Probabilistic Databases with Correlated Tuples

Prithviraj Sen Amol Deshpande Lise Getoor

Department of Computer Science University of Maryland, College Park.

Uncertain/Probabilistic Databases, 2006

Probabilistic Databases with Correlated Tuples -prithvi, amol, lise

- Abundance of uncertain data.
- Numerous approaches proposed to handle uncertainty [BP82, IWL84, FR97, LLRS97, CKP03, DS04, Wid05, CBL06].
- However, most models make assumptions about data uncertainty that restricts applicability.

Need for a Database model with

- a model of uncertainty that can capture correlations
- simple and intuitive semantics that is readily understood and defines precise answers to every query

Applications:

- "Dirty" databases [CP87, DS96, AFM06]: Arises while trying to integrate data from various sources.
- Sensor Networks [DGM⁺04]: Often shows strong spatial correlations, e.g., nearby sensors report similiar values.
- More applications: Pervasive computing, approximate string matching in DB systems [DS04] etc.

Additional motivation:

• Correlated tuples arise while evaluating queries [DS04].

Which theory to use?

Probability theory, Dempster-Schafer theory, Fuzzy Logic, Logic

. . .

At what level do we represent uncertainty?

Tuple level, Attribute level.

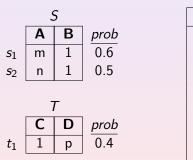
Approach to representing correlations?

Probabilistic Graphical Models

(include as special cases: Bayesian networks and Markov networks)

Review: Independent Tuple-based Probabilistic Databases Possible World Semantics [DS04]

Example borrowed from [DS04]:



possible worlds

instance	probability
$\{s_1, s_2, t_1\}$	0.12
$\{s_1, s_2\}$	0.18
$\{s_1, t_1\}$	0.12
$\{s_1\}$	0.18
$\{s_2, t_1\}$	0.08
$\{s_2\}$	0.12
$\{t_1\}$	0.08
Ø	0.12

Two simple concepts borrowed from probabilistic graphical models literature [Pea88]:

Tuple-based Random Variables

Associate every tuple t with a boolean valued random variable X_t .

Factors

• $f(\mathbf{X})$ is a function of a (small) set of random variables \mathbf{X} .

• $0 \le f(\mathbf{X}) \le 1$

- Associate with each tuple in the probabilistic database a random variable.
- Define factors on (sub)sets of tuple-based random variables to encode correlations.
- The probability of an instantiation of the database is given by the product of all the factors.

Suppose we want to represent mutual exclusivity between tuples s_1 and t_1 . In particular, let us try to represent the possible worlds:

		v	v	ſ				
S				instance	probability	X_{t_1}	X_{s_1}	f_1
	Α	В	prob	$\{s_1, s_2, t_1\}$	0	0	0	0
s 1	m	1	0.6	$\{s_1, s_2\}$	0.3	0	1	0.6
<i>s</i> ₂	n	1	0.5	$\{s_1, t_1\}$	0	1	0	0.4
				$\{s_1\}$	0.3	1	1	0
Т				$\{s_2, t_1\}$	0.2	$X_{s_2} \mid f_2$		
	С	D	prob	$\{s_2\}$	0		-	
t_1	1	р	0.4	$\{t_1\}$	0.2			.5
-				Ø	0	-	L O	.5

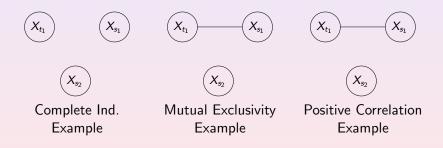
Suppose we want to represent positive correlation between t_1 and s_1 . In particular, let us try to represent the possible worlds:

possible worlds									
S				instance	probability	$\frac{X_{t_1}}{2}$	X_{s_1}	f_1	
	Α	В		$\{s_1, s_2, t_1\}$	0.2	0	0	0.4	
<i>s</i> 1	m	1		$\{s_1, s_2\}$	0.1	0	1	0.2	
s 2	n	1		$\{s_1, t_1\}$	0.2	1	0	0	
_	L			$\{s_1\}$	0.1	L	1	0.4	
Т				$\{s_2, t_1\}$	0		$X_{s_2} \mid f_2$		
	C	D		$\{s_2\}$	0.2				
t_1	1	р		$\{t_1\}$	0			.5	
				Ø	0.2		I U	.5	

Probabilistic Graphical Model representation

Definition

A *probabilistic graphical model* is graph whose nodes represent random variables and edges represent correlations [Pea88].

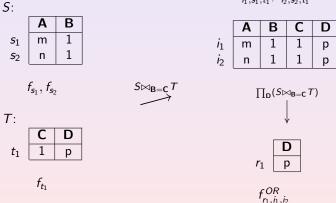


- Treat intermediate tuples as regular tuples.
- Carefully represent correlations between intermediate tuples, base tuples and result tuples to construct a probabilistic graphical model.
- Cast the probability computations resulting from query evaluation to *inference* in probabilistic graphical models.

Query Evaluation Example

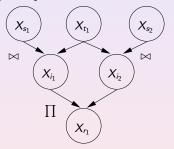
Compute $\prod_{\mathbf{D}} (S \bowtie_{\mathbf{B}=\mathbf{C}} T)$

 $f_{i_1,s_1,t_1}^{AND}, f_{i_2,s_2,t_1}^{AND}$



Query Evaluation Example: Prob. Graphical Model

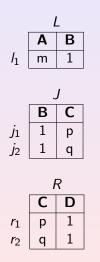
• Query evaluation problem in Prob. Databases: Compute the probability of the result tuple summed over all possible worlds of the database [DS04].

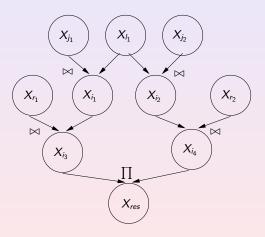


- Equivalent problem in prob. graph. models: *marginal probability* computation.
- Thus we can use inference algorithms (e.g., VE [ZP94]).

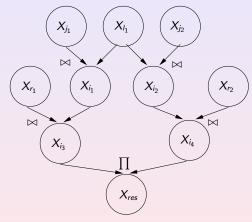
Comparison with other probability computation approaches

Compute $\prod_{\{\}} (L \bowtie J \bowtie R)$:



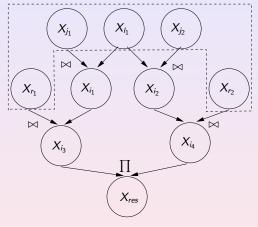


Comparison with Extensional Semantics [FR97, DS04]



- Is not guaranteed to match possible world semantics.
- Safe plans [DS04] return tree-structured graphical models.

Comparison with Intensional Semantics [FR97, DS04]



 $(X_{r_1} \land X_{j_1} \land X_{l_1}) \lor (X_{l_1} \land X_{j_2} \land X_{r_2})$

- Work with a subgraph of the graph. model.
- Inference algorithms can exploit graph structure better.

- Introduced Probabilistic Databases with correlated tuples.
- Borrowed ideas from Probabilistic Graphical Models to represent such correlations.
- Cast the query evaluation problem as an inference problem.
- Future Work:
 - Ways to restructure graphical model to speed up inference.
 - Share/reuse computation to speed up inference.
 - Explore the use of approximate inference methods [GRS96, JGJS99].

Thank You.

Probabilistic Databases with Correlated Tuples -prithvi, amol, lise

References

- Periklis Andritsos, Ariel Fuxman, and Renee J. Miller. Clean answers over dirty databases. In International Conference on Data Engineering, 2006.
- Bill P. Buckles and Frederick E. Petry.
 A fuzzy model for relational databases.
 International Journal of Fuzzy Sets and Systems, 1982.
- Sunil Choenni, Henk Ernst Blok, and Erik Leertouwer. Handling uncertainty and ignorance in databases: A rule to combine dependent data.

In Database Systems for Advanced Applications, 2006.

- Reynold Cheng, Dmitri Kalashnikov, and Sunil Prabhakar.
 Evaluating probabilistic queries over imprecise data.
 In International Conference on Management of Data., 2003.
- Roger Cavallo and Michael Pittarelli. The theory of probabilistic databases.

In International Conference on Very Large Data Bases, 1987.

- Amol Deshpande, Carlos Guestrin, Sam Madden, Joseph M. Hellerstein, and Wei Hong.
 Model-driven data acquisition in sensor networks.
 In International Conference on Very Large Data Bases, 2004.
- Debabrata Dey and Sumit Sarkar.
 A probabilistic relational model and algebra.
 ACM Transactions on Database Systems., 1996.
- Nilesh Dalvi and Dan Suciu.
 Efficient query evaluation on probabilistic databases.
 In International Conference on Very Large Data Bases, 2004.
- Norbert Fuhr and Thomas Rolleke. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems, 1997.
- Walter R. Gilks, Sylvia Richardson, and David J. Spiegelhalter.

Markov Chain Monte Carlo in Practice. Chapman & Hall, 1996.

- Tomasz Imielinski and Jr. Witold Lipski. Incomplete information in relational databases. Journal of the ACM., 1984.
- Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul.
 An introduction to variational methods for graphical models. *Machine Learning*, 1999.
- Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and V. S. Subrahmanian.

Probview: a flexible probabilistic database system. ACM Transactions on Database Systems., 1997.

Judaea Pearl.

Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

Probabilistic Databases with Correlated Tuples -prithvi, amol, lise

Trio: A system for integrated management of data, accuracy, and lineage.

In Proceedings of the Biennial Conference on Innovative Data Systems Research, 2005.

Nevin Lianwen Zhang and David Poole.

A simple approach to bayesian network computations. In *Canadian Conference on Artificial Intelligence*, 1994.

