Mahoney, KDD 2015
Using local spectral methods to robustify graph-based learning.




The graph-based data analysis pipeline

10001001
01010011
01010001
10000011

Raw data Convert to a graph  Algorithm/Learning
* Relationships + Nearest neighs * Important nodes
* Images « Kernels * Infer features

« Text records « 2-mode to 1-mode -+ Clustering

« Etc. « Etc. « Etc.




“Noise” in the initial data
modeling decisions

Explicit graphs Constructed graphs Labeled graphs

are those that are are built based on some occur in information

given to a data other primary data. diffusion/propagation
analyst.
“A social network”  “nearest neighbor graphs” “function prediction”
*  Known spam « K-NN ore-NN * Labeled nodes
accounts included? « Thresholding correlations ¢ Labeled edges
» Users not logged in to zero * Some are wrong
for a year?
« FEtc. Often made for computational
convenience! (Graph too big.)
A type of noise A different type a noisel! A direct type of noise!

Do these decisions matter?
Our experience Yes! Dramatically so!




Semi-supervised
graph-based learning

Given a graph, and a few labeled nodes,
predict the labels on the rest of the graph.

Algorithm

1. Run a diffusion for
each label (possibly
with neg. info from
other classes)

2. Assign new labels
based on the value of
each diffusion
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Semi-supervised
graph-based learning

Given a graph, and a few labeled nodes,
predict the labels on the rest of the graph.

Algorithm

1. Run a diffusion for
each label (possibly
with neg. info from
other classes)

2. AssIign new labels
based on the value of
each diffusion




The diffusions proposed for semi-
supervised learning are s,t-cut minorants

10

1 9 In the unweighted case,
solve via max-flow.

Q, ° In the weighted case,
7 solve via network simplex
4 or industrial LP.

minimize > ;g Cij[Xi — X;| minimize \/ZijeE Cijlxi — X;|2
subjectto  xs=1,x =0. subjectto  xs=1,x; = 0.
MINCUT LP Spectral minorant — lin. sys.




Representative cut problems

Positive label = Unlabeled

Zhou et al.

These help our intuition about the solutions
All spectral minorants are linear systems.

Zhou et al. NIPS 2003; Zhu et al., ICML 2003;
Andersen Lang, SODA 2008; Joachims, ICML 2003



Implicit regularization views
on the Zhou et al. diffusion

The Mahoney-Orecchia-Vishnoi (MOV) vector is a
localized variation on the Fiedler vector to find a small

conductance set nearby a seed set.

minimize \/ZUGE Cijlxi — x;|2

subjectto xs=1,x =0.

Zhou et al.

RESULT

The spectral minorant of Zhou is equivalent to
the weakly-local MOV solution.

PROOF

The two linear systems are the same (after
working out a few equivalences).
IMPORTANCE

We'd expect Zhou to be “more robust”




A scalable, localized algorithm for Zhou
et al’s diffusion.

minimize \/ZUGE Cijlxi — x|
subjectto xs=1,x =0.

RESULT
We can use a variation on coordinate descent methods related to

the Andersen-Chung-Lang PUSH procedure to solve Zhou’s
diffusion in a scalable manner.

PROOF. See Gleich-Mahoney ICML ‘14

IMPORTANCE (1)

We should be able to make Zhou et al. scale.

IMPORTANCE (2)
Using this algorithm adds another implicit regularization term that
should further improve robustness!

minimize > g CijlXi — X2 1+T X icy dixi
subjectto xs=1,x;=0,x; > 0.




Semi-supervised

graph-based learning

Given a graph, and a few labeled nodes,
predict the labels on the rest of the graph.

: 0/;4;)/?‘0//7;!
Algorithm o0, Preg,
| (/@,,%e% 6 9/70,/77 op, o
1. Run a dine e ), % = 7

each label (pc:
with neg. info frorr
other classes)
Assign new labels
based on the value of
each diffusion




Traditional rounding methods
for SSL are value-based

/Zhou’s diffusion

Class|1]
Class 2
Class |3

Class1 Class 2Class 3

VALUE-BASED
Use the largest value of the diffusion to pick the label.




But value based rounding Sk
doesn’t work for all diffusions ## .,

Class |1
Class 2

N e

Class1 Class 2Class 3 Class1 Class 2Class 3 Class1 Class 2Class 3 Class1 Class 2Class 3
(b) Zhou et al., I =3 (c) Andersen-Lang, | = 3 (d) Joachims, | = 3 (e) ZGL, 1 =3

VALUE-BASED rounding fails Bl There is still a
for most of these diffusions signal there!

Adding more labels doesn’t help either, see the
paper for those details




Rank-based rounding is far

more robust.

4

i
T

' Class 1 Claiss 2é|ass 3

NEW IDEA
Look at the RANK of the

item in each diffusion
instead of it's VALUE.

JUSTIFICATION

Based on the idea of
sweep-cut rounding in
spectral methods (use the
order induced by the
eigenvector, not its values)

IMPACT
Much more robust
rounding to labels




error rate

Rank-based rounding has a
big impact on a real-study.

We used the digit prediction task out of Zhou’s paper and added just a bit of noise
as label errors and switched parameters.

X % X — =X— = % — — =X
0.8 = % = Zhou — % - Zhou
—e— Zhou+Push 0.8} —e— Zhou+Push
0.6
)
© 0.6}
0.2 O.ZN —(
VALUE-BASED RANK-BASED
0— ' ' ' ' 0— ' ' ' '
2 4 6 8 10 2 4 6 8 10

average training samples per class average training samples per class




Solutions Paths

One benefit of the weak convergence algorithms...

A direct decomposition is a black box:
Feed in input, get output.

In contrast, the iterative nature of “push” means
running the algorithm is essentially “watching” the
diffusion process occur.

We get more information this way!




Solutions Paths

One benefit of the weak convergence algorithms...

A direct decomposition is a black box:
Feed in input, get output.

In contrast, the iterative nature of “push” means
running the algorithm is essentially “watching” the
diffusion process occur.
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Solutions Paths

Netscience —— PageRank Solution Paths
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Solutions Paths

Netscience —— PageRank Solution Paths
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Solutions Paths

Netscience —— PageRank Solution Paths

Each curve s

a node. Its value
increases

as € goes to 0.

Thick black line
shows set of best
conductance.

Degree normalized PageRank
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Bundles of curves
are good clusters

Paths identify
nested clusters




Solutions Paths

Locate nested, good-conductance sets
that a single diffusion + sweep could miss.

Can be done efficiently because the constant-
time approach to computing diffusions enables
efficient storage and analysis of the push process

Total Paths work (for PageRank): o (E( 1 1_a)>2
Still efficient!




Recent directions

1. Diffusions in time-dependent networks

. Grindrod et al. 2011 (Katz); Gleich &Rossi, 2014 (PageRank); Grindrod
& Higham, 2014 (Katz again...)




Open issues

1. Parameter selection
2. Tuned diffusions




