
Bulk Operations for Space-Partitioning Trees∗

Thanaa M. Ghanem Rahul Shah Mohamed F. Mokbel Walid G. Aref Jeffrey S. Vitter

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{ghanemtm,rahul,mokbel,aref,jsv}@cs.purdue.edu

Abstract

The emergence of extensible index structures, e.g.,
GiST (Generalized Search Tree) [26] and SP-GiST (Space-
Partitioning Generalized Search Tree) [4], calls for a set of
extensible algorithms to support different operations (e.g.,
insertion, deletion, and search). Extensible bulk operations
(e.g., bulk loading and bulk insertion) are of the same im-
portance and need to be supported in these index engines.
In this paper, we propose two extensible buffer-based algo-
rithms for bulk operations in the class of space-partitioning
trees; a class of hierarchical data structures that recur-
sively decompose the space into disjoint partitions. The
main idea of these algorithms is to build an in-memory tree
of the target space-partitioning index. Then, data items
are recursively partitioned into disk-based buffers using
the in-memory tree. Although the second algorithm is de-
signed for bulk insertion, it can be used in bulk loading as
well. The proposed extensible algorithms are implemented
inside SP-GiST; a framework for supporting the class of
space-partitioning trees. Both algorithms have I/O bound
O(NH/B), where N is the number of data items to be bulk
loaded/inserted, B is the number of tree nodes that can fit
in one disk page, H is the tree height in terms of pages after
applying a clustering algorithm. Experimental results are
provided to show the scalability and applicability of the pro-
posed algorithms for the class of space-partitioning trees.
A comparison of the two proposed algorithms shows that
the first algorithm performs better in case of bulk loading.
However the second algorithm is more general and can be
used for efficient bulk insertion.

1 Introduction

With the increasing number of computer applications
that rely on large multi-dimensional data sets, it be-

∗This work was supported in part by the National Science Foundation
under Grants IIS-0093116, EIA-9972883, IIS-9974255, IIS-0209120, and
EIA-9983249.

comes essential to provide efficient multi-dimensional ac-
cess methods. Examples of these applications include
multimedia databases, computer aided design (CAD), ge-
ographic information systems (GIS), and cartography. Nu-
merous types of tree-based multi-dimensional access meth-
ods are proposed over the last three decades (e.g., see [24]).
The main objective of these multi-dimensional access meth-
ods is to support efficient answers to similarity search
queries, nearest neighbor queries, and range queries. Usu-
ally, the performance of an index structure for the insert
operation is not satisfactory when inserting large amounts
of data. To overcome this drawback in multi-dimensional
access methods, a bulk loading algorithm is needed. A bulk
loading algorithm has more knowledge than the standard in-
sertion procedure where all the data is known a priori rather
than tuple by tuple. Using this extra knowledge, the bulk
loading algorithm has the opportunity to produce (1) better
balanced structure, (2) better storage utilization, and (3) bet-
ter query answering performance. Another related problem
is bulk insertion. In contrast to bulk loading, where an in-
dex is built from scratch, bulk insertion aims to update an
existing structure with a large set of data.

In this paper, we propose two new extensible bulk load-
ing and bulk insertion algorithms for the class of space-
partitioning trees; a class of hierarchical data structures
that recursively decompose the space into disjoint parti-
tions. The proposed bulk loading and insertion algorithms
are implemented inside SP-GiST (Space-Partitioning Gen-
eralized Search Tree) [3, 4]; an extensible database index
structure for the class of space partitioning trees. SP-GiST
is a software engineering solution that allows fast realiza-
tion of instances of space-partitioning index trees inside a
commercial database system. SP-GiST provides generic in-
dex search and index maintenance operations, online node
clustering into disk pages, concurrency control and recov-
ery for all index instances for the class of space-partitioning
trees. SP-GiST has interface parameters and methods that
allow it to represent instance indexes of the class of space-
partitioning trees and reflect the structural and behavioral
differences among them. The contribution of this paper can



be summarized as follows:

1. We propose two new generic algorithms for bulk op-
erations in the class of space-partitioning trees. The
algorithms are implemented inside SP-GiST.

2. We use the I/O complexity model [45] to give bounds
for the proposed algorithms in terms of the external
tree height and the number of data items to be bulk
loaded/inserted.

3. We provide extensive experimental results which show
that these algorithms in fact perform much better in
practice than the worst case bounds.

The rest of the paper is organized as follows: Section 2
highlights related work for bulk loading and bulk insertion
algorithms. The main characteristics of the class of space-
partitioning trees are discussed in Section 3. An overview of
the SP-GiST framework is presented in Section 4. The pro-
posed extensible algorithms for bulk loading and bulk inser-
tion for the class of space-partitioning trees are presented in
Section 5 along with the analytical study of their perfor-
mance. Section 6 provides an extensive set of experiments
that gives the performance of the proposed algorithms. Fi-
nally, Section 7 contains concluding remarks.

2 Related Work

The class of space-partitioning trees can be further di-
vided into data-driven and space-driven trees. For the data-
driven trees, bulk loading algorithms benefit from data sort-
ing. In [40], a bulk loading algorithm is proposed for the
point quadtree [21]. The key idea is to build an optimized
point quadtree so that, given a node A, no subtree of A ac-
counts for more than one half of the nodes rooted at A. This
requires sorting the data and taking the median as the root
while dividing the remaining data into four groups. In addi-
tion, if the tree fails to meet a predefined balanced criteria,
the tree is partially rebalanced. In [23], the adaptive k-d tree
is proposed as a bulk loading approach for the k-d tree [9],
where data is stored only in leaf nodes while interior nodes
contain the median of the set of the children nodes.

A top-down approach for bulk loading space-driven quad
tree variants is proposed in [28] and later is enhanced
in [27]. The main idea is to fill up the memory with as
much of the quadtree as possible before flushing some of its
nodes into a disk-based index. The input data is sorted in
such a way that the portions that are written out to the disk
would not be inserted into again. Sorting input is performed
via the Z-order [39] of the lower-left corner of data objects.

Several algorithms are developed for bulk loading the R-
tree [25]. The main idea is to pre-sort the data before bulk
loading. The reader is referred to [30, 34, 42] for further

details. Other bulk loading algorithms include a sort-based
approach [33] for bulk loading a B-tree [8], a top-down ap-
proach [10, 12] for bulk loading an X-tree [11], a sample-
based approach [15] for bulk loading an M -tree [16]. How-
ever, these bulk loading algorithms are specific to the index
structure in question. Most of the bulk insertion algorithms
are concerned with the R-tree. Sort-based approaches are
proposed in [2, 13, 14, 31, 41], while in [6], the idea of the
buffer-tree [5] is utilized for bulk insertion.

The emergence of new extensible multi-dimensional in-
dex structures, e.g., GiST [26] and SP-GiST [4], calls for
extensible bulk loading algorithms to support a broad class
of multi-dimensional indexes. In [17, 18], generic algo-
rithms that utilize the buffer-tree [5] for bulk loading the
class of Grow and Post trees [35] (e.g., the class of trees
supported by GiST) is presented. Another extensible bulk
loading algorithm is proposed in [1] for the class weight-
balanced trees (e.g., the k-d tree [9], the BBD-tree [7],
and the BAR-Tree [20]). To the best of our knowledge,
this is the first attempt to develop bulk loading/insertion al-
gorithms for the general class of space partitioning trees,
which may not be height balanced.

3 The Class of Space-Partitioning Trees

The class of space-partitioning trees is a class of hierar-
chical data structures that recursively decompose the space
into disjoint partitions. The class of space-partitioning trees
can be further divided into data-driven space-partitioning
trees and space-driven space-partitioning trees. In data-
driven space-partitioning trees, the space is decomposed
based on the input data. Examples of data-driven space-
partitioning trees are the point quad tree [21] and the k-d
tree [9]. In space-driven space-partitioning trees, the space
decomposition does not depend on the order of data inser-
tion. Examples of space-driven space-partitioning trees in-
clude the trie index [22], the region quadtree [21], the MX
quadtree [32], the PM quadtree [44], the PR quadtree [38]
and the PMR quadtree [37]. The class of space-partitioning
trees can be structurally distinguished from other tree
classes in the following:

1. Space-partitioning trees decompose the space recur-
sively. Each time, a fixed number of disjoint partitions
is produced.

2. Due to its limited fanout (e.g., the quadtree has only a
fanout of four), space-partitioning trees are unbalanced
trees that can be skinny and long.

3. Two different types of nodes exist in a space-
partitioning tree. Non-leaf nodes are index nodes
while leaf nodes are data nodes.



Atlanta

Buffalo

Toronto

Atlanta

Mobile

Omaha

Denver

Chicago

Buffalo

MobileOmahaTorontoDenver

Chicago

(a) Point Quadtree

Chicago

Denver

Omaha Atlanta

Toronto

Buffalo

Mobile

Chicago

Denver Mobile

Omaha
Toronto

Buffalo

Atlanta

(b) k-d tree

Figure 1. Example of a point quadtree and a k-d tree.

In the following, we give a brief overview of some of the
commonly used space-partitioning trees. For more details,
the reader is referred to [43].
The trie [22]: A trie is a tree structure for storing strings
in which there is one node for every common prefix. Two
types of nodes can be distinguished; index nodes are non-
leaf nodes of the trie that are used for storing common pre-
fixes, and data nodes are leaf nodes in the trie that are used
to store the data. The trie is commonly used to store words
in a dictionary. The trie is a space-driven decomposition
structure, where at each level, the space is partitioned into a
number of partitions equal to the number of alphabets and
an additional blank. For example, a trie for English words
partitions the space at each level up to 27 disjoint partitions.
The Patricia Trie [36]: The Patricia trie is a space efficient
implementation of the trie, where all nodes with one child
are merged with their parents. The merge is applied to both
leaf and non-leaf nodes. Most practical systems implement
the Patricia trie instead of the trie.
The Quadtree: Quadtrees can be based on either a
space-driven or a data-driven decomposition. Space-driven
quadtrees, also known as quadtries [43] have the same struc-
ture as the trie. Examples of the space-driven quadtrees
are the MX quadtree [29], the MX-CIF quadtree [32],
the PR quadtree [38], the PM quadtree [44], and the
PMR quadtree [37]. Figure 1a gives an example of point
quadtree as an example of data-driven quadtrees.
The k-d tree [9]: The k-d tree is a multi-dimensional search
tree, useful for answering range queries about a set of points
in the k-dimensional space. The k-d tree is an improvement
over the point quadtree where it reduces the storage require-
ments and the branching factor at each node. Levels of the
tree are split into two subspaces along successive dimen-
sions of the multi-dimensional points. The k-d tree is a bi-
nary search tree with the distinction that at each level, a dif-
ferent dimension (key) is tested to determine the direction
in which a branch is made. For the k-dimensional space, at
level L, dimension number L mod k + 1 is used, where the
root is at level 0. Therefore, the first dimension is used at
the root, the second dimension at level 1, and so on, until all

dimensions have been used. The dimensions are used again
beginning at level k. As in the point quadtree, the decompo-
sition in the k-d tree depends on the data values and hence
is data-driven. Figure 1b gives an example of a k-d tree.

4 SP-GiST: A Framework for Supporting the
Class of Space-Partitioning Trees

In this section, we give a brief overview of SP-GiST
(Space-partitioning Generalized Search Trees). The reader
is referred to [3, 4] for further details. SP-GiST is a general
index framework for the class of space-partitioning trees.
Different space-partitioning trees can be realized inside SP-
GiST through a number of interface parameters and exter-
nal methods. In addition, SP-GiST has internal methods
that reflect the similarity between space-partitioning trees
for insertion, deletion, and search that are already imple-
mented inside the SP-GiST index engine. The user of SP-
GiST provides only the external methods and interface pa-
rameters, while the internal methods are hard coded into
the SP-GiST index engine. In the following, we give an
overview of some of the important interface parameters, ex-
ternal methods, and internal methods of SP-GiST.

SP-GiST Interface parameters:

• NodePredicate: This parameter gives the predicate to
be used in the index nodes of a space-partitioning tree.
For example, a quadrant in a quadtree or a letter in
a trie are predicates that are associated with an index
node.

• KeyType: This parameter gives the type of data in the
leaf-level of the tree. For example, the MX quadtree
uses a predefined data type of Point while the trie use
a key type of Word.

• NumberofSpacePartitions: This parameter gives the
number of disjoint partitions produced at each decom-
position. For example, this parameter is set to four in



Patricia trie k-d tree
Parameters ShrinkPolicy = Tree Shrink, BucketSize = B ShrinkPolicy = Leaf Shrink, BucketSize = 1

NoOfSpacePartitions = 27 NoOfSpacePartitions = 2
NodePredicate = letter or blank NodePredicate = “left”, “right”, or blank
Key Type = String Key Type = Point

Consistent(E,q,level) If (q[level]==E.letter) If (level is odd AND q.x satisfies E.p.x)
OR (E.letter ==blank AND level > length(q)) OR (level is even AND q.y satisfies E.p.y)
Return True, else Return False Return True, else Return False

PickSplit(P,level) Find a common prefix among words in P Put the old point in a child node with
Update level = level + length of the common prefix predicate “blank”
Let P predicate = the common prefix Put the new point in a child node with
Partition the data strings in P acording to predicate “left” or “right”
the character values at position “level” Return False
If any data string has length < level,

Insert data string in Partition “blank”
If any of the partitions is still over full

Return True, else Return False

Table 1. Realization of the Patricia trie and the k-d tree inside SP-GiST.

the case of the quadtree and to 27 in the case of a trie
that contains English alphabets.

• Resolution and ShrinkPolicy: These parameters limit
the number of space decompositions and are set de-
pending on the required granularity.

• BucketSize: This parameter gives the maximum num-
ber of data items that a data node can hold.

SP-GiST External Methods

• Consistent(Entry E, Query Predicate q, level): A
Boolean function that is used by the search method as
a navigation guide through the space-partitioning tree.

• PickSplit(P, level, splitnodes, splitpredicates): This
method defines a way of splitting the entries into a
number of partitions and returns a Boolean value in-
dicating whether further partitioning should take place
or not.

• Cluster (): This method defines how tree nodes are
clustered into disk pages.

SP-GiST Internal Methods

• Insert: This method is used to insert a new data en-
try to the existing tree structure. The insert method
uses the interface parameter PathShrink and the exter-
nal methods PickSplit and Consistent.

• Search: Searching in space-partitioning trees starts
from the root. The search item is checked againist all
branches using the external method Consistent.

• Delete: Deleted items in SP-GiST are marked deleted
but are not physically removed from the tree. A rebuild
is used from time to time as a clean procedure.

The realization of any space-partitioning tree T inside
SP-GiST is achieved by providing the interface parame-
ters and the external methods for T . For example, Table 1
gives the realization of the Patricia trie and the k-d tree in-
side SP-GiST. Examples for the realization of other space-
partitioning trees inside SP-GiST can be found in [3, 4].

5 Extensible Algorithms for Bulk Loading
Space-Partitioning Trees

In this section, we present two extensible buffer-based
bulk loading and bulk insertion algorithms for the class of
space-partitioning trees (termed, the Direct Buffering Bulk
Loading algorithm (DBBL) and the Buffer Tree Bulk In-
sertion algorithm (BTBI)). Both algorithms use disk-based
buffers to distribute data items. The BTBI algorithm is more
general than the DBBL algorithm in the sense that BTBI is
designed to handle bulk insertions as well as bulk loading.
However, as we will see in the performance section, BTBI
performs slightly worse than DBBL in terms of the I/Os in-
curred. However, BTBI is a very effective when we want
to insert a large number of data items into an already opera-
tional tree. The main idea of both bulk loading algorithms is
to build an in-memory tree of the desired index structure us-
ing the standard insertion procedure. Then, the in-memory
tree is used to distribute the remaining data items into disk-
based buffers. Bulk loading algorithms are applied recur-
sively to the disk-based buffers.

5.1 Direct Buffering Bulk Loading Algorithm

The Direct Buffering Bulk Loading algorithm (DBBL,
in short) partitions the available memory into two equal
partitions, namely the memory part and the buffer part.
Data items are loaded into an in-memory space-partitioning



Algorithm The Direct Buffer Bulk Loading algorithm for SP-GiST, DBBL
Input:

• F : The data input file.

• R: Root of the tree (initially, empty).

Begin

• Initialize Buffer List to contain only F .

• While Buffer List is not empty

1. B is the first buffer in the Buffer List.

2. If all items in B can fit in memory. Then, build an in-memory
tree using the standard insertion procedure, and flush it to
disk. Then, Go To Step 7.

3. While available memory is less than half full and B has data

– Read record x from B.

– Insert x in the in-memory tree, rooted at R, using SP-
GiST.INSERT (R,x) method.

4. Associate a buffer page p with each page from the in-memory
tree.

5. While B has data

– Read record x from B.

– Call SP-GiST.LocateLeaf(R,x) to locate the leaf node
L in which x should be inserted.

– Insert x in the buffer Bx that is associated with the page
contains L.
//Only one page of Bx is in-memory, the
//rest of the buffer (if needed) is on disk

– If x is the first item to be inserted in Bx, add Bx to the
Buffer List.

6. Flush the in-memory tree into disk.

7. Delete B from the Buffer List.

End.

Figure 2. Pseudo code for the DBBL algo-
rithm.

tree in the memory part until it is exhausted. The space-
partitioning tree is clustered into memory pages using the
clustering algorithm by Diwan et. al. [19]. Then, the DBBL
algorithm utilizes the buffer part by associating a buffer to
each clustered tree memory page. Only one page of the as-
sociated buffers resides in memory, while, the rest of the
buffer is in disk. In other words, half of the memory is re-
served for clustering the in-memory tree, while the other
half is reserved by memory buffers; one buffer per clus-
tered tree page. The remaining data items, if any, are dis-
tributed among memory buffers using the in-memory tree.
The DBBL algorithm works recursively on each buffer until
all buffers are processed.

Pseudo Code. Figure 2 gives the pseudo code of the
DBBL algorithm implemented inside the SP-GiST en-
gine [4]. A Buffer List is used to keep track of a list of

buffers that contain input data. Initially, the Buffer List con-
tains only the input file F . For any buffer B in the Buffer
List, the best-case scenario is when all data items in B can
fit in memory. In this case, an in-memory tree with all
data items can be built inside memory and flushed once to
disk (Step 2 in Figure 2). However, if data cannot fit in
memory, the DBBL buffering algorithm starts by reading
as much data as can fit in half the memory (Step 3 in Fig-
ure 2). Such data is used to build an in-memory tree using
the standard insertion procedure that is implemented as an
internal method inside SP-GiST (SP-GiST.Insert()). A dis-
tinct property in space-partitioning trees is that the node size
is much less than the page size. Thus, the insertion proce-
dure in SP-GiST uses the clustering algorithm by Diwan et.
al. [19] to pack tree nodes into pages. Diwan’s clustering
algorithm is optimal in the sense that it results in a mini-
mum tree height in terms of clustered pages. Applying the
clustering algorithm for each inserted item is done in mem-
ory, thus node clustering into pages does not incur any I/O
overhead. SP-GiST uses the dynamic version of the cluster-
ing algorithm [19]. Thus, clustering is incremental as data
is inserted in the tree. Incremental clustering avoids extra
CPU overhead.1

For the other half of the memory, the DBBL algorithm
associates an empty buffer page to each clustered page
(Step 4 in Figure 2). The remaining records in B (if any),
are distributed among memory buffers using the clustered
in-memory tree. (Step 5 in Figure 2). To insert a data item
x into a memory buffer, the DBBL algorithm calls the SP-
GiST internal function SP-GiST.LocateLeaf(R,x) to locate
the final destination page L for x. Then, x is inserted in
the buffer associated with page L. The correctness of this
step comes out from the properties of Diwan’s clustering al-
gorithm [19] where the clustering algorithm guarantees that
there is only one tree in every clustered page. This means
that for each page, there is a root node from which we can
reach for every other node on this page. If the insertion of
x results in a new buffer Bx, we add Bx to the Buffer List.
Finally, the in-memory tree is flushed into disk (Step 6 in
Figure 2) and the buffer B is deleted from the Buffer List
(Step 7 in Figure 2). The DBBL algorithm recursively op-
erates in all buffers until the Buffer List is empty.

Example. Figure 3 gives an example of bulk loading nine
data items into a trie using the DBBL algorithm. The mem-
ory can accommodate up to six pages. The first three entries
(“aaa”,“aac”,“cbc”) consume three memory pages (i.e.,
half the memory space). Page boundaries are represented
as dotted rectangles in Figure 3. One buffer is associated
with each clustered tree page. The remaining six data items

1We could recluster the entire tree to attain the strictly minimum height,
in one pass over the tree once the bulk loading algorithm is executed. How-
ever, this does not seem to affect the external height much.



are partitioned into the three buffers (see Figure 3a) using
the clustered tree. For example, when we insert the data
item ”bca”, we go through the root page (i.e., Page I). Data
item ”bca” cannot go through page II or Page III since Page
II is for data items with Prefix ”aa”, while Page III is for
data items with Prefix ”c”. In this case, Page I is the fi-
nal destination for the data item ”bca”. Thus, ”bca” is in-
serted into the buffer associated with Page I (i.e., Buffer
I). Similarly, the data item ”cca” is inserted into buffer III;
the associated buffer with Page III. Notice that some of the
buffers may be empty (e.g., buffer II), while other buffers
may need extra disk space (e.g., buffer III). In this example,
we assume that the memory buffer can accommodate up to
three entries. The DBBL algorithm works recursively on
the memory buffers. Figures 3b and 3c give the in-memory
sub-trees that result from applying the DBBL algorithm on
Buffers I and III, respectively. Notice that, in these figures,
there is no need to divide the whole memory into two parti-
tions since the memory can accommodate all data items and
hence there will be no need for buffers. For example, all the
data items in Buffer I are used to build an in-memory tree
of three pages (Figure 3b), while the data items in Buffer III
are used to build an in-memory tree of six pages (Figure 3c).
The final disk-based tree is given in Figure 3d where the
whole tree takes ten disk pages.

Theorem 1 The I/O cost for bulk loading N data items into
an initialy empty space-partitioning tree using the DBBL al-
gorithm is O(NH/B) where B is the number of data items
that fits in one disk page and H is the external height of the
final tree.

Proof: Let M be the amount of data that can fit in the inter-
nal memory. For complexity purposes, N will also denote
the number of nodes in the tree, B will also denote the num-
ber of tree nodes that fit in a page and M will denote the
number of tree nodes that fit into internal memory. Notice
that the size of the tree nodes is constant that we can hide
under the liberty of big-O notation. Let H be the external
height of the tree, which is the maximum number of pages
encountered on any path from root to leaf.

We account for the number of read page and write page
operations. In each recursive call, we bulk load data items
till we have an in-memory tree of size M/2. Then, the in-
memory tree is clustered into O(M/2B) pages and the re-
maining items are distributed into disk based buffers. Then,
the clustered pages of the tree are written into the disk to
form a part of the tree. At the next level of recursion,
a page from the tree is reloaded into memory along with
its corresponding buffer and the algorithm is applied recur-
sively. Every page in the data structure is written once and
is read once resulting in O(N/B) I/Os. The main cost of
I/O comes from writing and reading buffers which happens
in blocks of size B. If H is the external height of our fi-

cba

cba cba

cbacba

aaa cbcaac

bbc
bca

cba cba cba cba cbacba

cbacba cba

cba

bbc bcaaaa cbb
aac

cba cbc

ccacab

cca
cbb
cab

cba

cba cba

cba cba

bcabbc

cbb

cba

cbacba cba

cba cbc

cab cca

bbc
bca cbb

cca

cab
cba

aac
aaa

cbc
bca
cca
bbc
cba
cbb
cab

Page I

Page III

Page II

Buffer I

Buffer II

Buffer III

cba
Input data

Memory

(a) The first 3 items are inserted in 3 pages, while the remaining 6 items are distributed among buffers

(d) The final tree with 10 disk pages

(b) Buffer I (c) Buffer III

Memory
Memory

Input

Input

Figure 3. Example of trie bulk loading using
the DBBL algorithm.

nal tree, than every data item is read and is written at most
H times. Since I/Os happen in blocks of size B, we get
O(NH/B) as the worst case I/O complexity bound.

�

However, we will see that even if H is large, our algo-
rithm achieves the number of I/Os much closer to N/B in
terms of the constant factor. This is because O(NH/B) is
the worst case bound assuming the tree is lop-sided. In the
average case, we can assume that the data items fall almost
equally into M/2B buffers in each recursive call. Hence,
at each next recursion level the buffer size reduces by the
factor of M/2B. In this case, the depth of the recursion is
only logM/2B N/B nested recursive calls. Hence, no data
item will be written to buffers more than O(logM/B N/B)
times. Thus, in the average case, we achieve an I/O bound
of O(N/B logM/B N/B) for this algorithm, which is also
an optimally tight bound because sorting is lower bounded
by this complexity in the I/O model.

5.2 The Buffer Tree Bulk Insertion Algorithm

The Buffer Tree Bulk Insertion Algorithm (BTBI, for
short) is more general than DBBL in the sense that BTBI



Algorithm Buffer Tree Bulk Insertion algorithm for SP-GiST, BTBI
Input:

• F : The data input file.

• R: Root page of the tree T .

Begin

• If R is the only page in the tree

– While memory is available and F has data

∗ Read record x from F .

∗ Insert x in the in-memory tree, rooted at R, using SP-
GiST.INSERT(R,x) method.

• Associate an empty disk buffer with each page of T .

• Initialize the buffer at R with remaining data items in F .

• For each disk buffer b associated with page P

1. If P is a leaf page

– BTBI(b,P ); Continue.

2. Load page P in-memory.

3. Associate in-memory buffer pages qi with each page pi fan-
ning out from the in memory tree.

4. While b has data

– Read record x from b.

– Locate qi into which x goes. Insert x into qi

5. Append qi’s to the disk buffers corresponding to respective
pi’s.

End.

Figure 4. Pseudo code for the BTBI algorithm.

can be used for bulk insertions into an existing tree. We
adopt the idea of buffer trees [6] during bulk insertions
into SP-GiST. The main difference over [6] is that space-
partitioning trees may not be balanced and hence need non-
trivial clustering. As in DBBL, we associate a buffer per
index page. However, data items in the buffers are pushed
down only one page at a time. BTBI can work in two forms:
(1) Assuming all the data to be inserted is available – in
this case we assume that there are at least as many new
data items being inserted as there are already in the tree;
(2) When insertions arrive as a stream – in this case the in-
sertions are batched at every level of the tree and insertions
descend the pages of the tree only when there is a suffi-
cient number of insertions available to amortize the cost.
Whenever a sufficient number of data items accumulate at
the buffers in the leaf level, we cluster them to form a new
part of the tree.

Pseudo Code. Figure 4 gives the pseudo code for the
Buffer Tree Bulk Insertion algorithm (BTBI) when all the
items to be inserted are already in a file. BTBI can be used
for both bulk loading and bulk insertion. The input root

tree R may be null (bulk loading) or contains an already
existing space-partitioning tree (bulk insertion). If the root
page R is the only page in the tree, then BTBI starts by
building an in-memory space-partitioning tree using the SP-
GiST.INSERT() internal method. Note the difference be-
tween DBBL and BTBI in this step. While DBBL utilizes
only half the memory to build the tree, BTBI utilizes the
whole memory space for building the tree. Once the mem-
ory is exhausted, BTBI associates a disk-based buffer for
each clustered tree page. Initially, the input file F is con-
sidered the buffer associated with the root page (the page
containing the root node).

If a disk-based buffer b is associated with a leaf page
P , BTBI is recursively called with b as its input file and
P as its root page (Step 1 in Figure 4). However, if the
disk-based buffer b is associated with an intermediate page
P , BTBI loads the page P in memory and associates an
in-memory buffer, say qi, with each page, say pi, fanning
out from P (Steps 2 and 3 in Figure 4). Thus, the avail-
able memory is used for building in-memory buffers. Un-
like DBBL, where the available memory is utilized for the
tree and the in-memory buffers at the same time, in BTBI,
the available memory alternates between building the tree
and using the buffers. The data items in b are distributed
among the in-memory buffers q i. The distribution is per-
formed according to the tree at Page P . Notice that the
clustering algorithm [19] guarantees that there exists only
one root node Q for each clustered page P . Finally, the
entries in the in-memory buffers qi’s are appended to the
corresponding disk-based buffers p i’s.

Example. Figure 5 gives an example of bulk loading a trie
using BTBI. The input data set is given in Figure 5a, which
is the same input data set for the example in Figure 3. The
memory size is set to accommodate four pages. Only the
first four data items can be inserted in memory (Figure 5b).
The page boundaries are plotted in dotted rectangles. Then,
the in-memory tree is flushed into disk. The remaining five
input data items are considered the data in the buffer associ-
ated with the root node. A line with double arrows connects
each buffer with its associated page. Figure 5c gives the
distribution of the remaining five data items into the exist-
ing tree. The root page is loaded into memory, while the re-
maining data items are distributed into two buffers: Buffer
I and Buffer II. Figures 5d and 5e give the resulting sub-
tree after inserting the data items from Buffer II and Buffer
I, respectively. Notice that when we distribute data items
from buffer I, we need to have buffer III that contains only
one item (Figure 5e). Buffer III would result in the sub-tree
given in Figures 5f. The final tree is depicted in Figure 5g.
Notice that the tree has the same final shape as the one in
Figure 3d. However, the page clustering is different. The
difference in page clustering is a result of having different



(g) The final tree

cba

a

c

cca
aaa

b c

aac

cb

bbc

ba a b cc a

cab

a bb ac

a

a

cba

bbc

bca

cba

bca

a

cbc

cb

cba

c

a

b

cbb

cba

b

a

c

bca

c

a

cba

cab

cba

ba

cba

c

cba

cbc

bbc
cba

b

cbb

cbbcba

a

cba

cba

cba

cba

cba cba

cab

bbc
bca

cba
cba
cbb

cba

cbb

aaa

cba

cbc

bbc bca

bbc
bca

a b c

cb

b ca b c

cb

aacaaa cbc cca

(b) The first four items fill the memory(a) Input data

(e) Buffer I (f) Buffer III

aaa
aac
cbc
cca
cab

cab

(c) Remaining data items are partitioned to Buffer I and Buffer II

Buffer I

cca

(d) Buffer II

Buffer II

aac

Buffer III

Figure 5. Example of trie bulk loading using
BTBI Algorithm.

sub-trees in both algorithms.

Theorem 2 The I/O cost for bulk inserting N data items
into an already functional space-partitioning tree using the
BTBI algorithm is O(NH/B) where B is the number of
data items that fits in one disk page and H is the external
height of the final tree.

Proof: Assume that there are N items to be inserted into
an already functional tree containing N items. Here, Each
insertion descends its usual path in the tree towards the leaf.
A step consists of pushing down insertions in blocks of size
B across a given page. We divide the cost of I/O into two
parts. One part is attributed to the pages in the tree while
the other part is attributed to the buffers. During the process

of pushing down the data items in a buffer, if the number
of insertions crossing through a particular page is X > B,
then it takes X/B I/Os to read the buffer and 1 I/O to read
the page. While writing a buffer, if the buffer has Y > B
data items, then the cost of this write is attributed to the
buffer else the cost of write is attributed to the next page
to which this buffer is associated. Thus, every page has at
most three I/Os associated with it: one for reading the page
and one each for writing and reading its buffer page when
its buffer page has less than B data items. This accounts for
O(N/B) I/Os. The remaining I/Os are for the buffer reads
and writes that are in blocks of O(B) data items. Since
every data item in this process is read and is written at most
H times, therefore the total number of I/Os is O(NH/B).

In the case when insertions arrive as a real time stream,
before pushing insertions across a page we lazily wait till
we collect a sufficient number of data items to be pushed
down, so as to amortize the cost of I/O. Typically, we wait
till the buffer has at least B2 items before pushing it down.
Assume that the fanout (i.e. the number of downward pages
accessible) from each node is proportional to the number
of data items stored in the nodes. Then, there can be at
most O(B) buffers into which the data is distributed. We
only distribute when the size of the buffer becomes more
than B2, this distribution will result in at most O(B) I/Os.
Therefore, by amortizing the cost over the number of data
items, each data item causes O(1/B) I/Os during one dis-
tribution phase. Since each data item can be pushed down
at most H pages, we can bulk insert N items in O(NH/B)
I/Os in the worst case. When the stream ends or when we
have at least N items inserted, we can resort to the earlier
case and flush all the buffers down. �

6 Performance Evaluation

In this section, we study the performance of the pro-
posed algorithms for bulk operations for the class of space-
partitioning trees. Both the DBBL and BTBI algorithms are
implemented inside the SP-GiST index engine. The imple-
mentation is in C++ running SunOS 5.6 (Sparc). Two new
internal methods are added to SP-GiST, namely, the Bulk-
Load() and BulkInsert().

6.1 Bulk Loading

In this section, we study the performance of both DBBL
and BTBI for bulk loading space-partitioning trees. Fig-
ures 6a and 6b compare the number of I/O’s from using
DBBL, BTBI, and the repeated standard insertion proce-
dure for bulk loading the Patricia trie and the k-d tree, re-
spectively. We choose the Patricia trie as an example of
the space-driven space-partitioning trees and the k-d tree
as an example of the data-driven space-partitioning trees.



1

2

4

8

16

32

64

128

256

512

1024

20 30 40 50 60 70 80 90 100

I
/
O
 
*
 
1
0
0
0

Number of Items * 1000

DBBL
BTBI

Repeated Insertion

(a) Patricia trie

2

4

8

16

32

64

128

256

512

1024

20 30 40 50 60 70 80 90 100

I
/
O
 
*
 
1
0
0
0

Number of Items * 1000

DBBL
BTBI

Repeated Insertions

(b) KD-tree

Figure 6. Bulk loading Vs. Repeated insertion.

The realization of both the Patricia trie and k-d tree in-
side SP-GiST is given in Table 1 Similar performance is
achieved when applying DBBL and BTBI for other space-
partitioning trees implemented inside SP-GiST. The re-
peated insertion procedure is implemented by calling the
Insert internal method of SP-GiST N consecutive times to
insert N data items. The number of bulk loaded items varies
from 20K to 100K. For both the Patricia trie and the k-
d tree, bulk loading algorithms achieve around 1% of the
I/O’s required by the repeated insertion procedure. Notice
that the number of I/O’s in Figure 6 is drawn in log scale.
Due to the excessive time and I/O’s for the standard inser-
tion procedure, for the rest of the experiments, we ignore
the repeated insertion procedure and focus on the perfor-
mance of DBBL and BTBI. Both the Patricia trie and k-
d tree have similar performance (other space-partitioning
tress are no exception, where they result in similar perfor-
mance). Thus, for the following experiments, we focus on
bulk loading/insertion in the Patricia trie. However, all the
experimental results and analysis are applicable for other
space-partitioning trees.

Figure 7 gives a comparison between DBBL and BTBI
when bulk loading a Patricia trie. The number of bulk
loaded items varies from 60K to 300K. DBBL gives better
performance than BTBI for all data input sizes. The main
reason for the better performance of DBBL is that DBBL
forwards data items to their final buffer positions in the in-
memory tree. On the other hand, BTBI forwards data items
in the tree one level at a time. Thus, BTBI performs more
I/O’s than DBBL.

Figures 8a and 8b give the effect of increasing the mem-
ory size on the performance of DBBL and BTBI, respec-
tively. The experiments are performed for bulk loading

0

5

10

15

20

25

30

60 120 180 240 300

I
/
O
 
*
 
1
0
0
0

Number of Items * 1000

DBBL
BTBI

Figure 7. DBBL Vs. BTBI

a Patricia trie with fanout seven. Similar performance is
achieved when bulk loading the k-d tree implementation in-
side SP-GiST. The page size is set to 4K, while the memory
size varies from 64 to 512 pages. For each memory size,
we run the experiment to bulk load N items, where N is
set to 30K, 60K, and 120K data items. For all values of
N , initially, the increase of the memory size decreases the
number of I/O’s for both algorithms. However, after mem-
ory size 128 pages, increasing the memory size does not
give any preferences in the number of I/O’s. This result
matches with the analysis performance in Section 5. DBBL
has an average case I/O of O(N/B logM/B N/B), which
indicates that the number of I/Os is affected by the mem-
ory size and is proportional to 1/ logM (which is a hyper-
bolic curve on log scale). From the Figure, BTBI performs
more I/Os when the memory size is small because when
M < B2, BTBI may need to access buffers repeatedly dur-



2

3

4

5

6

7

8

9

64 128 256 512

I
/
O
 
*
 
1
0
0
0

Number of memory pages

N=30K
N=60K

N=120K

(a) DBBL

2

4

6

8

10

12

14

16

18

64 128 256 512
I
/
O
 
*
 
1
0
0
0

Number of memory pages

N=30K
N=60K

N=120K

(b) BTBI

Figure 8. Effect of memory size.

0

5

10

15

20

25

30

35

40

45

2 4 6 8

I
/
O
 
*
 
1
0
0
0

Page Size * 1024

N=120K
N=180K
N=240K

(a) DBBL

0

5

10

15

20

25

30

35

40

45

2 4 8

I
/
O
 
*
 
1
0
0
0

Page Size * 1024

N=120K
N=180K
N=240K

(b) BTBI

Figure 9. Effect of page size.

ing the distribution process.
Figures 9a and 9b give the effect of increasing the page

size on the performance of DBBL and BTBI, respectively.
The experiments are performed for bulk loading a Patricia
trie with fanout seven. The page size varies from 2K to 8K.
For each page size, we run the experiment to bulk load N
items, where N is set to 120K, 180K, and 240K data items.
The number of I/O’s decreases with the increase in page
size. This result matches with the performance analysis in
Section 5. Both algorithms are affected by the page size in
O(1/B), where B is measured in terms of the number of
data items that can fit in the page.

6.2 Bulk Insertion

In this section, we study the performance of the BTBI
algorithm for bulk insertion. All experiments in this section
are performed for a Patricia trie implementation inside SP-
GiST (with fanout seven). Similar performance results are
obtained when applying BTBI for other space-partitioning
trees. In the first experiment (see Figure 10), we compare
BTBI with the repeated insertion procedure. The number
of the data items N in the initial Patricia trie varies from

0

50

100

150

200

250

300

350

10 15 20 25 30 35 40 45 50 55 60

I
/
O
 
*
 
1
0
0
0

Number of Items * 1000

Bulk Insertio (BTBI)
Repeated Insertion

Figure 10. BTBI Vs. Repeated Insertion.

0

2

4

6

8

10

12

14

10 15 20 25 30 35 40 45 50 55 60

I
/
O
 
*
 
1
0
0
0

Number of Items * 1000 (N)

4N Insertions
2N Insertions
N Insertions

Figure 11. Effect of number of insertions.

10K to 60K. The number of items to be bulk inserted is N .
The memory size is set to accommodate 400 pages, with the
page size set to 4K. BTBI outperforms the repeated inser-
tion procedure for all input data sizes. The main reason is
the obvious one; the repeated insertions may read the pages
of the tree back and forth many times, while in bulk inser-
tion, every page in the tree is read only once as the data
items are forwarded through the tree pages.

Figure 11 illustrates the scalability of BTBI in terms of
the number of data items to be bulk inserted. The page size
is set to 4K, while the memory size is set to 400 pages.
The number of data items N in the initial tree varies from
10K to 60K. BTBI is applied to bulk insert N , 2N , and 4N
data items. BTBI is scalable to the number of data items,
where increasing the number of inserted data items results
in a slight increase in the number of I/O’s. The difference in
the number of I/O’s between N insertions and 2N insertions
is less than the double. The main reason is that only a few
more buffer pages are used in the case of 2N insertions.

Figure 12 gives the effect of the page size on the perfor-



0

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40 45 50 55 60

I
/
O
 
*
 
1
0
0
0

Number of Items * 1000 (N)

Page size = 2K
Page size = 4K
Page size = 8K

Figure 12. Effect of page size.

7

8

9

10

11

12

13

14

15

64 128 256 512

I
/
O
 
*
 
1
0
0
0

Number of memory pages

N=30K
N=60K

N=120K

Figure 13. Effect of memory size.

mance of BTBI. The memory size is set to 400 pages. The
number of inserted items is 4N where N varies from 10K
to 60K. We plot three lines that correspond to different page
sizes (2K, 4K, and 8K). The number of I/O’s required to
load the same number of items increases with the decrease
in page size.

Figure 13 gives the effect of memory size on the per-
formance of BTBI. Generally, increasing the memory size
more than 128 pages does not affect the performance of
BTBI. This result is similar to the one obtained in Figure 8.

7 Conclusion

In this paper, we present two extensible bulk loading and
bulk insertion algorithms for the class of space-partitioning
trees; a class of hierarchical data structures that recursively
decompose the space into disjoint partitions. The pro-
posed algorithms are implemented inside SP-GiST (Space-
Partitioning Generalized Search Tree); a framework for sup-
porting the class of space-partitioning trees. The main idea

of the proposed algorithms is to utilize part of the data items
to build an in-memory tree of the target index structure. The
remaining data items are partitioned into disk-based buffers.
The algorithms work recursively on each buffer. A detailed
implementation and realization of the proposed bulk load-
ing and bulk insertion algorithms inside SP-GiST are pre-
sented. Analytical study of both algorithms ensure a worst
case I/O upper bound of O(NH/B), where N is the num-
ber of data items to be bulk loaded/inserted, B is the num-
ber of tree nodes that can fit in one disk page, H is the
tree height in terms of pages after applying a clustering al-
gorithm. Experimental results show the scalability of both
algorithms in terms of the number of data items. The first
proposed algorithm outperforms the second in case of bulk
loading. However, the second algorithm is general enough
to be applicable to bulk insertion as well.

References

[1] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A
Framework for Index Bulk Loading and Dynamization. In
Intl. Colloq. on Automata, Lang. and Prog., ICALP, pages
115–127, July 2001.

[2] N. An, K. V. R. Kanth, and S. Ravada. Improving Perfor-
mance with Bulk-Inserts in Oracle R-Trees. In Proceedings
of the International Conference on Very Large Data Bases,
VLDB, Sept. 2003.

[3] W. G. Aref and I. F. Ilyas. An extensible index for spa-
tial databases. In Proceedings of the International Con-
ference on Scientific and Statistical Database Management,
SSDBM, pages 49–58, 2001.

[4] W. G. Aref and I. F. Ilyas. SP-GiST: An Extensible Database
Index for Supporting Space Partitioning Trees. Journal of
Intelligent Information Systems, JIIS, 17(2–3):215–240, dec
2001.

[5] L. Arge. Efficient External-Memory Data Structures and Ap-
plications. PhD thesis, University of Aarhus, Denmark, aug
1996.

[6] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter. Effi-
cient Bulk Operations on Dynamic R-Trees. Algorithmica,
33(1):104–128, 2002.

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An Optimal Algorithm for Approximate Nearest
Neighbor Searching in Fixed Dimensions. Journal of the
ACM, JACM, 45(6):891–923, 1998.

[8] R. Bayer and E. M. McCreight. Organization and Main-
tenance of Large Ordered Indices. Acta Informatica,
1(3):173–89, 1972.

[9] J. L. Bentley. Multidimensional Binary Search Trees Used
for Associative Searching. Communications of the ACM,
CACM, 18(9):509–517, 1975.

[10] S. Berchtold, C. Böhm, and H.-P. Kriegel. Improving the
Query Performance of High-Dimensional Index Structures
by Bulk-Load Operations. In Proceedings of the Inter-
national Conference on Extending Database Technology,
EDBT, pages 216–230, Mar. 1998.



[11] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree : An
Index Structure for High-Dimensional Data. In Proceedings
of the International Conference on Very Large Data Bases,
VLDB, pages 28–39, Sept. 1996.

[12] C. Böhm and H.-P. Kriegel. Efficient Bulk Loading of
Large High-Dimensional Indexes. In Proc. of the Intl. Conf.
on Data Warehousing and Knowledge Discovery, DeWak,
pages 251–260, 1999.

[13] L. Chen, R. Choubey, and E. A. Rundensteiner. Merging R-
Trees: Efficient Strategies for Local Bulk Insertion. GeoIn-
formatica, 6(1):7–34, 2002.

[14] R. Choubey, L. Chen, and E. A. Rundensteiner. GBI: A
Generalized R-Tree Bulk-Insertion Strategy. In Proceed-
ings of the International Symposium on Advances in Spatial
Databases, SSD, pages 91–108, July 1999.

[15] P. Ciaccia and M. Patella. Bulk loading the M-tree. In Proc.
of Australasian Database Conf., Feb. 1998.

[16] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces. In
Proceedings of the International Conference on Very Large
Data Bases, VLDB, pages 426–435, Aug. 1997.

[17] J. V. den Bercken and B. Seeger. An Evaluation of Generic
Bulk Loading Techniques. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, VLDB, pages
461–470, Sept. 2001.

[18] J. V. den Bercken, B. Seeger, and P. Widmayer. A Generic
Approach to Bulk Loading Multidimensional Index Struc-
tures. In Proceedings of the International Conference on
Very Large Data Bases, VLDB, pages 406–415, Aug. 1997.

[19] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan. Clus-
tering Techniques for Minimizing External Path Length. In
Proceedings of the International Conference on Very Large
Data Bases, VLDB, pages 342–353, Sept. 1996.

[20] C. A. Duncan, M. T. Goodrich, and S. Kobourov. Balanced
Aspect Ratio Trees: Combining the Advantages of k-d Trees
and Octrees. In Proc. of the ACM Symp. on Disc. Algo.,
SODA, pages 300–309, 1999.

[21] R. Finkel and J. Bentley. Quad trees: A Data Structure for
Retrieval of Composite Keys. Acta Informatica, 4(1):1–9,
1974.

[22] E. Fredkin. Trie memory. Communications of the ACM,
CACM, 3(9):490–499, 1960.

[23] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An Al-
gorithm for Finding Best Matches in Logarithmic Expected
Time. ACM Transactions on Mathematical Software, TOMS,
3(3):209–226, 1977.

[24] V. Gaede and O. Günther. Multidimensional Access Meth-
ods. ACM Comp. Surveys, 30(2):170–231, 1998.

[25] A. Guttman. R-Trees: A Dynamic Index Structure for Spa-
tial Indexing. In Proceedings of the ACM International Con-
ference on Management of Data, SIGMOD, pages 47–57,
Boston, MA, June 1984.

[26] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Gener-
alized Search Trees for Database Systems. In Proceedings
of the International Conference on Very Large Data Bases,
VLDB, pages 562–573, Sept. 1995.

[27] G. R. Hjaltason and H. Samet. Improved Bulk-Loading Al-
gorithms for Quadtrees. In Proceedings of the ACM work-
shop on Advances in Geographic Information Systems, ACM
GIS, 1999.

[28] G. R. Hjaltason, H. Samet, and Y. J. Sussmann. Speeding
up Bulk-Loading of Quadtrees. In Proceedings of the ACM
workshop on Advances in Geographic Information Systems,
ACM GIS, 1997.

[29] G. M. Hunter and K. Steiglitz. Operations on images using
quad trees. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 1(2):145–153, Apr. 1979.

[30] I. Kamel and C. Faloutsos. Hilbert R-tree: An Improved
R-tree Using Fractals. In Proceedings of the International
Conference on Very Large Data Bases, VLDB, Sept. 1994.

[31] I. Kamel, M. Khalil, and V. Kouramajian. Bulk Insertion
in Dynamic R-Trees. In Proc. of the Intl. Symp. on Spatial
Data Handling, SDH, pages 31–42, 1996.

[32] G. Kedem. The Quad-CIF tree: A Data Structure for Hierar-
chical On-line Algorithms. In Proc. of the Design Automa-
tion Conference, DAC, pages 352–357, 1982.

[33] T. M. Klein, K. J. Parzygnat, and A. L. Tharp. Optimal B-
tree Packing. Information Systems, 16(2):239–243, 1991.

[34] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR:
A Simple and Efficient Algorithm for R-Tree Packing. In
Proceedings of the International Conference on Data Engi-
neering, ICDE, pages 497–506, Apr. 1997.

[35] D. B. Lomet. Grow and Post Index Trees: Roles, Techniques
and Future Potential. In Proceedings of the International
Symposium on Advances in Spatial Databases, SSD, Aug.
1991.

[36] D. R. Morrison. PATRICIA - Practical Algorithm to Re-
trieve Coded in Alphanumeric. Journal of the ACM, JACM,
15(4):514–534, 1968.

[37] R. C. Nelson and H. Samet. A Consistent Hierarchical Rep-
resentation for Vector Data. In Proceedings of the ACM SIG-
GRAPH, pages 197–206, Aug. 1986.

[38] J. A. Orenstein. Multidimensional Tries Used for Associa-
tive Searching. Information Processing Letters, 14(4):150–
157, 1982.

[39] J. A. Orenstein and T. Merrett. A Class of Data Structures
for Associative Searching. In Proceedings of the ACM Sym-
posium on Principles of Database Systems, PODS, 1984.

[40] M. H. Overmars and J. van Leeuwen. Dynamic Multi-
Dimensional Data Structures Based on Quad- and K - D
Trees. Acta Informatica, 17(3):267–285, 1982.

[41] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cube-
tree: Organization of and Bulk Updates on the Data Cube. In
Proceedings of the ACM International Conference on Man-
agement of Data, SIGMOD, pages 89–99, May 1997.

[42] N. Roussopoulos and D. Leifker. Direct Spatial Search on
Pictorial Databases Using Packed R-Trees. In Proceedings
of the ACM International Conference on Management of
Data, SIGMOD, pages 17–31, May 1985.

[43] H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, 1990.

[44] H. Samet and R. E. Webber. Storing a Collection of Poly-
gons using Quadtrees. ACM Transactions on Graphics,
TOG, 4(3):182–222, 1985.

[45] J. S. Vitter. External Memory Algorithms and Data Struc-
tures: Dealing with MASSIVE DATA. ACM Computing
Surveys, 33(2):209–271, June 2001.


