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Abstract— Tests and simulations are the only verification
techniques used for ad-hoc network routing protocols. Al-
though these techniques give us an excellent overview of the
protocol behavior, some undesirable aspects of the protocol
could still be undiscovered. Therefore formal verification is
needed. This paper presents a new technique to formally
verify such protocols by the use of a well-known model-
checker: SPIN. As an example, a formal verification of
the Wireless Adaptive Routing Protocol(W.A.R.P) has been
performed.

I. I NTRODUCTION

An ad-hoc network is an infrastructureless network
consisting of mobile terminals with the capability to
communicate with each other. Every mobile node acts
as a router and forwards traffic originated by other nodes.
Each node is able to dynamically discover and maintain
routes to other nodes in the network. Established routes
should be loop-free and route changes should converge
quickly even in large networks. Ad-hoc routing protocols
can be classified in two categories according to the service
policy they follow: table-drivenprotocols andon-demand
protocols [1].

Table-driven routing protocolsmaintain up-to-date
routes between all nodes in the network. This requires
each node to maintain some kind of routing table to store
routing information. The ability of the protocol to provide
routes to mobile nodes depends on the consistency of
routing tables. Therefore, a node noticing a change in
network topology must propagate the updated routing
information to the other nodes.

In the on-demand routing protocolcase, routing in-
formation is acquired only when it’s needed. No fully
consistent routing tables are maintained; hence whenever
a node wants to communicate with another node, it
initiates a specific route discovery process to obtain a
valid route.

On average,on-demandprotocols have been found to
perform better thantable-drivenprotocols, even though
there are some scenarios where characteristics of atable-
drivensolution outperform theon-demandapproaches [1],
[2].

Validation techniques used for ad-hoc network proto-
cols are simulation and testing. This is an operational way
to check whether a given system realization conforms
to an abstract specification. By nature, testing can be
applied only after a prototype implementation of the
system has been realized. Formal verification, as opposed
to testing, works on models (rather than implementations)

and amounts to a mathematical proof of the correctness
of a system. Both techniques can be supported by tools.
SPIN model-checker is one of these tools which can
perform simulation and verification.

II. FORMAL VERIFICATION

A. Overview

A complementary technique to simulation and testing
is to prove that a system operates correctly. The term for
this mathematical demonstration of the correctness of a
system isformal verification[3], [4].

In model checking[5], algorithms executed by computer
tools are used in order to verify the correctness of systems.
The user gives a description of the system (the possible
behavior) and defines the requirements (the desirable
behavior). Knowing these parameters, the machine can
perform a verification of the model.

If an error is found, the tool provides a counterexample
showing under which circumstances the error can occur.
This allows the user to locate the error and then repair
the model specification.

If no errors are found, the user can refine its model
description and can restart the verification process until
the model specifications converge to the real system.

B. SPIN model checker

SPIN is ageneric verification system[6] that supports
the design and verification of asynchronous process sys-
tems. This model checker accepts design specifications
written in the verification languagePROMELA (a Process
Meta Language)[7], and it accepts correctness claims
specified in the syntax of standardLinear Temporal Logic
(LTL) [8].

The validators that are produced by SPIN are among
the fastest programs for exhaustive searching known to
date [7]. The validators can be used in two different
modes. For small to medium size models the validators
can be used with anexhaustive state space. The result
of all validations performed in this mode is equivalent
to an exhaustive proof of correctness, for the correctness
requirements that were specified.

For systems that are larger, the validators can also be
used insupertrace mode, with the bit state spacetech-
nique [9]. In these cases the validations can be performed
in much smaller amounts of memory, and still retain
excellent coverage of the state space.
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Because of mobility, ad-hoc network analysis is highly
complex from the validators point of view. Therefore, the
supertrace mode is more suitable for such systems.

SPIN uses ahash-factor[9] to serve as a predictor
coverage function, which is defined as:

Hf =
M

N ′

N’ equals to the number of states reached and M equals
to the maximum number of storable states.
The corresponding coverage is:

Hf > 100 =⇒ C > 99.9%

10 < Hf < 100 =⇒ 98% < C < 99.9%

The results of all validations performed in supertrace
mode are superior to any other type of validation per-
formed within the same physical constraints of the host
machine (e.g., memory size and speed)[9].

III. A D-HOC NETWORK IMPLEMENTATION UNDER

SPIN

SPIN is a model checker made for fixed communica-
tion protocols by the use of the PROMELA language.
Therefore, some add-ins must be implemented under
PROMELA to adapt SPIN to the modelling and the
checking of Ad-hoc network protocols.

A. The broadcast system

Promela language is based on point to point communi-
cation. Thus, when two nodes want to communicate they
use one predetermined channel ,chan broadcastX, which
makes the connection between them.

To model the broadcast system, there must be as
many channels as nodes. Each of these channels is
associated with a different node and each node can
receive messages only through this channelchan
broadcastX. Then, depending on node’s neighbourhood,
each node finds and uses the corresponding channel to
send messages of all kinds. Here is an example:
if
:: (routing-tab1[k].next-id == 2) →
broadcast2!lu,source-id,destination-id
:: (routing-tab1[k].next-id == 3) →
broadcast3!lu,source-id,destination-id
:: (routing-tab1[k].next-id == 4) →
broadcast4!lu,source-id,destination-id
fi;

B. Timers

Promela doesn’t provide any time features except a
timeout function described in [10]. Thetimeoutkeyword
is a modelling feature that provides an escape from a hang
state which doesn’t correspond to the real timer definition.
Timers are just triggers from the verification process point
of view. A timer could be modelled as follows:
if
:: timer=1 → goto cancel-entry
:: timer=0 → skip

fi
Each time we enter in this condition sectiontimer is
randomly set to 0 or 1, then, depending ontimer value
the appropriate action is performed. If timers like this are
included in the model, it should be done for each entry
of each node routing table.

C. Mobility

An ad-hoc network node doesn’t distinguish between
its movements and its neighbors movements. All a node
will see is a broken link.

Modelling node mobility with the Promela language
consist of cancelling all routing table entries of the
moving node, and setting a new link initialisation for
this node. Thus, the node looses contact with its former
neighbors and makes contact with new ones. All nodes
which were connected to the moving one must also have
their corresponding routing table entries removed. Notice
that ad-hoc network nodes mobility is modelled under
Promela without the use of timers.

There is also another way to check the protocol behav-
iors over mobility by the use of thecase selection[10] in
the initialisation phase of the model.

The case selectionfeature provided by Promela allows
us to randomly choose between statements. In the intiali-
sation case, statements correspond to link setup with one
specific node in the network:
if
:: neigh-id=2 → broadcast2!1,my-id,destination-id
:: neigh-id=3 → broadcast3!1,my-id,destination-id
:: neigh-id=4 → broadcast4!1,my-id,destination-id
fi;
Therefore, each time we compute the model, a new
network topology is randomly set.

During the verification process, the model-checker
SPIN checks all possibilities of thecase selection. Thus,
all possible network configurations are checked in every
possible order knowing that each node randomly initialise
contact one after the other.

This kind of mobility modelling is less complex than
the first presented in this subsection from a “model-
checking” point of view.

IV. WARP - WIRELESSADAPTIVE ROUTING

PROTOCOL

Ad-hoc routing protocols can be classified in two
categories according to the service policy the protocol
follows: table-driven protocols andon-demandproto-
cols(See section I).

The Wireless Ad-hoc Routing Protocol (WARP)[11]
belongs to both categories. It attempts to maintain up-to-
date routes between all nodes in the network with routing
tables and link-update propagations. If there is still no
valid routes for a specific destination, it uses a route
discovery process.

A. Routing table structure

Each node has a routing table with four different
columns:
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Destination: The destination field is the IP address of
the destination node.

Hop: The hop field indicates which is the next hop on
the route towards the destination.

Backup: The backup field contains another next hop
on the route towards the destination in case the route
proposed by the hop field is not available. The backup
field is used only if the corresponding destination is not
an adjacent node.

Timer: The timer field is only present for adjacent
nodes, i.e. nodes that are within wireless transmission
range.

B. Hello messages

As in AODV, WARP uses hello messages to maintain
contact with its neighbors and also to contact new neigh-
bors. Hello messages indicate the presence of a node.

A hello message received informs nodes of the neigh-
borhood topology. Depending on where the hello message
is coming from, a node interprets it differently. If it is
known as anon adjacent node, the next hop field of the
corresponding entry in the routing table is set to the sender
id number and the timer isrestarted. If the sender of the
hello message is totally unknown, then a new entry is
created in the routing table.

Hello messages are frequently sent by each node.
If frequently hello messages are not received from a
neighbor, the timer of the corresponding entry expires,
and is cancelled. An hello message is supposed to have
only one piece of information:hello message source id
number, which identifies the node from where the hello
message is coming from.

C. Link Updates - LUs

Link updates bring information about the network
topology beyond adjacent nodes. LUs are broadcasted
whenever there is movement in the network. A LU
provides a node identity number and the route to reach
it. With this information, a node determines whether to
broadcast the LU or not. Here is the format of a link
update:

LU (Source, Intermediates Nodes, Destination)

Sourceis the address of the LU sender,Destinationis
the route destination to update andIntermediates Nodes
corresponds to the route used by the link update so far.

Because a link update travels through the network, it
represents the most up to date network topology infor-
mation. Therefore, any addresses and routes stored in the
LU will be inspected for useful information, which will
be added to the routing table. If a received LU contains
the current node address, it will be discarded after using
information brought by it. Figure 1 is a simple example
of LU propagation.

Whenever a node notices avalid modification in the
next hop field in the routing table, it broadcasts a LU.
There is a valid modification when the next hop infor-
mation changes to a valid entry. A LU can be sent after
receiving:

HELLO message: The LU source would be the node
address and the LU destination would be the destination
entry corresponding to the next hop entry modified. There
is no intermediates nodes in this case. See figure 1, table
I, and table II.

valid LU: it would be the same excepted that the
source of the LU received would be added into the LU
intermediates nodes. See figure 2, table III, and table IV.

4

3

1 2

LU(1,-,2)

LU(1,-,2)

LU(1,-,2)

Fig. 1. LU after HELLO received

TABLE I

ROUTING TABLE - NODE 3

Destination Next Hop Backup Timer

1 1 - count. down

4 4 - count. down

2 1 - started

TABLE II

ROUTING TABLE - NODE 4

Destination Next Hop Backup Timer

1 1 - count. down

3 3 - count. down

2 1 - started

4

3

1 2

LU(4,1,2)

LU(4,1,2)

LU(3,1,2)

LU(3,1,2)

Fig. 2. LU after LU received

TABLE III

ROUTING TABLE - NODE 3

Destination Next Hop Backup Timer

1 1 - count. down

4 4 - count. down

2 1 4 count. down

TABLE IV

ROUTING TABLE - NODE 4

Destination Next Hop Backup Timer

1 1 - count. down

3 3 - count. down

2 1 3 count. down
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D. Reporting route failures

When a link break occurs, a WARP node does not
inform its neighbors. It just cancels every entry in its
routing table corresponding to the missing adjacent node.

If another node wants to use the cancelled route, it
sends back an ICMP message to this node. Thus, the node
is aware of the route failure and chooses another path to
the destination using thebackupfield in their routing table
or usingreactive routing.

E. Reactive routing

Link breaks, timer expiration and ICMP messages can
make a destination unreachable. To escape this deadlock
state, WARP nodes useReactive Routing.

Reactive Routing is defined by the use of Route Re-
quest (RREQ) and Route Reply (RREP) messages to
find a destination. AODV also uses reactive routing [12].
Contrary to AODV, WARP doesn’t use Broadcast-ids and
sequence numbers to avoid loops, each node has a route
request cache instead.

Each node uses information provided by this message
to update its routing table but there won’t be any LU
propagation due to this modifications. This is done to
prevent large waves of update messages.

V. WARP VERIFICATION

A. Complexity reduction

Because the verification is bounded by the amount of
physical memory available on the computer, we need to
reduce the system complexity. Complexity reduction is
the most important part of the verification.

Due to mobility, the state space increases exponentially
with the complexity of the protocol model. Therefore,
we modelled a five node ad-hoc network. Five nodes
represents enough different network configurations that
a verification done on it provides a great probability of
good behavior for larger networks. No-one has proved the
correctness of an ad-hoc network routing protocol over
more than five nodes so far [13], [14], [15].

We verify properties of WARP protocol and not per-
formance. Two models have been made: Thefull model
containing all properties of the WARP protocol and the
Basic modelwhich is a simplification of the full model
optimized for verification. thebasicmodel has been sim-
plified by reducing the code and the number of properties
included in the model until a good verification result was
obtained. Parse trees of both models are shown on figure
3. These figures make us notice the complexity involved
by the implementation of timers, movement, and data
communication. The number of states has been divided
by five.

B. Modifications

Reduction of state space and Promela language com-
plexity involve divergences between our model and the
original WARP protocol. Here are the rules managing the
basicmodel:

• There are five nodes in the model(a sender, a receiver
and three intermediates).

(a) Basic model (b) Full model

Fig. 3. Models’s parse tree

• Each node can initialise only one link with another
node(this is made to avoid state space explosion).

• Node 1 sends only one data message to node 5 after
the link updates are propagated.

• Node 1 must’nt be in direct connection with node
5(checking direct communication between node 1
and node 5 is obviously not useful).

• Nodes all arrive in the network one after an-
other(thus, all sequential patterns - order of arrival -
are checked)

• The model arrives in idle state whenever the data
packet is received by node 5 or the destination
declared unreachable by node 1(therefore, if there
are loops the model will run for ever and SPIN will
declare an error).

These rules describe the environment of the WARP pro-
tocol basic modelwe want to verify. This model is made
to check link update propagations and message delivering
in every five-node network respecting these rules.

The reactive part of the protocol and route failure
reporting are properties of WARP which are not included
in the model since they are add-in features made to
improve performances. These properties can be verified
independently using a different model.

C. Simulations

The XSPIN graphic interface is used in order to make
simulations. An important number of simulations has been
made before finding a model which suits the requirements.
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A simulation of thebasic WARP Modelis described on
figure 4.
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Fig. 4. Simulation of the basic WARP model

3

1

2

4

5

Fig. 5. Corresponding network topology

Each line represents each process: node1 , node2,
etc. Each box represents one step in the communication
process, which means each time a process receives or
sends a message a new box appears on the process line.
The number in the box corresponds to the simulation step.
Arrows correspond to the message transfer, and numbers
on these arrows correspond to transmitted message value.
Also, “! ” means sending and “?” means receiving as
described in [10]. The first arrows set the initial configura-
tion of the network and the following arrows represent the

link updates propagation. The last two arrows represent a
data transfer from node 1 to node 5(passing by node 3).
The corresponding network topology is shown on figure
5.

figure 6 is theexecution bar panelcorresponding to the
simulation run shown in figure 4. It shows the percentage
of all system steps executed per process. This can be
representative of real-time activity in the network for each
node. Work overload and congestion problems could be
noticed and solved using this tool.

1

node_1

464

2

node_2

185

3

node_3

614

4

node_4

395

5

node_5

99

Percentage of 1763 System Steps

Executed Per Process (5 total)

Fig. 6. Execution bar panel example

D. Verification

The model is very large(more than 100 million states),
therefore thesupertrace/bitstatemode is more appropriate
to the model verification. We check forinvalid end states
which occur when a dead-lock state is found in the model,
or when the maximum depth search is reached during
the verification (which means that processes don’t stop =
loops in the model).

With a Pentium 4, 1GB of RAM, the maximum number
of states that the bit state space can accommodate is equal
to 231 states or about2.15× 109 states.

During a verification run, SPIN checks all possible five-
node network configurations assuming the rules explained
in V-B.

Table V shows link possibilities for each node in the
basicmodel. It is therefore easy to calculate the number

TABLE V

LINK POSSIBILITIES FOR EACH NODE

Node 1 Node 2 Node 3 node 4 node 5

2 1 1 1 2

3 3 2 2 3

4 4 4 3 4

- 5 5 5 -

Nl1 = 3 Nl2 = 4 Nl3 = 4 Nl4 = 4 Nl5 = 3

of different possible network topologies:

C = Nl1 ×Nl2 ×Nl3 ×Nl4 ×Nl5 (1)
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where C is the number of network configurations and
Nli the number of different possible links for the node i.
Thus:

C = 3× 4× 4× 4× 3 = 576 possibilities

If we generalize for N nodes following the rules explained
before, we obtain:

Nli =

{
N − 2 ∀i ∈ {1; N}
N − 1 ∀i ∈ {2; . . . ; N − 1} (2)

C =
N∏

i=1

Nli (3)

After some simplifications 3 becomes:

C =
(

N − 2
N − 1

)2

(N − 1)N (4)

SettingN = 5, C = 576. The same result as before is
obtained. Notice that forN = 4, C = 36; for N = 6,
C = 10000. This is an example of state space explosion
involved when the number of nodes present in the network
increases.

SPIN can’t check the 576 possibilities in one verifi-
cation run. So, the number of possibilities,C, generated
by the model must be reduced. To do so we imposed
Nl3 = 1 and Nl4 = 1. The corresponding number of
network topologies checked is:

C = 3× 4× 1× 1× 3 = 36 possibilities

SPIN does this verification in less than 30 minutes and
perform an average coverage of 98%(hash factor over 10).
In order to check the other 540 network configurations,
we need to perform another 15 verifications like the
one above(15 × 36 = 540 possibilities). Each of the
16 verifications that should be performed must cover a
different set of possibilities. To do so, we perform 16
verifications on the model, changing each time the id of
the neighbor(Neighidi)in node 3 and node 4. Here are
the values:

Neighid3 ∈ {1, 2, 4, 5}
Neighid4 ∈ {1, 2, 3, 5}

The number of permutations between these two groups of
numbers equals to 16.

Table VI presents the results for these 16 verification
runs.

VI. CONCLUSION & FUTURE WORKS

We have shown that ad-hoc network routing protocols
properties can be formally verified using SPIN model-
checker by proving the correctness, at 98%, of a 5-node
model of the Wireless Adaptive Routing Protocol.

The number of mobile equipments users, such as mo-
bile phones, PDAs, and laptops, is increasing tremen-
dously and ad-hoc networking is one solution for connect-
ing these devices. Therefore, protocol reliability becomes
as important as protocol performance; formal verification
is an excellent technique for gaining true reliability.

TABLE VI

16 VERIFICATIONS

Neighid3 Neighid4 Hash Factor Coverage

1 1 14.11 98%

1 2 18.42 98%

2 1 18.51 98%

2 2 17.47 98%

1 3 13.29 98%

4 1 15.64 98%

4 2 16.64 98%

4 3 113.14 99.9%

5 1 43.94 98%

5 2 40.96 98%

5 5 51.38 98%

5 3 25.27 98%

2 5 41.15 98%

2 3 16.38 98%

4 5 25.96 98%

1 5 44.05 98%
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