Formalizing and Refining
Authorization in SQL

by Aaron Rosenthal and Edward Sciore (MITRE)

Ji-Won Byun
TruSe Reading Group
January 11, 2005

Introduction
/]

e Problems of current authorization semantics of
SQL
- too complex due to triggers, objects, and other features.
- Numerous special cases and unnecessary restrictions.
- DBA must cope with diverse user communities.

e Goal
- Reduce the ad hoc nature of authorization semantics.
- Introduce explicit, simple, and formal principles.
- Formalization and simplification start from practice.

Formalizing authorization in SQL
-

e A database consists of a set of objects

- Objects: schemas, base tables, views, columns and
procedures.

- Each object has a set of actions that can be performed
on it; e.g., select, update, insert, delete and execute.

e Operation: (a, O)

- Specifies a particular action a on a particular object O.
e ID (user): individuals, roles, groups, or Public.
e Privilege: (t, Q)

- Allows an ID t to perform an operation q.

Formalizing authorization in SQL
-

e Given a statement S, SQL implicitly defines a set of
operations, OPS(S), for checking authorization.

- Thatis, an ID t is authorized to perform S ifft has a
privilege for every operation in OPS(S).

- OPS(S) can be found by the following rules:

e IT Sisaquery, OPS(S) contains (select, A) for all columns A
mentioned in S.

e IT Sis an update, OPS(S) contains (update, A) for each column A
being updated, plus (select, B) for all columns B mentioned in S.

e IT Sis a call to routine P, OPS(S) contains (execute, P), plus
(select, A) for all columns A mentioned in the argument list.

e IT S contains a nested statement S’, OPS(S) contains all
operations of S'.

Formalizing authorization in SQL
-

e Example: Update Tset A=C+ 2

where Bl in (select B2 from V)

> OPS(S) ={ (select, T.B1), (select, T.C), (select, B.B2),
(update, T.A)}

e IT S is complex, the computation of OPS(S) may not
be straightforward.
- Unnecessary predicates; e.g., tautologies and constraints
- select T AfromT where TBisnullor TB*T.B>=0
e (select, T.B) should not be in OPS(S)

- The detection of such predicates is not decidable; they
are not considered.

Formalizing authorization in SQL
-

e Grant

- An ID receives privileges via grant statements.
- An ID is able to issue a grant statement for an operation if
Its privilege include a grant-option privilege for the operation.
e Ownership

- When an object is created, the creator is given
administrative authority over the object.

- Two aspects: rights over the defined metadata and rights
over the instance population

1. Base table: the creator is given all possible privileges.

2. Derived object: the creator is given full rights on the
metadata and limited rights over the instance population.

Formalizing authorization in SQL
-

Derived objects: procedures and views
Each derived object Z has a defining statement, DEF(2Z).
Unlike base tables, when a derived object is created, the

system infers the appropriate privileges based on the
creator's privileges on underlying objects.

The general principle is that it is safe to infer privileges for
tasks the user could accomplish by other means; i.e.,
iInference may increase convenience, but not power.

The SQL Inference Principle: Let g be an operation on
derived object Z. Then Z's creator t should receive
privileges on g provided that t’s ability to access and
modify data does not increase.

Formalizing authorization in SQL
-

e Example: create view Z as select A, C from T where T.B> 2
- Say the creator t has privileges on (select, T) and (update, T.A).
- Thenitis wrong to give t the privilege on (update, 2).
- Butitis okay to give t the privilege on (update, Z.A).

e Inferences are justified by using query modification

- Take a statement S involving derived object Z, and produce an
equivalent statement S’ by replacing references to Z to tables
in DEF(2).

- Select Z.A from Z =» select T.A from T where T.B> 2

- Thus, it would be wrong to give t an inferred privilege on (select,
Z.A) unless t already has privileges on (select, T.A) and (select,
T.B).

Formalizing authorization in SQL
-

e Query modification technique can provide a counterexample, but it
cannot prove that an inference is correct.

- We would have to examine every possible statement involving Z.

e Definition. Let Z be a derived object, and let q be an operation on Z.
OPS(q) is found as follows:

- OPS((select, Z.B)) consists of those operations (select, T.A) such that
changing A-value of T can change the B-value of Z.

- OPS((insert, Z.B)) consists of those operations (insert, T.A) if inserting
into Z can cause an insertion into T, and Z.B is derived from T A.

- OPS((delete, Z)) consists of (delete, T) if deleting Z can cause a
deletion from T.

- OPS((update, Z.B)) consists of those operations (update, T.A) if
updating the B-value of Z can cause a change in the A-value of T.

- OPS((execute, P)) consists of the operations required to execute the
body of P. That is, it contains each operation in OPS(DEF(P)).

Formalizing authorization in SQL
-

e The SQL Privilege Inference Rule: Let t be the creator
of derived object Z and let g be an operation on Z.

1. Infer the privilege (t,) if t has a privilege for every
operation in OPS(q).

2. Infer the privilege (t, grantq) if t has grant-option
privilege for every operation in OPS(Q).

e Theorem. The privileges inferred by this rule satisfies
the SQL Inference Principle.

- Proved in the paper

Proposed extension
c

e Inferred privileges on derived objects

- Instandard SQL, all privileges on a derived object stem
from the creator.

- The extension is to allow privileges on a derived objects to
be inferred to any ID, not just the object’s creator.

e The inference Principle

- Let gbe an operation on derived object Z. An ID t receive
privilege on g as long as t’s ability to access and modify
data does not increase.

Proposed extension
c

Who may create a derived object?

As all privileges on a derived object stem from the creator, SQL
does not allow an ID to create an object unless the creator
receives a reasonable number of privileges.

Without this restriction, any user can create a derived object
and receives whatever privileges the system infer.

However, the metadata (definition) of derived object must be
explicitly controlled.

Introduce a new action, Visible.
Privilege on (visible, Z) allows 1D to see Z's definition.

Now some users can use Z without knowing the definition of Z.
Also the creator can allow some users to see the definition of Z
without giving them privileges to use it.

Proposed extension: Benefits
c

e Creators need not be administrators.

- Subjects with (visible, Z) and privileges on OPS(q) are
iImmediately able to use g without any explicit grant by the
creator.

- The creator can give access to Z to anyone with sufficient
authorization on the underlying object by granting (visible, Z) to
Public.

e Privileges can be kept consistent automatically.

- Consider a data warehouse, whose contents are a materialized
view of its underlying source databases.

- The proposed model provides a way to enforce consistency
between the warehouse privileges and the source privileges.

Proposed extension: Benefits
c

e Explicit control over metadata privileges

- SQL allows an 1D with any privilege on an object to have the
ability to see all metadata about the object; more is revealed
that required.

- Avuser with select privilege can see the constraints.
- A user who can execute a procedure can see the definition.
- In some cases, this is not desirable.

e Untrusted IDs can create useful derived objects.

- As the creator of a derived object is the source of all privileges
in SQL, only trusted users can create useful views.

- In the proposed model, 1Ds can access the object even if the
creator is untrusted or lazy.

Proposed extension: Benefits
c

e Invoker's rights are integrated into the model.

- The SQL standard requires that the creator of a procedure have
grant-option privileges on all operations in the procedure.

- Oracle introduced the invoker-right mechanism, which requires
users have not only an execute privilege, but also all the privileges
to execute operations in the procedure.

- A contract programmer can write complex procedures and grant
execute privilege to public. Then only the users having sufficient
privileges can actually use the procedure.

- The model extends invoker-right features beyond procedure to
any operation q on a derived object Z.

- An administrator can choose to grant explicit privileges on g to
some IDs, and to allow possible inference of g to other 1Ds by
granting Visible privileges to them.

Another issue
I

e Base table ownership

It is beneficial to separate the metadata privileges on a derived
object from the privileges on its content.

Is this separation possible for base tables? The creator obviously
deserves all metadata privileges, but how do we assign the
privileges on its content?

- For example, a programmer or DBA can create a table, but should
not have the right to see the data.

- In SQL, one cannot remove the creator’s rights since deletion
cascades.

- A simple way is to provide a way to remove the rights from the
creator without affecting their delegatees. (non-cascading
revoke)

Question?

View Security as the Basis for Data
Warehouse Security

by Aaron Rosenthal and Edward Sciore (MITRE)

Ji-Won Byun
TruSe Reading Group
January 11, 2005

Introduction

e Problem

Currently, access permissions in a data warehouse are
managed In a separate world from the sources’ policies.

The warehouse DBA has to manually specify access
rights on all warehouse data.

The warehouse DBA must be trusted by all sources.

The consequences are inconsistencies, slow response to
change, and a heavy work load for administrators.

Thus, the critical problem of data warehousing security
IS how to automatically coordinate the access rights of
the warehouse with those of the sources.

Proposed extensions

e Three extensions to SQL
1. Split the notion of “access permission on a table” into two
separate issues:
a. who is allowed to access what information (information
permissions): enterprise-wide decision
- Employee salary information is releasable to payroll clerks.
b. who is allowed to access which physical tables (physical
permissions): local decision
- Payroll clerks are allowed to run queries on the warehouse.
2. Provide a powerful inference mechanism
In SQL, a user is allowed to execute a query Q if the user has
permissions on all tables mentioned in Q.

In the proposed model, a user can also execute Q if there is an
equivalent query Q', called a witness for Q, for which the user has

permissions.

Proposed extensions
c

e Three extensions to SQL

3. Broaden the creation of views
- In SQL, aview can be created only if there is a user that has Grant
authority on all mentioned tables.
- The extension allows the views to be over several mutually-

suspicious sources, where no one is trusted to have Grant
permission over all of them.

Basics
g

e Permission: (subject, operation, object, mode)
- Subject: individual users, roles, group, process, etc.
- Object: tables belonging to either a source or warehouse.
- Operation: SQL operations (focus on Read and Grant-read).
- Mode: either information or physical

e A view

- Every warehouse table is a view over the tables exported by
sources.

- Defined by an SQL query Q.
- The inputs to Q are the objects mentioned in Q; Q(T1, ..., Tn).

Permissions
g

e A subjects is allowed to access a table only if s has both
Information and physical permissions on the table.

- A permission (s, op, T, “information”) indicates that the content
in T should be accessible to s for operation op. It concerns
releasability of knowledge, not physical access to T. They are
globally applied and unaffected by creation of redundant copies
or new interface.

- A permission (s, op, T, “physical”) authorizes an execution
strategy to use a single physical resource; i.e., local policy.

Permission Inference
g

e A permission is explicit if it is granted directly by an
authorized grantor.

e Permissions can be inferred by the system as well.

- A subject should have permission to execute a query iff the
query can be expressed in terms of tables (base or view) for
which user has explicit permissions.

e Two useful definitions for inference

- Aquery Q is equivalent to T if the output of Q always contains
the same tuples as T.

- A permission (s, op, T, mode) is implied if there exists an
equivalent query Q(T1, ..., Tn) such that each permission (s, op,
Ti, mode) has been granted explicitly. Query Q is called the
witness for the implied permission.

Permission Inference
g

e An implied information permission (s, read, T) means that
the information in T is releasable to s.
- Ineffect, a subject need not care whether an information

permission is explicit or implied, nor whether T is a
materialized view or base table.

e An implied physical permission (s, read, T) asserts that
there exists at least one way to compute T for which the
physical permissions are available.

- If T is amaterialized table, the subject does not have physical

access to T. The subject need to use the tables from the
witness query.

Permission Inference
g

e Now, itis required for the systems to be able to a witness
query equivalent to T.

- Three important rewriting strategies

1. View substitution: IT a subject s has the necessary permissions on
the source tables mentioned in a view, then s also has permission on
the view. (SQL requires an explicit grant to access a view.)

2. Semantic query optimization: If the user queries a view V, some
source data that underlies V may be irrelevant to the query result.

(Let V be a join of two tables. SQL requires permissions on both
tables. This is not necessary in some cases.)

3. Rewrite in terms of other views: Subjects are often given access to
information though views when they do not have permissions on the
base table.

- A complete set of equivalents is impossible because the general
rewrite problem is undecidable. Thus, the benchmark is to do
better than others, rather than pursuing completeness.

Administering a warehouse
-

e SQL infers view privileges only when a view is defined.

- The view definer receives the intersection of her privileges on
the input tables.

Then the definer must explicitly specify all other permissions
on the view.

e In the proposed model, view privileges are inferred
whenever the view is accessed by any user.

Provides a more flexible way to coordinate the control of both
the source administrator (controlling information permissions)
and the warehouse administrator (controlling physical
permissions).

Administering a warehouse
-

e Computing local permissions

- When a query is issued to a warehouse, testing permissions
should be performed there, not referring the sources.

- The system needs to populate permission tables on the
warehouse.

- The set of users authorized to execute a query (not
considering equivalence) is the intersection of the user sets of
Its inputs. Thus, the user set of a view can be determined by
taking the union of these individual user sets for each
equivalent query found.

- Given T, first computes all queries equivalent to T, and
structure as a DAG where each subexpression appears only
once. Then traverse the graph (bottom up), computing
permissions for each table in the graph from its predecessors.

Within-view permissions
-

e Consider a warehouse where multiple parts of an
organization or multiple organizations participate.

- With the current SQL, each organization must grant a
warehouse DBA Read and Grant-read permissions on their
exported data. Then a W-DBA define and administer a view
over the combined information.

- What happens if no one can be universally trusted?

- One approach is to allow a source to stipulate that its exported
data can be used only for computing a less sensitive view.

- grant select to s on T withinV
- scanaccess T, but only from within V.

Within-view permissions
-

e Examples

1. Totals over a large set
A warehouse supporting financial studies of hospitals.

Each hospital chooses to release its information within state-wide
totals or city-wide totals.

2. Peer-to-peer intersection
Table Entrant (border patrol): people entering the country
Table Wanted (Police): people who are wanted
Select * from Entrant, Wanted where match(Entrant, Wanted)
3. Intersection of child and parent
Table Patient(P#, Age, ...): Parent table
Table Surgery(P#, Procedure, Date, ...): Child table

Select * from Patient, Surgery where Patient.P# = Surgery.P# and
Patient.Age > 80

Within-view permissions
-

e Semantics
- A within-view permission: (subject, operation, object, mode, view).
- A subject s is able to access view V if s has access to each input table
within V.
- The witness semantics is extended as follows:

A permission (s, op, T, mode) is implied if there exists a query Q and
views {vi} equivalent to T, such that for each object Ti mentioned in Q,
either
e The permission (s, op, Ti, mode) has been explicitly granted, or
e The within-view permission (s, op, Ti, mode, Vi) has been explicitly granted,
where Q is equivalent to Vi.

- Users are able to access a view even when nobody is trusted to receive

permissions to all underlying tables.

Question?

