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Schedule

Processes on networks

Causal inference & randomization inference
Randomization inference in networks
Reducing bias from interference

Other experimental designs and non-experimental studies

With breaks :-)



Themes

- Many important questions are causal questions, including
guestions about processes in networks

- Interesting graph theory and computational problems in causal
inference in networks



Processes on social networks

1940 election
two-step theory of
opinion leaders

County’s New Deal Maj

ROOSEVELT RE-ELECTE

- B Ryan, N Gross (1943) “The diffusion of hybrid seed corn in two lowa communities”, Rural sociology.
- P Lazarsfeld; B Berelson, H Gaudet (1948) “The People's Choice. How the Voter Makes up His Mind in a Presidential Campaign”.

Lazarsfeld et al. ’55
Watts-Dodds ‘07

Hybrid seed corn

Tetracycline

Coleman-Katz-Menzel ‘57

- E Katz, P Lazarsfeld (1955) “Personal Influence, The part played by people in the flow of mass communications”.
- E Katz (1957) “The Two-Step Flow of Communication: An Up-To-Date Report on an Hypothesis”. Political Opinion Quarterly.

- J Coleman, E Katz, H Menzel (1957) “The diffusion of an innovation among physicians”, Sociometry.
- D Watts, P Dodds (2007) “Influentials, Networks, and Public Opinion Formation” Journal of Consumer Research.



Processes on socilal networks

Hybrid seed corn (Ryan-Gross):
5 stages: awareness, interest, evaluation, trial, adoption
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Survey of n=259 farmers

B Ryan, N Gross (1943) “The diffusion of hybrid seed corn in two lowa communities”, Rural sociology.

P Lazarsfeld; B Berelson, H Gaudet (1948) “The People's Choice. How the Voter Makes up His Mind in a Presidential Campaign”.
E Katz, P Lazarsfeld (1955) “Personal Influence, The part played by people in the flow of mass communications”.
E Katz (1957) “The Two-Step Flow of Communication: An Up-To-Date Report on an Hypothesis”. Political Opinion Quarterly.

J Coleman, E Katz, H Menzel (1957) “The diffusion of an innovation among physicians”, Sociometry.

D Watts, P Dodds (2007) “Influentials, Networks, and Public Opinion Formation” Journal of Consumer Research.
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Timeline

o 1940s-50s: Early theories, early data

,,,,,,,,,,,

1960s-90s: Theory refinement/testing

2000s: Large-scale data

2010s: Large-scale experiments

Designing/analyzing experiments to develop/test network theories =
Big opportunity



Variations on a copy-paste meme
- Memes seem to appear, disappear, reappear
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- Even the same variant does this: how does it come back?
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Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014) Rumor cascades. In Proceedings of ICWSM. AAAL.
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Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014) Rumor cascades. In Proceedings of ICWSM. AAAL.



Probability of adoption

Exposure—adoption function

Number of adopting peers




Simple —— Complex (noisy threshold) ——
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Example exposure—adoption function under simple and complex contagion models



Models of peer effects
Epidemic, or “simple contagion”, models

- Each infected peer has independent probability p of infecting ego

- In discrete time, the probability of node with n infected peers at t —
1 becoming infected at tis

P(Yit=1|Yit—1=0)=1—(1-q)(1 — p)%-
with di,t—1 = A Yi—1.

- For very small p, approximated by linear probability model for all
realistic values of n

- For larger p, diminishing returns from larger n



Models of peer effects
Semi-anonymous graphical games

- A SAGG has strategic complements if for all degrees nand d= @’

u(1,d,n) — u(0,d,n) > u(1,d’,n) — u(0,d", n)

- Payoff-maximizing behavior is exhausted by a threshold for
adoption:

Yie < 1{dit—1 > qi}
(Jackson 2008, for a review)

- This is one form of “complex contagion” (Centola & Macy, 2007)



Observational estimates of influence

Backstrom et al. 2006: Probability of Leskovec et al. 2006: Probability of

joining LiveJournal group buying a DVD
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Complex contagion?

« L Backstrom, D Huttenlocher, ] Kleinberg, X Lan (2006) "Group formation in large social networks: membership, growth, and evo
. J Leskovec, LA Adamic, BA Huberman (2006) "The dynamics of viral marketing," EC.

« D Centola, V Eguiluz, M Macy (2007) "Cascade dynamics of complex propagation,” Physica A.

« D Centola, M Macy (2007) "Complex contagions and the weakness of long ties" American Journal Sociology.



Observational estimates of influence
Like rates for ads featuring 1, 2, or 3 friends

Clifton , Joey and
Maciej like Tough Mudder.

Tough Mudder
g Like

Bakshy, E., Eckles, D., Yan, R., & Rosenn, |. (2012).

Social influence in social advertising: Evidence from
field experiments. In: EC 2012: Proceedings of the
ACM Conference on Electronic Commerce. ACM.
http://arxiv.org/abs/1206.4327

normalized like rate

2.0

—_
(00

N
o

—
™~

—
N

RN
o

O
oo

[

1 2 3
number of affiliated peers (Z)




Influence and graph structure
Adoption as a function of ‘contact neighborhood’ size

susceptible susceptible susceptible
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. J Ugander, L Backstrom, C Marlow, J Kleinberg (2012) “Structural diversity in social contagion,” PNAS.



Observational estimates of influence

Structural diversity

- Joining Facebook given different contact neighborhoods

- — N N
o o o o
I I I I

Relgltive conversion rate
ol
|

0_

Contact
neighborhood:

=X

Relative conversion rate

N
o
I

N
o
I

—h
o
|

—h
o
|

o
o
I

O_

Contact

neighborhood:

Relative conversion rate

N
o
I

N
o
I

—h
o
I

—h
o
I

o
o
I

O_

Contact

) neighborhood:

HINCNIE NI <

J Ugander, L Backstrom, C Marlow, J Kleinberg (2012) “Structural diversity in social contagion,” PNAS.




|s obesity contagious?
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“comparing the conditional probability of obesity in the observed network with the probability
of obesity in identical networks (with topology preserved) in which the same number of obese
persons is randomly distributed”

N Christakis, J Fowler (2007) "The Spread of Obesity in a Large Social Network over 32 Years," New England J of Medicine.

C Shalizi, AThomas (2011) "Homophily and contagion are generically confounded in observational social network studies," Sociological
Methods & Research.



Why causal inference?

- The central concepts here are inherently causal

- The theories make claims about causal processes, not mere
correlations

- The policy response depends on the causal relationships



O ()

Y, (t Y, (t+1)

Peer behavior Ego behavior
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When is causal inference possible?

- Can we identify the effect of D on Y by conditioning on available
covariates X? That is, in the case of discrete X, do we have that

P(Y|do(D=d))= > P(Y|D=d,X=x)P(X=x)
XeEX

- Depending on who you're talking to, this may be called
Selection on observables
Conditional ignorability
Conditional unconfoundedness

Weak exogeneity



Criteria for identification

- Can we identify the effect of D on Y by conditioning on available
covariates X? That is, in the case of discrete X, do we have that

P(Y|do(D=d))= > P(Y|D=d,X=x)P(X=x)
XeEX

- Sufficient condition: back-door criterion

- A set of variables X satisfies the back-door criterion for
iIdentification of the effect of Don Y if

X blocks every path from D to Y that has an arrow into D
D is not a parent of any member of X



Goals
Test for or estimate peer effects

- How does a marginal peer adopting affect your adoption?

Test for or estimate spillovers

- How does treating a peer affect your outcome?

Estimate effects of global treatment

- What would happen if we gave everyone the treatment?



Simplest case: Causal inference for spillovers

- How can we tell if my outcome is affected by my peers’ treatment?

- Plenty of jargon for this:
Spillovers
Exogenous peer effects (Manski)

Interference (Cox)

- If the treatments are randomly assigned, this might seem easy



Even simpler case
Effects of randomly assigned treatment on same unit

- How can we tell whether a unit’s outcome is affected by its own
random assignment?



Causal quantities
Difference in potential outcomes

- What would a unit have done under treatment and under control?

- The (causal) effect for a unit is the difference between what the
ego would have done under different peer behaviors

A =y D —y©

Yi(O) potential outcome for unit / if assigned to control

Yi(l) potential outcome for unit / if assigned to treatment

Will sometimes use more verbose notation, e.g., Y;(Z,=1)or Y;(W,=1)



Causal inference

- Fundamental problem of statistical inference:
We only observe data for some sample of units.

- Fundamental problem of causal inference (Holland 1988):
We can only observe one potential outcome for each unit.

- Additional assumptions (e.g., time and order don’t matter) and
design (e.g., within-subjects designs), we could observe multiple
potential outcomes per unit



Randomization inference
Basic case

Table 5.5: FIRST SiX OBSERVATIONS FROM HONEY STUDY WITH MISSING POTENTIAL
OUTCOMES IN BRACKETS FILLED IN UNDER THE NULL HYPOTHESIS OF NO EFFECT

Unit | Potential Outcomes Observed Variables
Y;:(0) Yi(1) Treatment X; Y?°" rank(Y,°b)
Wiobs
1 (3) 3 1 4 3 4
2 (5) 5 1 6 5 6
3 (0) 0 1 4 0 1.5
4 4 (4) 0 4 4 5
5 0 (0) 0 1 0 1.5
6 1 (1) 0 5 1 3

from Imbens & Rubin (2015, Ch. 5)



Randomization inference
Basic case: Null hypothesis of no treatment effect

Consider the null hypothesis that the treatment has no effects.

Null hypothesis of no treatment effects:

Y, (W, =1)=Y,(W,=0) for all i

This is a sharp null hypothesis: we can infer all potential outcomes
from observed outcomes.

Note we are also assuming no interference between units, so
Y (W) =Y, (W)



Randomization inference
Basic case: Null hypothesis of no treatment effect

For fixed Y(0) and Y(1) with Y;(0) = Y;(1), the distribution of

1 1
T(W,Y(W)) = —— Y.obs o Y_obs

under the randomization distribution is known.

The exact (finite sample) p-value associated with the null hypothesis is

o-value = pr(|T(W)| > |7°°))



Randomization inference recipe

1. Choose a test statistic 7(Y, W) that is sensitive to expected effects

Difference in means, difference in logged means, etc.
>.  Compute observed value of test statistic T( Y°bs, Wobs)
3. Note that under sharp null, Y(W) = Y(W’) = Yobs

4. Draw permuted treatment vector W~ consistent with original
randomization method

5.  Compute value of test statistic with observed outcomes and
permuted treatment T(Y°ts, W*)

6. Repeat 4 & 5 for R times. Compare observed and null test statistics.



Example
Jupyter notebook: Randomization inference

https://qithub.com/deaneckles/randomization inference




Causal inference for spillovers

- How can we tell if my outcome is affected by my peers’ treatment?

- Simple case:
Population consists of isolated dyads

At least we know the dyads are independent of each other

- More interesting case.:
Population is a single connected component

Each unit might be affected by all other units’ treatments



Causal inference for spillovers
Difference in potential outcomes

- The spillover* effect for an ego is the difference between what
the ego would have done under different peer treatments

- e€.g., has peer who performs behavior (treatment) vs. does not have
peer who performs behavior (control)

A =y D —y©

Yi(O) potential outcome for unit / if assigned to have non-adopter peer

Yi(l) potential outcome for unit i if assigned to have adopter peer

* Or “total indirect effect”, “interference effect”, “exogenous peer effect” ...



Exact p-values for network interference.
Set Susan Athey, Dean Eckles & Guido W. Imbens
Up NBER Working Paper No. 21313. (and arXiv)

We have a finite population P with N units. These units may be linked through
a network with adjacency matrix A. We also measure covariates on the indi-
viduals, with X the matrix of covariates.

The units are exposed to a treatment W, where W is an N-vector with /th
element W;. W takes on values in W.

For each unit there is a set of potential outcomes Y;(w), one for each w € W.
We observe Y?°S = y;(W).

Causal effects are comparisons Y;(w) — Y;(w’) for any pairw # w € W



Example null hypotheses of interest

No treatment effects:
Y;(w) = Y;(w’) for all units /7, and all pairs of assignments w, w’ € W.
(straightforward because this hypothesis is sharp)

No spillover effects: (but own treatment effects)
Y;(w) = Y;(w’) for all units 7, and all pairs of assignment vectors w,w’ € W
such that w; = w’.

No higher order effects: (but effects of own treatment and friends’ treatment)
Y;(w) = Y;(w’) for all units /, and for all pairs of assignment vectors w,w’ € W
such that w; = wjf for all units j such that d(/, ) < 2 (distance in network).



Naive randomization inference for spillovers

Bond, Fariss, Jones, Kramer, Marlow, ¢
Settle and Fowler (“A 61-million- S 09007
person experiment ...”, Nature 2012) g 0.200- o
. . >
write: S 0.100
= »
“The messages not 2 _ | §
nature | I g 0
"""""""""""""""""""""""""""""""""" only influenced the S oo
users who received g
o -0.200-
== them but also the S . Observed value
¢ Ssitndp s ook i Uusers d frle N d S a nd —0.300 | Simulated null
= . = s 95% ClI
R friends of friends.” 1 2 3 4506 7 8 9 10

Decile of user—friend interactions



Naive randomization inference for spillovers

1. Choose a test statistic 7(Y, W) that obviously measures interference.
Coefficient for regression of outcome on number of treated peers

Edge-level contrast between edges with treated and control peer
. Compute observed value of test statistic T( Yobs, Wobs)

3. Draw permuted treatment vector W~ consistent with original
randomization method

4. Gompute value of test statistic with observed outcomes and
permuted treatment T(Y°%s, W*)

5. Repeat 4 & 5 for R times. Compare observed and null test statistics.

This recipe can result in Type | error rates 2 times too large!



Randomization inference for spillovers

1. Select set of focal units F for which you will examine outcomes

2. Choose any test statistic T( Y-, W) that is a function of
treatments and only focal units’ outcomes

3. Compute observed value of test statistic T( Y05, Webs)

4. Draw permuted treatment vector W* such that all focal units get
the same treatment as observed —i.e. W.*= Websforall jin F

5. Compute value of test statistic with observed outcomes and
permuted treatment T( Y0, W)

6. Repeat 4 & 5 for R times. Compare observed and null test
statistics.



Z; =treatment
Yit = response at time t



Conditional randomization inference
“Artificial experiments”

- In basic independent randomized experiment
Condition on how many units are treated N,

Permute (keeping N, fixed) rather than re-randomize independently

- General case (including networks)

Condition on some units getting same treatments as we observed,
such that null hypothesis is now “sharp”

Draw from randomization distribution conditional on this



Test statistics for interference
Score statistic

- Use linear regression coefficient as test statistic

—obs
Yl_obS:ao+aW-W,-+ay-Y(,-) + &

G is the row-normalized adjacency matrix

1 —obs —obs —obs
Tscore = N_F {(Y,-Obs - YF,O - Wi (YF,1 - YF,O))
iE[FDF

T 4 is average of indicator of having at least one treated friend.



Selecting focal units 1
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Banner exposure

It's Election Day

Tell friends you're voting in the
v E' 2012 Election and find out

where to vote.
i l i ; W Find My Polling Place

(i a vt

Call to action:
verb or noun?

o
4
p
ANAs

o Intensity of social cues

election.

Brian Wise and 64 other friends are voters in the 2012 election.
It's Election Day
VUTE' Tell friends you're voting in the 2012 Election and find
"

out where to vote.
E Brian Wise is a voter in the 2012 election.

Like - Comment - Share - about a minute ago - M

. Lisa Valentine is a voter in the 2012 election.

Like - Comment - Share - 2 minutes ago - 18

See 63 more posts from Vicki Mizell Sciolaro, Andy Harbath and 61 others

News Feed exposure



Example
Jupyter notebook: Randomization inference in networks

https://github.com/deaneckles/randomization inference

First round Second
sessions round sessions

3 days later

Simple1
(1079 HHs)

Intensive1
(1096 HHs)

Simple2
(1374 HHs)

Intensive2
(1353 HHs)

Simple2-Nolnfo
(657 HHs)

Simple2-Overall
(355 HHs)

Simple2-Indiv
(362 HHs)

Intens2-Nolnfo
(660 HHs)

Intens2-Overall
(350 HHs)

Intens2-Indiv
(343 HHSs)

FIGURE 1.1. EXPERIMENTAL DESIGN: WITHIN-VILLAGE, HOUSEHOLD-LEVEL RANDOMIZATION

Cai, Jing, Alain De Janvry, and Elisabeth Sadoulet. 2015. "Social Networks and the Decision to Insure." American
Economic Journal: Applied Economics, 7(2): 81-108.



Selecting focal units Ry
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AddHealth network with example selection of
focal and units



Simulation results

Own Spillover  Focal Node Selection

Network  Statistic Effect Effect Random e-net &y ;
AddHealth  Tgcore 0 0 0.059 0.056 0.045
Telc 0 0 0.058 0.054 0.044

T4 0 0 0.059 0.039 0.046

Tscore 4 0 0.056 0.053 0.051

Tele 4 0 0.051 0.048 0.059

T4 4 0 0.050 0.053 0.051

Tscore 0 0.4 0.362 0.463 0.527

Telc 0 0.4 0.174 0.299 0.413

T4 0 0.4 0.141 0.296 0.327

Tscore 4 0.4 0.346 0.461 0.529

Tele 4 0.4 0.083 0.102 0.123

T4 4 0.4 0.069 0.088 0.116

Type | error rates are
correct for 5% test

Power greatly affected
by test statistic and
choice of focal units



Focal unit B

Aux FOF treat
v. control:

Ahas C,Fv.D
Bhas Fv.D,G

Focal unit A
Auxiliary to G
Focal units Auxiliary to
Aand B Focal unit B
Y;(0 Y;(>1 Aux | Alt. assignments of FOF W,
FOF*) FOF*) W,
A 3 3 C 1 1 0 1
B 2 2 D 0 1 0 0
*Holding fixed own F 1 0 1 0
treatment and
friends’ treat G 0 0 1 1
Probabilities 1/6 1/6 1/6
Test statistic: 1/3  8/3-7/3  7/3-8/3 5/2-5/2
Edge Level Contrast for FOF links =1/3 =-1/3 =0

between Focal and Auxiliary units

5/2-5/2
=0

- O - O

1/6

7/3-8/3
=-1/3

R Y R VS R O
0
1
1
0

1/6

O -~ O -

1/6

8/3-7/3
=1/3



Discussion
Generality: Works for many null hypotheses

- No second-order spillovers

- With two measured networks for same units ,test for spillovers on
one network, allowing for (e.g., first order) spillovers according to

other network

Open directions
- Finding optimal set of focal units
- Computationally preferable approximations

- Asymptotic inference in networks
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Goals
Test for or estimate peer effects

- How does a marginal peer adopting affect your adoption?

- Ildeal experiment: directly assign behaviors of existing peers

Test for or estimate spillovers

- How does treating a peer affect your outcome?

Estimate effects of global treatment

- What would happen if we gave everyone the treatment?
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Goals
Test for or estimate peer effects

- How does a marginal peer adopting affect your adoption?

- [deal experiment: directly assign behaviors of existing peers

Test for or estimate spillovers

- How does treating a peer affect your outcome?

Estimate effects of global treatment
- What would happen if we gave everyone the treatment?

- ldeal experiment: assign connected components to treatments



Related work on interference
Multiple non-interacting groups

- Most of literature, e.g., Sobel (2006), Hudgens & Halloran (2008),
Tchetgen Tchetgen & VanderWeele (2012)

In a single network

- Assume some model of local interference

l.e. my outcome only depends on my neighbors treatments
Aronow & Samii (2012), Basse & Airoldi (2015), Manski (2014),
Toulis & Kao (2013), Ugander et al. (2013)

- Alternatives: this paper, Choi (2014), van der Laan (2014)



Universe A Universe B

Fundamental problem of causal inference (but worse):
Can only observe potential outcomes for a single global treatment
assignment vector

J Ugander, B Karrer, L Backstrom, J Kleinberg (2013) "Graph Cluster Randomization: Network Exposure to Multiple Universes," KDD.
D Eckles, B Karrer, J Ugander (2014) "Design and analysis of experiments in networks: Reducing bias from interference," arXiv.
S Athey, D Eckles, G Imbens (2015) "Exact P-values for Network Interference," arXiv.



Universe A

7/n G

Direct effect —
E E ar ;‘

Universe B

- P Aronow, C Samii (2013) "Estimating average causal effects under interference between units," arXiv.
- C Manski (2013) "ldentification of treatment response with social interactions," The Econometrics Journal.



Goal 2: Estimate global effects

- [deal experiment: assign connected components to treatments

- Alternatives

ghore interference: independent assignment, standard analysis

Use known, large clusters: assign countries to treatments

Model peer effects using existing data; simulate intervention’s effects
Use neighborhood-based definitions of effective treatments

Assignment with network autocorrelation
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Effect of global treatment

- Have a new intervention, what would be the effects of assigning
everyone to this treatment?

- Average treatment effect (ATE) of global treatment z, vs. z,

7(21,20) = ZE 21) = Yi(Z = ),

- We can’t observe the whole network both ways

“Fundamental problem of causal inference” (Holland, 1988)

- Don’t want to assume no interference, SUTVA, or something
similar



Observed outcomes
In terms of global treatment assignment

. Observed outcomes Y = f(Z,U) are a function from global
treatment assignment and stochastic component

£f;():ZN xUN - Y
- We can place restrictions on this function by specifying an

exposure model (Aronow & Samii, 2012) or effective treatments
(Manski, 2013)

ci(z1) = ci(z0) = fi(z1,u) = fi(20,u)

- l.e., define levels sets, assume local interference



How does interference arise?
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Z; = treatment
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Dependence on neighbors’ treatments
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Dependence on neighbors’ behaviors
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Dependence on neighbors’ behaviors
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Observed outcomes
Implausibility of restrictions on

- We expect interference because of peer effects, but peer effects
make only local interference implausible

- Except at a single discrete time step after treatment (i.e., t = 2)

- Can we motivate exposure model t

- Or at least evaluate exposure mode
“primary” models (cf. Manski, 2013)

nrough model of peer effects?

S using more realistic or



Outcome generating process

- Nonparametric structural equation model for observed outcomes,
where outcomes are a function of vertex r's k; neighbors’ prior

behavior: 7w Yk UN Y

Example: Noisy best response model

- Latent utility is linear-in-means (probit model)

A'.YZ- .
Vi = a+ B2+ 4 Uiy

Yii = (Y:t)



Probability of positive response
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Ego behavior caused by...

Neighbors' treatments
- Local interference: No long range dependence

- Unbiased estimators available

(Aronow & Samii, Ugander et al.)

Neighbors’ behaviors
- Global interference: long range dependence

- Bias difficult to eliminate, but can reduce it

- Much more realistic



Model of experiments in networks

- How are units assigned to conditions?
- What is the true outcome generating process?

- What estimators are used?

Initialization Design Outcome Generation Analysis

W~

O Treatment Response @ Treatment weight
QO Control i
O+—0 @ Control weight




Design
How to assign vertices to treatments?

Independent random assignment

Assignment with network autocorrelation

Many ways to do this

Many of which end up being producing
uniform correlation (e.g. correlation = 1)
between assignments of a set of vertices

O Treatment
O Control



Graph cluster randomization

1.

Partition graph into
clusters

Assign each cluster to
treatment with probability

q

Assign all vertices to
their cluster’s treatment

[ ‘ 0
e[ \0

)




Graph cluster randomization (hole punching)

1.

Partition graph into _ |
clusters, so vertex /is in | @
cluster C(i) 0 b _l] \_
For each cluster j i ‘ SN @/
V; ~ Bernoulli(q) ’
g

For each node i | ,” —3) |
Z ~ Bernoulli(g.) L il

J (i) | a |
with qg=1-n if \/j =1, * -I) I @ ) )

q; = n otherwise | J]
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Graph partitioning

- Facebook: 1B vertices, 100B+ edges (countries100M+ vertices)

- Some candidate, highly scalable methods:
Community detection, e.g., Louvain method (Blondel et al., 2008)

Label propagation (Zhu & Ghahramani, 2002, Raghavan et al., 2007,
Ugander & Backstrom, 2013)

e-net clustering

Greedy version: Pick a vertex. Put vertex and all vertices within distance
€ - 1 into a cluster. Repeat.

Ugander et al. (2013) bound variance of ATE estimates when clustering
with this method with € = 3.



Zachary Karate Club

« Wayne Zachary, sociologist interested in group
dynamics.

« Studied a karate club for 3 years ('70-72)

« Club formed factions around instructor (1) and
Club President (34).

« Zachary was interested in if faction structure
could be predicted.

« Zachary (1977) applied Ford—Fulkerson, found
group split was predicted by min-cut.

Zachary, W. W. (1977). An Information Flow Model for Conflict and Fission
in Small Groups. Journal of Anthropological Research, 33(4), 452—473.



Community detection objectives

- In Zachary (1977): Predict how a group
fissions when led by two rival leaders

- Similar objective function used for cases
of labeled community data

« MEJ Newman, M Girvan (2004) "Finding and evaluating community structure in networks,” Physical Rev E.

« S Fortunato, M Barthelemy (2007) "Resolution limit in community detection," PNAS.

« J Shi, J Malik (2000) “Normalized cuts and image segmentation,” IEEE Trans Pattern Analysis and Machine Intelligence.
« E Mossel, J Neeman, A Sly (2012) “Stochastic block models and reconstruction”



Community detection objectives

- Modularity maximization:

- Has “resolution limit”

- Conductance (normalized min-cut):

- Produces balanced partitions; spectral
guarantees

- Ability to recover Stochastic Block Model:

- Stylized model in absence of ground truth data

- In network experiments: Minimize MSE of
ATE estimate?

« MEJ Newman, M Girvan (2004) "Finding and evaluating community structure in networks,” Physical Rev E.

« S Fortunato, M Barthelemy (2007) "Resolution limit in community detection," PNAS.

« J Shi, J Malik (2000) “Normalized cuts and image segmentation,” IEEE Trans Pattern Analysis and Machine Intelligence.
« E Mossel, J Neeman, A Sly (2012) “Stochastic block models and reconstruction”



Graph partitioning

- Facebook: 1B vertices, 100B+ edges (countries100M+ vertices)

- Some candidate, highly scalable methods:
Community detection, e.g., Louvain method (Blondel et al., 2008)

Label propagation (Zhu & Ghahramani, 2002, Raghavan et al., 2007,
Ugander & Backstrom, 2013)

e-net clustering

Greedy version: Pick a vertex. Put vertex and all vertices within distance
€ - 1 into a cluster. Repeat.

Ugander et al. (2013) bound variance of ATE estimates when clustering
with this method with € = 3.



Fraction of neighbors treated
Independent and (near ideal) correlated assignment

eO Fraction of neighbors treated

. e(s
w00 0.25 0.5 0.75 1.0
| ‘
Zi =1 / \ ‘
\)(\'\\le“‘:’e
‘ 6(560 Fraction of neighbors treated
WW=00 0.25 0.5 0.75 1.0
Z =0
|
Z =1
yers®



Bias reduction from design
Graph cluster randomization reduces bias

- Assume quite general model where outcomes are linear in the
global treatment assignment vector:

EulYi(z,U)] = a; + Z Bz,
JeV

- This model has N2 + N parameters: 2 for each pair of vertices

- Special case: Outcomes linear in prior peer behaviors for any t = 0

/

B V(o) =+ s o A2 i




Bias reduction from design
Graph cluster randomization reduces bias

- Compare the simple difference-in-mean estimands under these
two designs

- Under independent random assignment:

N
. 1
ind _ iCi
TITR(lv O) — N E Bm all coefficients cancel,
1=1

except your own

- Under graph cluster randomization:

N N
Cr 1 QU : : all coefficient ,
TIgTR(l’ 0) = N L L B;;1|C (i) = C(j)] except tlhcl)sesincyal‘cr)ﬁre

i=1 j=1 cluster




Bias reduction from design
Graph cluster randomization reduces bias

Theorem 2.1. Assume we have a linear outcome model for all ver-
tices 1 € V such that

EulYi(z — a; + Z Biiz; (5)
JjeV

and further assume that Y;(z,w) is monotonically increasing in z for
every u € UN and vertex i such that B;; > 0.

Then for any mapping of vertices to clusters, the absolute bias of
= (1,0) when the design d is graph cluster randomization is less
than or equal to the absolute bias when d is independent assignment,
with a fixed treatment probability p.
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Bias reduction through analysis

Comparing only “surrounded” vertices

- Some units are more likely to end up surrounded: probability of
“effective treatment” is not homogenous

e.g. with independent random assignment, high degree vertices have low
probability of having all peers treated

If not accounted for, this can be a source of bias

- Can compute exact design-based propensity scores for each unit
mi(z) = Pr(gi(£) = 9i(2))
where gi(:) Is a function specifying effective treatments.

- For graph cluster randomization, this is a dynamic program (Ugander
et al. 2013)



Bias reduction from analysis
Contrasting more surrounded vertices reduces bias
Consider functions g;(-) such that ¢;(Z) = g;(z) just implies that

for some subset of vertices .J; we have that > ., 1{Z; = z;} >
[, and that Z, = z,.

Fractional neighborhood treatment response (FNTR) assump-
tion: J; = 4(2) and [; = [ \k;|, where k; is vertex ¢’s degree.

ITR and NTR are special cases with A =0 and A = 1.

If we have two such functions ¢(-) and ¢”(-) with the same J,,
and g(2) = g(2') implies ¢°(2) = ¢”(%'), then we say that
g(+) is more restrictive than ¢”(-).



Bias reduction from analysis
Contrasting more surrounded vertices reduces bias

Theorem 2.2. Let ¢*(-) and ¢g”(-) be vectors of such functions
where gi'(-) is more restrictive than g”(-) for every vertex i,
and let independent random assignment be the experimental
design. A sufficient condition for estimand 7i(1,0) to have

less than or equal absolute bias than T;ﬂd(l O) where these
estimands are defined by Equation 13, is that we have mono-
tonically increasing responses or monotonically decreasing re-
sponses for every vertex with respect to z.



Simulations

- Networks: small world networks
- Treatment assignment: 3-net clustered or independent

- Observed outcomes: utility linear-in-means

Vary direct and peer effects

- Estimators:
Simple difference-in-means

Difference-in-means with effective treatment from fractional
neighborhood exposure model A = 0.75

Additionally can weight using probabilities of assignment in Hajek
estimator



Initialization: Networks

Small-world networks

Regular Small-world Random

Watts, D. J. and Strogatz, S. H.
(1998). Collective dynamics of

p=0 _ » p=1 'small-world’ networks. Nature,
Increasing randomness 393(6684):440-2.

- N =1000, k = 10. Vary rewiring probability p: 0.00, 0.01, 0.10, 0.50

Not today: Real networks, Degree-corrected block models



Change in absolute bias
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Bias reduction from clustering, by rewiring probability
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Change in error from clustering, by rewiring probability
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Effects of global interventions
Conclusions

- Clustered randomization reduces bias
... under idiosyncratic global linear interference (Th 2.1)
... under a range of other DGPs (simulations)

... without adding “too much” variance (simulations)

- Comparing more “surrounded” individuals reduces bias (Th 2.2)

... but often adds “too much” variance (simulations)



Open directions

- Other ways to produce network autocorrelation

Many of these reduce to graph cluster randomization

Those that don’t may not have an easy way to compute propensity
scores (probabilities of assignment)

- Find optimal design for a model of the network

Find the optimal design for stochastic block model approximation
(Airoldi; Basse & Airoldi, 2015)

- Target g

By com

obal ATE via a model of peer effects

nining estimates of direct effects and peer effects

Airoldi, E. Optimal design of experiments in the presence of network interference. “Soon on arXiv”

Basse, G. W., & Airoldi,

E. (2015). Optimal design of experiments in the presence of network-correlated outcomes. arXiv.



Analysis
Choice of effective treatments

- Individual treatment response — compare vertices with Z, =1 to
those with Z, =0

- Leads to simple difference-in-means estimator

- Neighborhood treatment response

- Full neighborhood treatment — vertices will all neighbors in same
treatment

- Fractional A—neighborhood treatment — vertices with at least a
fraction A of neighbors in same treatment



Estimated percent bias

Bias in estimated ATEs

clustered, individual, unweighted
clustered, neighborhood, Hajek
clustered, neighborhood, unweighted

independent, individual, unweighted
—————— independent, neighborhood, Hajek

----------- independent, neighborhood, unweighted

slope: 0.5
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Direct effect 3
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Goal: Estimate peer effects

- What would the ego do given different peer behaviors?
How does a marginal peer adopting effect ego adoption?

Which peers’ adoptions are most influential on the ego?

- ldeal experiment:

Directly assign behaviors of existing peers



O ()

Y, (t Y, (t+1)

Peer behavior Ego behavior
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Goal: Estimate peer effects

- ldeal experiment: directly assign behaviors of existing peers

- Alternatives

Adjust for confounding in observational data

Directly assign behaviors of inauthentic peers

Assign individuals to new peers

Modulate a mechanism by which peer behaviors have their effects

Indirectly affect (i.e., encourage) behaviors of existing peers



Observational estimation of peer effects

High dimensional adjustment with propensity score stratification

1. Model probability of being exposed to a peer adoption S - : T
. . *
using thousands of prior behaviors & other covariates a» \ A 250
o 5 xxx>§< N ><><><x X ><><x X X Mx)&*(x xx K
E O — »* o . (p —
2. Compute mean outcome for exposed and unexposed g ° = " s
units in each stratum of propensity score § 3 e " g0 i
©c O ®
o - oo o oocoo ® Woom
3. Combine stratum-specific estimates, = vo0 @moo@o o@o0 ® o
weighting by number of exposed cases R _
| | | | | |
0 20 40 60 80 100

Propensity score stratum

Early example: Mobile app adoption (Aral, Muchnik & Sundararajan, PNAS, 2009)
Evaluation with experimental gold standard: Link sharing on Facebook
- Naive (unadjusted estimates) have > 300% bias for relative risk (28.5 vs. 6.8)

- Fully adjusted estimates have < 30% bias for relative risk (8.7 vs. 6.8)

Eckles, D. & Bakshy, E. Bias and high-dimensional adjustment in observational studies of peer effects.



Assign behaviors of inauthentic peers

Individuals enter an artificial social environment with peers who are
employed by the experimenter (i.e., confederates)

Asch, S. E. (1956) "Studies of independence and conformity: I. A minority of one against a unanimous
majority." Psychological Monographs: General and Applied 70.9: 1-70.



Assign individuals to new peers

- Individuals are randomly assigned a position in a
constructed network, group, or dyad

Freshmen assigned to college roommates (Sacerdote 2001)

Health network users assigned to random or clustered
networks (Centola 2010)

Military academy freshmen assigned to squadron
(Carrell, Hoekstra & West 2011)

Poor families given vouchers for rent in particular —
neighborhoods (Kiing, Liebman, Katz 2007) —_—

. Confounding of multiple peer behaviors and traits —
(Peers are complex bundles of traits and behaviors)



Modulate a mechanism of peer effects

- Peer behaviors often affect the ego via a small number of non-
deterministic mechanisms

- Randomize whether peer adoption is communicated to ego
(Aral & Walker 2011; Bakshy et al. 2012a,b)

History

“Like" HISTORY and “Like" HISTORY and

enter to win a free trip ) enter to win a free trip

to New York City and to New York City and
$5,000. $5,000.

HISTORY.
462 people like this. g Like- Jina ikes this.
Do not show personalized social cue Show available personalized social cue

D=0 D=1

Bakshy, E., Eckles, D., Yan, R., & Rosenn, |. (2012). Social influence in social advertising: Evidence from field experiments. In Proc. of
EC. ACM. http://arxiv.org/abs/1206.4327



Mechanism experimental designs

Wi By Wi By

"\ "\

0—©

All mechanisms enabled Some mechanisms enabled
When mechanism is deterministic: M;;= W, E;;

All variables represented by circles may have other common causes not shown. Variables represented by squares are root nodes.



Modulating a mechanism of peer effects

- ldentifies the average treatment effect on the treated

- If the mechanism is deterministic and exhaustive, then a mechanism
experiment identifies the ATET
0) _ _ _ _
- Binary case: p =P(Y =1| M =1,do(M =0))
pV=P(Y =1|M=1)

5= p) _ O

- Rarely actually deterministic
and exhaustive...

All mechanisms enabled VS. All mechanisms disabled



Peer effects via a minimal social cue

- Experimental design

- 1.4e8 user—ad pairs randomly assigned whether social ad unit
iIncludes minimal social cue mentioning affiliated peer

. 5.7e6 distinct users, 1.2e6 distinct ads

Make entire experiment consist of changes to small, light grey text on white background

History History
“Like" HISTORY and “Like" HISTORY and
Y enter to win a free trip ) enter to win a free trip
to New York City and to New York City and
$5,000. $5,000.
HISTORY. HISTORY.
g) Like- 357,462 people like this. g Like- Jina ikes this.

D=0 D=1



Peer effects via a minimal social cue

- Relative increases in affiliating with advertised page
number of peers liking the page (£)

Z =1 /=2 Z =3
Q
©1.3 -
O
X
1.2 - }
8 }
N
®©1.1 -
=
O
€10 -4 ¢
| | | | | |
0 1 0 1 0 1

number of peers shown (D)

Bakshy, E., Eckles, D., Yan, R., & Rosenn, I. (2012). Social influence in social advertising: Evidence from field experiments. In Proc. of EC. ACM.



What is the marginal effect
of social cues on an action?

ﬂ Clifton likes Tough Mudder.

Tough Mudder
g Like

Clifton and Joey
Tough Mudder.

Tough Mudder
g Like

like

Clifton
Maciej

, Joey and
like Tough Mudder.

Tough Mudder
g Like

Bakshy, E., Eckles, D., Yan, R., & Rosenn, |. (2012). Social influence in social advertising: Evidence from field experiments. In: EC 2012:
Proceedings of the ACM Conference on Electronic Commerce. ACM. http://arxiv.org/abs/1206.4327




Average cue—response function
Nailve observational analysis from earlier
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Average cue—response function
Experimental analysis for number of affiliated peers Z = 3
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Average cue—response function
Experimental analysis for Z =3

number of peers liking the page (2) number of peers liking the page (2)
Z=1 Z=2 Z=3 Z=1 Z=2 Z=3
1.5 - 2.0 -
i) o)
©1.4 - © 1.8 - {
X
213 - 216 - * { {
© i 9 _
§12 §14 {
S _ © _
g 1.1 = 1.2
0 1.0 - 210 - ¢
I I I I I I I I I I I I I I I I I I
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
number of peers shown (D) number of peers shown (D)

Bakshy, E., Eckles, D., Yan, R., & Rosenn, |. (2012). Social influence in social advertising: Evidence from field experiments. In: EC 2012:
Proceedings of the ACM Conference on Electronic Commerce. ACM. http://arxiv.org/abs/1206.4327



Indirectly affect behaviors of existing peers

- Peer encouragement designs

Randomly assign vertices to encouragement to behavior of interest,
and examine how this spills over to others

These designs, with groups, are used in development and labor

€conNOMICS (e.g., Angelucci & De Giorgi 2009, Duflo & Saez 2003, Miguel & Kremer 2004;
cf. Moffitt 2001)

Similar analyses treating other non-randomly assigned variables as
Instrumental variables (e.g., Shriver et al. 2013, Tucker 2008)

Recent example on Twitter (Coppock et al. 2015)

Estimate effect of peer behaviors — not just the encouragement

Other view of this: assign peers to behaviors, see effect on ego



Encouragement designs

- Randomly assign units to encouragement Zto a focal behavior D
Randomly encourage students to study (Powers & Swinton 1984)

Assign to take drug or not (but they may not take it)
- Formal analysis using potential outcomes (Holland 1986, 1988)

Total effect of encouragement (intent-to-treat, ITT):
Y(Z,=1) = Y(Z, = 0)

/

Effect of behavior (effect of D on Y):
Yi(D;=1) = Y(D; = 0)

Can we use Zto estimate the effect of D on Y?



Binary encouragement designs

- Four types of people by potential outcomes:
Compliers treatment if encouraged, control if not
Always-takers treatment whether encouraged or not
Never-takers control whether encouraged or not

Defiers

Not all of these may exist for a particular study

In a trial of a new drug or offering (removing) a new (existing) feature,
there are neither always-takers nor defiers



Binary encouragement designs

- Latent types of units
Treatment D

0 1
Compliers Defiers

0 & &

Never-takers Always-takers
Assignment Z
Defiers Compliers

1 & &

Never-takers Always-takers




IV analysis of encouragement designs

- with heterogeneous treatment effects
Monotonicity. With probability 1, D¥) > D\*? for all z > 2’ and all .

Then local average treatment effect (LATE) is identified

In binary Z, D case, LATE is the average treatment effect for the
population of compliers

Are we interested in the LATE?

(Angrist, Imbens & Rubin 1996)
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Encouragement designs
“The best instrumental variables are randomly assigned”

- Find a variable Zthat affects D but is otherwise unrelatedto Y

- Use this exogenous variation in D to estimate effect of Don Y

-— o —
- -~

¥ N
U U

/® ) >@ Y
D

Causal DAG illustrating satisfaction of some necessary conditions



Peer encouragement designs
With a single behavior of interest

- Assign to encouragement to, e.qg.,
- Enroll in a retirement savings account (Duflo & Saez 2003)

- Post a thankful status update on Thanksgiving Day

- Summarize peer assignments (e.g., number of peers assigned)
- Summarize peer behaviors (e.g., number of adopter peers)

... Compute average ego behaviors as a function of these



facebook

2] News Feed Top News - Most Recent
Edit My Profile

What's on your mind?

-] News Feed

On Thanksgiving Day 2010, 1% of Facebook users in the
United States who were using Facebook in American English

were randomly assigned to be presented with an alternative
prompt, “What are you thankful for?”

Top left of the Facebook homepage (2010)



Peer encouragement designs with dyads
- Binary encouragement, peer behavior, and ego outcome

1. Randomly encourage j or not

. Observe j's behavior (endogenous treatment for i)

3. Observe i’s behavior (outcome)

Zj Wj Y.
complier peer: D—»O—»O
Z. W. Y.

J J |

always-taker peer: I:I—»‘—>‘

All variables represented by circles may have other common causes not shown. Variables represented by squares are root nodes.




Peer encouragement designs

- With multiple peers

7 W Z, W,

Encourage all peers Encourage no peers

All variables represented by circles may have other common causes not shown. Variables represented by squares are root nodes.



Peer encouragement designs
- Noncompliance with multiple peers

- An ego’s peer may be a mix of compliance types

Always taker
Never taker
Never taker
Complier

Complier




Analysis of peer encouragement designs

- Intent-to-treat
Put some structure on the potential outcomes

Yi(Z) = Yi(Z) forall Z,Z' s.t. d = f(Z) = f,(Z')

Analyze ego outcome as function of number of peers assigned

Nuisance issues:
Compute probabilities of assignment  71;( Z)

Use inverse probability weighting to estimate average outcomes

(Aronow & Samii 2012; Eckles, Karrer & Ugander 2014; Ugander, Karrer, Backstrom & Kleinberg 2013)



Analysis of peer encouragement designs
Instrumental variables analysis

- Ego’s outcome caused by own assignment and peer behaviors

- Homogeneous effects of different peers
(i.e., the number of adopter peers is what matters)

Yi, (2, Yit,) = Vit (Zayfto) for all }7it07}7i/to s.t. a= hi(yi,) = hi(y/'/to)

- Two-stage least squares (or other related methods)



Peer encouragement designs
Instrumental variables analysis

- Number of encouraged peers is an instrument for peer effects

Complete mediation (aka exclusion restriction) — Peer
encouragement only affects ego behavior via peer behavior

Even if effects are heterogeneous, IV analysis of encouragement
designs identifies average treatment effect of interest

Local average treatment effect or average causal response
(Angrist, Imbens & Rubin 1996, Angrist & Imbens 1995)

Likely an advantage over other instruments that aren’t encouragements



Effects of receiving feedback
Motivation

- When an individual shares content in social media, what are the
effects of receiving additional feedback (likes & comments)?

Generating further conversation (e.g., ego replies to comments)

In-kind peer effects in giving feedback (including generalized
reciprocity)

Creating and sharing more content in the future

- These posited virtuous cycles are critical to the adoption and
continued use of communication technologies



Fact: Pre-expanding vs. not pre-expanding
comment boxes modulates feedback

Expanded comment box Unexpanded comment box

&% Eytan Bakshy

g

&% Eytan Bakshy

[

D
. chicken pho | smitten kitchen

chicken pho | smitten kitchen
cmittenkitehen

,‘!‘ cooking weblog from a tiny kitchen in New York City
":" The place to find all of yo new fave

Like - Comment - Share - gh4 2 1 - 2 hours ago - 18 Like - Comment - Share - gh4 )2 1 - 2 hours ago - %

g Erica Stone, Michael Bernstein and 2 others like this.

1 share Lower interaction rate

| Eytan Bakshy "Goodbye, Jewish grandmother chicken
noodle soup; we had a good run®

2 hours ago - Like

Sy .
ME® | Write a comment...

i

Higher interaction rate



Alternative experimental designs
Example: Effects of receiving feedback on posts

- Assign viewers to condition encouraging giving feedback on
whatever they view

- Assign posters to condition encouraging their friends to give them
feedback

- Assign directed edges to encouragement
of feedback in that direction
(from person A to person B)

Encou rage some peers



Some interesting problems / things to try
Easier (using Cai et al. 2015 data)

- Alternative ways of selecting focal units, choosing test statistics

- Simulate graph clustered design data (Note: some other
treatments are clustered at village already)

Harder

- Graph partitioning to minimize MSE of ATE estimate — how does
this change the optimization problem?

- Optimal design under an approximation to the graph (e.g., a
stochastic block model)



Further resources

Randomization inference in general / networks:

Exact p-values for network interference
Susan Athey, Dean Eckles & Guido W. Imbens
NBER Working Paper No. 21313. (and arXiv)

Field Experiments: Design and Analysis
Gerber and Green.

Clustered random assignment in networks:

Graph cluster randomization: Network
exposure to multiple universes

Ugander, J., B. Karrer, L. Backstrom, and J. M.
Kleinberg. KDD 2013.

Design and analysis of experiments in
networks: Reducing bias from interference
Eckles, D., Karrer, B., & Ugander, J.
http://arxiv.org/abs/1404.7530

General causal inference references:

Causal Inference in Statistics, Social, and
Biological Science

(with potential outcomes, including randomization
inference)

Imbens & Rubin

Counterfactuals and Causal Inference
(with potential outcomes & causal DAGsS)
Morgan & Winship

Causality
(mainly causal DAGs, also causal discovery)
Pearl

Worked examples on github:
https://github.com/deaneckles/
randomization_inference




