
Formalizing and Refining
Authorization in SQL
by Aaron Rosenthal and Edward Sciore (MITRE)

Ji-Won Byun
TruSe Reading Group
January 11, 2005

Introduction

l Problems of current authorization semantics of
SQL

– too complex due to triggers, objects, and other features.
– Numerous special cases and unnecessary restrictions.
– DBA must cope with diverse user communities.

l Goal
– Reduce the ad hoc nature of authorization semantics.
– Introduce explicit, simple, and formal principles.
– Formalization and simplification start from practice.

Formalizing authorization in SQL

l A database consists of a set of objects
– Objects: schemas, base tables, views, columns and

procedures.
– Each object has a set of actions that can be performed

on it; e.g., select, update, insert, delete and execute.
l Operation: (α, O)

– Specifies a particular action α on a particular object O.
l ID (user): individuals, roles, groups, or Public.
l Privilege: (τ, θ)

– Allows an ID τ to perform an operation θ.

Formalizing authorization in SQL

l Given a statement S, SQL implicitly defines a set of
operations, OPS(S), for checking authorization.

– That is, an ID τ is authorized to perform S iff τ has a
privilege for every operation in OPS(S).

– OPS(S) can be found by the following rules:
l If S is a query, OPS(S) contains (select, A) for all columns A

mentioned in S.
l If S is an update, OPS(S) contains (update, A) for each column A

being updated, plus (select, B) for all columns B mentioned in S.
l If S is a call to routine P, OPS(S) contains (execute, P), plus

(select, A) for all columns A mentioned in the argument list.
l If S contains a nested statement S’, OPS(S) contains all

operations of S’.

Formalizing authorization in SQL

l Example: Update T set A = C + 2
where B1 in (select B2 from V)

è OPS(S) = { (select, T.B1), (select, T.C), (select, B.B2),
(update, T.A)}

l If S is complex, the computation of OPS(S) may not
be straightforward.

– Unnecessary predicates; e.g., tautologies and constraints
– select T.A from T where T.B is null or T.B * T.B >= 0

l (select, T.B) should not be in OPS(S)
– The detection of such predicates is not decidable; they

are not considered.

Formalizing authorization in SQL

l Grant
– An ID receives privileges via grant statements.
– An ID is able to issue a grant statement for an operation if

its privilege include a grant-option privilege for the operation.
l Ownership

– When an object is created, the creator is given
administrative authority over the object.

– Two aspects: rights over the defined metadata and rights
over the instance population

1. Base table: the creator is given all possible privileges.
2. Derived object: the creator is given full rights on the

metadata and limited rights over the instance population.

Formalizing authorization in SQL

l Derived objects: procedures and views
– Each derived object Z has a defining statement, DEF(Z).
– Unlike base tables, when a derived object is created, the

system infers the appropriate privileges based on the
creator’s privileges on underlying objects.

– The general principle is that it is safe to infer privileges for
tasks the user could accomplish by other means; i.e.,
inference may increase convenience, but not power.

l The SQL Inference Principle: Let θ be an operation on
derived object Z. Then Z’s creator τ should receive
privileges on θ provided that τ’s ability to access and
modify data does not increase.

Formalizing authorization in SQL

l Example: create view Z as select A, C from T where T.B > 2
– Say the creator τ has privileges on (select, T) and (update, T.A).
– Then it is wrong to give τ the privilege on (update, Z).
– But it is okay to give τ the privilege on (update, Z.A).

l Inferences are justified by using query modification
– Take a statement S involving derived object Z, and produce an

equivalent statement S’ by replacing references to Z to tables
in DEF(Z).

– Select Z.A from Z è select T.A from T where T.B > 2
– Thus, it would be wrong to give τ an inferred privilege on (select,

Z.A) unless τ already has privileges on (select, T.A) and (select,
T.B).

Formalizing authorization in SQL

l Query modification technique can provide a counterexample, but it
cannot prove that an inference is correct.

– We would have to examine every possible statement involving Z.

l Definition. Let Z be a derived object, and let θ be an operation on Z.
OPS(θ) is found as follows:

– OPS((select, Z.B)) consists of those operations (select, T.A) such that
changing A-value of T can change the B-value of Z.

– OPS((insert, Z.B)) consists of those operations (insert, T.A) if inserting
into Z can cause an insertion into T, and Z.B is derived from T.A.

– OPS((delete, Z)) consists of (delete, T) if deleting Z can cause a
deletion from T.

– OPS((update, Z.B)) consists of those operations (update, T.A) if
updating the B-value of Z can cause a change in the A-value of T.

– OPS((execute, P)) consists of the operations required to execute the
body of P. That is, it contains each operation in OPS(DEF(P)).

Formalizing authorization in SQL

l The SQL Privilege Inference Rule: Let τ be the creator
of derived object Z and let θ be an operation on Z.

1. Infer the privilege (τ, θ) if τ has a privilege for every
operation in OPS(θ).

2. Infer the privilege (τ, grantθ) if τ has grant-option
privilege for every operation in OPS(θ).

l Theorem. The privileges inferred by this rule satisfies
the SQL Inference Principle.

– Proved in the paper

Proposed extension

l Inferred privileges on derived objects
– In standard SQL, all privileges on a derived object stem

from the creator.
– The extension is to allow privileges on a derived objects to

be inferred to any ID, not just the object’s creator.

l The inference Principle
– Let θ be an operation on derived object Z. An ID τ receive

privilege on θ as long as τ’s ability to access and modify
data does not increase.

Proposed extension

l Who may create a derived object?
– As all privileges on a derived object stem from the creator, SQL

does not allow an ID to create an object unless the creator
receives a reasonable number of privileges.

– Without this restriction, any user can create a derived object
and receives whatever privileges the system infer.

– However, the metadata (definition) of derived object must be
explicitly controlled.

– Introduce a new action, Visible.
– Privilege on (visible, Z) allows ID to see Z’s definition.
– Now some users can use Z without knowing the definition of Z.

Also the creator can allow some users to see the definition of Z
without giving them privileges to use it.

Proposed extension: Benefits

l Creators need not be administrators.
– Subjects with (visible, Z) and privileges on OPS(θ) are

immediately able to use θ without any explicit grant by the
creator.

– The creator can give access to Z to anyone with sufficient
authorization on the underlying object by granting (visible, Z) to
Public.

l Privileges can be kept consistent automatically.
– Consider a data warehouse, whose contents are a materialized

view of its underlying source databases.
– The proposed model provides a way to enforce consistency

between the warehouse privileges and the source privileges.

Proposed extension: Benefits

l Explicit control over metadata privileges
– SQL allows an ID with any privilege on an object to have the

ability to see all metadata about the object; more is revealed
that required.

– A user with select privilege can see the constraints.
– A user who can execute a procedure can see the definition.
– In some cases, this is not desirable.

l Untrusted IDs can create useful derived objects.
– As the creator of a derived object is the source of all privileges

in SQL, only trusted users can create useful views.
– In the proposed model, IDs can access the object even if the

creator is untrusted or lazy.

Proposed extension: Benefits

l Invoker’s rights are integrated into the model.
– The SQL standard requires that the creator of a procedure have

grant-option privileges on all operations in the procedure.
– Oracle introduced the invoker-right mechanism, which requires

users have not only an execute privilege, but also all the privileges
to execute operations in the procedure.

– A contract programmer can write complex procedures and grant
execute privilege to public. Then only the users having sufficient
privileges can actually use the procedure.

– The model extends invoker-right features beyond procedure to
any operation θ on a derived object Z.

– An administrator can choose to grant explicit privileges on θ to
some IDs, and to allow possible inference of θ to other IDs by
granting Visible privileges to them.

Another issue

l Base table ownership
– It is beneficial to separate the metadata privileges on a derived

object from the privileges on its content.
– Is this separation possible for base tables? The creator obviously

deserves all metadata privileges, but how do we assign the
privileges on its content?

– For example, a programmer or DBA can create a table, but should
not have the right to see the data.

– In SQL, one cannot remove the creator’s rights since deletion
cascades.

– A simple way is to provide a way to remove the rights from the
creator without affecting their delegatees. (non-cascading
revoke)

Question?

View Security as the Basis for Data
Warehouse Security

by Aaron Rosenthal and Edward Sciore (MITRE)

Ji-Won Byun
TruSe Reading Group
January 11, 2005

Introduction

l Problem
– Currently, access permissions in a data warehouse are

managed in a separate world from the sources’ policies.
– The warehouse DBA has to manually specify access

rights on all warehouse data.
– The warehouse DBA must be trusted by all sources.
– The consequences are inconsistencies, slow response to

change, and a heavy work load for administrators.
– Thus, the critical problem of data warehousing security

is how to automatically coordinate the access rights of
the warehouse with those of the sources.

Proposed extensions

l Three extensions to SQL
1. Split the notion of “access permission on a table” into two

separate issues:
a. who is allowed to access what information (information

permissions): enterprise-wide decision
- Employee salary information is releasable to payroll clerks.

b. who is allowed to access which physical tables (physical
permissions): local decision
- Payroll clerks are allowed to run queries on the warehouse.

2. Provide a powerful inference mechanism
− In SQL, a user is allowed to execute a query Q if the user has

permissions on all tables mentioned in Q.
− In the proposed model, a user can also execute Q if there is an

equivalent query Q’, called a witness for Q, for which the user has
permissions.

Proposed extensions

l Three extensions to SQL
3. Broaden the creation of views

– In SQL, a view can be created only if there is a user that has Grant
authority on all mentioned tables.

– The extension allows the views to be over several mutually-
suspicious sources, where no one is trusted to have Grant
permission over all of them.

Basics

l Permission: (subject, operation, object, mode)
– Subject: individual users, roles, group, process, etc.
– Object: tables belonging to either a source or warehouse.
– Operation: SQL operations (focus on Read and Grant-read).
– Mode: either information or physical

l A view
– Every warehouse table is a view over the tables exported by

sources.
– Defined by an SQL query Q.
– The inputs to Q are the objects mentioned in Q; Q(T1, …, Tn).

Permissions

l A subject s is allowed to access a table only if s has both
information and physical permissions on the table.

– A permission (s, op, T, “information”) indicates that the content
in T should be accessible to s for operation op. It concerns
releasability of knowledge, not physical access to T. They are
globally applied and unaffected by creation of redundant copies
or new interface.

– A permission (s, op, T, “physical”) authorizes an execution
strategy to use a single physical resource; i.e., local policy.

Permission Inference

l A permission is explicit if it is granted directly by an
authorized grantor.

l Permissions can be inferred by the system as well.
– A subject should have permission to execute a query iff the

query can be expressed in terms of tables (base or view) for
which user has explicit permissions.

l Two useful definitions for inference
– A query Q is equivalent to T if the output of Q always contains

the same tuples as T.
– A permission (s, op, T, mode) is implied if there exists an

equivalent query Q(T1, …, Tn) such that each permission (s, op,
Ti, mode) has been granted explicitly. Query Q is called the
witness for the implied permission.

Permission Inference

l An implied information permission (s, read, T) means that
the information in T is releasable to s.

– In effect, a subject need not care whether an information
permission is explicit or implied, nor whether T is a
materialized view or base table.

l An implied physical permission (s, read, T) asserts that
there exists at least one way to compute T for which the
physical permissions are available.

– If T is a materialized table, the subject does not have physical
access to T. The subject need to use the tables from the
witness query.

Permission Inference

l Now, it is required for the systems to be able to a witness
query equivalent to T.

– Three important rewriting strategies
1. View substitution: If a subject s has the necessary permissions on

the source tables mentioned in a view, then s also has permission on
the view. (SQL requires an explicit grant to access a view.)

2. Semantic query optimization: If the user queries a view V, some
source data that underlies V may be irrelevant to the query result.
(Let V be a join of two tables. SQL requires permissions on both
tables. This is not necessary in some cases.)

3. Rewrite in terms of other views: Subjects are often given access to
information though views when they do not have permissions on the
base table.

– A complete set of equivalents is impossible because the general
rewrite problem is undecidable. Thus, the benchmark is to do
better than others, rather than pursuing completeness.

Administering a warehouse

l SQL infers view privileges only when a view is defined.
– The view definer receives the intersection of her privileges on

the input tables.
– Then the definer must explicitly specify all other permissions

on the view.

l In the proposed model, view privileges are inferred
whenever the view is accessed by any user.

– Provides a more flexible way to coordinate the control of both
the source administrator (controlling information permissions)
and the warehouse administrator (controlling physical
permissions).

Administering a warehouse

l Computing local permissions
– When a query is issued to a warehouse, testing permissions

should be performed there, not referring the sources.
– The system needs to populate permission tables on the

warehouse.
– The set of users authorized to execute a query (not

considering equivalence) is the intersection of the user sets of
its inputs. Thus, the user set of a view can be determined by
taking the union of these individual user sets for each
equivalent query found.

– Given T, first computes all queries equivalent to T, and
structure as a DAG where each subexpression appears only
once. Then traverse the graph (bottom up), computing
permissions for each table in the graph from its predecessors.

Within-view permissions

l Consider a warehouse where multiple parts of an
organization or multiple organizations participate.

– With the current SQL, each organization must grant a
warehouse DBA Read and Grant-read permissions on their
exported data. Then a W-DBA define and administer a view
over the combined information.

– What happens if no one can be universally trusted?
– One approach is to allow a source to stipulate that its exported

data can be used only for computing a less sensitive view.
– grant select to s on T within V
– s can access T, but only from within V.

Within-view permissions

l Examples
1. Totals over a large set

− A warehouse supporting financial studies of hospitals.
− Each hospital chooses to release its information within state-wide

totals or city-wide totals.
2. Peer-to-peer intersection

− Table Entrant (border patrol): people entering the country
− Table Wanted (Police): people who are wanted
− Select * from Entrant, Wanted where match(Entrant, Wanted)

3. Intersection of child and parent
− Table Patient(P#, Age, …): Parent table
− Table Surgery(P#, Procedure, Date, …): Child table
− Select * from Patient, Surgery where Patient.P# = Surgery.P# and

Patient.Age > 80

Within-view permissions

l Semantics
– A within-view permission: (subject, operation, object, mode, view).
– A subject s is able to access view V if s has access to each input table

within V.
– The witness semantics is extended as follows:

A permission (s, op, T, mode) is implied if there exists a query Q and
views {vi} equivalent to T, such that for each object Ti mentioned in Q,
either
l The permission (s, op, Ti, mode) has been explicitly granted, or
l The within-view permission (s, op, Ti, mode, Vi) has been explicitly granted,

where Q is equivalent to Vi.
– Users are able to access a view even when nobody is trusted to receive

permissions to all underlying tables.

Question?

