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WAW 2015 School 
Thanks to Johan Ugander for some materials in this tutorial. 



Schedule 
1.  Processes on networks
2.  Causal inference & randomization inference

3.  Randomization inference in networks

4.  Reducing bias from interference

5.  Other experimental designs and non-experimental studies

With breaks :-)



Themes 
▪ Many important questions are causal questions, including 
questions about processes in networks

▪  Interesting graph theory and computational problems in causal 
inference in networks



Lazarsfeld et al. ’55 
Watts-Dodds ‘07 

Ryan-Gross ‘43 Coleman-Katz-Menzel ‘57 

1940 election  
two-step theory of  
opinion leaders 

•  B Ryan, N Gross (1943) “The diffusion of hybrid seed corn in two Iowa communities”, Rural sociology. 
•  P Lazarsfeld; B Berelson, H Gaudet (1948) “The People's Choice. How the Voter Makes up His Mind in a Presidential Campaign”. 
•  E Katz, P Lazarsfeld (1955) “Personal Influence, The part played by people in the flow of mass communications”. 
•  E Katz (1957) “The Two-Step Flow of Communication: An Up-To-Date Report on an Hypothesis”. Political Opinion Quarterly. 
•  J Coleman, E Katz, H Menzel (1957) “The diffusion of an innovation among physicians”, Sociometry. 
•  D Watts, P Dodds (2007) “Influentials, Networks, and Public Opinion Formation” Journal of Consumer Research. 

Hybrid seed corn Tetracycline 

Processes on social networks 



Hybrid seed corn (Ryan-Gross):
5 stages: awareness, interest, evaluation, trial, adoption

Survey of n=259 farmers
•  B Ryan, N Gross (1943) “The diffusion of hybrid seed corn in two Iowa communities”, Rural sociology.
•  P Lazarsfeld; B Berelson, H Gaudet (1948) “The People's Choice. How the Voter Makes up His Mind in a Presidential Campaign”.
•  E Katz, P Lazarsfeld (1955) “Personal Influence, The part played by people in the flow of mass communications”.
•  E Katz (1957) “The Two-Step Flow of Communication: An Up-To-Date Report on an Hypothesis”. Political Opinion Quarterly.
•  J Coleman, E Katz, H Menzel (1957) “The diffusion of an innovation among physicians”, Sociometry.
•  D Watts, P Dodds (2007) “Influentials, Networks, and Public Opinion Formation” Journal of Consumer Research.

Processes on social networks



Timeline
•  1940s-50s:   Early theories, early data  

 

•  1960s-90s:   Theory refinement/testing 

•  2000s:    Large-scale data 

•  2010s:    Large-scale experiments 

 
Designing/analyzing experiments to develop/test network theories = 
Big opportunity 



Variations on a copy-paste meme 
▪ Memes seem to appear, disappear, reappear
▪  Even the same variant does this: how does it come back?
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Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014) Rumor cascades. In Proceedings of ICWSM. AAAI.



Reshare cascade for photos representing 
rumor about Obamacare medical device 
tax at Cabela’s

Red vertices: reshares that received a 
comment linking to Snopes.com

Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014) Rumor cascades. In Proceedings of ICWSM. AAAI.
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Exposure–adoption function



Number of adopting peers

Pr
ob

ab
ilit

y 
of

 a
do

pt
io

n

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

Simple Complex (noisy threshold)

Example exposure–adoption function under simple and complex contagion models
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Models of peer effects 
Epidemic, or “simple contagion”, models 
▪ Each infected peer has independent probability p of infecting ego

▪  In discrete time, the probability of node with n infected peers at t – 
1 becoming infected at t is 

▪  For very small p, approximated by linear probability model for all 
realistic values of n

▪  For larger p, diminishing returns from larger n

P(Yi,t = 1|Yi,t�1

= 0) = 1 � (1 � p)di,t�1

with di,t�1

= AiYt�1

.
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Models of peer effects 
Semi-anonymous graphical games 
▪ A SAGG has strategic complements if for all degrees n and d ≥ d’

▪ Payoff-maximizing behavior is exhausted by a threshold for 
adoption:

(Jackson 2008, for a review)

▪ This is one form of “complex contagion” (Centola & Macy, 2007)

A semi-anonymous graphical game has strategic complements if

u(1, d , n)� u(0, d , n) � u(1, d 0, n)� u(0, d 0, n)

for all degrees n and d � d 0

Yi,t = 1{AiYt�1

� qi}

A semi-anonymous graphical game has strategic complements
if

u(1, d , n)� u(0, d , n) � u(1, d 0, n)� u(0, d 0, n)

for all degrees n and d � d 0

Yi,t  1{di,t�1

� qi}



Observational estimates of influence 

Backstrom et al. 2006: Probability of 
joining LiveJournal group

Leskovec et al. 2006: Probability of 
buying a DVD

•  L Backstrom, D Huttenlocher, J Kleinberg, X Lan (2006) "Group formation in large social networks: membership, growth, and evolution," KDD.
•  J Leskovec, LA Adamic, BA Huberman (2006) "The dynamics of viral marketing,"  EC.
•  D Centola, V Eguiluz, M Macy (2007) "Cascade dynamics of complex propagation," Physica A.
•  D Centola, M Macy (2007) "Complex contagions and the weakness of long ties" American Journal Sociology.

Complex contagion?



Observational estimates of influence 
Like rates for ads featuring 1, 2, or 3 friends 
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Bakshy, E., Eckles, D., Yan, R., & Rosenn, I. (2012). 
Social influence in social advertising: Evidence from 
field experiments. In: EC 2012: Proceedings of the 
ACM Conference on Electronic Commerce. ACM. 
http://arxiv.org/abs/1206.4327



•  J Ugander, L Backstrom, C Marlow, J Kleinberg (2012) “Structural diversity in social contagion,” PNAS.

Influence and graph structure 
Adoption as a function of ‘contact neighborhood’ size 
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Observational estimates of influence 
Structural diversity 
▪ Joining Facebook given different contact neighborhoods

one-component neighborhoods of sizes 4–6, we see that edge
density has no discernible effect (Fig. 2A).
Moreover, we see that once component count is controlled for

(Fig. 2B), neighborhood size is largely a negative indicator of con-
version. In effect, it is not the number of people who have invited
you, nor the number of links among them, but instead the number
of connected components they form that captures your probability
of accepting the invitation. Note that this analysis has been per-
formed in aggregate and thus unavoidably reflects the decisions of
different individuals. The ability to reliably estimate acceptance
probabilities as a function of something as specific as the precise
topology of the contact neighborhood is possible only because the
scale of the dataset provides us with sufficiently many instances of
each possible contact neighborhood topology (up through size 5).
We view the component count as a measure of “structural di-

versity,” because each connected component of an individual’s
contact neighborhood hints at a potentially distinct social context
in that individual’s life. Under this view, it is the number of dis-
tinct social contexts represented on Facebook that predicts the
probability of joining. We show that the effect of this structural
diversity persists even when other factors are controlled for. In
particular, the number of connected components in the contact
neighborhood remains a predictor of invitation acceptance even
when restricted to individuals whose neighborhoods are de-
mographically homogeneous (in terms of sex, age, and national-
ity; Fig. S2), thus controlling for a type of demographic diversity
that is potentially distinct from structural diversity. The compo-
nent count also remains a predictor of acceptance even when we
compare neighborhoods that exhibit precisely the same mixture
of “bridging” and “embedded” links (Fig. S3), the key distinction
in sociological arguments based on information novelty (19, 20).
For contact neighborhoods consisting of two nodes, we observe

that the probability an invitation is accepted is much higher when
the two nodes in the neighborhood are not connected by a link
(hence forming two connected components, Fig. 1B) compared
with when they are connected (forming one component). Is there
a way to identify cases where people are likely to know each other,
even if they are not linked on Facebook? The photo tagging
feature on Facebook suggests such a mechanism. Photographs
uploaded to Facebook are commonly annotated by users with
“tags” denoting the people present in the photographs. We can
use these tags to deduce whether two unlinked nodes in a contact
neighborhood have been jointly tagged in any photos, a property
we refer to as “co-tagging,” which serves as an indication of
a social tie through copresence at an event (21).
Using photo co-tagging, we find strong effects even in cases

where the presence of a friendship tie is only implicit. If a con-
tact neighborhood consists of two unlinked nodes that have

nevertheless been co-tagged in a photo, then the invitation ac-
ceptance probability drops to approximately what it is for a neigh-
borhood of two linked nodes (Fig. 2C). In other words, being co-
tagged in a photo indicates roughly the same lack of diversity as
being connected by a friendship link. We interpret this result as
further evidence that diverse endorsement is key to predicting
recruitment. Meanwhile, when the two nodes are friends, co-tags
offer a proxy for tie strength, and we see that if the two nodes have
also been co-tagged, then the probability of an accepted invitation
decreases further. From this we can interpret tie strength as an

A B C D

Fig. 1. Contact neighborhoods during recruitment. (A) An illustration of a small friendship neighborhood and a highlighted contact neighborhood con-
sisting of four nodes and three components. (B–D) The relative conversion rates for two-node, three-node, and four-node contact neighborhood graphs.
Shading indicates differences in component count. For five-node neighborhoods, see Fig. S1. Invitation conversion rates are reported on a relative scale,
where 1.0 signifies the conversion rate of one-node neighborhoods. Error bars represent 95% confidence intervals and implicitly reveal the relative frequency
of the different topologies.

A

B C

Fig. 2. Recruitment contact neighborhoods and component structure. (A)
Conversion as a function of edge count neighborhoods with one connected
component (1 CC) with four to six nodes, where variations in edge count
predict no meaningful difference in conversion. (B) Conversion as a function
of neighborhood size, separated by CC count. When component count is
controlled for, size is a negative indicator of conversion. (C) Conversion as
a function of tie strength in two-node neighborhoods, measured by photo
co-tags, a negative indicator of predicted conversion. Recruitment conver-
sion rates are reported on a relative scale, where 1.0 signifies the conversion
rate of one-node neighborhoods. Error bars represent 95% confidence
intervals.

Ugander et al. PNAS | April 17, 2012 | vol. 109 | no. 16 | 5963
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J Ugander, L Backstrom, C Marlow, J Kleinberg (2012) “Structural diversity in social contagion,” PNAS. 



Is obesity contagious? 

N Christakis, J Fowler (2007) "The Spread of Obesity in a Large Social Network over 32 Years," New England J of Medicine. 
C Shalizi, A Thomas (2011) "Homophily and contagion are generically confounded in observational social network studies," Sociological 
Methods & Research. 

“comparing the conditional probability of obesity in the observed network with the probability 
of obesity in identical networks (with topology preserved) in which the same number of obese 
persons is randomly distributed” 



Why causal inference? 
▪ The central concepts here are inherently causal

▪ The theories make claims about causal processes, not mere 
correlations

▪ The policy response depends on the causal relationships



Peer behavior Ego behavior 

Xj

YiYj

Uj UiXi

Homophily, past influence &  
common external shocks 

(t) (t+1)



Summary of 
peer behavior 

Ego behavior 

YiDi

UiXi

Homophily & common external shocks 



When is causal inference possible? 
▪ Can we identify the effect of D on Y by conditioning on available 
covariates X? That is, in the case of discrete X, do we have that

 

▪ Depending on who you’re talking to, this may be called
▪  Selection on observables
▪  Conditional ignorability
▪  Conditional unconfoundedness
▪  Weak exogeneity

Identification by conditioning

P(Y |do(D = d)) =
X

x2X
P(Y |D = d ,X = x) P(X = x)



Criteria for identification 
▪ Can we identify the effect of D on Y by conditioning on available 
covariates X? That is, in the case of discrete X, do we have that

 

▪ Sufficient condition: back-door criterion
▪ A set of variables X satisfies the back-door criterion for 
identification of the effect of D on Y if
a.  X blocks every path from D to Y that has an arrow into D
b.  D is not a parent of any member of X

Identification by conditioning

P(Y |do(D = d)) =
X

x2X
P(Y |D = d ,X = x) P(X = x)



Goals 
Test for or estimate peer effects 
▪ How does a marginal peer adopting affect your adoption?

 

Test for or estimate spillovers 

▪ How does treating a peer affect your outcome?

Estimate effects of global treatment 

▪ What would happen if we gave everyone the treatment?

 



Simplest case: Causal inference for spillovers 
▪ How can we tell if my outcome is affected by my peers’ treatment?

▪ Plenty of jargon for this:
▪  Spillovers

▪  Exogenous peer effects (Manski)

▪  Interference (Cox)

▪  If the treatments are randomly assigned, this might seem easy



Even simpler case 
Effects of randomly assigned treatment on same unit 
▪ How can we tell whether a unit’s outcome is affected by its own 
random assignment?



Causal quantities 
Difference in potential outcomes 
▪ What would a unit have done under treatment and under control? 

▪ The (causal) effect for a unit is the difference between what the 
ego would have done under different peer behaviors 
 
 

 potential outcome for unit i if assigned to control 

 potential outcome for unit i if assigned to treatment 

 

Will sometimes use more verbose notation, e.g., Yi (Zi = 1) or Yi (Wi = 1) 

1 general causal inference

�i = Y (1)
i � Y (0)

i

2 general models

2.1 epidemiological model (SI)

P (Yi,t = 1|Yi,t�1 = 0) = 1� (1� p)AiYt�1

2.2 best response

Yi,t = 1{AiYt�1 ⇤ qi}

3 defining variables

A is the adjacency matrix for the undirected friendship graph such that Aij = 1
i⇥ individuals i and j are friends.

We make this into a directed friendship graph (and adjacency matrix A(L))
by defining

A(L)
ij ⇥ Aij1{Ti > Tj}

where Ti is the first time individual i logs in during the period of interest.
Yi,(t,t+1] = 1 i⇥ individual i adopts during the period (t, t + 1]. Yi,(0,t) = 1

i⇥ individual i adopts anytime before time t.
Vi = 1 i⇥ individual i is assigned to the encouragement.
Individual is encouraged by time t

Vi = Vi1{Li < t}

Number of encouraged peers:

Zt = AVt

Number of adopting prior peers:

Dt = AYt

Di,(0,t) =
X

j

AijYj,(0,t)

Di,t =
X

j2Ni(g)

Yj,t

1
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Causal inference 
▪ Fundamental problem of statistical inference: 

We only observe data for some sample of units.

▪ Fundamental problem of causal inference (Holland 1988): 
We can only observe one potential outcome for each unit.

▪ Additional assumptions (e.g., time and order don’t matter) and 
design (e.g., within-subjects designs), we could observe multiple 
potential outcomes per unit



Randomization inference 
Basic case 

32

Table 5.4: First Six Observations on Cough Frequency from Honey Study

Unit Potential Outcomes Observed Variables
Yi(0) Yi(1) Wi Xi (cfp) Y obs

i (cfa)

1 ? 3 1 4 3
2 ? 5 1 6 5
3 ? 0 1 4 0
4 4 ? 0 4 4
5 0 ? 0 1 0
6 1 ? 0 5 1

Table 5.5: First Six Observations from Honey Study with missing potential
outcomes in brackets filled in under the null hypothesis of no effect

Unit Potential Outcomes Observed Variables
Yi(0) Yi(1) Treatment Xi Y obs

i rank(Y obs
i )

1 (3) 3 1 4 3 4
2 (5) 5 1 6 5 6
3 (0) 0 1 4 0 1.5
4 4 (4) 0 4 4 5
5 0 (0) 0 1 0 1.5
6 1 (1) 0 5 1 3

from Imbens & Rubin (2015, Ch. 5) 

Wi
obs



Randomization inference 
Basic case: Null hypothesis of no treatment effect 
Consider the null hypothesis that the treatment has no effects.

Null hypothesis of no treatment effects:

 Yi (Wi = 1) = Yi (Wi = 0) for all i 

 

This is a sharp null hypothesis: we can infer all potential outcomes 
from observed outcomes.

Note we are also assuming no interference between units, so  
Yi (W) = Yi (W’)



Randomization inference 
Basic case: Null hypothesis of no treatment effect 

2. Fisher Exact P-Values

Suppose we have an experiment with N units, half treated, maintain sutva: two
potential outcomes for each unit,Yi (0) andYi (1), treatment indicator Wi .

We test the null of no effect: Yi (0) =Yi (1) for all i .

For fixed Y(0) and Y(1) withYi (0) =Yi (1), the distribution of

T (W,Y(W)) =
1

N /2

X

i :Wi=1
Y obs
i � 1

N /2

X

i :Wi=0
Y obs
i

under the randomization distribution is known.

The exact (finite sample) p-value associated with the null hypothesis is

p-value = pr(`T (W)` � `T obs`)

6



Randomization inference recipe 
1.  Choose a test statistic T(Y, W) that is sensitive to expected effects

▪  Difference in means, difference in logged means, etc.

2.  Compute observed value of test statistic T(Yobs, Wobs)

3.  Note that under sharp null, Y(W) = Y(W’) = Yobs

4.  Draw permuted treatment vector W*, consistent with original 
randomization method

5.  Compute value of test statistic with observed outcomes and 
permuted treatment T(Yobs, W*)

6.  Repeat 4 & 5 for R times. Compare observed and null test statistics.



Example 
Jupyter notebook: Randomization inference 

 

https://github.com/deaneckles/randomization_inference 

 



Causal inference for spillovers 
▪ How can we tell if my outcome is affected by my peers’ treatment?

▪ Simple case: 
Population consists of isolated dyads

▪  At least we know the dyads are independent of each other

▪ More interesting case: 
Population is a single connected component

▪  Each unit might be affected by all other units’ treatments



Causal inference for spillovers 
Difference in potential outcomes 
▪ The spillover* effect for an ego is the difference between what 
the ego would have done under different peer treatments 

▪  e.g., has peer who performs behavior (treatment) vs. does not have 
peer who performs behavior (control) 

 potential outcome for unit i if assigned to have non-adopter peer 

 potential outcome for unit i if assigned to have adopter peer 
 

* Or “total indirect effect”, “interference effect”, “exogenous peer effect”  … 
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Setup 1. Causal Effects and Potential Outcomes

We have a finite population – with N units. These units may be linked through
a network with adjacency matrix A. We also measure covariates on the indi-
viduals, with X the matrix of covariates.

The units are exposed to a treatment W, where W is an N -vector with i th
element Wi . W takes on values in ◊.

For each unit there is a set of potential outcomes Yi (w), one for each w 2 ◊.
We observeY obs

i
=Yi (W).

Causal effects are comparisonsYi (w) �Yi (w0) for any pair w , w0 2 ◊
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Example null hypotheses of interest 3. Three Null Hypotheses of Interest

No treatment effects:
Yi (w) =Yi (w0) for all units i , and all pairs of assignments w,w0 2 ◊.
(straightforward because this hypothesis is sharp)

No spillover effects: (but own treatment effects)
Yi (w) = Yi (w0) for all units i , and all pairs of assignment vectors w,w0 2 ◊

such that wi = w 0
i
.

No higher order effects: (but effects of own treatment and friends’ treatment)
Yi (w) = Yi (w0) for all units i , and for all pairs of assignment vectors w,w0 2 ◊
such that wj = w 0

j
for all units j such that d (i , j ) < 2 (distance in network).
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Naïve randomization inference for spillovers 
Bond, Fariss, Jones, Kramer, Marlow, 
Settle and Fowler (“A 61-million-
person experiment ...”, Nature 2012) 
write:

“The messages not 
only influenced the 
users who received 
them but also the 
users’ friends, and 
friends of friends.” 

Moreover, the scale of the number of users, their friendship
connections and the potential voters in a given election is very large.
We estimated the per-user effect (the per-friend effect multiplied by
the average number of friends per user) and the total effect (the
per-user effect multiplied by the total number of users) on the
behaviour of everyone in the sample (see Supplementary Informa-
tion). The results suggest that friends generated an additional
886,000 expressed votes (11.4%, null 95% CI 21.1% to 1.1%),
and close friends generated a further 559,000 votes (10.9%, null
95% CI –0.3% to 0.3%). In the Supplementary Information we also
show that close friends of close friends (2 degrees of separation)
generated an additional 1 million expressed votes (11.7%, null 95%
CI –0.8% to 0.9%). Thus, the treatment clearly had a significant impact
on political self-expression and how it spread through the network,
and even weak ties seem to be relevant to its spread.

However, the effect of the social message on real-world validated
vote behaviour and polling-place search was more focused. The results
suggest that close friends generated an additional 282,000 validated
votes (11.8%, null 95% CI –1.3% to 1.2%) and an additional 74,000
polling-place searches (10.1%, null 95% CI –0.1% to 0.1%), but there
is no evidence that ordinary friends had any effect on either of these
two behaviours. In other words, close friendships accounted for all of
the significant contagion of these behaviours, in spite of the fact that
they make up only 7% of all friendships on Facebook.

To put these results in context, it is important to note that turnout
has been steadily increasing in recent US midterm elections, from
36.3% of the voting age population in 2002 to 37.2% in 2006, and to

37.8% in 2010. Our results suggest that the Facebook social message
increased turnout directly by about 60,000 voters and indirectly
through social contagion by another 280,000 voters, for a total of
340,000 additional votes. That represents about 0.14% of the voting
age population of about 236 million in 2010. However, this estimate
does not include the effect of the treatment on Facebook users who
were registered to vote but who we could not match because of
nicknames, typographical errors, and so on. It would be complex to
estimate the number of users on Facebook who are in the voter record
but unmatchable, and it is not clear whether treatment effects would be
of the same magnitude for these individuals, so we restrict our estimate
to the matched group that we were able to sample and observe. This
means it is possible that more of the 0.60% growth in turnout between
2006 and 2010 might have been caused by a single message on
Facebook.

The results of this study have many implications. First and foremost,
online political mobilization works. It induces political self-expression,
but it also induces information gathering and real, validated voter
turnout. Although previous research suggested that online messages
do not work19, it is possible that conventional sample sizes may not
be large enough to detect the modest effect sizes shown here. We
also show that social mobilization in online networks is significantly
more effective than informational mobilization alone. Showing
familiar faces to users can dramatically improve the effectiveness of
a mobilization message.

Beyond the direct effects of online mobilization, we show the
importance of social influence for effecting behaviour change. Our
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Figure 2 | The effect of mobilization treatment that a friend received on a
user’s behaviour. a–d, A validation study shows that at increasing levels of
interaction, Facebook friends are more likely to have a close real-world
relationship (a; see also the Supplementary Information). As the interaction
increases, so does the observed per-friend effect of friend’s treatment on a user’s

expressed voting (b), validated voting (c) and polling-place search (d). Blue
diamonds indicate the observed treatment effect. Horizontal grey bars show the
null distribution derived from simulations of identical networks in which the
topology and incidence of the behaviour and treatment are the same but the
assignments of treatment are randomly reassigned.
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Naïve randomization inference for spillovers 
1.  Choose a test statistic T(Y, W) that obviously measures interference. 

▪  Coefficient for regression of outcome on number of treated peers

▪  Edge-level contrast between edges with treated and control peer

2.  Compute observed value of test statistic T(Yobs, Wobs)

3.  Draw permuted treatment vector W*, consistent with original 
randomization method

4.  Compute value of test statistic with observed outcomes and 
permuted treatment T(Yobs, W*)

5.  Repeat 4 & 5 for R times. Compare observed and null test statistics.

This recipe can result in Type I error rates 2 times too large! 



Randomization inference for spillovers 
1.  Select set of focal units F for which you will examine outcomes

2.  Choose any test statistic T(YF, W) that is a function of 
treatments and only focal units’ outcomes

3.  Compute observed value of test statistic T(YF
obs, Wobs)

4.  Draw permuted treatment vector W* such that all focal units get 
the same treatment as observed – i.e. Wi* = Wi

obs for all i in F

5.  Compute value of test statistic with observed outcomes and 
permuted treatment T(YF

obs, W*)

6.  Repeat 4 & 5 for R times. Compare observed and null test 
statistics.



Y3,t Z3

Y2,t Z2

Y1,t Z1

Y6,t Z6

Y5,t Z5

Y4,t Z4

Zi  = treatment
Yi,t = response at time t



Conditional randomization inference 
“Artificial experiments” 
▪  In basic independent randomized experiment
▪  Condition on how many units are treated N1

▪  Permute (keeping N1 fixed) rather than re-randomize independently

▪ General case (including networks)
▪  Condition on some units getting same treatments as we observed, 

such that null hypothesis is now “sharp”

▪  Draw from randomization distribution conditional on this



Test statistics for interference 
Score statistic 
▪ Use linear regression coefficient as test statisticScore statistic based on linear model

Y obs
i = ↵0 + ↵w ·Wi + ↵y ·Y

obs
(i ) + "i

G is the row-normalized adjacency matrix

Tscore =
1
NF

X

i 2–F

⇢✓
Y obs
i �Y obs

F ,0 �Wi ·
✓
Y

obs
F ,1 �Y

obs
F ,0

◆◆

⇥
NX

j=1

✓
Gi j ·Wj �G ·W

◆9>>=>>;
TA is average of indicator of having at least one treated friend.
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Selecting focal units 
▪  Any choice is valid (i.e. correct 

Type I error rates), choice affects 
power

▪  If only some units have outcome 
data, that might simplify choice

▪  Otherwise, can use greedy 
heuristic methods – will come 
back to this

AddHealth network with example selection of 
focal and auxiliary units 



Banner exposure

Call to action:
verb or noun?

Intensity of social cues

News Feed exposure



Example 
Jupyter notebook: Randomization inference in networks 

https://github.com/deaneckles/randomization_inference 
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farmers’ responses and to let them monitor the fairness of policy implementation. 
We combined some of these methods in our experiment.

The experiment assumes that improving farmers’ understanding of insurance 
reinforces take-up, a fact that we verify later. In order to generate household-level 
variation in the understanding of insurance products, two types of information ses-
sions were offered: simple sessions that took around 20 minutes, during which PICC 
agents introduced the insurance contract;6 and intensive sessions that took around 
45 minutes and covered all information provided during simple sessions, plus an 
explanation of how insurance works and what its expected benefits are.7

In each village, two rounds of sessions were offered to introduce the insurance 
product. During each round, there were two sessions held simultaneously, one sim-
ple and one intensive. To allow time for information sharing by first round partici-
pants, we held the second round sessions three days after the first round. The effect 
of social networks on insurance take-up is identified by looking at whether second 
round participants are more likely to buy insurance if they have more friends who 
were invited to first round intensive sessions. The delay between the two sessions 
was chosen to be sufficiently long that farmers have time to communicate with their 
friends, but not long enough that all the information from the first round sessions has 
diffused across the whole population through indirect links. There are four random-
izations in this experiment, two at the household level and two at the village level. 
The within-village household level randomizations are shown in Figure 1.1. First, 
all households in the sample were randomly assigned to one of the four sessions: 
first round simple (Simple1), first round intensive (Intensive1), second round simple 

6 A simple session explains the contract including the insurance premium, the amount of government subsidy, 
the responsibility of the insurance company, the maximum payout, the period of responsibility, rules of loss verifi-
cation, and the procedures for making payouts. 

7 Before designing the intensive session, we talked with many farmers to see which concepts they didn’t under-
stand. We then included the following main elements in the intensive session: first, how the insurance program 
differs from a government subsidy (the amount of payout is much larger than a government subsidy, which usually 
consists of some food relief after big disasters happen); second, the historical yield loss in the study region; third, 
the expected benefit or loss from purchasing insurance for five contiguous years depending on different disaster 
frequencies and levels. This last theme is extremely important because a key reason that many farmers do not buy 
insurance is that they believe that if they purchase the insurance this year and nothing happens next year, then the 
product makes them lose money. So in the intensive session, we used many concrete examples to explain that insur-
ance is a type of product that you need to purchase repeatedly, and it is very likely that if you do so, even if disaster 
only happens in one year, you can get back all the premiums you paid. 

Figure 1.1. Experimental Design: Within-Village, Household-Level Randomization

3 days later

Intens2-Indiv (343 HHs)

Intensive2(1353 HHs)Simple1(1079 HHs)

Simple2-NoInfo (657 HHs) 

First round 
sessions

Second 
round sessions

Intensive1(1096 HHs) Simple2(1374 HHs)

Simple2-Overall (355 HHs) Simple2-Indiv (362 HHs) Intens2-NoInfo (660 HHs) Intens2-Overall (350 HHs) 

Cai, Jing, Alain De Janvry, and Elisabeth Sadoulet. 2015. "Social Networks and the Decision to Insure." American 
Economic Journal: Applied Economics, 7(2): 81-108. 



Selecting focal units 
▪  Any choice is valid (i.e. correct 

Type I error rates), choice affects 
power

▪  If only some units have outcome 
data, that might simplify choice

▪  Otherwise, can use greedy 
heuristic methods
▪  Find maximal independent set (ε-net)

▪  Select focal units maximizing edges 
between focal and auxiliary 
subgraphs (        )

AddHealth network with example selection of 
focal and auxiliary units 

Own Spillover Focal Node Selection
Network Statistic Effect Effect Random "-net �N ,i

AddHealth Tscore 0 0 0.059 0.056 0.045
Telc 0 0 0.058 0.054 0.044
TA 0 0 0.059 0.039 0.046

Tscore 4 0 0.056 0.053 0.051
Telc 4 0 0.051 0.048 0.059
TA 4 0 0.050 0.053 0.051

Tscore 0 0.4 0.362 0.463 0.527
Telc 0 0.4 0.174 0.299 0.413
TA 0 0.4 0.141 0.296 0.327

Tscore 4 0.4 0.346 0.461 0.529
Telc 4 0.4 0.083 0.102 0.123
TA 4 0.4 0.069 0.088 0.116
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Simulation results 
Own Spillover Focal Node Selection

Network Statistic Effect Effect Random "-net �N ,i
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Type I error rates are 
correct for 5% test 

Power greatly affected 
by test statistic and 
choice of focal units 



Unit Yi(0 
FOF*) 

Yi(>1 
FOF*) 

Aux 
Unit 

Aux 
Wi 

Alt. assignments of FOF Wi 
1 2 3 4 5 6 

A 3 3 C 1 1 0 1 0 0 1 
B 2 2 D 0 1 0 0 1 1 0 

*Holding fixed own 
treatment and 
friends’ treat 

F 1 0 1 0 1 0 1 

G 0 0 1 1 0 1 0 

Probabilities 1/6 1/6 1/6 1/6 1/6 1/6 

Test statistic:  
Edge Level Contrast for FOF links 
between Focal and Auxiliary units 

1/3 8/3-7/3 
=1/3 

7/3-8/3 
=-1/3 

5/2-5/2 
=0 

5/2-5/2 
=0 

7/3-8/3 
=-1/3 

8/3-7/3 
=1/3 

I

C

E

D
B

H

A
F

G

Focal unit A 

Focal unit B 
Auxiliary to 
Focal units 
A and B 

Auxiliary to 
Focal unit B 

Auxiliary to 
Focal units 
A and B 

Buffer for 
Focal unit B 

Buffer for 
Focal units 
A and B 

Buffer for 
Focal unit A 

Auxiliary to 
Focal unit A Aux FOF treat 

v. control: 
A has C,F v. D 
B has F v. D,G 



Discussion 
Generality: Works for many null hypotheses 
▪ No second-order spillovers

▪ With two measured networks for same units ,test for spillovers on 
one network, allowing for (e.g., first order) spillovers according to 
other network

Open directions 

▪ Finding optimal set of focal units

▪ Computationally preferable approximations

▪ Asymptotic inference in networks





Goals 
Test for or estimate peer effects 
▪ How does a marginal peer adopting affect your adoption?

▪  Ideal experiment: directly assign behaviors of existing peers

Test for or estimate spillovers 
▪ How does treating a peer affect your outcome?

Estimate effects of global treatment 

▪ What would happen if we gave everyone the treatment?

 







Goals 
Test for or estimate peer effects 
▪ How does a marginal peer adopting affect your adoption?

▪  Ideal experiment: directly assign behaviors of existing peers

Test for or estimate spillovers 
▪ How does treating a peer affect your outcome?

Estimate effects of global treatment 

▪ What would happen if we gave everyone the treatment?

▪  Ideal experiment: assign connected components to treatments

 



Related work on interference 
Multiple non-interacting groups 
▪ Most of literature, e.g., Sobel (2006), Hudgens & Halloran (2008), 
Tchetgen Tchetgen & VanderWeele (2012) 

In a single network 

▪ Assume some model of local interference  
i.e. my outcome only depends on my neighbors treatments 
Aronow & Samii (2012), Basse & Airoldi (2015), Manski (2014),  
Toulis & Kao (2013), Ugander et al. (2013)

▪ Alternatives: this paper, Choi (2014), van der Laan (2014)



Universe A Universe B

J Ugander, B Karrer, L Backstrom, J Kleinberg (2013) "Graph Cluster Randomization: Network Exposure to Multiple Universes," KDD. 
D Eckles, B Karrer, J Ugander (2014) "Design and analysis of experiments in networks: Reducing bias from interference," arXiv. 
S Athey, D Eckles, G Imbens (2015) "Exact P-values for Network Interference," arXiv. 

Fundamental problem of causal inference (but worse): 
Can only observe potential outcomes for a single global treatment 
assignment vector 



Direct effect

Indirect effect

Universe B

Universe A

•  P Aronow, C Samii (2013) "Estimating average causal effects under interference between units," arXiv.
•  C Manski (2013) "Identification of treatment response with social interactions," The Econometrics Journal.



Goal 2: Estimate global effects 
▪  Ideal experiment: assign connected components to treatments

▪ Alternatives
▪  Ignore interference: independent assignment, standard analysis

▪  Use known, large clusters: assign countries to treatments

▪  Model peer effects using existing data; simulate intervention’s effects

▪  Use neighborhood-based definitions of effective treatments

▪  Assignment with network autocorrelation



Surrounded

Surrounded





Effect of global treatment 
▪ Have a new intervention, what would be the effects of assigning 
everyone to this treatment?

▪ Average treatment effect (ATE) of global treatment z1 vs. z0 

▪ We can’t observe the whole network both ways
▪  “Fundamental problem of causal inference” (Holland, 1988)

▪ Don’t want to assume no interference, SUTVA, or something 
similar

Prior work using such neighborhood exposure conditions (Aronow and Samii,
2011; Ugander et al., 2013) has largely considered design and analysis when some
neighborhood exposure condition is taken as reflecting restrictions on the extent of in-
terference (e.g., vertices are only affected by the fraction of neighbors treated). As
discussed below, the very processes expected to produce interference also make these
assumptions implausible. On the other hand, the present work considers a data gen-
erating process that we regard as more realistic but that violates the assumption that
produces more complex and extensive patterns of interference. That is, in contrast to
prior work, we evaluate design and analysis strategies under conditions other than those
under which they have desirable properties, such as producing unbiased estimates.

We investigate these families of design and analysis methods by running extensive
simulations of a computational model of the entire process of experimentation in net-
works. We find that graph cluster randomization shows the capability of dramatically
reducing bias compared to independent assignment without adding “too much” vari-
ance. Further, we find that changes in the statistical properties of the estimator depend
strongly on the structure of the network and the strength of the interactions between
vertices in the network. When the network has stronger clustering, graph clustered
assignment performs better, and with weak or negligible clustering, independent as-
signment may be a good choice. If the social interactions are weak, then accounting
for interference may come at an unacceptable cost to precision, but when the interac-
tions are strong, the naive estimates will be greatly biased and clustered assignment
combined with exposure conditions can offer the best performance. Finally, we found
larger reductions in bias through design than with analysis. No combination is expected
to work well consistently, but these general insights from simulation can be a guide to
practical experimentation in the presence of peer effects.

2 Model of experiments in networks
We consider experimentation in networks as consisting of four phases: initialization,
treatment assignment, outcome generation, and estimation. A single run through these
phases corresponds to a single instance of the experimental process. Treatment assign-
ment embodies the experimental design, and the estimation phase embody the analysis
of the network experiment. These same phases are implemented in our simulations,
discussed in Section 3, in which we instantiate this process many times.

Before describing each of these phases in more detail, it is worth considering the
goals of experiments in social networks. One typical goal in applied work is predicting
the consequences of adopting a new policy or “rolling out” a new treatment. In this
case, a primary quantity of interest for experiments in networks is the average treatment

effect (ATE) of applying a treatment to all units compared with applying a different
treatment to all vertices. Let Z be a vector giving each vertex’s treatment assignment,
so that Yi(Z = z1) is the potential outcome of interest for vertex i when Z is set to z1.
Then the quantity of interest is a contrast between two such treatment vectors,

⌧(z1, z0) =
1

N

X

i

E[Yi(Z = z1)� Yi(Z = z0)]. (1)
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Observed outcomes 
In terms of global treatment assignment 
▪ Observed outcomes                             are a function from global 
treatment assignment and stochastic component

▪ We can place restrictions on this function by specifying an 
exposure model (Aronow & Samii, 2012) or effective treatments 
(Manski, 2013)

▪  i.e., define levels sets, assume local interference

define C(·) : {1, ..., N} ! {1, ..., NC} as mapping vertex indices to cluster indices.
Then each cluster Cj is assigned a treatment Vj ⇠ Bernoulli(q).

In standard graph cluster randomization, as presented by Ugander et al. (2013),
then the treatments assigned to vertices are simply those assigned to their clusters,

Zi = VC(i).

Other versions of graph cluster randomization can add some vertex-level randomness
to the treatment assignment, such that some vertices’ assignments may not match the
cluster assignment. For example, set

Zi ⇠ Bernoulli(qC(i))

with qj = 1 � ⌘ if Vj = 1 and qj = ⌘ otherwise, where ⌘ is some small value
chosen by the experimenter. That is, clusters are assigned to have their vertices be in
the treatment or control with high probability. This has some appealing consequences
for identification, as discussed in Section 2.4.

Graph cluster randomization could be applied to any mapping C(·) of vertices to
clusters. In this paper, we work with a mapping formed by ✏-net clustering as pre-
viously considered by Ugander et al. (2013). An ✏-net clustering can be formed by
repeatedly selecting a vertex i and placing it and every vertex within distance " � 1
into the same cluster and removing them from further consideration, until all vertices
have been mapped to a cluster. Different values of ✏ correspond to different experimen-
tal designs. We compare clustered assignment to independent random assignment of
vertices to treatment and control.3

2.3 Observed outcomes
Given the network, vertex characteristics and prior behavior, and treatment assign-
ments, some (usually unknown) data generating process produces the observed out-
comes of interest. There are many reasons to be interested in this outcome generating
process; one reason is that this process determines the nature of the dependence of
individual vertices’ responses on the global treatment assignment.

Consider vertices’ outcomes as a function from the global treatment assignment
Z 2 ZN and a stochastic component U 2 UN to an outcome vector Y 2 YN :

f(·) : ZN ⇥ UN ! YN
.

Experimenters then observe Y = f(Z,U). We can decompose this function into a
function for each vertex

fi(·) : ZN ⇥ UN ! Y.

allows for some vertices to be assigned to a different treatment than the rest of their cluster. However, for the
remember of this paper, we simply use standard graph cluster randomization, thus neglecting this technical
problem.

3This can be considered as graph cluster randomization applied to the identity mapping of vertices each
in their own cluster. Other mappings of vertices to clusters of interest include methods developed for com-
munity detection, such as modularity maximization with the Louvain method. Simulation for the Louvain
method, not reported here, are qualitatively similar to those for ✏-net clustering.

5

Experimenters then observe Y = f(Z,U). We can decompose this function into a
function for each vertex

fi(·) : ZN ⇥ UN ! Y.

As we have above, we can, in a variation on this notation, continue to write Yi(Z = z)
to refer to the outcome for vertex i that would be observed under assignment z; by
suppressing dependence on U , this treats Yi(·) as a stochastic function.

If vertices do not interact, then a vertex’s outcome does not depend on the as-
signments of other vertices. In this case, SUTVA is true. Perhaps more felicitously,
Manski (2013) calls this situation individualistic treatment response (ITR). Under ITR
we could then consider vertices as having a function from only their own assignment
to their outcome:

fi(·) : Z⇥ UN ! Y.

This corresponds to the assumption that a vertex’s outcome is invariant to changes in
other vertices’ assignments. That is, for any two global assignments z0, z1 2 ZN and
any stochastic component u 2 UN ,

z1,i = z0,i ) fi(z1, u) = fi(z0, u).

That is, the absence of interaction implies ITR, which is a particular assumption of con-

stant treatment response (CTR) (Manski, 2013). Other CTR assumptions are possible.
Aronow and Samii (2011) simply posit different restrictions on this function, such as
that a vertex’s outcome only depends on its assignment and its neighbors’ assignments.
This neighborhood treatment response (NTR) assumption has that, for any two global
assignments z0, z1 2 ZN and any stochastic component u 2 UN ,

z1,i = z0,i and z1,�(i) = z0,�(i) ) fi(z1, u) = fi(z0, u),

where �(i) are the neighbors of vertex i. Aronow and Samii (2011) and Ugander et al.
(2013) consider further restrictions, such as that a vertex’s response only depends on the
number of treated neighbors. More abstractly, we can define a function ci(·) : ZN !
Ci that maps global treatment vectors to the effective treatments (Manski, 2013) for
vertex i such that

ci(z1) = ci(z0) ) fi(z1, u) = fi(z0, u)

for any two global assignments z0, z1 2 ZN and any stochastic component u 2 UN .
Specifying the functions ci is then a general way to specify a CTR assumption. Such
assumptions can be described as constituting an exposure model (Aronow and Samii,
2011; Ugander et al., 2013).

How should we select an exposure model? Aronow and Samii (2011, Section 3)
suggest that we “must use substantive judgment to fix a model somewhere between
the traditional randomized experiment and arbitrary exposure models”. However, it is
unclear how substantive judgement can directly inform the selection of an exposure
model for experiments in networks. Interference is often expected because of peer
effects: in discrete time, then the behavior of a vertex at t is affected by the behavior
of its neighbors at t� 1; if this is the case, then the behavior of a vertex at t would also
be affected by the behavior of its neighbors’ neighbors at t � 2, and so forth. Such a
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where �(i) are the neighbors of vertex i. Aronow and Samii (2011) and Ugander et al.
(2013) consider further restrictions, such as that a vertex’s response only depends on the
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suggest that we “must use substantive judgment to fix a model somewhere between
the traditional randomized experiment and arbitrary exposure models”. However, it is
unclear how substantive judgement can directly inform the selection of an exposure
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effects: in discrete time, then the behavior of a vertex at t is affected by the behavior
of its neighbors at t� 1; if this is the case, then the behavior of a vertex at t would also
be affected by the behavior of its neighbors’ neighbors at t � 2, and so forth. Such a
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Observed outcomes 
Implausibility of restrictions on f 
▪ We expect interference because of peer effects, but peer effects 
make only local interference implausible
▪  Except at a single discrete time step after treatment (i.e., t = 2)

▪ Can we motivate exposure model through model of peer effects?
▪  Or at least evaluate exposure models using more realistic or 

“primary” models (cf. Manski, 2013)



Outcome generating process 

models of simultaneous endogenous choice can produce some restrictions on fi(·).4 In
what follows, we consider a dynamical model of vertex behavior and its consequences
for CTR assumptions.

Since many appealing CTR assumptions are violated by the very theories that mo-
tivate expecting the presence of interference, it is useful to evaluate the performance of
available design and analysis methods under outcome generating processes consistent
with these theories. In particular, we consider outcome generating processes in which
vertices respond to their own treatment and the prior behavior of their neighbors. That
is, peer behaviors fully mediate the effects of others’ assignments on the ego. We con-
sider a dynamical model with discrete time steps in which a vertex’s behavior at time
t, denoted by the vector Yi,t, is a function h of neighbors’ prior behaviors Y�(i),t�1 and
ego treatment assignment, such that

hi,t(·) : Z⇥ Yki ⇥ UN ! Y,

where ki is the degree of node i and Y1 is initialized by some prior process. That is,
hi,t is the nonparametric structural equation (NPSE) for Yi,t.

This outcome generating process implies some CTR assumptions. After the first
time step (i.e., at time 2), the effective treatment for a vertex is no finer than its treatment
and its neighbors treatment. After the second time step (i.e., at time 3), the effective
treatment is no finer than the treatment of vertices within distance 2. At time step t, the
effective treatment is no finer than the treatment of vertices within distance t� 1.

2.3.1 Utility linear-in-means

Many familiar models are included in the above outcome generating process. To make
this more concrete, and for our subsequent simulations, we consider a model of binary
choice in which a vertex’s behavior is a stochastic function of the mean of neighbors’
prior behaviors, so that behavior at some new time step t is generated as:

Y

⇤
i,t = ↵+ �Zi + �

A

0

iYi,t�1

ki
+ Ui,t (2)

Yi,t = g

�
Y

⇤
i,t

�
(3)

where Ai is a row of the adjacency matrix and ki is the degree of node i. In the case
of a binary behavior, we work with g(x) = 1{x > 0} and Ui,t ⇠ N (0, 1) — that is,
this is a probit model. We initialize behaviors with Yi,1 = 0. Setting � determines
the strength of the direct effect of the treatment, while � is the slope for peer behavior,
and therefore determines the strength of the peer effects. This process is then run up
to a maximum time T . As described above, with a small value of T , this implies CTR
assumptions.

4Manski (2013) calls these models of simultaneous endogenous choice a ‘system of structural equations’.
But because these equations are simultaneous, they cannot be structural in the sense of used in the causal in-
ference literature and in this paper. For a system of equations to be structural in this sense, it must correspond
to a directed acyclic graph (DAG) given a causal interpretation (Pearl, 2009), but systems of simultaneous
equations are cyclic. However, we can regard these equations as specifying an equilibrium that arises out of
some unknown dynamic process. We prefer to work with a posited dynamic process, which may or may not
be in equilibrium when we observe it (cf. Young, 1998).
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▪ Nonparametric structural equation model for observed outcomes, 
where outcomes are a function of vertex i’s ki neighbors’ prior 
behavior:  

Example: Noisy best response model 

▪ Latent utility is linear-in-means (probit model)
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Illustration of responses with utility linear−in−means

Fraction of neighbors with prior positive response
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Ego behavior caused by… 
Neighbors’ treatments 
▪ Local interference: No long range dependence
▪ Unbiased estimators available

(Aronow & Samii, Ugander et al.) 

Neighbors’ behaviors 
▪ Global interference: long range dependence
▪ Bias difficult to eliminate, but can reduce it
▪ Much more realistic

 



Model of experiments in networks 
▪ How are units assigned to conditions?

▪ What is the true outcome generating process?

▪ What estimators are used?

Treatment
Control

Response Treatment weight
Control weight

Initialization Design Outcome Generation Analysis



Design 
How to assign vertices to treatments? 

•  Independent random assignment

•  Assignment with network autocorrelation
•  Many ways to do this
•  Many of which end up being producing 

uniform correlation (e.g. correlation = 1) 
between assignments of a set of vertices

Treatment
Control

Response Treatment weight
Control weight

Initialization Design Outcome Generation Analysis



Graph cluster randomization 
1.  Partition graph into 

clusters

2.  Assign each cluster to 
treatment with probability 
q

3.  Assign all vertices to 
their cluster’s treatment
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Graph cluster randomization (hole punching) 

1.  Partition graph into 
clusters, so vertex i is in 
cluster C(i)

2.  For each cluster j  
Vj ~ Bernoulli(q)

3.  For each node i  
Zj ~ Bernoulli(qC(i))  
with qj = 1 – η if Vj = 1, 
       qj = η otherwise
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Graph partitioning 
▪ Facebook: 1B vertices, 100B+ edges (countries100M+ vertices)

▪ Some candidate, highly scalable methods: 
▪  Community detection, e.g., Louvain method (Blondel et al., 2008)

▪  Label propagation (Zhu & Ghahramani, 2002, Raghavan et al., 2007, 
Ugander & Backstrom, 2013) 

▪  ε-net clustering
▪  Greedy version: Pick a vertex. Put vertex and all vertices within distance 
ε - 1 into a cluster. Repeat.

▪  Ugander et al. (2013) bound variance of ATE estimates when clustering 
with this method with ε = 3.



Zachary Karate Club 
•  Wayne Zachary, sociologist interested in group 

dynamics. 

•  Studied a karate club for 3 years (’70-’72) 

•  Club formed factions around instructor (1) and 
Club President (34). 

•  Zachary was interested in if faction structure 
could be predicted. 

•  Zachary (1977) applied Ford–Fulkerson, found 
group split was predicted by min-cut. 

Zachary, W. W. (1977). An Information Flow Model for Conflict and Fission 
in Small Groups. Journal of Anthropological Research, 33(4), 452–473.  



Community detection objectives 
▪  In Zachary (1977): Predict how a group 
fissions when led by two rival leaders

▪ Similar objective function used for cases 
of labeled community data

•  MEJ Newman, M Girvan (2004) "Finding and evaluating community structure in networks,” Physical Rev E.
•  S Fortunato, M Barthelemy (2007) "Resolution limit in community detection," PNAS.
•  J Shi, J Malik (2000) “Normalized cuts and image segmentation,” IEEE Trans Pattern Analysis and Machine Intelligence.
•  E Mossel, J Neeman, A Sly (2012) “Stochastic block models and reconstruction”



Community detection objectives 
▪  Modularity maximization:
▪  Has “resolution limit”

▪  Conductance (normalized min-cut):
▪  Produces balanced partitions; spectral 

guarantees

▪  Ability to recover Stochastic Block Model:
▪  Stylized model in absence of ground truth data

▪  In network experiments: Minimize MSE of 
ATE estimate?

•  MEJ Newman, M Girvan (2004) "Finding and evaluating community structure in networks,” Physical Rev E.
•  S Fortunato, M Barthelemy (2007) "Resolution limit in community detection," PNAS.
•  J Shi, J Malik (2000) “Normalized cuts and image segmentation,” IEEE Trans Pattern Analysis and Machine Intelligence.
•  E Mossel, J Neeman, A Sly (2012) “Stochastic block models and reconstruction”



Graph partitioning 
▪ Facebook: 1B vertices, 100B+ edges (countries100M+ vertices)

▪ Some candidate, highly scalable methods: 
▪  Community detection, e.g., Louvain method (Blondel et al., 2008)

▪  Label propagation (Zhu & Ghahramani, 2002, Raghavan et al., 2007, 
Ugander & Backstrom, 2013) 

▪  ε-net clustering
▪  Greedy version: Pick a vertex. Put vertex and all vertices within distance 
ε - 1 into a cluster. Repeat.

▪  Ugander et al. (2013) bound variance of ATE estimates when clustering 
with this method with ε = 3.



Fraction of neighbors treated 
Independent and (near ideal) correlated assignment 

Fraction of neighbors treated
0.0 0.50.25 0.75 1.0

Zi = 0

Zi = 1

Fraction of neighbors treated

Universe 0

Universe 1

Universe 1

0.0 0.50.25 0.75 1.0Universe 0

Zi = 0

Zi = 1

Figure 1: The probability distribution over the exposure space



Bias reduction from design 
Graph cluster randomization reduces bias 
▪ Assume quite general model where outcomes are linear in the 
global treatment assignment vector:

 

▪  This model has N 2 + N parameters: 2 for each pair of vertices

▪  Special case: Outcomes linear in prior peer behaviors for any t ≥ 0

“Estimand bias”, such that ⌧dITR(1, 0) � ⌧(1, 0) is non-zero. Each
vertex assigned to treatment contributes to this bias through the dif-
ference between its expected outcome when assigned to treatment
(given the experimental design) and what would be observed under
global treatment. More generally, for some global treatment vector z,
vertex i contributes to the bias of µd

ITR(z) through Ed[Yi � Yi(Z =
z) |Zi = zi].

2.4.1 Bias reduction through design

Theorem 2.1. Assume we have a linear outcome model for all ver-

tices i 2 V such that

EU [Yi(z, U)] = ai +
X

j2V

Bijzj (5)

and further assume that Yi(z, u) is monotonically increasing in z for

every u 2 UN
and vertex i such that Bij � 0.

Then for any mapping of vertices to clusters, the absolute bias of

⌧dITR(1, 0) when the design d is graph cluster randomization is less

than or equal to the absolute bias when d is independent assignment,

with a fixed treatment probability p.

Proof. Using the linear model for Yi and the definition of ⌧ , we have
that the true ATE ⌧ is given by

⌧(1, 0) = µ(1)� µ(0) =
1

N

NX

i=1

NX

j=1

Bij (6)

for this outcome model. Under graph cluster randomization,

⌧gcrITR(1, 0) =
1

N

NX

i=1

NX

j=1

Bij1[C(i) = C(j)]. (7)

Then under independent assignment,

⌧ indITR(1, 0) =
1

N

NX

i=1

Bii. (8)

Because Bij � 0, together this implies that ⌧(1, 0) � ⌧gcrITR(1, 0) 
⌧(1, 0)�⌧ indITR(1, 0), where monotonicity dictates that each side of this
inequality is positive.

To clarify this further, let’s consider the relative bias defined by

⌧gcrITR(1, 0)/⌧(1, 0)� 1 =

PN
i=1

PN
j=1 Bij1[C(i) = C(j)]
PN

i=1

PN
j=1 Bij

� 1. (9)

Assume that there are O(N) clusters of size O(1) used for the graph
cluster randomization.

3

Linear-in-means case

Let a(x) = x in Eq. 2. Then for t � 1 the quantity EU [Yi,t(z)] is

EU [Yi,t(z)] = ↵+ �zi + �
A

0

iE
U [Yt�1(z)]

ki
. (10)

The closed form solution for EU [Yt(z)] for any t � 0 is then given by

EU [Yt(z)] = (�D�1A)tEU [Y0] +
t�1X

q=0

(�D�1A)q(↵+ �z) (11)

where D�1 is the diagonal matrix of inverse degrees, A is the ad-
jacency matrix, and Y0 is the vector of initial states. This is a linear
outcome model with

ai = ↵(1� �t)/(1� �) + ((�D�1A)tEU [Y0])i

and

Bij = �

t�1X

q=0

(�D�1A)qij

.

2.4.2 Bias reduction through analysis

Let

µd
g(z) =

1

N

NX

i=1

Ed[Yi | gi(Z) = gi(z)] (12)

be the mean outcome for the global treatment z when g specifies the
effective treatments and d is the experimental design. Then we have

⌧dg (z1, z0) = µd
g(z1)� µd

g(z0) (13)

as our revised estimand for the ATE.1

For some global treatment vector z, vertex i contributes to the bias
of µd

g(z) through

Ed[Yi � Yi(Z = z) | gi(Z) = gi(z)], (14)

where gi(·) is the potentially incorrect (i.e., too coarse) specification
of effective treatments for vertex i.

More restrictive functions

Consider functions gi(·) such that gi(Z) = gi(z) just implies that for
some subset of vertices Ji we have that

P
j2Ji

1{Zj = zj} � li and
that Zi = zi.

Conditions such that some subset of size li of a set of vertices Ji
has treatment assignment matching that in z.

1It is precisely the effective treatment assumption that allows generalization from a
single sampled z to the behavior at z1 and z0.

4



Bias reduction from design 
Graph cluster randomization reduces bias 
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two designs
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▪ Under graph cluster randomization:
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cluster randomization.

3

all coefficients cancel, 
except your own 

all coefficients cancel, 
except those in your 
cluster 



Bias reduction from design 
Graph cluster randomization reduces bias 

“Estimand bias”, such that ⌧dITR(1, 0) � ⌧(1, 0) is non-zero. Each
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Bias reduction through analysis 
Comparing only “surrounded” vertices 
▪  Some units are more likely to end up surrounded: probability of 

“effective treatment” is not homogenous
▪  e.g. with independent random assignment, high degree vertices have low 

probability of having all peers treated
▪  If not accounted for, this can be a source of bias

▪  Can compute exact design-based propensity scores for each unit

▪  For graph cluster randomization, this is a dynamic program (Ugander 
et al. 2013)

where we have

µ̂
g,S(z) =

P
N

i=1 Y

i

1[g
i

(Z ) = g

i

(z)]
P

N

i=1 1[g
i

(Z ) = g

i

(z)]
.

This estimator will only be unbiased for the corresponding es-
timand µd

g(z) under certain conditions such that the effective
treatments are ignorable. One way for the effective treatments
to be ignorable is if either Ed[Yi | gi(Z) = gi(z)] or Prd[gi(Z) =
gi(z)] is the same for all vertices. Usually we would not want
to assume that Ed[Yi | gi(Z) = gi(z)] is homogeneous, and
Pr[gi(Z) = gi(z)] will not be homogeneous under many rele-
vant effective treatments, such as neighborhood treatment re-
sponse (NTR), since the distribution of effective treatments for
a vertex depends on network structure. As ? observe, high
degree vertices will generally have low probability of being as-
signed to some kinds of “extreme” effective treatments, such as
having all neighbors treated, while low degree vertices have a
much higher probability of being in such an effective treatment.

⇡
i

(z) = Pr(g
i

(Z ) = g

i

(z))

where gi(·) is a function specifying effective treatments.
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Bias reduction from analysis 
Contrasting more surrounded vertices reduces bias 

be the mean outcome for the global treatment z when g spec-
ifies the effective treatments and d is the experimental design.
Then we have

⌧ dg (z1, z0) = µd
g(z1)� µd

g(z0) (13)

as our revised estimand for the ATE.1

For some global treatment vector z, vertex i contributes to the
bias of µd

g(z) through

Ed[Yi � Yi(Z = z) | gi(Z) = gi(z)], (14)

where gi(·) is the potentially incorrect (i.e., too coarse) specifi-
cation of effective treatments for vertex i.

More restrictive functions

Consider functions gi(·) such that gi(Z) = gi(z) just implies that
for some subset of vertices Ji we have that

P
j2Ji 1{Zj = zj} �

li and that Zi = zi.

Conditions such that some subset of size li of a set of vertices
Ji has treatment assignment matching that in z.

1It is precisely the effective treatment assumption that allows generalization from a sin-
gle sampled z to the behavior at z1 and z0.
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More restrictive functions

Consider functions gi(·) such that gi(Z) = gi(z) just implies that
for some subset of vertices Ji we have that

P
j2Ji 1{Zj = zj} �

li and that Zi = zi.

Conditions such that some subset of size li of a set of vertices
Ji has treatment assignment matching that in z.

Fractional neighborhood treatment response (FNTR) assump-
tion: Ji = �(i) and li = d�kie, where ki is vertex i’s degree.

ITR and NTR are special cases with � = 0 and � = 1.

If we have two such functions gAi (·) and gBi (·) with the same Ji,
and gAi (z) = gAi (z

0) implies gBi (z) = gBi (z
0), then we say that

gAi (·) is more restrictive than gBi (·).

Theorem 2.2. Let gA(·) and gB(·) be vectors of such functions

where gAi (·) is more restrictive than gBi (·) for every vertex i,
and let independent random assignment be the experimental

design. A sufficient condition for estimand ⌧ ind
gA

(1, 0) to have

less than or equal absolute bias than ⌧ ind
gB

(1, 0), where these

estimands are defined by Equation 13, is that we have mono-

tonically increasing responses or monotonically decreasing re-

sponses for every vertex with respect to z.

9
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Simulations 
▪ Networks: small world networks
▪ Treatment assignment: 3-net clustered or independent
▪ Observed outcomes: utility linear-in-means
▪  Vary direct and peer effects

▪ Estimators:
▪  Simple difference-in-means
▪  Difference-in-means with effective treatment from fractional 

neighborhood exposure model λ = 0.75
▪  Additionally can weight using probabilities of assignment in Hajek 

estimator



Initialization: Networks 
Small-world networks 

 

 

▪  N = 1000, k = 10. Vary rewiring probability p: 0.00, 0.01, 0.10, 0.50

Not today: Real networks, Degree-corrected block models 

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Watts, D. J. and Strogatz, S. H. 
(1998). Collective dynamics of 
’small-world’ networks. Nature, 
393(6684):440–2.



Bias reduction from clustering, by rewiring probability

Direct effect β
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Change in error from clustering, by rewiring probability

Direct effect β
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Effects of global interventions 
Conclusions 
▪ Clustered randomization reduces bias

… under idiosyncratic global linear interference (Th 2.1)

… under a range of other DGPs (simulations)

… without adding “too much” variance (simulations)

▪ Comparing more “surrounded” individuals reduces bias (Th 2.2)

… but often adds “too much” variance (simulations)



Open directions 
▪ Other ways to produce network autocorrelation
▪  Many of these reduce to graph cluster randomization

▪  Those that don’t may not have an easy way to compute propensity 
scores (probabilities of assignment)

▪ Find optimal design for a model of the network
▪  Find the optimal design for stochastic block model approximation 

(Airoldi; Basse & Airoldi, 2015)

▪ Target global ATE via a model of peer effects
▪  By combining estimates of direct effects and peer effects

Airoldi, E. Optimal design of experiments in the presence of network interference. “Soon on arXiv” 
Basse, G. W., & Airoldi, E. (2015). Optimal design of experiments in the presence of network-correlated outcomes. arXiv. 



Analysis 
Choice of effective treatments 
▪  Individual treatment response — compare vertices with Zi = 1 to 
those with Zi = 0
▪  Leads to simple difference-in-means estimator

▪ Neighborhood treatment response
▪  Full neighborhood treatment – vertices will all neighbors in same 

treatment

▪  Fractional λ–neighborhood treatment – vertices with at least a 
fraction λ of neighbors in same treatment



Bias in estimated ATEs

Direct effect β
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Goal: Estimate peer effects 
▪ What would the ego do given different peer behaviors?
▪  How does a marginal peer adopting effect ego adoption?

▪  Which peers’ adoptions are most influential on the ego?

▪  Ideal experiment: 

Directly assign behaviors of existing peers



Peer behavior Ego behavior 

Xj

YiYj

Uj UiXi

Homophily, past influence &  
common external shocks 

(t) (t+1)



Summary of 
peer behavior 

Ego behavior 

YiDi

UiXi

Homophily & common external shocks 



Goal: Estimate peer effects 
▪  Ideal experiment: directly assign behaviors of existing peers

▪ Alternatives
1.  Adjust for confounding in observational data

2.  Directly assign behaviors of inauthentic peers

3.  Assign individuals to new peers

4.  Modulate a mechanism by which peer behaviors have their effects

5.  Indirectly affect (i.e., encourage) behaviors of existing peers



Observational estimation of peer effects 
High dimensional adjustment with propensity score stratification 
1.  Model probability of being exposed to a peer adoption  

using thousands of prior behaviors & other covariates

2.  Compute mean outcome for exposed and unexposed  
units in each stratum of propensity score

3.  Combine stratum-specific estimates, 
weighting by number of exposed cases 
 

Early example: Mobile app adoption (Aral, Muchnik & Sundararajan, PNAS, 2009)

Evaluation with experimental gold standard: Link sharing on Facebook

▪  Naïve (unadjusted estimates) have > 300% bias for relative risk (28.5 vs. 6.8) 

▪  Fully adjusted estimates have < 30% bias for relative risk (8.7 vs. 6.8)
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Eckles, D. & Bakshy, E. Bias and high-dimensional adjustment in observational studies of peer effects.  



Assign behaviors of inauthentic peers 
Individuals enter an artificial social environment with peers who are 
employed by the experimenter (i.e., confederates)

Asch, S. E. (1956) "Studies of independence and conformity: I. A minority of one against a unanimous 
majority." Psychological Monographs: General and Applied 70.9: 1-70. 



Assign individuals to new peers 
•  Individuals are randomly assigned a position in a 
constructed network, group, or dyad
•  Freshmen assigned to college roommates (Sacerdote 2001)

•  Health network users assigned to random or clustered 
networks (Centola 2010)

•  Military academy freshmen assigned to squadron 
(Carrell, Hoekstra & West 2011)

•  Poor families given vouchers for rent in particular 
neighborhoods (Kling, Liebman, Katz 2007)

•  Confounding of multiple peer behaviors and traits 
(Peers are complex bundles of traits and behaviors)



Modulate a mechanism of peer effects 
•  Peer behaviors often affect the ego via a small number of non-
deterministic mechanisms

•  Randomize whether peer adoption is communicated to ego  
                                                (Aral & Walker 2011; Bakshy et al. 2012a,b)

Do not show personalized social cue 
D = 0 

Show available personalized social cue 
D = 1 

Bakshy, E., Eckles, D., Yan, R., & Rosenn, I. (2012). Social influence in social advertising: Evidence from field experiments. In Proc. of 
EC. ACM. http://arxiv.org/abs/1206.4327
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Modulating a mechanism of peer effects 
▪  Identifies the average treatment effect on the treated
▪  If the mechanism is deterministic and exhaustive, then a mechanism 

experiment identifies the ATET

▪  Binary case:

▪  Rarely actually deterministic 
and exhaustive…
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4.2 Method of analysis

We conduct a constructed observational study with this experiment by excluding
all individual–URL pairs in the no feed condition from the observational data set.
The remaining data is purely observational; that is, these individual–URL pairs
have unmanipulated exposure to peers sharing the URL. While the original study
includes cases where there are multiple sharing peers D > 1 and the ego is exposed
to multiple peers sharing the URL M > 1, we restrict the present analysis to cases
from the original experiment where M = 1.

We then augment this data set with a sample of individual–URL pairs observed
to have M = 0.5 This is the full nonexperimental control group. This combined
data set is consistent with what data analysts would have if an experiment had
not been conducted.6 Using this constructed observational data set, we can then
produce estimates of ATET (4.1) by using standard methods for estimating e↵ects
with observational data. Since we only estimate (4.1) with m = 1, we define

p

(0) = P(Y = 1 | M = 1, do(M = 0))

and
p

(1) = P(Y = 1 | M = 1),

so that ATET, or the risk di↵erence, is

p

(1)
� p

(0)
. (4.3)

This is simply a shorthand for (4.1) with m = 1. We then compare observational
estimates of (4.3) and other related quantities, such as the risk ratio, p(1)/p(0), to
those from the experiment.

4.2.1 Multiple behaviors

While the focal behaviors in this study are all of the same general type (i.e., sharing
any URL on Facebook), it is important to recognize that this includes multiple
focal behaviors with important di↵erences among them (i.e., sharing one URL versus

5The population of pairs is very large since it consists of the Cartesian product of all individuals
and URLs in the original study, so we use as a sample, as described below.

6The only di↵erence is that, since the pairs randomly assigned to the no feed condition are
excluded, the set of treated pairs is random sample from the population of treated pairs, rather
than the whole population.
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Social contagion occurs when there are positive peer effects in
the adoption of a behavior. Identification of peer effects in ob-
servational data requires ignorability assumptions that are made
implausible by the presence of latent homophily and common
external causes. This has created a credibility problem for ob-
servational studies of social contagion and motivates examining
the bias of observational studies in realistic settings. We use a
massive experiment that identifies peer effects in information and
media sharing on Facebook as a “gold standard” for assessing
the bias of purely observational estimators. Naive observational
estimates hugely overstate peer effects, overestimating average
effects by 77% of what is possible. We evaluate propensity score
methods, which have been used in recent studies of social con-
tagion. The bias reduction achieved by these methods depends
on model specification and available covariates. In our analysis,
a single count measure of prior behaviors closely related to the
focal behavior is responsible for the vast majority of the result-
ing bias reduction. In particular, if this variable is available and
used in the analysis, propensity score methods can eliminate over
70% of the bias of the naive estimate, such that remaining bias is
less than 5% of the experimental estimate. Additional variables,
including count data of thousands of past behaviors also result
in modest gains in bias reduction. Other more commonly avail-
able variables (e.g., demographics) result in less substantial bias
reduction. While these results provide evidence that observa-
tional studies can be informative about peer effects, they are also
cautionary, as many analysts may not have suitable measures of
closely-related prior behaviors available.

peer effects | social networks | causal inference | contagion

Abbreviations: ATET, average treatment effect on the treated; NCEG, nonexper-
imental control group; URL, uniform resource locator

Understanding how the behavior of individuals is affected by the
behavior of their peers is of central importance for the social and

behavioral sciences and for decision-making in public policy, health
care, product design, and marketing. Many theories predict there
will be positive peer effects in many behaviors, such that increasing
the number of peers adopting the behavior makes an individual more
likely to adopt (1–4). Since these behaviors spread through social
networks, they are said to exhibit social contagion. Much of the most
credible evidence about social contagion comes small experiments in
artificial social environments (5, 6). More recently, there have been
a number of observational studies of social contagion that rely on
new, large-scale measurement of human behavior (7–9) or longitudi-
nal surveys (10). However, these observational studies are expected
to suffer from confounding of peer effects with other processes that
also produce clustering of behavior in social networks, such as ho-
mophily (11) and external causes common to network neighbors. It
is thus generally not possible to identify peer effects using observa-
tional data without implausible conditional ignorability assumptions
(12).1 To some statisticians and experimentalists, this may suggest
that observational studies of social contagion are may be more mis-
leading than informative. However, even if these assumptions are
not strictly satisfied, it may be that some observational estimators
have relatively small bias in practice. This motivates characterizing
the performance of observational estimators of peer effects by using
realistic simulations or real data for which the true peer effects are

known. Prior work has used sensitivity analysis (13), simulations
(14), and tests when the null hypothesis of no peer effects is assumed
to be true to evaluate observational methods (15).

Using a massive field experiment as a “gold standard”, we con-
duct a constructed observational study (16) to assess bias in observa-
tional estimates of peer effects. In particular, we examine peer effects
in sharing links to Web pages, whose location on the Web is speci-
fied by URLs. While naive estimates overstate positive peer effects
by almost as much as is possible, we find that other observational
estimates that make use prior closely-related behaviors eliminate the
vast majority of this bias. This provides evidence both that observa-
tional studies of peer effects can sometimes be informative, but also
that even analyses that condition on many covariates can suffer from
substantial bias. This work provides guidance to scientists planning
observational studies and evaluating their credibility.

This constructed observational study is also unique in that we
are able to perform thousands of relatively large constructed observa-
tional studies using different peer behaviors. While the focal behav-
iors in this study are all of the same general type (i.e., sharing URLs),
it is important to recognize that this includes multiple focal behaviors
with important differences among them (i.e., sharing one URL ver-
sus another URL). Thus, the present study can be understood as an
analysis of peer effects in millions of distinct information sharing be-
haviors. Our overall results thus average over these behaviors, while
further results examine bias in observational studies for subgroups of
these behaviors (e.g. all links from a particular Web site).

Data
We analyze a large experiment that manipulated the primary mecha-
nism of peer effects in information and media sharing behaviors on
Facebook: the Facebook News Feed. A small percentage of user–
URL pairs were randomly assigned to a no feed condition in which
News Feed stories about a peer sharing that URL were not displayed
to that user (17). All deliveries and held out deliveries were logged.
Taking exposure to a peer sharing a URL as the treatment, this ex-
periment allows one to estimate the average treatment effect on the
treated (ATET), whose true value is given expressed as:

� = p(1) � p(0)

Reserved for Publication Footnotes

1In some literatures, these assumptions are referred to as “selection on observables” or “no
unmeasured confounding”.
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Peer effects via a minimal social cue 
▪ Experimental design
▪  1.4e8 user–ad pairs randomly assigned whether social ad unit 

includes minimal social cue mentioning affiliated peer
▪  5.7e6 distinct users, 1.2e6 distinct ads

Make entire experiment consist of changes to small, light grey text on white background

D = 0 D = 1 



Peer effects via a minimal social cue 
▪ Relative increases in affiliating with advertised page
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Bakshy, E., Eckles, D., Yan, R., & Rosenn, I. (2012). Social influence in social advertising: Evidence from field experiments. In Proc. of EC. ACM.
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What is the marginal effect 
of social cues on an action? 

Bakshy, E., Eckles, D., Yan, R., & Rosenn, I. (2012). Social influence in social advertising: Evidence from field experiments. In: EC 2012: 
Proceedings of the ACM Conference on Electronic Commerce. ACM. http://arxiv.org/abs/1206.4327



Average cue–response function 
Naïve observational analysis from earlier 
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Average cue–response function 
Experimental analysis for number of affiliated peers Z = 3 



Average cue–response function 
Experimental analysis for Z = 3 
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Indirectly affect behaviors of existing peers 
▪ Peer encouragement designs
▪  Randomly assign vertices to encouragement to behavior of interest, 

and examine how this spills over to others
▪  These designs, with groups, are used in development and labor 
economics (e.g., Angelucci & De Giorgi 2009, Duflo & Saez 2003, Miguel & Kremer 2004; 
cf. Moffitt 2001)

▪  Similar analyses treating other non-randomly assigned variables as 
instrumental variables (e.g., Shriver et al. 2013, Tucker 2008)

▪  Recent example on Twitter (Coppock et al. 2015)

▪  Estimate effect of peer behaviors – not just the encouragement
▪  Other view of this: assign peers to behaviors, see effect on ego



Encouragement designs 
▪ Randomly assign units to encouragement Z to a focal behavior D
▪  Randomly encourage students to study (Powers & Swinton 1984)

▪  Assign to take drug or not (but they may not take it)

▪ Formal analysis using potential outcomes (Holland 1986, 1988)

▪  Total effect of encouragement (intent-to-treat, ITT): 
Yi (Zi  =  1)  – Yi (Zi  =  0)

▪  Effect of behavior (effect of D on Y): 
Yi (Di  =  1)  – Y (Di  =  0)

▪  Can we use Z to estimate the effect of D on Y?



Binary encouragement designs 
▪ Four types of people by potential outcomes:
▪  Compliers treatment if encouraged, control if not

▪  Always-takers treatment whether encouraged or not

▪  Never-takers control whether encouraged or not

▪  Defiers control if encouraged, treatment if not

▪  Not all of these may exist for a particular study
▪  In a trial of a new drug or offering (removing) a new (existing) feature, 
there are neither always-takers nor defiers



Binary encouragement designs 
▪ Latent types of units

Treatment D 

0 1 

Assignment Z 

0 
Compliers 
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Never-takers 

Defiers 
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Compliers 
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IV analysis of encouragement designs 
▪ with heterogeneous treatment effects
 

▪  Then local average treatment effect (LATE) is identified
▪  In binary Z, D case, LATE is the average treatment effect for the 
population of compliers

▪  Are we interested in the LATE?

E [Y |Z = z]� E [Y |Z = 0]
E [D|Z = z]� E [D|Z = 0]

Monotonicity. With probability 1, D(z)
i ⇥ D(z0)

i for all z ⇥ z � and all i .

(Angrist, Imbens & Rubin 1996) 



(Angrist & Krueger 1991) 
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Encouragement designs 
“The best instrumental variables are randomly assigned” 
▪ Find a variable Z that affects D but is otherwise unrelated to Y

▪ Use this exogenous variation in D to estimate effect of D on Y

Causal DAG illustrating satisfaction of some necessary conditions 



Peer encouragement designs 
With a single behavior of interest 
▪ Assign to encouragement to, e.g.,
▪  Enroll in a retirement savings account (Duflo & Saez 2003)

▪  Post a thankful status update on Thanksgiving Day

▪ Summarize peer assignments (e.g., number of peers assigned)

▪ Summarize peer behaviors (e.g., number of adopter peers)

     … Compute average ego behaviors as a function of these



Top left of the Facebook homepage (2010) 

On Thanksgiving Day 2010, 1% of Facebook users in the 
United States who were using Facebook in American English 
were randomly assigned to be presented with an alternative 
prompt, “What are you thankful for?” 
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Peer encouragement designs with dyads 
▪ Binary encouragement, peer behavior, and ego outcome
1.  Randomly encourage j or not

2.  Observe j’s behavior (endogenous treatment for i)

3.  Observe i’s behavior (outcome)

complier peer: 
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always-taker peer: 

All variables represented by circles may have other common causes not shown. Variables represented by squares are root nodes.
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Peer encouragement designs 
▪ With multiple peers

All variables represented by circles may have other common causes not shown. Variables represented by squares are root nodes.
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Peer encouragement designs 
▪ Noncompliance with multiple peers
▪  An ego’s peer may be a mix of compliance types
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Analysis of peer encouragement designs 
▪  Intent-to-treat
▪  Put some structure on the potential outcomes

▪  Analyze ego outcome as function of number of peers assigned

▪  Nuisance issues:
▪  Compute probabilities of assignment

▪  Use inverse probability weighting to estimate average outcomes
(Aronow & Samii 2012; Eckles, Karrer & Ugander 2014; Ugander, Karrer, Backstrom & Kleinberg 2013)
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Analysis of peer encouragement designs 
Instrumental variables analysis 
▪ Ego’s outcome caused by own assignment and peer behaviors

▪ Homogeneous effects of different peers 
(i.e., the number of adopter peers is what matters)

▪ Two-stage least squares (or other related methods)
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Peer encouragement designs 
Instrumental variables analysis 
▪ Number of encouraged peers is an instrument for peer effects
▪  Complete mediation (aka exclusion restriction) – Peer 

encouragement only affects ego behavior via peer behavior

▪  Even if effects are heterogeneous, IV analysis of encouragement 
designs identifies average treatment effect of interest
▪  Local average treatment effect or average causal response

(Angrist, Imbens & Rubin 1996, Angrist & Imbens 1995)

▪  Likely an advantage over other instruments that aren’t encouragements



Effects of receiving feedback 
Motivation 
▪ When an individual shares content in social media, what are the 
effects of receiving additional feedback (likes & comments)?
▪  Generating further conversation (e.g., ego replies to comments)
▪  In-kind peer effects in giving feedback (including generalized 

reciprocity)

▪  Creating and sharing more content in the future

▪ These posited virtuous cycles are critical to the adoption and 
continued use of communication technologies



Fact: Pre-expanding vs. not pre-expanding 
comment boxes modulates feedback 

Unexpanded comment box Expanded comment box 

Higher interaction rate 

Lower interaction rate  



Alternative experimental designs 
Example: Effects of receiving feedback on posts 
▪ Assign viewers to condition encouraging giving feedback on 
whatever they view

▪ Assign posters to condition encouraging their friends to give them 
feedback

▪ Assign directed edges to encouragement 
of feedback in that direction  
(from person A to person B)
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Some interesting problems / things to try 
Easier (using Cai et al. 2015 data) 
▪ Alternative ways of selecting focal units, choosing test statistics

▪ Simulate graph clustered design data (Note: some other 
treatments are clustered at village already)

Harder 

▪ Graph partitioning to minimize MSE of ATE estimate – how does 
this change the optimization problem?

▪ Optimal design under an approximation to the graph (e.g., a 
stochastic block model)



Further resources 
Randomization inference in general / networks:

Exact p-values for network interference  
Susan Athey, Dean Eckles & Guido W. Imbens 
NBER Working Paper No. 21313. (and arXiv)

Field Experiments: Design and Analysis  
Gerber and Green.

Clustered random assignment in networks:

Graph cluster randomization: Network 
exposure to multiple universes  
Ugander, J., B. Karrer, L. Backstrom, and J. M. 
Kleinberg. KDD 2013.

Design and analysis of experiments in 
networks: Reducing bias from interference  
Eckles, D., Karrer, B., & Ugander, J. 
http://arxiv.org/abs/1404.7530

General causal inference references:

Causal Inference in Statistics, Social, and 
Biological Science  
(with potential outcomes, including randomization 
inference) 
Imbens & Rubin

Counterfactuals and Causal Inference  
(with potential outcomes & causal DAGs) 
Morgan & Winship

Causality  
(mainly causal DAGs, also causal discovery) 
Pearl

Worked examples on github: 
https://github.com/deaneckles/
randomization_inference


