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Wikipedia: Angiography



Let G = (V , E) ...



Inject dye
 here
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… work out sample diffusion on the board ...
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Laplacian L = D � A
normalized Laplacian L = D�1/2

(D � A)D�1/2

= � � D�1/2AD�1/2

normalized adjacency A = D�1/2AD�1/2



A general diffusion definition You’ll see this again, 
Kyle has more.
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Learning Spectral Graph Transformations for Link Prediction

datasets and show which link prediction algorithm per-
forms best for each.

2. Link Prediction in Undirected
Graphs

In this section, we review common link prediction
methods in undirected graphs that we generalize in
the next section.

We will use the term link prediction in the general
sense referring to any problem defined on a graph in
which the position or weight of edges have to be pre-
dicted. The networks in question are usually large and
sparse, for instance social networks, bipartite rating
graphs, trust networks, citation graphs and hyperlink
networks. The link prediction problems we consider
can be divided into two classes: In unweighted graphs,
the task consists of predicting where edges will form
in the future. In weighted graphs, the task consists of
predicting the weight of such edges. While many net-
works are directed in practice, we restrict this study to
undirected graphs. Applying this method to directed
graphs can be achieved by ignoring the edge directions,
or by reducing them to bipartite graphs, mapping each
vertex to two new vertices containing the inbound and
outbound edges respectively.

Let A ∈ {0, 1}n×n be the adjacency matrix of a sim-
ple, undirected, unweighted and connected graph on n
vertices, and F (A) a function that maps A to a matrix
of the same dimension.

The following subsections describe link prediction
functions F (A) that result in matrices of the same
dimension as A and whose entries can be used for link
prediction. Most of these methods result in a positive-
semidefinite matrix, and can be qualified as graph ker-
nels. The letter α will be used to denote parameters
of these functions.

2.1. Functions of the Adjacency Matrix

Let D ∈ Rn×n be the diagonal degree matrix with
Dii =

∑
j Aij . Then A = D−1/2AD−1/2 is the nor-

malized adjacency matrix. Transformations of the ad-
jacency matrices A and A give rise to the exponential
and von Neumann graph kernels (Kondor & Lafferty,
2002; Ito et al., 2005).

FEXP(A) = exp(αA) (1)

FEXP(A) = exp(αA) (2)

FNEU(A) = (I − αA)−1 (3)

FNEU(A) = (I − αA)−1 (4)

α is a positive parameter. Additionally, the von Neu-
mann kernels require α < 1.

2.2. Laplacian Kernels

L = D−A is the combinatorial Laplacian of the graph,
and L = I − A = D−1/2LD−1/2 is the normalized
Laplacian. The Laplacian matrices are singular and
positive-semidefinite. Their Moore-Penrose pseudoin-
verse is called the commute time or resistance distance
kernel (Fouss et al., 2007). The combinatorial Lapla-
cian matrix is also known as the Kirchhoff matrix, due
to its connection to electrical resistance networks.

FCOM(L) = L+ (5)

FCOM(L) = L+ (6)

By regularization, we arrive at the regularized Lapla-
cian kernels (Smola & Kondor, 2003):

FCOMR(L) = (I + αL)−1 (7)

FCOMR(L) = (I + αL)−1 (8)

As a special case, the non-normalized regularized
Laplacian kernel is called the random forest kernel for
α = 1 (Chebotarev & Shamis, 1997). The normalized
regularized Laplacian is equivalent to the normalized
von Neumann kernel by noting that (1 + αL)−1 =
(1 + α)(I − αA)−1.

(Ito et al., 2005) define the heat diffusion kernel as

FHEAT(L) = exp(−αL) (9)

FHEAT(L) = exp(−αL) (10)

The normalized heat diffusion kernel is equivalent
to the normalized exponential kernel: exp(−αL) =
e−αexp(αA) (Smola & Kondor, 2003).

2.3. Rank Reduction

Using the eigenvalue decomposition A = UΛUT , a
rank-k approximation of A, L, A and L is given by a
truncation leaving only k eigenvalues and eigenvectors
in Λ and U.

F(k)(A) = U(k)Λ(k)U
T
(k) (11)

For A and A, the biggest eigenvalues are used while
the smallest eigenvalues are used for the Laplacian ma-
trices. F(k)(A) can be used for prediction itself, or
serve as the basis for any of the graph kernels (Sarwar
et al., 2000). In practice, only rank-reduced versions
of graph kernels can be computed for large networks.
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Fig. 4.2. PageRank vectors of the symbolic image, or Ulam network, of the Chirikov typical map
with ↵ = 0.9 and uniform teleportation. From left to right, we show the standard PageRank vector,
the weighted PageRank vector using the unweighted cell in-degree count as the weighting term, and
the reverse PageRank vector. Each node in the graph is a point (x, y), and it links to all other points
(x, y) reachable via the map f (see the text). The graph is weighted by the likelihood of the transition.
PageRank, itself, highlights both the attractors (the bright regions), and the contours of the transient
manifold that leads to the attractor. The weighted vector looks almost identical, but it exhibits an
interesting stippling e↵ect. The reverse PageRank highlights regions of the phase-space that are exited
quickly, and thus, these regions are dark or black in the PageRank vector. The solution vectors were
scaled by the cube-root for visualization purposes. These figures are incredibly beautiful and show
important transient regions of these dynamical systems.

winner networks. The intuitive idea underlying these rankings is that of a random
fan that follows a team until another team beats them, at which point they pick
up the new team, and periodically restarts with an arbitrary team. In the Govan
et al. [2008] construction, they corrected dangling nodes using a strongly preferential
modification, although, we note that a sink preferential modification may have been
more appropriate given the intuitive idea of a random fan. Radicchi [2011] used
PageRank on a network of tennis players with the same construction. Again, this was
a weighted network. PageRank with ↵ = 0.85 and uniform teleportation on the tennis
network placed Jimmy Conors in the best player position.

4.7. PageRank in literature: BookRank. PageRank methods help with three
problems in literature. What are the most important books? Which story paths in
hypertextual literature are most likely? And what should I read next?

For the first question, Jockers [2012] defines a complicated distance metric between
books using topic modeling ideas from latent Dirichlet allocation [Blei et al., 2003].
Using PageRank as a centrality measure on this graph, in concert with other graph
analytic tools, allows Jockers to argue that Jane Austin and Walter Scott are the most
original authors of the 19th century.

Hypertextual literature contains multiple possible story paths for a single novel.
Among American children of similar age to me, the most familiar would be the Choose
your own adventure series. Each of these books consists of a set of storylets; at the
conclusion of a storylet, the story either ends, or presents a set of possibilities for
the next story. Kontopoulou et al. [2012] argue that the random surfer model for
PageRank maps perfectly to how users read these books. Thus, they look for the most
probable storylets in a book. For this problem, the graphs are directed and acyclic,
the stochastic matrix is normalized by outdegree, and we have a standard PageRank
problem. They are careful to model a weakly preferential PageRank system that
deterministically transitions from a terminal (or dangling) storylet back to the start of

PAGERANK BEYOND THE WEB 5

Fig. 2.1. An illustration of the empirical properties of localized PageRank vectors with teleporta-
tion to a single node in an isolated region. In the graph at left, the teleportation vector is the single
circled node. The PageRank vector is shown as the node color in the right figure. PageRank values
remain high within this region and are nearly zero in the rest of the graph. Theory from Andersen
et al. [2006] explains when this property occurs.

theory. Instead, we’ll state this a bit informally. Suppose that we solve a localized
PageRank problem in a large graph, but the nodes we select for teleportation lie in
a region that is somehow isolated, yet connected to the rest of the graph. Then the
final PageRank vector is large only in this isolated region and has small values on the
remainder of the graph. This behavior is exactly what most uses of localized PageRank
want: they want to find out what is nearby the selected nodes and far from the rest
of the graph. Proving this result involves spectral graph theory, Cheeger inequalities,
and localized random walks – see Andersen et al. [2006] for more detail. Instead, we
illustrate this theory with Figure 2.1.

Next, we will see some of the common constructions of the matrices P and P̄ that
arise when computing PageRank on a graph. These justify that PageRank is also a
simple construction.

3. PageRank constructions. When a PageRank method is used within an
application, there are two common motivations. In the centrality case, the input is
a graph representing relationships or flows between a set of things – they may be
documents, people, genes, proteins, roads, or pieces of software – and the goal is to
determine the expected importance of each piece in light of the full set of relationships
and the teleporting behavior. This motivation was Google’s original goal in crafting
PageRank. In the localized case, the input is also the same type of graph, but the
goal is to determine the importance relative to a small subset of the objects. In
either case, we need to build a stochastic or sub-stochastic matrix from a graph. In
this section, we review some of the common constructions that produce a PageRank
or pseudo-PageRank system. For a visual overview of some of the possibilities, see
Figures 3.1 and 3.2.

Notation for graphs and matrices. Let A be the adjacency matrix for a graph
where we assume that the vertex set is V = {1, . . . , n}. The graph could be directed,
in which case A is non-symmetric, or undirected, in which case A is symmetric. The
graph could also be weighted, in which case Ai,j gives the positive weight of edge (i, j).
Edges with zero weight are assumed to be irrelevant and equivalent to edges that are
not present. For such a graph, let d be the vector of node out-degrees, or equivalently,
the vector of row-sums: d = Ae. The matrix D is simply the diagonal matrix with d
on the diagonal. Weighted graphs are extremely common in applications when the
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Vertex similarity

Diffusions in Open-Directory graph used for "
semantic relatedness
1.  Reverse the direction of all edges
2.  Compute the seeded PageRank matrix"

e.g. “diffuse” from all individual seeds
3.  Compute cosine distances between columns.

Bar-Yossef, Ziv and Mashiach, Li-Tal, 2008
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kx � yk ⇡ 0



Vertex similarity

M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. Guibas, One Point Isometric Matching with the Heat Kernel, 
Proc. Eurographics Symposium on Geometry Processing (SGP) 2010.
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One Point Isometric Matching with the Heat Kernel

Maks Ovsjanikov1 and Quentin Mérigot1,2 and Facundo Mémoli1 and Leonidas Guibas1

1Stanford University, 2INRIA Sophia-Antipolis

Abstract
A common operation in many geometry processing algorithms consists of finding correspondences between pairs
of shapes by finding structure-preserving maps between them. A particularly useful case of such maps is isometries,
which preserve geodesic distances between points on each shape. Although several algorithms have been proposed
to find approximately isometric maps between a pair of shapes, the structure of the space of isometries is not well
understood. In this paper, we show that under mild genericity conditions, a single correspondence can be used
to recover an isometry defined on entire shapes, and thus the space of all isometries can be parameterized by
one correspondence between a pair of points. Perhaps surprisingly, this result is general, and does not depend
on the dimensionality or the genus, and is valid for compact manifolds in any dimension. Moreover, we show that
both the initial correspondence and the isometry can be recovered efficiently in practice. This allows us to devise
an algorithm to find intrinsic symmetries of shapes, match shapes undergoing isometric deformations, as well as
match partial and incomplete models efficiently.

1. Introduction

Finding structure-preserving maps between shapes is one of
the most common operations in geometry processing ap-
plications, including shape matching, shape retrieval, and
recognition. High quality correspondences are also essen-
tial in morphing, and shape interpolation [KMP07]. Further-
more, many measures of similarity between shapes are de-
fined through the quality of the maps between them [MS05].

A particularly useful type of maps between shapes is an
intrinsic isometry, which preserves pairwise geodesic dis-
tances between points. Since many real-world deformations,
such as articulated motion, are approximately isometric,
finding near isometric maps can have practical significance
in non-rigid shape comparison and recognition, with appli-
cations in manufacturing and medical imaging [SGT98].

At first sight, finding an isometric map between two shapes
is complicated by the fact that the space of all possible maps
can be quite large. Moreover, even if the map is given, di-
rectly verifying if it is an isometry, can potentially have
quadratic complexity since distance preservation should be
enforced at all pairs of points. Nevertheless, isometric maps
provide a very rich structure that makes isometric shape
matching tractable. For example, many shape matching al-
gorithms (e.g. [BBK06, HAWG08]) implicitly assume that
the knowledge of a small number of correspondences can
be extended to a full isometry. Similarly, verifying distance

Figure 1: Matching between a full and a partial model. Red
is the correspondence found by our algorithm, and green are
the interpolated correspondences using our method.

preservation on a small number of pairs of points can im-
prove efficiency and robustness without sacrificing accuracy,
[TBW+09]. However, the precise nature of these constraints,
such as the minimal number of correspondences necessary to
recover the full isometry, is not well understood.

In this paper, we make a step towards analyzing and exploit-
ing the structure of isometries between a pair of shapes, by
showing that under mild genericity conditions the knowl-
edge of a single correspondence can be used to recover an
isometry defined on entire shapes. We first show that the im-
age of every point is characterized by the preservation of
the heat kernel to the given correspondence points. Further-
more, we prove that generically, any map that preserves the
heat kernel to a fixed point is an isometry. This allows us

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.
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P =

[ 0 1/3 1/2 0
1/2 0 1/2 1
1/2 1/3 0 0
0 1/3 0 0

]

Q =

⎡

⎢⎣

0 0 0 1/4 0
0 0 1/2 1/4 0
0 1/2 0 1/4 0
1 1/2 1/2 0 1
0 0 0 1/4 0

⎤

⎥⎦

A B C D E

1
2
3
4

⎡

⎢⎢⎢⎢⎣

0.03 0.05 0.05 0.09 0.03
0.04 0.07 0.07 0.15 0.04
0.03 0.05 0.05 0.09 0.03
0.02 0.03 0.03 0.05 0.02

⎤

⎥⎥⎥⎥⎦

(a) Two graphs (b) Their stochastic matrices (c) The IsoRank solution

Fig. 4 An illustration of the IsoRank problem. The solution, written here as a matrix, gives the
similarity between pairs of nodes of the graph. For instance, node 2 is most similar to
node D. Selecting this match, then nodes 1 and 3 are indistinguishable from B and C.
Selecting these then leaves node 4 equally similar to A and E. In this example we solved
(I − αQ⊗P)x = (1 − α)e/20 with α = 0.85.

the two nodes are in a diffusion sense. They called it IsoRank based on the idea of
ranking graph isomorphisms. Let P be the Markov chain for one network and let
Q be the Markov chain for the second network. Then IsoRank solves a PageRank
problem on Q⊗P, where ⊗ is the Kronecker product between matrices. The solution
vector x is a vectorized form of a matrix X, where Xij indicates the likelihood that
vertex i in the network underlying P will match to vertex j in the network underlying
Q. See Figure 4 for an example. If we have an a priori measure of similarity between
the vertices of the two networks, we can add this as a teleportation distribution term.
IsoRank problems are some of the largest PageRank problems around due to the Kro-
necker product (e.g., Gleich et al. (2010b) has a problem with 4 billion nodes and 100
billion edges), but there exist quite a few good algorithmic approaches to tackling
them using properties of the Kronecker product (Bayati et al., 2013) and low-rank
matrices (Kollias, Mohammadi, and Grama, 2012).

The IsoRank authors consider the problem of matching protein-protein interaction
networks between distinct species. The goal is to leverage insight about the proteins
from a species such as a mouse in concert with a matching between mouse proteins and
human proteins, based on their interactions, in order to hypothesize about possible
functions for proteins in a human. For these problems, each protein is coded by a
gene sequence. The authors construct a teleportation distribution by comparing the
gene sequences of each protein using a tool called BLAST. They found that using α
around 0.9 gave the highest structural similarity between the two networks.

4.3. PageRank in Neuroscience. The human brain connectome is one of the
most important networks, about which we understand surprisingly little, and applied
network theory is one of a variety of tools currently used to study it (Sporns, 2002;
Bassett and Bullmore, 2006; Sporns, 2011). Thus, it is likely not surprising that
PageRank has been used to study the properties of networks related to the connectome.
For instance, Zuo et al. (2012) use PageRank to evaluate the importance of brain
regions given observed correlations of brain activity. In the resulting graph, two
voxels of an mri scan are connected if the correlation between their functional mri
time-series is high. Edges with weak correlation are deleted and the remainder are
retained with either binary weights or the correlation weights. The resulting graph
is also undirected, and they use PageRank, combined with community detection and
known brain regions, in order to understand changes in brain structure that correlate
with age across a population of 1000 individuals.
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Diffuse from all potential matches through the Kronecker graph

Singh et al. PNAS 2008
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Table 6.4
Matrix-vector products required for BiCG-STAB on in-2004, including preconditioning and

residual computations, to converge on the system (I−αP̄ ) with preconditioner
∑m

k=0(βP )k. A dash
indicates that the method made progress but did not converge to a tolerance of (

√
1− α)10−7 in

the maximum number of iterations required for the power method (100 for α = 0.85, ≈ 1500 for
α = 0.99, and ≈ 15000 for α = 0.999), and an × indicates that the method diverged or broke down.
When m = 0, there is no preconditioning and the results are independent of β.

α
0.85 0.99 0.999

β β β
m 0.25 0.50 0.75 0.85 0.25 0.50 0.75 0.85 0.25 0.50 0.75 0.85

0 102 102 102 102 × × × × × × × ×
2 128 88 76 76 1140 672 508 500 × 6276 3972 2772
4 186 120 84 78 1584 786 438 414 × 5178 2358 2112
7 — 207 108 72 2565 1053 621 441 × 9567 2709 1449
25 — — — 81 — — 1809 1026 — 20385 7911 2754

exist. This objective alone is NP-hard. Often there are weights for possible matches
(e.g., Vji for i in A and j in B) that should bias the results towards these matchings,
and hence the objective also includes a term to maximize these weights.

Let P and Q be the uniform random-walk transition matrices for A and B, re-
spectively. Also, let the weights in V be normalized so that eTV e = 1 and Vij ≥ 0.
IsoRank uses the PageRank vector

x = α(P ⊗Q)x+ (1− α)v,

where the teleportation vector v = vec(V ) encodes the weights and α indicates how
much emphasis to place on matches using the weights’ information. Thus the IsoRank
algorithm is a case when v is not uniform, and α has a more concrete meaning. For
a protein-matching problem, it is observed experimentally in [39] that values of α
between 0.7 and 0.95 yield good results.

We look at a case when A is the 2-core of the undirected graph of subject headings
from the Library of Congress [41] (abbreviated LCSH-2) and B is the 3-core of the
undirected Wikipedia category structure [44] (abbreviated WC-3). One of the authors
previously used these datasets in analyzing the actual matches in a slightly different
setting [3]. The size of these datasets is reported in Table 6.5. For this application,
the weights come from a text-matching procedure on the labels of the two graphs.

Table 6.5
The size of non-Web datasets. The product graph is never formed explicitly.

Dataset Size Nonzeros

LCSH-2 59,849 227,464
WC-3 70,509 403,960

Product graph 4,219,893,141 91,886,357,440

In this experiment, we do not investigate all the issues involved in using a heuristic
to an NP-hard problem and focus on the performance of the inner-outer algorithm in
a non-Web ranking context. Without any parameter optimization (i.e., using β = 0.5
and η = 10−2), the inner-outer scheme shows a significant performance advantage, as
demonstrated in Table 6.6.
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Voting in social networks
Vicious democracy!
Consider a social network
•  Some small fraction of users express a vote J
•  Other users delegate their vote with decay K
•  The others don’t vote at all L
•  Determine a final vote by taking the expected diffusion 

where each non-voter picks a neighbor at random 
and then diffuse the vote

Boldi et al. CIKM ‘09, CACM ‘11



Communities & Clusters
Theory!
•  Early Fiedler, Anderson & Morley 1985, Mihail, Chung, Pothen et al., Simon et 

al., Lovász & Simonovits, FOCS 1990, Random. Struct. Alg. 1993
•  Spielman & Teng, 2004, 2013
•  Andersen, Chung, Lang, FOCS 2006
•  Chung, PNAS 2007
•  Ghosh et al. KDD 2014
Practice!
•  Andersen & Lang, WWW 2006
•  Leskovec et al. Internet Math. 2009
•  Gargi et al. 2011 (Google, YouTube communities)
•  Epasto et al. 2014 (Google, Competing advertisers)
•  … so many ... 



Andersen-
Chung-Lang"
personalized 
PageRank 
community 
theorem"
[Andersen et al. 2006]!


Informally
Suppose the seeds are in a set 
of good conductance, then the 
personalized PageRank method 
will find a set with conductance 
that’s nearly as good.
… also, it’s really fast.



Examples 

200. For each graph, we randomly selected 100 of these tiny
pieces to serve as seed sets for 100 runs of our truncated ran-
dom walk procedure. Each run went for 100 iterations. We
used volume-based truncation, on each step cutting back to
a volume (sum of degrees) of 20000. On average, the proba-
bility pushing step grew the active set from about n1 = 3000
nodes out to about n2 = 14000 nodes, then the truncation
step cut it back to about n3 = 3000 nodes.

Figure 9 summarizes these graphs and runs, which were
done on a 4-processor 2.4 GHz Opteron with 64 Gbytes of
RAM. The average time per iteration was only 9.2 and 13.5
msec for the two graphs. Iterations on IM full took 1.5 times
longer, even though the graph is 8 times bigger. We actually
hoped that the iteration time would be the same. A possible
explanation for the increase is that there were more cache
misses for the bigger graph (the probability pushing step
involves a pattern of “random” memory accesses). To put
these times into perspective, we also list some “bogus” times
where we actually checked our invariant that the C and D
arrays are zeroed at the top of the loop. This checking takes
O(n) time, resulting in a huge increase in time per step, and
a factor of 8 increase from the smaller to larger graph.

4.1 Choosing Parameters
So far we haven’t said much about how to choose values

for the parameters T (the number of walk steps), and k0

(the truncation size). It is clear from the previous sections
that a seed set can have several possible communities; to
choose between them we would need to retain some freedom
in choosing parameter values. According to Theorem 1, it
suffices to set T to be roughly log(β)

φ2 , where φ is a lower
bound on the desired conductance and β is an upper bound
on the expansion factor Vol(C)

Vol(S) . [We note that the method

often works with much smaller values for T .]
One can obtain an algorithm that depends on a single

parameter by choosing a value of φ and searching through
several values of β, setting T = log(β)

φ2 , and k0 = βVol(S).
The table below shows the results of such a search on the
movies/actresses task, with φ set to .1, and with β set to 2i

for each i between 5 and 10. For each value of i, we return
the cut with the smallest conductance found by any of the
T sweeps. The following table reports the conductance and
volume of this cut, and also the step t at which it was found.

i T k0 conductance volume t
5 500 27616 .1280 27621 480
6 600 55232 .0452 37499 250
7 700 110463 .0240 103720 700
8 800 220972 .0193 103894 280
9 900 441856 .0162 127374 620
10 1000 883712 .0129 835500 780
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Figure 4: A low-resolution view of part of a very
small version of the Yahoo sponsored search bipar-
tite incidence matrix. The gambling co-cluster con-
tains a sports betting subcluster.

node, 6 million edge bipartite graph built from part of an old
version of the sponsored search bid database. Node degrees
ranged from 1 to about 30 thousand.

Based on earlier experiences we expected that this dataset
would contain a distinct gambling cluster which would con-
tain a subcluster focused on sports betting (see the matrix
picture in Figure 4). For a seed set we used grep to find
all bidded phrases and advertiser URL’s containing the sub-
string “betting”. This resulted in a 594-node seed set which
includes nodes on both sides of the bipartite graph, and is
probably mostly contained within the sports betting sub-
cluster.

Our seed set lies within the sports betting cluster, and
this in turn lies within the gambling cluster. To which of
these clusters should the seed set be expanded? Perhaps the
algorithm should tell us about both of the possible answers.
In fact, when there are nested clusters surrounding a seed
set, over time the local random walk method often does tell
us about more than one possible answer as the probability
distribution spreads out.

This behavior can be very clearly seen in the probabil-
ity distributions plotted in Figure 5-top. At 15 steps there
is a sharp decrease in probability marking the boundary of
the 3000-node betting subcluster. At 180 steps there is a
different sharp decrease in probability marking the bound-
ary of the enclosing 8000-node gambling cluster. Notice
that within this larger cluster the probabilities are becoming
quite uniform at 180 steps, so it is no longer easy to see the
boundary of the inner cluster.

The cutsize sweeps of Figure 5-bottom show what all this
means in terms of cuts. At 15 steps the boundary of the
inner cluster is sharply defined by a dip in cutsize near 3000
nodes. Also at this point we are starting to get a rough pre-
view of the boundary of the enclosing cluster. This preview
is much improved by the flow-based post-processing.

At 180 steps, the inner dip in cutsize delimiting the bet-
ting subcluster has been washed out (but can be somewhat
recovered with flow) but now we have a good dip near 8000
nodes which is the boundary of the outer gambling cluster.

3.5 Movie/Actress Graph, Spain Seedset
This task has even more cluster nesting than the previous

one. The graph is bipartite and was built from the IMDB file
relating movies and actresses. It has a clear block structure
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Figure 5: These plots are for the sponsored search
task where the seed set lies within two nested clus-
ters. The top plot shows that at different stages
of the walk we see two different sharp decreases in
node probability that mark the boundaries of these
two clusters. In the bottom plot the two boundaries
show up as dips in cutsize near 3000 and 8000 nodes.
Flow-based post-processing improves the cuts and
reduces sensitivity to stopping time.

that is strongly correlated with countries.3 Therefore we
use country-of-production labels for the movies as cluster
membership labels for purposes of choosing seed sets and
measuring precision and recall.

We cleaned up the problem a bit by deleting all multi-
country movies and many non-movie items such as television
shows and videos. We combined several nearly synonymous
country labels (e.g. USSR and Russia) and then deleted all
but the top 30 countries. Finally we deleted all degree-1
nodes and extracted the largest connected component. We
ended up with a bipartite graph with 77287 actress nodes,
121143 movie nodes, and 566756 edges. The minimum de-
gree was 2, and the maximum degree was 690.

For a target cluster we chose Spain, whose matrix block
can be seen in Figure 10. It appears to part of a super-
cluster containing other Spanish- and Portuguese-language
countries. One can also see many cross edges denoting ap-

3Also many countries contain sub-blocks delimited by dis-
ruptive events like the silent / talkie transition, or WWII.

Andersen and Lang, 2006
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Overlapping communities via 
seed set expansion works nicely. 
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The algorithm
Filtering Phase
Seeding Phase
Seed Set Expansion Phase
Propagation Phase

Joyce Jiyoung Whang, The University of Texas at Austin Conference on Information and Knowledge Management (8/44)

Table 4: Returned number of clusters and graph coverage of each algorithm

Graph random egonet graclus ctr. spread hubs demon bigclam

HepPh coverage (%) 97.1 72.1 100 100 88.8 62.1
no. of clusters 97 241 109 100 5,138 100

AstroPh coverage (%) 97.6 71.1 100 100 94.2 62.3
no. of clusters 192 282 256 212 8,282 200

CondMat coverage (%) 92.4 99.5 100 100 91.2 79.5
no. of clusters 199 687 257 202 10,547 200

DBLP coverage (%) 99.9 86.3 100 100 84.9 94.6
no. of clusters 21,272 8,643 18,477 26,503 174,627 25000

Amazon coverage (%) 99.9 100 100 100 79.2 99.2
no. of clusters 21,553 14,919 20,036 27,763 105,828 25,000

Flickr coverage (%) 76.0 54.0 100 93.6 - 52.1
no. of clusters 14,638 24,150 16,347 15,349 - 15,000

LiveJournal coverage (%) 88.9 66.7 99.8 99.8 - 43.9
no. of clusters 14,850 34,389 16,271 15,058 - 15,000

Myspace coverage (%) 91.4 69.1 100 99.9 - -
no. of clusters 14,909 67,126 16,366 15,324 - -
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(a) AstroPh
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(b) HepPh
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(c) CondMat

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coverage (percentage)

M
ax

im
um

 C
on

du
ct

an
ce

 

 
egonet
graclus centers
spread hubs
random
bigclam

Student Version of MATLAB

(d) Flickr
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(e) LiveJournal
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(f) Myspace

Figure 2: Conductance vs. graph coverage – lower curve indicates better communities. Overall, “graclus
centers” outperforms other seeding strategies, including the state-of-the-art methods Demon and Bigclam.

We can cover 95% of network with 
communities of cond. ~0.15.

Flickr social network
2M vertices, 22M edges

cond(S)

= cut(S)/“size”(S)

Whang, Gleich, Dhillon 2013, 2015



… demo ... 
github.com/dgleich/diffusion-tutorial





Empirical Evaluation using 
Network Community Profiles

large global clustering coe�cients and large mean clustering
coe�cients.

Social networks. The nodes are people again, and the
edges are either explicit “friend” relationships (fb-Penn94 [36],
fb-A [39], soc-LiveJournal [4]) or observed network activity
over edges in a one-year span (fb-A-oneyear [39]).

Technological networks. The nodes act in a commu-
nication network either as agents (p2p-Gnutella25 [27]) or as
routers (oregon2 [23], as-22july06 [29], itdk0304 [10]). The
edges are observed communications between the nodes.

Web graphs. The nodes are web-pages, and the edges
are symmetrized links between the pages [25].

6. EMPIRICAL NEIGHBORHOOD
COMMUNITIES

6.1 Computation
We first show that we can adapt any procedure to compute

all local clustering coe�cients to compute the conductance
scores for each neighborhood in the graph. Most of the work
to compute a local clustering coe�cient is performed when
finding the number of triangles at the vertex. We can express
the number of triangles with v as:

edges(N
1

(v) \ {v})/2

because each edge among v’s neighbors produces a triangle
(recall that the edges function double-counts). Note also
that edges(N

1

(v) \ {v})/2 = edges(N
1

(v))/2 � dv. Then
cut(N

1

(v)) = vol(N
1

(v)) � edges(N
1

(v)). And so, given
the number of triangles, we can compute the cut given the
volume of the neighborhood as well. This is easy to do with
any graph structure that explicitly stores the degrees.

6.2 Quality of neighborhood communities
We use Leskovec et al.’s [24] network community plot to

show the information on all neighborhood communities si-
multaneously. These plots will help us understand if the
neighborhood communities are high quality (low conduc-
tance), and how they compare to other community detection
methods. Given the conductance scores from all the neigh-
borhood communities and their size in terms of number of
vertices, we first identify the best community at each size.
The network community plot shows the relationship between
best community conductance and community size on a log-
log scale. In Leskovec et al., they found that these plots had
a characteristic shape for modern information networks: an
initial sharp decrease until the community size is between
100 and 1000, then a considerable rise in the conductance
scores for larger communities. In our case, neighborhood
communities cannot be any larger than the maximum degree
plus one, and so we mark this point on the figures. We always
look at the smaller side of the cut, so no community can
be larger than half the vertices of the graph. We also mark
this location on the plots. Each subsequent figure in this
paper utilizes this size-vs-conductance plot, and we will con-
tinually layer information from new methods above results
from old methods. The result are information-dense plots
that need slightly more study than would be ideal, however,
we point out the salient features in each plot in the text.
Note also that we deliberately attempt to preserve the axes
limits across figures to promote comparisons. However, some
figures have di↵erent axis limits to exhibit the range of data.
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Figure 2: The best neighborhood community con-

ductance at each size (black) and the Fiedler com-

munity (red). (Note the axis limits on ca-AstroPh).

First, we show these network community plots for six of
the networks in Figure 2. These figures are representative of
the best and worst of our results. Plots for other graphs are
available on the website given in the introduction.

The three graphs on the left show cases where a neighbor-
hood community is or is nearby the best Fiedler community
(the red circle). The three graphs on the right highlight
instances where the Fiedler community is much better than
any neighborhood community. We find it mildly surprising
that these neighborhood communities can be as good as
the Fiedler community. The structure of the plot for both
fb-A-oneyear and soc-LiveJournal1 is instructive. Neighbor-
hoods of the highest degree vertices are not community-like
– suggesting that these nodes are somehow exceptional. In
fact, by inspection of these communities, many of them are
nearly a star graph. However, a few of the large degree nodes
define strikingly good communities (these are sets with a few
hundred vertices with conductance scores of around 10�2).
This evidence concurs with the intuition from Theorem 4.6.

6.3 Comparison to PPR communities
Note that these plots show the same shape as observed

by Leskovec et al. [24]. Consequently, in the next set of
figures, and in the remainder of the empirical investigation,

Community Size

Minimum 
conductance for 

any community of 
the given size

Approximate 
canonical shape 
found by 
Leskovec, Lang, 
Dasgupta, and 
Mahoney

Holds for a variety 
of approximations 
to conductance.
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Network Community Profile

large global clustering coe�cients and large mean clustering
coe�cients.

Social networks. The nodes are people again, and the
edges are either explicit “friend” relationships (fb-Penn94 [36],
fb-A [39], soc-LiveJournal [4]) or observed network activity
over edges in a one-year span (fb-A-oneyear [39]).

Technological networks. The nodes act in a commu-
nication network either as agents (p2p-Gnutella25 [27]) or as
routers (oregon2 [23], as-22july06 [29], itdk0304 [10]). The
edges are observed communications between the nodes.

Web graphs. The nodes are web-pages, and the edges
are symmetrized links between the pages [25].

6. EMPIRICAL NEIGHBORHOOD
COMMUNITIES

6.1 Computation
We first show that we can adapt any procedure to compute

all local clustering coe�cients to compute the conductance
scores for each neighborhood in the graph. Most of the work
to compute a local clustering coe�cient is performed when
finding the number of triangles at the vertex. We can express
the number of triangles with v as:

edges(N
1

(v) \ {v})/2

because each edge among v’s neighbors produces a triangle
(recall that the edges function double-counts). Note also
that edges(N

1

(v) \ {v})/2 = edges(N
1

(v))/2 � dv. Then
cut(N

1

(v)) = vol(N
1

(v)) � edges(N
1

(v)). And so, given
the number of triangles, we can compute the cut given the
volume of the neighborhood as well. This is easy to do with
any graph structure that explicitly stores the degrees.

6.2 Quality of neighborhood communities
We use Leskovec et al.’s [24] network community plot to

show the information on all neighborhood communities si-
multaneously. These plots will help us understand if the
neighborhood communities are high quality (low conduc-
tance), and how they compare to other community detection
methods. Given the conductance scores from all the neigh-
borhood communities and their size in terms of number of
vertices, we first identify the best community at each size.
The network community plot shows the relationship between
best community conductance and community size on a log-
log scale. In Leskovec et al., they found that these plots had
a characteristic shape for modern information networks: an
initial sharp decrease until the community size is between
100 and 1000, then a considerable rise in the conductance
scores for larger communities. In our case, neighborhood
communities cannot be any larger than the maximum degree
plus one, and so we mark this point on the figures. We always
look at the smaller side of the cut, so no community can
be larger than half the vertices of the graph. We also mark
this location on the plots. Each subsequent figure in this
paper utilizes this size-vs-conductance plot, and we will con-
tinually layer information from new methods above results
from old methods. The result are information-dense plots
that need slightly more study than would be ideal, however,
we point out the salient features in each plot in the text.
Note also that we deliberately attempt to preserve the axes
limits across figures to promote comparisons. However, some
figures have di↵erent axis limits to exhibit the range of data.
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Figure 2: The best neighborhood community con-

ductance at each size (black) and the Fiedler com-

munity (red). (Note the axis limits on ca-AstroPh).

First, we show these network community plots for six of
the networks in Figure 2. These figures are representative of
the best and worst of our results. Plots for other graphs are
available on the website given in the introduction.

The three graphs on the left show cases where a neighbor-
hood community is or is nearby the best Fiedler community
(the red circle). The three graphs on the right highlight
instances where the Fiedler community is much better than
any neighborhood community. We find it mildly surprising
that these neighborhood communities can be as good as
the Fiedler community. The structure of the plot for both
fb-A-oneyear and soc-LiveJournal1 is instructive. Neighbor-
hoods of the highest degree vertices are not community-like
– suggesting that these nodes are somehow exceptional. In
fact, by inspection of these communities, many of them are
nearly a star graph. However, a few of the large degree nodes
define strikingly good communities (these are sets with a few
hundred vertices with conductance scores of around 10�2).
This evidence concurs with the intuition from Theorem 4.6.

6.3 Comparison to PPR communities
Note that these plots show the same shape as observed

by Leskovec et al. [24]. Consequently, in the next set of
figures, and in the remainder of the empirical investigation,
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Facebook Sample - 1.1M verts, 4M edges

Facebook data 
from Wilson et 
al. 2009



Semi-supervised 
Learning on Graphs

Ai ,j = exp

✓
�
kdi � djk2

2

2�2

◆

di

dj

Zhou et al. NIPS (2003)
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Semi-supervised 
Learning on Graphs

Experiment predict unlabeled 
images from the labeled ones 34




Semi-supervised 
Learning on Graphs

K2 = (D � �A)�1

K1 = (I � �A)�1

Y = KiL
Indicators on the 

revealed labelsPredictions

Experiment vary number of 
labeled images and track perf. 

y = argmaxj Y
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Even more diffusions
SIR and viral thresholds!
•  Wang et al. 2003
•  Berger et al. 2005 
Rumor spreading!
•  Chierichetti et al. 2010
Information cascades!
•  Farajtaba et al. 2015
Laplacian variations!
•  Bridle & Zhu, MLG 2013 
Diffusions over semi-rings!
•  Kepner & Gilbert, 2011 (e.g. Peer-pressure clustering)

Generalized coefficients!
•  Boldi et al. 2005 – TotalRank
•  Baeza-Yates et al. 2006 - Generalized
•  Constantine & Gleich, 2007, 2010 – 

Random alpha PageRank



Brief outline
Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min
Break 15 min
!
Katz Diffusion 10 min
Weak Convergence for PageRank 20 min!
Monte Carlo methods 15 min!
Break 15 min
!
Implicit Regularization 25 min!
Discussion 15 min!



Diffusion vectors
Given a graph G and a set of seed node(s)…
A diffusion vector assigns nodes values that quantify 
somehow the relationship of S to the rest of G, by 
propagating information from S to the rest of G.


f =
1X

k=0

ck Mk s

Diffusion coefficients

Graph related matrix

Seed vector
Diffusion vector



Another application, another diffusion

f =
1X

k=0

ck Mk s

Diffusion coefficients
•  (many) 
Graph related matrix
•  (A,P,L, more)
Seed vector
•  constructions
•  normalizations

Diffusion vector
•  normalizations
•  accuracy

Different applications and sources of data call for different 
diffusions – change ck, Mk, s, pre- and post-processing.
 Algorithmic approaches
•  deterministic
•  randomized



Another application, another diffusion

Coefficients – probability, Katz, adaptive, many more

Graph matrix – adjacency, prob trans, Laplacians, more

Seed vector – seed set indicator vector, normalizations
Diffusion post-processing
•  Degree scaling
•  weak vs strong accuracy
•  Sweep-procedure

Different applications and sources of data call for different 
diffusions – change ck, Mk, s, pre- and post-processing.

Algorithms – coordinate relaxation / push, monte carlo



Coordinate relaxation methods 
for graph diffusions



Local node rankings, similarity
Rank nodes with respect to S by taking the largest values 
from a diffusion f. More accurate rankings require the 
solution to be precise enough that large diffusion values 
that are close to each other aren’t mis-ranked:

 2
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Local node rankings, similarity
Rank nodes with respect to S by taking the largest values 
from a diffusion f. More accurate rankings require the 
solution to be precise enough …"

GOAL: compute f with accuracy

We begin with the popular personalized PageRank 
diffusion vector, but will later apply this accuracy setting to 
a number of diffusions.


kf � f̂k1 < "



PageRank diffusion
The PageRank diffusion can be defined as the solution to 

"
for some alpha in (0,1). The seed vector s should be 
normalized to sum to 1. This linear system is equivalent to 
our definition for a diffusion:





(� � ↵P)x = (1 � ↵)s

f =
1X

k=0

↵k Pk s



PageRank diffusion
The PageRank diffusion can be defined as the solution to 

"
for some alpha in (0,1). The seed vector s should be 
normalized to sum to 1. This linear system is equivalent to 
our definition for a diffusion:"

This holds when"
because of the Neumann series:





(� � ↵P)x = (1 � ↵)s

f =
1X

k=0

↵k Pk s

(� � ↵P)�1 =
1X

k=0

↵k Pk

k↵Pk < 1

(proof: geometric series)



Coordinate relaxation for PageRank
For a fast approximation, f, to the following

we introduce a coordinate relaxation scheme:"
"
Initial solution and residual:"
Iterative updates: first pick entry of residual, j

(There are a number of ways of picking an entry
-- for now, assume just that the entry is non-zero)

x

(0) = 0, r

(0) = (1 � ↵)s

(� � ↵P)x = (1 � ↵)s = s̃



Coordinate relaxation for PageRank
For a fast approximation, f, to the following

we introduce a coordinate relaxation scheme:"
"
Initial solution and residual:"
Iterative updates: first pick entry of residual, j

- update solution:


x

(0) = 0, r

(0) = (1 � ↵)s

x

(k+1) = x

(k ) + rj · ej

(� � ↵P)x = s̃



Coordinate relaxation for PageRank
For a fast approximation, f, to the following

we introduce a coordinate relaxation scheme:"
"
Initial solution and residual:"
Iterative updates: first pick entry of residual, j

- update solution:
- update residual:



x

(0) = 0, r

(0) = (1 � ↵)s

x

(k+1) = x

(k ) + rj · ej

r

(k+1) = s̃ � (� � ↵P)x(k+1)

= r

(k ) � rj (� � ↵P)ej

= r

(k ) � rjej + rj↵Pej

(� � ↵P)x = s̃



Coordinate relaxation for PageRank
Approximating

Initial solution and residual:"
Iterative updates: first pick entry of residual, j

- update solution:
- update residual:



x

(0) = 0, r

(0) = (1 � ↵)s

x

(k+1) = x

(k ) + rj · ej

(� � ↵P)x = s̃

r

(k+1) = s̃ � (� � ↵P)x(k+1)

= r

(k ) � rjej + rj↵Pej



Coordinate relaxation for PageRank
Approximating

Initial solution and residual:"
Iterative updates: first pick entry of residual, j

- update solution:
- update residual:



x

(0) = 0, r

(0) = (1 � ↵)s
(� � ↵P)x = s̃

x

(k+1)
j

= x

(k )
j

+ r

j

r (k+1)
i =

r (k )
i

0,  if i = j

,  if i ~ j

,  else

r (k )
i + rj↵/dj



The push algorithm



Coordinate relaxation remarks, part 1
-  This is the fundamental operation underlying many 

of the deterministic methods for diffusions
-  Consists of single update to solution x and a 

single column access of matrix P to update r
-  Because of this, fast for sparse matrices (avoids 

O(|E|) work required by full mat-vec!)
-  Nothing special about PageRank, can be applied 

in other circumstances





Coordinate relaxation remarks, part 1
-  This is the fundamental operation underlying many 

of the deterministic methods for diffusions
-  Consists of single update to solution x and a 

single column access of matrix P to update r
-  Because of this, fast for sparse matrices (avoids 

O(|E|) work required by full mat-vec!)
-  Nothing special about PageRank, can be applied 

in other circumstances

 r(k+1) = r(k ) � rjej + rj↵Pej

x

(k+1) = x

(k ) + rjej



Coordinate relaxation remarks, part 2
-  Convergence depends on method of choosing 

entry, as well as the underlying matrix
-  Gauss-Southwell: choose rj to be largest entry in r
-  Gauss-Seidel: after j, choose j+1, then j+2, ...
-  Choose any entry >= average magnitude of r
-  Choose any entry above some threshold
-  Even random selection can work



Coordinate relaxation remarks, part 2
-  Convergence depends on method of choosing 

entry, as well as the underlying matrix
-  Gauss-Southwell: choose rj to be largest entry in r
-  Gauss-Seidel: after j, choose j+1, then j+2, ...
-  Choose any entry >= average magnitude of r
-  Choose any entry above some threshold
-  Even random selection can work

-  Many methods of entry selection converge for 
diagonally dominant and positive definite matrices 
(in particular, Gauss-Southwell does).

-  Implementation requires intelligent choice of data 
structure for r for fast entry selection/updates



PageRank Convergence: error & residual
Approximating a solution to

residual and error satisfy




"
"


(� � ↵P)x = s̃

r

(k ) = s̃ � (� � ↵P)x(k )

= (� � ↵P)x � (� � ↵P)x(k )



PageRank Convergence: error & residual
Approximating a solution to

residual and error satisfy




"
for any sub-multiplicative matrix norm ||  || ."


(� � ↵P)x = s̃

r

(k ) = s̃ � (� � ↵P)x(k )

= (� � ↵P)x � (� � ↵P)x(k )

(� � ↵P)�1
r

(k ) = (x � x

(k ))

kx � x

(k )k  k(� � ↵P)�1kkr

(k )k



PageRank Convergence: residual bound
Approximating a solution to
Error satisfies
"


(� � ↵P)x = s̃

kx � x

(k )k  k(� � ↵P)�1kkr

(k )k

Initial solution and residual:
Update residual:


x

(0) = 0, r

(0) = (1 � ↵)s
r(k+1) = r(k ) � rjej + rj↵Pej



PageRank Convergence: residual bound
Approximating a solution to
Error satisfies
"


(� � ↵P)x = s̃

kx � x

(k )k  k(� � ↵P)�1kkr

(k )k

Initial solution and residual:
Update residual:


x

(0) = 0, r

(0) = (1 � ↵)s
r(k+1) = r(k ) � rjej + rj↵Pej

kr(k+1)k1  kr(k ) � rjejk1 + krj↵Pejk1

 kr(k )k1 � rj + |rj↵|kPejk1

 kr(k )k1 � rj + |rj↵|
 kr(k )k1 � rj (1 � ↵)

Residual nonnegative

Triangle inequality

P is column-stochastic
Residual nonnegative



PageRank Convergence: residual bound
Error satisfies
"


kx � x

(k )k  k(� � ↵P)�1kkr

(k )k
Initial solution and residual:
Residual norm:
Assume we chose rj to be at least as big as the average 
magnitude of the residual entries. Then

x

(0) = 0, r

(0) = (1 � ↵)s

(definition of average)

kr(k+1)k1  kr(k )k1 � rj (1 � ↵)

rj � kr(k )k1/nnz(r(k ))

� kr(k )k1/n (loose bound!)



PageRank Convergence: residual bound
Error satisfies
"


kx � x

(k )k  k(� � ↵P)�1kkr

(k )k
Initial solution and residual:
Residual norm:
Assume we chose rj to be at least as big as the average 
magnitude of the residual entries. Then

x

(0) = 0, r

(0) = (1 � ↵)s

(definition of average)

kr(k+1)k1  kr(k )k1 � rj (1 � ↵)

rj � kr(k )k1/nnz(r(k ))

� kr(k )k1/n

kr(k+1)k1  kr(k )k1 � kr(k )k1(1 � ↵)/n

 kr(k )k1

⇣
1 � (1�↵)

n

⌘

 kr(0)k1

⇣
1 � (1�↵)

n

⌘k+1
= (1 � ↵)

⇣
1 � (1�↵)

n

⌘k+1

(loose bound!)



PageRank Convergence: back to error
Error satisfies
"


kx � x

(k )k  k(� � ↵P)�1kkr

(k )k
Substituting in for residual...
Residual norm:

(using Neumann series for inverse)

kr(k )k1  (1 � ↵)
⇣

1 � (1�↵)
n

⌘k

k(� � ↵P)�1k1 = 1
1�↵



PageRank Convergence: back to error
Error satisfies
"


kx � x

(k )k  k(� � ↵P)�1kkr

(k )k
Substituting in for residual...
Residual norm:

(using Neumann series for inverse)

kr(k )k1  (1 � ↵)
⇣

1 � (1�↵)
n

⌘k

k(� � ↵P)�1k1 = 1
1�↵

kx � x

(k )k1  1
1�↵kr

(k )k


⇣

1 � (1�↵)
n

⌘k

Substitution gives

Bounds number of iterations with
(but the bound can be refined to give sublinear work, 
depending on the underlying graph.)

O(log(1/")n)



Related work: strong coordinate relaxation
-  Deterministic coordinate relaxation for diffusion

-  [Jeh & Widom ’03] Scaling Personalized PageRank
-  [McSherry ’05] Accelerated PageRank Computation
-  [Berkhin ’07] Bookmark Coloring Algorithm for PPR
-  [Bonchi et al. ’12] Fast Katz and Commute Times
-  [Kloster, Gleich WAW13] Coordinate relaxation for exp(P)ej

-  Selecting entry to relax:
-  [Dhillon, Ravikumar, Tewari ’11] Near neighbor-based greedy 

coordinate descent
-  [Nutini, et al. 2015] Gauss-Southwell better than random




Brief outline
Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min
Break 15 min
!
Katz Diffusion 10 min
Weak Convergence for PageRank 20 min!
Monte Carlo methods 15 min!
Break 15 min
!
Implicit Regularization 25 min!
Discussion 15 min!



From PageRank
to the Katz diffusion



Coordinate relaxation for PageRank
Approximating a solution to

Initial solution and residual:"
Iterative updates: first pick entry of residual, j

- update solution:
- udpate residual:



x

(0) = 0, r

(0) = (1 � ↵)s

x

(k+1) = x

(k ) + rj · ej

(� � ↵P)x = s̃

r

(k+1) = s̃ � (� � ↵P)x(k+1)

= r

(k ) � rjej + rj↵Pej



Coordinate relaxation for Katz diffusion
Approximating a solution to

Initial solution and residual:"
Iterative updates: first pick entry of residual, j

- update solution:
- udpate residual:




x

(k+1) = x

(k ) + rj · ej

(Not much difference)

(� � ↵A)x = b

x

(0) = 0, r

(0) = b

r

(k+1) = b � (� � ↵A)x(k+1)

= r

(k ) � rjej + rj↵Aej



Katz diffusion
The Katz diffusion can be defined as the solution to 

The restrictions on alpha differ from PageRank:"
PageRank:"
Katz:"
where lambda1 is the dominant eigenvalue, and dmax is the 
largest degree in the graph.





0 < ↵ < 1

(� � ↵A)x = s � (� � ↵A)s

0 < ↵ < 1/d
max

 1/�
1

(A)



Katz diffusion
The Katz diffusion can be defined as the solution to 

The restrictions on alpha differ from PageRank:"
PageRank:"
Katz:"
where lambda1 is the dominant eigenvalue, and dmax is the 
largest degree in the graph.
Note:                               guarantees                        so





0 < ↵ < 1

(� � ↵A)x = s � (� � ↵A)s

0 < ↵ < 1/d
max

 1/�
1

(A)

0 < ↵ < 1/d
max

k↵Ak1 < 1

f =

1X

k=1

↵k Ak s =

1X

k=1

(↵d
max

)

k
(

1

d
max

A)

k s



Coordinate relaxation for Katz diffusion
Approximating a solution to

Initial solution and residual:"
Iterative updates: first pick entry of residual, j

- update solution:
- udpate residual:



x

(k+1)
j

= x

(k )
j

+ r

j

r (k+1)
i =

r (k )
i

0,  if i = j

,  if i ~ j

,  else
r (k )
i + rj↵

(� � ↵A)x = b

x

(0) = 0, r

(0) = b



Convergence for PageRank (repeated)
Error satisfies
"


kx � x

(k )k  k(� � ↵P)�1kkr

(k )k
Substituting in for residual...
Residual norm:

(using Neumann series for inverse)

kr(k )k1  (1 � ↵)
⇣

1 � (1�↵)
n

⌘k

k(� � ↵P)�1k1 = 1
1�↵

kx � x

(k )k1  1
1�↵kr

(k )k


⇣

1 � (1�↵)
n

⌘k

Substitution gives

Bounds number of iterations with
(but the bound can be refined to give sublinear work, 
depending on the underlying graph.)

O(log(1/")n)



Convergence for Katz
Error satisfies
"

Differences:"
Depending on which norm is desired, scale A by 1/dmax"
or 1/lambda1. Then, rest of the convergence analysis for 
PageRank applies to the scaled adjacency matrix:"
"
"
"


If 

kx � x

(k )k  k(� � ↵A)�1kkr

(k )k

k(� � ↵A)

�1k
1

 1

1�↵d
max

(If                    the method still converges, but analysis is trickier.)

↵ < 1/d
max

↵ < 1/�1



Brief outline
Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min
Break 15 min
!
Katz Diffusion 10 min
Weak Convergence for PageRank 20 min!
Monte Carlo methods 15 min!
Break 15 min
!
Implicit Regularization 25 min!
Discussion 15 min!



Weak convergence coordinate 
relaxation for communities and good 
conductance sets.



Weak accuracy for community detection
Local community detection/ finding good conductance 
sets from a diffusions vector f:
Seek the largest values in the diffusion vector;"
weak accuracy, because identifying the largest values is 
the goal, not the precise values themselves"
(or even the precise ranking of values).



Weak accuracy for community detection
Local community detection/ finding good conductance 
sets from a diffusions vector f:
Seek the largest values in the diffusion vector;"
weak accuracy, because identifying the largest values is 
the goal, not the precise values themselves"
(or even the precise ranking of values).

GOAL: compute f with accuracy
(entry-wise). Equivalent to

        and


kD�1(f � f̂)k1 < "

0  fj � f̂j  "dj

f � f̂



Low-conductance sets
conductance( T )  =  # edges leaving T


min( vol(T), vol(G-T) )

= “ chance a random step"
  from inside T exits T ”



seed

vol(S) =

X

v2S

d(v )



Use a diffusion for good conductance sets

1.  Approximate f so
2.  Scale by D, 
3.  Then “sweep” for best conductance set.

kD�1(f � f̂)k1  ✏

Sweep:
1.  Sort diffusion vector so
2.  Consider the sweep sets S(j) = {1,2,…,j}
3.  Return the set S(j) with the best conductance.


f1/d(1) � f2/d(2) � · · ·



Diffusions used for conductance
Personalized PageRank (PPR)"
"
Heat Kernel (HK)"
"


f =
1X

k=0

↵k Pk s̃

f =
1X

k=0

tk

k ! P
k s̃



Diffusions used for conductance
Personalized PageRank (PPR)"
"
Heat Kernel (HK)"
"
Time-dependent PageRank (TDPR)


Comes from "


f =
1X

k=0

↵k Pk s̃

f =
1X

k=0

tk

k ! P
k s̃

f =
1X

k=0

"
(1 � ↵)↵k

 
1 � e��

kX

r=0

�r

r !

!
+ e�� ↵k�k

k !

#
Pk s

x

0(t) = (1 � ↵)s � (� � ↵P)x(t)
x(0) = s



Diffusions used for conductance
Personalized PageRank (PPR)"
"
Heat Kernel (HK)"
"
Time-dependent PageRank (TDPR)"


0 20 40 60 80 100

10−5

100

t=1 t=5 t=15 α=0.85

α=0.99

W
ei
gh
t

Length

Various diffusions 
explore different 
aspects of graphs.

f =
1X

k=0

↵k Pk s̃

f =
1X

k=0

tk

k ! P
k s̃

f =
1X

k=0

"
(1 � ↵)↵k

 
1 � e��

kX

r=0

�r

r !

!
+ e�� ↵k�k

k !

#
Pk s



Diffusions used for conductance
Personalized PageRank (PPR)"
"
Heat Kernel (HK)"
"
Time-dependent PageRank (TDPR)


Use other matrices, too:
(Various weightings and scalings
of the Laplacian have been explored, [Ghosh et al. ’14])
"


f =
1X

k=0

↵k Pk s̃

f =
1X

k=0

tk

k ! P
k s̃

f =
1X

k=0

"
(1 � ↵)↵k

 
1 � e��

kX

r=0

�r

r !

!
+ e�� ↵k�k

k !

#
Pk s

f =
1X

k=0

ck Lk s



PR

Diffusions: conductance & algorithms

HK

good
conductance

fast 
algorithm

Gen!
Diff

Local Cheeger Inequality"
[Andersen,Chung,Lang 06]

[Andersen Chung Lang 06]
“PPR-push” is O(1/(ε(1-𝛼)))

Local Cheeger Inequality 
[Chung ’07]

[Kloster, Gleich ’14]
“HK-push” is O(etC/ε )

Open question
[Avron, Horesh ’15]
Constant-time heuristically

[Ghosh et al. ’14] on L;"
open question for general f In revision!

TDPR



Weak convergence for PageRank
Approximating a solution to
residual and error satisfy


for any sub-multiplicative matrix norm ||  ||. Scale by D!


"

"


(� � ↵P)x = s̃

r

(k ) = s̃ � (� � ↵P)x(k )

(� � ↵P)�1
r

(k ) = (x � x

(k ))

kx � x

(k )k  k(� � ↵P)�1kkr

(k )k



Weak convergence for PageRank
Approximating a solution to
residual and error satisfy


for any sub-multiplicative matrix norm ||  ||. Scale by D!


"
This requires A is symmetric: 
"


(� � ↵P)x = s̃

r

(k ) = s̃ � (� � ↵P)x(k )

(� � ↵P)�1
r

(k ) = (x � x

(k ))

kx � x

(k )k  k(� � ↵P)�1kkr

(k )k

D�1
r

(k ) = D�1
s̃ � (� � ↵PT )D�1

x

(k )

(� � ↵PT )�1D�1
r

(k ) = D�1(x � x

(k ))

kD�1(x � x

(k ))k  k(� � ↵PT )�1kkD�1
r

(k )k

D�1P = D�1(AD�1) = (D�1A)D�1 = PT D�1



Weak coordinate relaxation
Approximating a solution to
Residual and error satisfy


"


(� � ↵P)x = s̃

kD�1

(x � x

(k )

)k1  k(� � ↵PT
)

�1k1kD�1

r

(k )k1
kD�1

(x � x

(k )

)k1  1

1�↵ max{rj/dj}



Weak coordinate relaxation
Approximating a solution to
Residual and error satisfy


"
Contrast with 1-norm version: here simply track residual 
entries (degree normalized) that exceed a threshold."
"
This suggests a new method of choosing the coordinate j.
The rest of the update operation stays the same.
"


kD�1

(x � x

(k )

)k1  k(� � ↵PT
)

�1k1kD�1

r

(k )k1
kD�1

(x � x

(k )

)k1  1

1�↵ max{rj/dj}

(� � ↵P)x = s̃



Weak coordinate relaxation, operation
Approximating a solution to
Initial solution and residual:"
Iterative update: a queue stores big entries:"

- pick top entry off Q(r), j.
"


x

(0) = 0, r

(0) = (1 � ↵)s

(� � ↵P)x = s̃

rj � "dj



Weak coordinate relaxation
Approximating a solution to
Initial solution and residual:"
Iterative update: a queue stores big entries:"

- pick top entry off Q(r), j.
- update solution:
- update residual:



"


x

(0) = 0, r

(0) = (1 � ↵)s

(� � ↵P)x = s̃

x

(k+1)
j

= x

(k )
j

+ r

j

r (k+1)
i =

r (k )
i

0,  if i = j
,  if i ~ j

,  else

r (k )
i + rj↵/dj

rj � "dj



Weak coordinate relaxation
Approximating a solution to
Initial solution and residual:"
Iterative update: a queue stores big entries:"

- pick top entry off Q(r), j.
- update solution:
- update residual:



"

- for  i ~ j  :               , add ri to Q(r) if not present

x

(0) = 0, r

(0) = (1 � ↵)s

(� � ↵P)x = s̃

x

(k+1)
j

= x

(k )
j

+ r

j

r (k+1)
i =

r (k )
i

0,  if i = j
,  if i ~ j

,  else

r (k )
i + rj↵/dj

rj � "dj

ri � "di



Weak coordinate relaxation, work bound

1. Every update is on an entry in Q(r) satisfying

2. Sum of updates is 

3. Total work is



X

t=1

di(t)

"di  ri
X

t=1

ri(t) =
nX

k=1

f̂k  1



Weak coordinate relaxation, work bound

1. Every update is on an entry in Q(r) satisfying

2. Sum of updates is 

3. Total work is


All together:


Work is bounded by
a constant independent of the graph size!

X

t=1

di(t)

"di  ri
X

t=1

ri(t) =
nX

k=1

f̂k  1

"
X

t=1

di(t) =
X

t=1

"di(t) 
X

t=1

ri(t)  1

1/((1 � ↵)")

Andersen, Chung, and Lang, 2006



Weak coordinate relaxation, work bound

1. Every update is on an entry in Q(r) satisfying

2. Sum of updates is 

3. Total work is


All together:


Work is bounded by
a constant independent of the graph size!

X

t=1

di(t)

"di  ri
X

t=1

ri(t) =
nX

k=1

f̂k  1

"
X

t=1

di(t) =
X

t=1

"di(t) 
X

t=1

ri(t)  1

1/((1 � ↵)")
(comes from
                          )r(0) = (1 � ↵)s



Weak coordinate relaxation remarks
-  [Ghosh et al ’14] proved Cheeger inequalities for 

related diffusions that use weighted Laplacians
-  Is there a related Cheeger inequality, and a 

constant-time algorithm, for the degree-
normalized Katz diffusion?

-  Is there a “best” set of diffusion coefficients for 
identifying particular structures?

-  Can we improve on the sweep procedure? Or 
bound its performance?

-  [Kenter et al. ‘15] introduced a randomized subroutine 
that improves on sweep in certain conditions






Related work: weak coordinate relaxation
-  Deterministic coordinate descent

-  [Andersen, Chung, Lang ’06] Local Graph Partitioning
-  [Andersen, Lang ’06] Communities from Seed Sets
-  [Kloster, Gleich ’14] Heat Kernel clustering
-  [Kloumann, Kleinberg ’14] Community membership from seed
-  [Ghosh et al. ’14] Interplay between dynamics and networks
-  [Avron, Horesh ’15] Time-Dependent PageRank clustering



Brief outline
Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min
Break 15 min
!
Katz Diffusion 10 min
Weak Convergence for PageRank 20 min!
Monte Carlo methods 15 min!
Break 15 min
!
Implicit Regularization 25 min!
Discussion 15 min!



Monte Carlo methods
for diffusion vectors



Monte Carlo motivation
"
Benefits of MC over deterministic?
-  strong convergence method drastically slows down as 

it operates on nodes of large degree
-  weak convergence method gets no accuracy when it 

encounters nodes of large degree
-  MC avoids out-link accesses best



Monte Carlo method for Matrix inversion
[Forsyth & Liebler, 1950] "
Matrix Inversion by a Monte Carlo method:"
"
Want            ,  so design a game such that the expected 
value is exactly            . It has inspired other work:


(B�1)ij

(B�1)ij



Monte Carlo method for Matrix inversion
[Forsyth & Liebler, 1950] "
Matrix Inversion by a Monte Carlo method:"
"
Want            ,  so design a game such that the expected 
value is exactly            . It has inspired other work:

-  [K. Avrachenkov ’05] MC methods in PageRank
-  [Fogaras et al. ’05] Fully scaling personalized PageRank
-  [Das Sarma et al. ’08] Estimating PageRank on graph streams
-  [Bahmani ’10] Fast incremental Personalized PageRank
-  [Bahmani ’10] PageRank & MapReduce
-  [Borgs ’12] Sublinear PageRank
-  [Chung, Simpson WAW13] Solving systems w/ heat kernel"





(B�1)ij

(B�1)ij



Designing a game for PageRank
We want a specific entry of"
say, fi .
GOAL: design a random process for producing "
so that the expected value of each entry is the true value. 

f = (1 � ↵)
1X

k=0

↵k Pk ej

f̂



Designing a game for PageRank
We want a specific entry of"
say, fi .
GOAL: design a random process for producing "
so that the expected value of each entry is the true value. 
Observe that"
"
"
"
"
"
where pk(i,j) is the set of all k-walks from j to i (and ik = i).

f = (1 � ↵)
1X

k=0

↵k Pk ej

f̂

fi = (1 � ↵)
1X

k=0

↵k (Pk )ij

= (1 � ↵)
1X

k=0

↵k

0

@
X

pk (i ,j)

X

i12N(j)

X

i22N(i1)

· · ·
X

ik2N(i(k�1))

Pik ,i(k�1) · · ·Pi2,i1Pi1,j

1

A



Designing a game for PageRank
We’ll convert this so it looks like an expected value:

"
Note that P(ik, i(k-1) ) ... P(i1,j), is the probability of taking a 
specific walk, wk(i,j)."
"
"
"
"
"


fi = (1 � ↵)
1X

k=0

↵k

0

@
X

pk (i ,j)

X

i12N(j)

X

i22N(i1)

· · ·
X

ik2N(i(k�1))

Pik ,i(k�1) · · ·Pi2,i1Pi1,j

1

A



Designing a game for PageRank
We’ll convert this so it looks like an expected value:

"
Note that P(ik, i(k-1) ) ... P(i1,j), is the probability of taking a 
specific walk, wk(i,j). We can rewrite...
"
"
"
"
"
"


fi = (1 � ↵)
1X

k=0

↵k

0

@
X

pk (i ,j)

X

i12N(j)

X

i22N(i1)

· · ·
X

ik2N(i(k�1))

Pik ,i(k�1) · · ·Pi2,i1Pi1,j

1

A

fi = (1 � ↵)
1X

k=0

↵k

0

@
X

wk (i ,j)2pk (i ,j)

P(wk (i , j))

1

A

=
1X

k=0

0

@
X

wk (i ,j)2pk (i ,j)

(1 � ↵)↵kP(wk (i , j))

1

A



Designing a game for PageRank
GOAL: convert so it looks like an expected value."
"
"
"
"
This is the expected value of:
1.  Choose a length k with probability
2.  Make a random k-walk from j. It lands at node ik
3.  Update solution where walk ends, ik, by adding 1.
Hence for a single iteration of this, "
"
"
"
"


fi =
1X

k=0

0

@
X

wk (i ,j)2pk (i ,j)

(1 � ↵)↵kP(wk (i , j)) · 1

1

A

(1 � ↵)↵k

E(f̂i ) = fi
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Monte Carlo
Relaxation

Number of edges the 
algorithm touches

nnz(A)

10"
 nnz(A)

Sublinear"
“in theory”

How I’d solve it

gap

gap

Node degree=155

Monte Carlo vs Deterministic



Monte Carlo Remarks
Accuracy, convergence are problematic (previous slide)"

OPEN QUESTION: can we improve on number of 
samples / random walks required, or the accuracy 
attained?




Related work: Monte Carlo
-  Monte Carlo methods:

-  [Forsyth Liebler ’50] fore-runner
-  [K. Avrachenkov ’05] MC methods in PageRank
-  [Fogaras et al. ’05] Fully scaling personalized PageRank
-  [Das Sarma et al. ’08] Estimating PageRank on graph streams
-  [Bahmani ’10] Fast incremental Personalized PageRank
-  [Bahmani ’10] PageRank & MapReduce
-  [Borgs ’12] Sublinear PageRank
-  [Chung, Simpson WAW13] Solving systems w/ heat kernel

-  Hybrid monte carlo / coordinate relaxation
-  [Lofgren et al. 2014], node-to-node PPR estimate



Brief outline
Introduction & Application 20-30 min
Coordinate Relaxation for Strong Convergence 30 min
Break 15 min
!
Katz Diffusion 10 min
Weak Convergence for PageRank 20 min!
Monte Carlo methods 15 min!
Break 15 min
!
Implicit Regularization 25 min!
Discussion 15 min!



Statistical regularization
Best? known instance: sparsity and the Lasso

 

The Lasso solution tends to produce sparse solutions.
•  … Candès and Tao formalized the relationship with 

the sparsest solution
•  Prevents overfitting/overtraining on a given sample
•  Related to Bayesian priors

Least squares

minimize

x

kAx � bk2

2

Lasso

minimize

x

kAx � bk2

2

+ �kxk
1



Statistical regularization


 

Choose the regularizer to counter a given noise type


Least squares

minimize

x

kAx � bk2

2

Lasso

minimize

x

kAx � bk2

2

+ �kxk
1

See Hastie, Tibshirani, Friedman 2009
The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction



Implicit regularization

1.  Run an algorithm procedure
2.  Show that your algorithm implicitly is tolerant 

to a type of noise.



Implementing Regularization Implicitly Via

Approximate Eigenvector Computation

Michael W. Mahoney mmahoney@cs.stanford.edu

Department of Mathematics, Stanford University, Stanford, CA 94305

Lorenzo Orecchia orecchia@eecs.berkeley.edu

Computer Science Division, UC Berkeley, Berkeley, CA 94720

Abstract

Regularization is a powerful technique
for extracting useful information from
noisy data. Typically, it is implemented
by adding some sort of norm constraint
to an objective function and then ex-
actly optimizing the modified objective
function. This procedure often leads
to optimization problems that are com-
putationally more expensive than the
original problem, a fact that is clearly
problematic if one is interested in large-
scale applications. On the other hand, a
large body of empirical work has demon-
strated that heuristics, and in some
cases approximation algorithms, devel-
oped to speed up computations some-
times have the side-effect of performing
regularization implicitly. Thus, we con-
sider the question: What is the regular-
ized optimization objective that an ap-
proximation algorithm is exactly opti-
mizing?

We address this question in the con-
text of computing approximations to
the smallest nontrivial eigenvector of a
graph Laplacian; and we consider three
random-walk-based procedures: one
based on the heat kernel of the graph,
one based on computing the the PageR-

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

ank vector associated with the graph,
and one based on a truncated lazy ran-
dom walk. In each case, we provide a
precise characterization of the manner in
which the approximation method can be
viewed as implicitly computing the exact
solution to a regularized problem. In-
terestingly, the regularization is not on
the usual vector form of the optimization
problem, but instead it is on a related
semidefinite program.

1. Introduction

Regularization is a powerful technique in statis-
tics, machine learning, and data analysis for learn-
ing from or extracting useful information from
noisy data (Neumaier, 1998; Chen & Haykin,
2002; Bickel & Li, 2006). It involves (explicitly
or implicitly) making assumptions about the data
in order to obtain a “smoother” or “nicer” so-
lution to a problem of interest. The technique
originated in integral equation theory, where it
was of interest to give meaningful solutions to ill-
posed problems for which a solution did not ex-
ist (Tikhonov & Arsenin, 1977). More recently,
it has achieved widespread use in statistical data
analysis, where it is of interest to achieve solu-
tions that generalize well to unseen data (Hastie
et al., 2003). For instance, much of the work in
kernel-based and manifold-based machine learn-
ing is based on regularization in Reproducing ker-
nel Hilbert spaces (Schölkopf & Smola, 2001).

Typically, regularization is implemented via a

Mahoney & Orecchia 2011





Consider a graph diffusion (of our type) these diffusions 
implicitly regularize the resulting solution vectors to be 
tolerant to noise.




An example theorem

minimize

P
ij LijXij

subject to trace(X ) = 1

X ⌫ 0

SPECTRAL CLUSTERING
minimize

P
ij LijXij + �F (X )

subject to trace(X ) = 1

X ⌫ 0

REGULARIZED
SPECTRAL CLUSTERING

Let F (X ) = trace(X log X ) � trace(X )

then the solution of regularized spectral is

X = C exp(�(1/�)L)

You do nothing special!
Using the heat kernel implicitly regularizes solutions against 
noise characterized by the generalized entropy function

Mahoney & Orecchia 2011



More examples

minimize

P
ij LijXij

subject to trace(X ) = 1

X ⌫ 0

SPECTRAL CLUSTERING
minimize

P
ij LijXij + �F (X )

subject to trace(X ) = 1

X ⌫ 0

REGULARIZED
SPECTRAL CLUSTERING

Let F (X ) = log det X
then the solution of regularized spectral is

X = C(� � ↵L)

�1

PageRank

Truncation

Let Fp(X ) = 1/p trace(X p
)

then the solution of regularized spectral is

X = C(A)

q�1

where 1/p + 1/q = 1

These results should be true up to degree normalization on the solution.



Our question!
Why does the “push method” have 
such incredible empirical utility? 
Answer!
Gleich & Mahoney, ICML 2014."
Anti-differentiating approximation algorithms, a case study with min-cuts, 
spectral, and flow.



Algorithmic Anti-differentiation!

Understanding how and why heuristic procedures
•  Early stopping
•  Truncating small entries 
•  etc

are actually algorithms for implicit objectives.



The ideal world

Given Problem P
Derive solution 
characterization C
Show algorithm A "
finds a solution where C 
holds
Profit?!

Given “min-cut”
Derive “max-flow is 
equivalent to min-cut”
Show push-relabel 
solves max-flow "

Profit!!



(The ideal world)’

Given Problem P
Derive solution approx. 
characterization C’
Show algorithm A’ 
quickly finds a solution 
where C’ holds
Profit?!

Given “sparest-cut”
Derive Rayleigh-
quotient approximation
Show power-method 
finds a good Rayleigh-
quotient 
Profit?!



The real world?

Given Task P
Hack around until you 
find something useful
Write paper presenting 
“novel heuristic” H for P 
and …
Profit!!

Given “find-communities”
Hack around "
??? (hidden) ???
Write paper presenting 
“three matvecs finds real-
world communities”
Profit!!



Understand why H works!
Show heuristic H solves P’
Guess and check!
until you find something H 
solves
Derive characterization of 
heuristic H

The real world

Given “find-communities”
Hack around "

Write paper presenting 
“three matvecs finds real-
world communities”
Profit!!

Algorithmic Anti-differentiation!
Given heuristic H, is there a problem P’ 
such that H is an algorithm for P’ ? 

e.g. Mahoney & Orecchia



If your algorithm is related 
to optimization, this is: 

Given a procedure X, "
what objective does it 
optimize?

The real world
Algorithmic Anti-differentiation!
Given heuristic H, is there a problem P’ 
such that H is an algorithm for P’ ? 

In an unconstrained 
case, this is just 
“anti-differentiation!”



Our question!
Why does the “push method” have 
such incredible empirical utility? 
Answer!
Gleich & Mahoney, ICML 2014."
Anti-differentiating approximation algorithms, a case study with min-cuts, 
spectral, and flow.



The O(correct) answer

1.  PageRank related to Laplacian
2.  Laplacian related to cuts
3.  Andersen, Chung, Lang provides the "

“right” bounds and “localization”

Now the θ(correct) answer?"
A deeper insight into the relationship



Intellectually indebted to …

Chin, Mądry, Miller & Peng [2013]
Orecchia & Zhu [2014]



minimize kBxk
C,1

=

P
ij2E

C

i ,j

|x
i

� x

j

|
subject to x

s

= 1, x

t

= 0, x � 0.

The s-t min-cut problem

Unweighted incidence matrix
Diagonal capacity matrix



The localized cut graph



Related to a construction 
used in “FlowImprove” "
Andersen & Lang (2007); and 
Orecchia & Zhu (2014)

AS =

2

4
0 ↵dT

S 0
↵dS A ↵dS̄

0 ↵dT
S̄ 0

3

5

Connect s to vertices

in S with weight ↵ · degree

Connect t to vertices

in

¯S with weight ↵ · degree



The localized cut graph
Connect s to vertices

in S with weight ↵ · degree

Connect t to vertices

in

¯S with weight ↵ · degree

BS =

2

4
e �IS 0
0 B 0
0 �IS̄ e

3

5

minimize kB

S

xk
C(↵),1

subject to x

s

= 1, x

t

= 0

x � 0.

Solve the s-t min-cut



The localized cut graph
Connect s to vertices

in S with weight ↵ · degree

Connect t to vertices

in

¯S with weight ↵ · degree

BS =

2

4
e �IS 0
0 B 0
0 �IS̄ e

3

5

Solve the “electrical flow”  
s-t min-cut
minimize kB

S

xk
C(↵),2

subject to x

s

= 1, x

t

= 0



s-t min-cut à PageRank 
The PageRank vector z that solves

(↵D + L)z = ↵v

with v = d

S

/vol(S) is a renormalized

solution of the electrical cut computation:

minimize kB

S

xk
C(↵),2

subject to x

s

= 1, x

t

= 0.

Specifically, if x is the solution, then

x =

2

4
1

vol(S)z

0

3

5

Proof

Square and expand

the objective into

a Laplacian, then

apply constraints.



PageRank à s-t min-cut
That equivalence works if v is degree-weighted.
What if v is the uniform vector? 

s

t

Set 
S

α

α
α

2α

2α

α
A(s) =
2

4
0 ↵sT 0
↵s A ↵(d � s)
0 ↵(d � s)T 0

3

5 .



And beyond …


Easy to cook up interesting diffusion-like 
problems and adapt them to this framework. In 
particular, Zhou et al. (2004) gave a semi-
supervised learning diffusion we study soon.

2

4
0 eT

S 0
eS ✓A eS̄
0 eS̄ 0

3

5 . (I + ✓L)x = eS



The Push Algorithm for PageRank
Proposed (in closest form) in Andersen, Chung, Lang "
(also by McSherry, Jeh & Widom) for personalized PageRank

Strongly related to Gauss-Seidel (as Kyle mentioned!)
Derived to show improved runtime for balanced solvers

1. x

(1)

= 0, r

(1)

= (1� �)e

i

, k = 1

2. while any r

j

> ⌧d

j

(d

j

is the degree of node j)

3. x

(k+1)

= x

(k )

+ (r

j

� ⌧d

j

⇢)e

j

4. r

(k+1)

i

=

8
><

>:

⌧d

j

⇢ i = j

r

(k )

i

+ �(r

j

� ⌧d

j

⇢)/d

j

i ⇠ j

r

(k )

i

otherwise

5. k  k + 1

The 
Push 

Method!
⌧ , ⇢



Back to the push method
Let x be the output from the push method

with 0 < � < 1, v = dS/vol(S),

⇢ = 1, and ⌧ > 0.

Set ↵ =

1��
� ,  = ⌧vol(S)/�, and let zG solve:

minimize

1

2

kBSzk2

C(↵),2

+ kDzk
1

subject to zs = 1, zt = 0, z � 0

,

where z =

h
1

zG
0

i
.

Then x = DzG/vol(S).

Proof Write out KKT conditions

Show that the push method

solves them. Slackness was “tricky”

Regularization 
for sparsity

Need for 
normalization



Some reflections on algorithmic 
anti-differentiating
Differentiation!
Given f(x), computing g(x) = f’(x) analytically usually isn’t 
too hard. 
Anti-differentiation!
Given f(x), computing F(x) where f(x) = F’(x) can be very 
hard and or impossible
Algorithms solve for the KKT conditions (e.g. f(x) = 0)
Algorithmic anti-differentiation finds the objective that the 
algorithm solves (e.g. minimize F(x) )
For simple optimization, this analogy is precise.

In general, this is very hard or impossible. !
(3-4 years for PageRank)



Your question?!
So what? Why does this matter?
!
Answer!
Gleich & Mahoney, KDD 2015"
Using local spectral methods to robustify graph-based learning.



The graph-based data analysis pipeline
1 0 0 0 1 0 0 1
0 1 0 1 0 0 1 1
0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1
1 1 0 1 1 1 0 1
1 0 1 1 0 0 0 1
1 0 1 1 1 0 1 0
1 1 1 1 0 1 0 0
1 1 1 0 0 1 1 1
1 1 0 1 1 1 1 1

"
Raw data!
•  Relationships
•  Images
•  Text records
•  Etc.

"
Convert to a graph!
•  Nearest neighs
•  Kernels
•  2-mode to 1-mode
•  Etc.

"
Algorithm/Learning!
•  Important nodes
•  Infer features
•  Clustering
•  Etc.



“Noise” in the initial data 
modeling decisions
"
Explicit graphs!
are those that are 
given to a data 
analyst. 

“A social network”
•  Known spam 

accounts included?
•  Users not logged in 

for a year?
•  Etc.

A type of noise

"
Constructed graphs!
are built based on some 
other primary data."


“nearest neighbor graphs”
•  K-NN or ε-NN
•  Thresholding correlations 

to zero

Often made for computational 
convenience! (Graph too big.)
A different type a noise!

"
Labeled graphs!
occur in information 
diffusion/propagation 


“function prediction”
•  Labeled nodes
•  Labeled edges
•  Some are wrong



A direct type of noise!

Do these decisions matter? 
Our experience Yes! Dramatically so!



Semi-supervised "
graph-based learning 

Given a graph, and a few labeled nodes, 
predict the labels on the rest of the graph.

Algorithm


1.  Run a diffusion for 
each label (possibly 
with neg. info from 
other classes)

2.  Assign new labels 
based on the value of 
each diffusion



Semi-supervised "
graph-based learning 

Given a graph, and a few labeled nodes, 
predict the labels on the rest of the graph.

Algorithm


1.  Run a diffusion for 
each label (possibly 
with neg. info from 
other classes)

2.  Assign new labels 
based on the value of 
each diffusion



Semi-supervised "
graph-based learning 

Given a graph, and a few labeled nodes, 
predict the labels on the rest of the graph.

Algorithm


1.  Run a diffusion for 
each label (possibly 
with neg. info from 
other classes)

2.  Assign new labels 
based on the value of 
each diffusion



The diffusions proposed for semi-
supervised learning are s,t-cut minorants

1

3

2
6

4

5

7

8

9

10

t

s

In the unweighted case, "
solve via max-flow.

In the weighted case, 
solve via network simplex 
or industrial LP.

minimize

qP
ij2E

C

i ,j

|x
i

� x

j

|2

subject to x

s

= 1, x

t

= 0.

minimize

P
ij2E

C

i ,j

|x
i

� x

j

|
subject to x

s

= 1, x

t

= 0.

MINCUT LP Spectral minorant – lin. sys.



Representative cut problems

∞
∞

∞
∞

s

t

ZGL

α

α 4α

3α
4α

6α

3α

3α

5α

5α

5α 2α

5α

4α

5α

s

t

Zhou et al.
Positive label

Neg. label

Unlabeled

Andersen-Lang weighting "
variation too

Joachims has a variation too.

Zhou et al. NIPS 2003; Zhu et al., ICML 2003; 
Andersen Lang, SODA 2008; Joachims, ICML 2003

These help our intuition about the solutions
All spectral minorants are linear systems.



Implicit regularization views 
on the Zhou et al. diffusion

α

α 4α

3α
4α

6α

3α

3α

5α

5α

5α 2α

5α

4α

5α

s

t

Zhou et al.

RESULT!
The spectral minorant of Zhou is equivalent to 
the weakly-local MOV solution.
PROOF!
The two linear systems are the same (after 
working out a few equivalences).
IMPORTANCE!
We’d expect Zhou to be “more robust” 

minimize

qP
ij2E

C

i ,j

|x
i

� x

j

|2

subject to x

s

= 1, x

t

= 0.

The Mahoney-Orecchia-Vishnoi (MOV) vector is a 
localized variation on the Fiedler vector to find a small 
conductance set nearby a seed set.



A scalable, localized algorithm for Zhou 
et al’s diffusion. 

RESULT!
We can use a variation on coordinate descent methods related to 
the Andersen-Chung-Lang PUSH procedure to solve Zhou’s 
diffusion in a scalable manner. 
PROOF. See Gleich-Mahoney ICML ‘14
IMPORTANCE (1)!
We should be able to make Zhou et al. scale.
IMPORTANCE (2)!
Using this algorithm adds another implicit regularization term that 
should further improve robustness!

minimize

qP
ij2E

C

i ,j

|x
i

� x

j

|2

subject to x

s

= 1, x

t

= 0.

minimize

P
ij2E

C

i ,j

|x
i

� x

j

|2 + ⌧
P

i2V

d

i

x

i

subject to x

s

= 1, x

t

= 0, x

i

� 0.



Semi-supervised "
graph-based learning 

Given a graph, and a few labeled nodes, 
predict the labels on the rest of the graph.

Algorithm


1.  Run a diffusion for 
each label (possibly 
with neg. info from 
other classes)

2.  Assign new labels 
based on the value of 
each diffusion



Traditional rounding methods 
for SSL are value-based

Class 1 Class 2Class 3
 

 

Class 1

Class 2

Class 3

CLASS 1

CLASS 2

CLASS 3

VALUE-BASED
Use the largest value of the diffusion to pick the label.

Zhou’s diffusion



But value based rounding 
doesn’t work for all diffusions

(a) The adjacency structure of our

sample with the three unbalanced

classes indicated.

Class 1 Class 2Class 3
 

 

Class 1

Class 2

Class 3

Class 1 Class 2Class 3
 

 

Class 1 Class 2Class 3
 

 

Class 1 Class 2Class 3
 

 

(b) Zhou et al., l = 3 (c) Andersen-Lang, l = 3 (d) Joachims, l = 3 (e) ZGL, l = 3

Class 1 Class 2Class 3
 

 

Class 1 Class 2Class 3
 

 

Class 1 Class 2Class 3
 

 

Class 1 Class 2Class 3
 

 

(f) Zhou et al., l = 15 (g) Andersen-Lang, l = 15 (h) Joachims, l = 15 (i) ZGL, l = 15

Figure 2: A study of the paradoxical e↵ects of value-based rounding on di↵usion-based learning in a simple

environment. With three labels, only Zhou et al.’s di↵usion has correct predictions, whereas with 15 labels,

none of the methods correctly predict the three classes. See the text for more about the nature of the plots.

choose a small subset of additional nodes and reveal a random
label for those nodes. These random labels may be correct
or incorrect and we consider two where these errors occur
at a low rate and high rate. Each experiment is repeated
1000 times. The resulting mean of mistaken classifications
are shown in Figure 3. The methods should all work perfectly

in these cases if there were no label errors. We wanted to see
the di↵erences when problems arise.

For the dense graph, the ZGL di↵usion always has the best
performance. It makes exactly the same number of mistakes
as were given by the randomly labeled nodes. (Recall that
the ZGL di↵usion fixes the provided class labels and hence
the number of mistakes it makes increase with the number of
labels.) As the number of labels increases, all of the methods
have similar performance. For the sparse graph, Zhou et al.’s
di↵usion does substantially better with a low error rate and
also does better with a high error rate (but not too many
labels). These results are consistent with the cut derivations
and implicit regularization of the methods. Both ZGL and
Joachims’s di↵usion have trouble with the sparse graph be-
cause there is no clear minimum cut between the classes
to find. Zhou et al.’s di↵usion propagates independently
between classes and rank-based rounding enables it to find
more accurate information about the class structure.

4.2 A case study with the digits dataset
The problem setup we consider is the digit labeling task [31].

We construct a weighted graph between images of the digits
that depends on a radial basis function width �. Choosing
� = 2.5 results in a dense graph (although it is still sparse
by comparison with the study in Figure 3), where each node
has significant connections to many other images. Whereas
� = 0.8 yields a much sparser graph with fewer significant
connections. We randomly pick labeled nodes in the input
after picking one labeled node in each class. We only describe
the results of Zhou et al.’s di↵usion-based methods since our
preliminary study showed they had better performance than
the other methods. As in the prior work [31], we used
↵ = 0.01/0.99 ⇡ 0.0101. When we use the push algorithm to

estimate Zhou’s di↵usion, we implement a simple bisection
search procedure to find a value of  that produces between
33-50% non-zeros in the final solution.

Values vs. Rank. Figure 4(a) and (b) illustrate the e↵ect
of rank vs. value rounding for this task in the case that no
digits have any labeling errors. For value-based rounding,
the error rates without using the implicit regularization of
the push procedure are worse than random guessing and
the method basically predicts just one class. This is not a
bug and there is a simple illustration of this phenomenon
from Figure 2. Rank-based rounding shows that there is no
real di↵erence between the regularized and non-regularized
di↵usions. This shows how we are able to make the method
robust to di↵erences in graph construction. In the case
� ⇡ 0.8, then value-based rounding is slightly better than
rank-based with many training samples (this is not shown
due to space). Hence, datasets can be engineered through
careful construction and cross validation to perform well
with value-based rounding, but one needs to be thoughtful
of a myriad of perplexing e↵ects. Using rank-based rounding
avoid all of these issues.
Density and error rate. In the next experiment, we

consider two types of graph constructions derived from the
digit dataset. First, we continue to use the standard con-
struction and vary the kernel density width parameter �.
Second, we can convert the weighted graph into a highly
sparse unweighted graph through a nearest neighbor con-
struction. That is, for each node in the weighted graph, we
form edges to its r-neighbors with the largest weights. Then
we discard the weights on the edges. (Note that the value of
� is not relevant for the nearest neighbor graph as changing
� results is a non-linear, monotonic change to the values
that retains the same nearest neighbors.) We use an error
label rate of 20% for these experiments, and all subsequent
experiments with the digits dataset. There is an average of
5 labels provided for each of the 10 classes, and at least one
correct label for each class.

CLASS 1

CLASS 3

CLASS 2

VALUE-BASED rounding fails 
for most of these diffusions BUT There is still a 

signal there!

Adding more labels doesn’t help either, see the 
paper for those details



Rank-based rounding is far 
more robust. 

Class 1 Class 2Class 3
 

 
NEW IDEA!
Look at the RANK of the 
item in each diffusion 
instead of it’s VALUE.

JUSTIFICATION!
Based on the idea of 
sweep-cut rounding in 
spectral methods (use the 
order induced by the 
eigenvector, not its values)

IMPACT!
Much more robust 
rounding to labels



Rank-based rounding has a 
big impact on a real-study.
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Zhou
Zhou+Push

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

e
rr

o
r 

ra
te

average training samples per class

 

 

Zhou
Zhou+Push

We used the digit prediction task out of Zhou’s paper and added just a bit of noise"
as label errors and switched parameters.

VALUE-BASED RANK-BASED



Solutions Paths
One benefit of the weak convergence algorithms…

A direct decomposition is a black box:
Feed in input, get output.

In contrast, the iterative nature of “push” means
running the algorithm is essentially “watching” the 
diffusion process occur.

We get more information this way!




Solutions Paths
One benefit of the weak convergence algorithms…

A direct decomposition is a black box:
Feed in input, get output.

In contrast, the iterative nature of “push” means
running the algorithm is essentially “watching” the 
diffusion process occur.
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Solutions Paths
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Netscience −− PageRank Solution Paths
Each curve is 
a node. Its value 
increases
as ε goes to 0.


Thick black line
shows set of best
conductance.
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Netscience −− PageRank Solution Paths

✏ = 10�3 ✏ = 10�4

Bundles of curves
are good clusters

Paths identify 
nested clusters

✏ = 10�2

Each curve is 
a node. Its value 
increases
as ε goes to 0.


Thick black line
shows set of best
conductance.



Solutions Paths

Locate nested, good-conductance sets
that a single diffusion + sweep could miss.

Can be done efficiently because the constant-
time approach to computing diffusions enables
efficient storage and analysis of the push process

Total Paths work (for PageRank):
Still efficient!
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Recent directions

1.  Diffusions in time-dependent networks
•  Grindrod et al. 2011 (Katz); Gleich &Rossi, 2014 (PageRank); Grindrod 

& Higham, 2014 (Katz again…)




Open issues

1.  Parameter selection
2.  Tuned diffusions


