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Measurements of network traffic have shown that self-similarity is a ubiquitous phenomenon span-
ning across diverse network environments. In previous work, we have explored the feasibility of
exploiting long-range correlation structure in self-similar traffic for congestion control. We have
advanced the framework of multiple time scale congestion control and shown its effectiveness at
enhancing performance for rate-based feedback control. In this article, we extend the multiple time
scale control framework to window-based congestion control, in particular, TCP. This is performed
by interfacing TCP with a large time scale control module that adjusts the aggressiveness of band-
width consumption behavior exhibited by TCP as a function of “large time scale” network state,
that is, information that exceeds the time horizon of the feedback loop as determined by RTT. How
to effectively utilize such information—due to its probabilistic nature, dispersion over multiple
time scales, and realization on top of existing window-based congestion controls—is a nontrivial
problem. First, we define a modular extension of TCP (a function call with a simple interface that
applies to various flavors of TCP, e.g., Tahoe, Reno, and Vegas) and show that it significantly im-
proves performance. Second, we show that multiple time scale TCP endows the underlying feedback
control with proactivity by bridging the uncertainty gap associated with reactive controls which
is exacerbated by the high delay-bandwidth product in broadband wide area networks. Third, we
investigate the influence of three traffic control dimensions—tracking ability, connection duration,
and fairness—on performance. Performance evaluation of multiple time scale TCP is facilitated by
a simulation benchmark environment based on physical modeling of self-similar traffic. We expli-
cate our methodology for discerning and evaluating the impact of changes in transport protocols
in the protocol stack under self-similar traffic conditions and discuss issues arising in comparative
performance evaluation under heavy-tailed workloads.
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1. INTRODUCTION

1.1 Background

Measurements of local and wide area traffic have shown that network
traffic exhibits variability at a wide range of time scales and that this
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is a ubiquitous phenomenon which has been observed across diverse
networking contexts, from Ethernet to ATM, VBR video, and WWW traffic
[Crovella and Bestavros 1996; Garret and Willinger 1994; Huang et al. 1995;
Leland et al. 1994; Paxson and Floyd 1994; Willinger et al. 1995]. A number
of performance studies have shown that self-similarity can have a detrimen-
tal impact on network performance leading to amplified queueing delay and
packet loss rate [Adas and Mukherjee 1995; Addie et al. 1995; Duffield and
O’Connel 1993; Likhanov et al. 1995; Norros 1994]. From a queueing perspec-
tive, a principal distinguishing characteristic of long-range dependent traffic
is that queue length distribution decays much more slowly (i.e., polynomially)
vis-a-vis short-range-dependent traffic sources that exhibit exponential decay.
These performance effects, to some extent, can be curtailed by delimiting the
buffer size which has led to a “small buffer capacity-large bandwidth” resource
provisioning strategy [Grossglauser and Bolot 1996; Ryu and Elwalid 1996]. A
more comprehensive discussion of performance issues is provided in Park and
Willinger [2000a].

The problem of controlling self-similar network traffic is still in its infancy.
By the control of self-similar traffic, we mean the problem of regulating traf-
fic flow, possibly exploiting the properties associated with self-similarity and
long-range dependence, such that network performance is optimized. The “good
news” within the “bad news” with respect to performance effects is long-range
dependence which, by definition, implies the existence of nontrivial correlation
structure at larger time scales that may be exploitable for traffic control pur-
poses, information to which current traffic control algorithms are impervious.
Long-range dependence and self-similarity of aggregate traffic can be shown to
persist at multiplexing points in the network as long as connection durations
or object sizes being transported are heavy-tailed, irrespective of buffer capac-
ity and details in the protocol stack or network configuration [Feldmann et al.
1998; Park et al. 1996]. How to effectively utilize large time scale, probabilis-
tic information afforded by traffic characteristics to improve performance is a
nontrivial problem.

In previous work [Tuan and Park 1999] we have explored the feasibility of
exploiting long-range correlation structure in self-similar network traffic for
congestion control. We introduced the framework of multiple time scale con-
gestion control (MTSC) and showed its effectiveness at enhancing performance
for rate-based feedback control. We showed that by incorporating correlation
structure at large time scales into a generic rate-based feedback congestion con-
trol, we are able to improve performance significantly. In Tuan and Park [2000],
we applied MTSC to the control of real-time multimedia traffic, in particular,
MPEG video, using adaptive redundancy control, and we showed that end-to-
end quality of service (QoS) is significantly enhanced by utilizing large time
correlation structure in both the background and source traffic. The real-time
traffic control framework is called multiple time scale redundancy control which
improves on earlier work in packet-level adaptive forward error correction for
end-to-end QoS control [Park and Wang 1999; Park 1997a].

1.2 New Contributions

In this article, we extend the multiple time scale traffic control framework to
reliable transport and window-based congestion control based on TCP. This
ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 2, April 2000
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is performed by interfacing TCP with a large time scale control module that
adjusts the aggressiveness of bandwidth consumption behavior exhibited by
TCP as a function of “large time scale” network state (i.e., information that
exceeds the time horizon of the feedback loop as determined by round-trip
time (RTT)). The adaptation of MTSC to TCP is relevant due to the fact that
the bulk of current Internet traffic is governed by TCP, and this is expected
to persist due to the growth and dominance of HTTP-based World Wide Web
traffic [Arlitt and Williamson 1996; Barford and Crovella 1998; Crovella and
Bestavros 1996]. The effective realization of MTSC for TCP is nontrivial due
to the following constraints: (a) large time scale correlation structure of net-
work state is inferred by observing the output behavior of a single TCP con-
nection as it shares network resources with other flows at bottleneck routers;
(b) we engage probabilistic, large time scale information while instituting min-
imal changes confined to the sender side; (¢) we construct a uniform mecha-
nism in the form of a function call with a simple well-defined interface that
is applicable to a range of TCP flavors; (d) performance of multiple time scale
TCP should degenerate to that of TCP when network traffic is short-range
dependent.

Our contribution is as follows. First, we construct a robust modular exten-
sion of TCP, a function call with a simple well-defined interface that adjusts a
single constant (now a variable) in TCP’s congestion window update. The same
extension applies to various flavors of TCP including Tahoe, Reno, Vegas, and
rate-based extensions. We show that the resulting protocol, multiple time scale
TCP (TCP-MT), significantly improves performance. Performance gain is mea-
sured by the ratio of reliable throughput of TCP-MT versus the throughput of
the corresponding TCP without the large time scale component. We show that
performance gain is increased as long-range dependence is increased approach-
ing that of measured network traffic.

Second, we show that multiple time scale TCP endows the underlying feed-
back control with proactivity by bridging the “uncertainty gap” associated with
reactive controls, which is exacerbated by the high delay-bandwidth product of
broadband wide area networks [Kim and Farber 1995; Lakshman and Madhow
1997; Pecelli and Kim 1995]. As RTT increases, the information conveyed by
feedback becomes more outdated, and the effectiveness of reactions undertaken
by a feedback control diminishes. TCP-MT, by exploiting large time scale in-
formation exceeding the scope of the feedback loop, can affect control actions
that remain timely and accurate, thus offsetting the cost incurred by reactive
control. It is somewhat of an “irony” that self-similar burstiness which, in ad-
dition to its first-order performance effects causes second-order effects in the
form of concentrated periods of over- and under-utilization, can nonetheless
help mitigate the Achilles’ heel of feedback traffic controls which has been a
dominant theme of congestion control research in the 1990s.

Third, we investigate the influence of three traffic control dimensions—
tracking ability, connection duration, and fairness—on performance. Tracking
ability refers to a feedback control’s ability to track system state by its inter-
action with other flows at routers. It is relevant when performing online esti-
mation of large time scale correlation structure using per-flow input/output be-
havior. TCP-MT yields the highest performance gain when connection duration
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is long. Since network measurements have shown that most connections are
short-lived but the bulk of traffic is contributed by the few long-lived ones [Feld-
mann et al. 1998; Park et al. 1996], effectively managing the long-lived ones,
by Amdahl’s law, is important for system performance. We complement this
basic focus by exploring ways of actively managing short connections using a
priori and shared information across connections. With respect to fairness, we
show that the bandwidth sharing behavior of TCP-MT is similar to that of TCP,
neither improving nor diminishing the well-known (un)fairness properties as-
sociated with TCP [Lakshman and Madhow 1997].

1.3 Simulation-Based Protocol Evaluation Under Self-Similar Traffic

Our performance evaluation method is based on a simulation benchmark en-
vironment derived from physical modeling of self-similar network traffic [Park
et al. 1996]. Setting up a framework where the impact of changes in transport
protocols (under self-similar traffic conditions) can be effectively discerned and
evaluated is a nontrivial problem. Feedback control induces a closed system
where the very control actions that are subject to modification can affect the
traffic properties and performance being measured. To yield meaningful ex-
perimental evaluations and facilitate a comparative benchmark environment
where “other things being equal” holds, the meaning of self-similar traffic con-
ditions needs to be made precise and well-defined. Physical models show that
self-similarity in network systems is primarily caused by an application layer
property, heavy-tailed objects on WWW servers, UNIX file servers [Arlitt and
Williamson 1996; Crovella and Bestavros 1996; Park et al. 1996], whose trans-
port, as mediated by the protocol stack, induces self-similarity at multiplexing
points in the network. Moreover, the degree of long-range dependence as mea-
sured by the Hurst parameter is directly determined by the tail index (i.e.,
heavy-tailedness) of heavy-tailed distributions. Thus by varying the tail index
in the application layer, we can influence, and keep constant across different
experimental set-ups, the intrinsic propensity of the system to generate and
experience self-similar burstiness in its network traffic while at the same time
incorporating the modulating influence of transport protocols in the protocol
stack. Related to the comparative performance evaluation issue, we discuss
problems associated with sampling from heavy-tailed distributions, and the
solution we employ to facilitate comparative evaluation.

The rest of the article is organized as follows. In the next section, we give a
brief overview of self-similar network traffic, its predictability properties, and
the method employed to achieve online estimation of large time scale correla-
tion structure. Section 3 describes the multiple time scale congestion control
framework for TCP, the form of the large time scale module including its in-
stantiation on top of Tahoe, Reno, Vegas, and rate-based extensions. Section 4
discusses simulation issues and describes the performance evaluation envi-
ronment employed in the article. In Section 5 we present performance results
of TCP-MT and show its efficacy under varying resource configurations, cou-
plings with different TCP flavors, round-trip times, long-range dependence, and
resource sharing behavior as the number of TCP-MT connections competing for
network resources is increased. We conclude with a discussion of our results
and future work.
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2. TECHNICAL BACKGROUND AND SET-UP

2.1 Self-Similarity and Long-Range Dependence

Let {X;;t € Z,} be a time series that represents the trace of data traffic mea-
sured at some fixed time granularity. We define the aggregated series Xi(m) as

1
)(i(m) = E()(im—m-&-l + o+ )(lm)

That is, X; is partitioned into blocks of size m, their values are averaged, and
i is used to index these blocks. Let (%) and 7™ (k) denote the autocorrelation
functions of X; and Xi(m), respectively, where % is the time lag. Assume X; has
finite mean and variance. X; is asymptotically second-order self-similar with
parameter H (% <H<1)ifforallk>1,

rm(k) ~ %((k +1?% —2B?H + (R — 1*H), m— oo. 1)

H is called the Hurst parameter and its range % < H < 1 plays a crucial role.
The significance of (1) stems from the following properties being satisfied:

@ r"E)~rk),
(i)  r(e)~ck™®,

as k — oo, where 0 < 8 < 1 and ¢ > 0 is a constant. Property (i) states that
the correlation structure is preserved with respect to time aggregation, and
it is in this second-order sense that X; is “self-similar.” Property (ii) says that
r(k) decays hyperbolically which implies >, ,r(k) = co. This is referred to as
long-range dependence (LRD). The second property hinges on the assumption
that % <H<1as H=1- /2. The relevance of asymptotic second-order self-
similarity for network traffic derives from the fact that it plays the role of a
“canonical” model where the on/off model of Willinger et al. [1995],! Likhanov
et al.’s [1995] source model, and the M/G/oco queueing model with heavy-tailed
service times [Cox 1984], among others, all lead to second-order self-similarity.
In general, self-similarity and long-range dependence are not equivalent. For
example, fractional Brownian motion with H = % is self-similar but it is not
long-range dependent. For second-order self-similarity with H > %, however,
one implies the other and it is for this reason that we sometimes use the terms
interchangeably within the traffic modeling context. A more comprehensive
discussion can be found in Park and Willinger [2000b].

There is an intimate relationship between heavy-tailed distributions and
long-range dependence in the networking context in that the former can be
viewed as causing the latter [Feldmann et al. 1998; Park et al. 1996; Willinger
et al. 1995]. We say a random variable Z has a heavy-tailed distribution if

Pr{Z > x} ~ cx™®, x— oo, (2)

IThat is, via its relation to fractional Brownian motion and its increment process, fractional
Gaussian noise.
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where 0 < a < 2 is called the tail index or shape parameter and c is a positive
constant. That is, the tail of the distribution, asymptotically, decays hyperboli-
cally. This is in contrast to light-tailed distributions (e.g., exponential and Gaus-
sian) which possess an exponentially decreasing tail. A distinguishing mark of
heavy-tailed distributions is that they have infinite variance for 0 < o < 2, and
if 0 < « < 1, they also have an unbounded mean. In the networking context,
we are primarily interested in the case 1 < o < 2. This is due to the fact that
when heavy-tailedness causes self-similarity, the Hurst parameter is related to
the tail index by H = (3 — @)/2. A frequently used heavy-tailed distribution is
the Pareto distribution whose distribution function is given by

Pr{Z <x} =1-(b/x)",

where 1 < a < 2 is the shape parameter and 0 < b < x is called the location
parameter. Its mean is given by ab/(« — 1). A random variable obeying a heavy-
tailed distribution exhibits extreme variability. Practically speaking, a heavy-
tailed distribution gives rise to very large values with nonnegligible probability
so that sampling from such a distribution results in the bulk of values being
“small” but a few samples having “very” large values. Not surprisingly, heavy-
tailedness has an impact on sampling by slowing down the convergence rate
of the sample mean to the population mean, dilating it as the tail index «
approaches 1. Sampling and convergence issues are discussed in Section 4.3.

2.2 Long-Range Dependence and Predictability

Given X; and Xi(m) , we are interested in estimating Pr{Xi(erf | Xi(m)} for some

suitable aggregation level m > 1. If X; is short-range dependent, we have

Pr{X | X"} ~ Pr(x!"}
for large m whereas for long-range dependent traffic, correlation provided by
conditioning is preserved. Thus given traffic observations a, b > 0 (a # b) of the
“recent” past corresponding to time scale m,

Pr{X} | X" = b} # Pr{X} | X" = a}
and this information may be exploited to enhance congestion control actions
undertaken at smaller time scales. We employ a simple, easy-to-implement,
(both online and offline) prediction scheme to estimate Pr{Xi(ﬁ) | Xi(’”)} based on
observed empirical distribution. We note that optimum estimation is a difficult
problem for LRD traffic [Beran 1994], and its solution is outside the scope of
this article. Our estimation scheme provides sufficient accuracy with respect
to extracting predictability and is computationally efficient; however, it can
be substituted by any other scheme if the latter is deemed “superior” with-
out affecting the conclusions of our results. To facilitate normalized contention
levels, we define a map L : R, — [1, h], monotone in its argument, and let
x™ = L(X,™). Thus x,™ ~ 1 is interpreted as the aggregate traffic level at
time scale m being “low” and x™ ~ h is understood as the traffic level being
“high”. The process xi(m) is related to the level process used in Duffield and

Whitt [2000] for modeling LRD traffic.

ACM Transactions on Modeling and Computer Simulation, Vol. 10, No. 2, April 2000



158 < K. ParkandT. Tuan

alpha=1.05, T=1.0sec alpha=1.05, T=5.0sec

o

[
4

Relative Frequency

Relative Frequency

Traffic Level L2 1 Traffic Level L1 Traffic Level L2

alpha=1.95, T=1.0sec alpha=1.95, T=5.0sec

Traffic Level L1

I

5 o o o

Relative Frequency
®o

Relative Frequency

Traffic Level L2 1 Traffic Level L1 Traffic Level L2 T

Traffic Level L1

Fig. 1. Top row: Probability densities with Ly conditioned on L; for « = 1.05 with time scales of
1 sec (left) and 5 sec (right). Bottom row: Corresponding probability densities with Ly conditioned
on L, for = 1.95.

Figure 1 shows the estimated conditional probability densities for « = 1.05
(long-range dependent) and 1.95 (short-range dependent) traffic for absolute
time scales? T = 1 second and 5 seconds. The quantization level is set to » = 8.
We use L; and Ly without reference to the specific time index i to denote con-
secutive quantized traffic levels x}””, xff)l Therefore, in a causal system, the
pair (L1, Ly) can be used to represent the current observed network traffic level
and the predicted traffic level based on the current observation, respectively.
For the aggregate throughput traces with « = 1.05 (Figure 1, top row), the
3-D conditional probability densities can be seen to be skewed diagonally from
the lower left side toward the upper right side. This indicates that if the cur-
rent traffic level L, is low, say L; = 1, chances are that Ly will be low as well.
That is, the probability mass of Pr{Ly | L; = 1} is concentrated toward 1. Con-
versely, the plots show that Pr{Ls | L; = 8} is concentrated toward 8. Thus
for « = 1.05 traffic, conditioning at time scales ¢ = 1 slc and 5 slc does help
predict the future. The corresponding probability densities for « = 1.95 traffic
are shown in Figure 1 (bottom row). We observe that the shape of the distribu-
tion is insensitive to conditioning (i.e., Pr{Ls | L1} ~ Pr{Ls}) which implies a
lack of predictability structure at large time scales. At short time scales, both
a = 1.05 and 1.95 traffic contain predictability, structure toward which current
protocols, feedback or otherwise, are geared. The large time scale correlation

2The corresponding aggregation levels, expressed with respect to Xi('"), are m = 100 and 500.
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Fig. 2. (a): Selective slope adjustment (i.e., slope shift) during linear increase phase for high- and
low-contention periods. (b): Selective “DC” level adjustment (i.e., level shift) between high- and
low-contention periods.

structure is empirically observed to stay invariant in the 1-10 second range (cf.
the distributions for 1- and 10-second time scales). Due to this robustness, as
far as predictability is concerned, picking the exact time is not a critical com-
ponent. On the other hand, to achieve reasonable responsiveness to changes
in large time scale network state, we choose a time scale closer to 1 than 10
seconds. We use a 2-second time scale for this reason in the rest of the article.

3. MULTIPLE TIME SCALE TCP

3.1 Multiple Time Scale Congestion Control

The framework of multiple time scale congestion control [Tuan and Park 1999],
in general, allows for n-level time scale congestion control for n > 1 where infor-
mation extracted at n separate time scales is cooperatively engaged to modulate
the output behavior of the feedback congestion control residing at the lowest
time scale (i.e., n = 1). The ultimate goal of MTSC is to improve performance
vis-a-vis the congestion control consisting of feedback congestion control alone.
Thus even when n > 1, if the large time scale modules are deactivated, then
the congestion control degenerates to the original feedback congestion control.

We distinguish two strategies for engaging large time scale correlation struc-
ture to modulate the traffic control behavior of a feedback congestion control.
The first method, selective slope control (SSC), adjusts the slope of linear in-
crease during the linear increase phase of linear increase/exponential decrease
congestion controls based on the predicted large time scale network state. If
network contention is low, then the slope is increased, and vice versa when net-
work contention is high. This is depicted in Figure 2(a). Selective slope control
is motivated by TCP performance evaluation work [Kim 1995; Kim and Farber
1995] which shows that the conservativeness or asymmetry of TCP’s congestion
control (necessitated by stability considerations) leads to inefficient utilization
of bandwidth that is especially severe in large delay-bandwidth product net-
works. By varying the slope across persistent network states, SSC is able to
modulate the aggressiveness of the feedback congestion control’s bandwidth
consumption behavior without triggering instability; the slope is held constant
over a sufficiently large time interval exceeding the RTT or feedback loop by
an order of magnitude or more. Due to the large gap in time scale, the feedback
congestion control has ample time to converge, and it perceives the slope shifts
as stemming from a quasistationary system for which it is provably stable. We
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have shown the effectiveness of SSC in the context of rate-based feedback con-
gestion control [Tuan and Park 1999], and we adopt it as the basic strategy for
realizing multiple time scale TCP.

The second method for utilizing large time scale correlation structure in feed-
back traffic controls is called selective level control (SLC), and it additively
adjusts output rate as a function of large time scale network state, increasing
the “DC” level when network contention is low and decreasing it when the op-
posite is true. This is depicted in Figure 2(b). SLC is a more general scheme not
necessarily customized toward congestion control. For example, we have em-
ployed SLC successfully for real-time multimedia traffic control where adaptive
packet-level forward error correction is applied to facilitate timely arrival and
decoding of MPEG I video frames when retransmission is infeasible [Tuan and
Park 2000]. It is a UDP-based videoconferencing implementation running over
UNIX and Windows NT where SLC is built on top of AFEC, an adaptive redun-
dancy control protocol for achieving user-specified end-to-end QoS [Park and
Wang 1999; Park 1997a].

3.2 Structure of TCP-MT

TCP-MT consists of two components: the underlying feedback control (i.e., par-
ticular flavor of TCP) and the large time scale module implementing SSC. The
large time scale module, in turn, is composed of three parts: an explicit pre-
diction module that extracts large time scale correlation structure online, an
aggressiveness schedule that determines the final magnitude of slope that is
passed to TCP, and a metacontrol that adjusts the range of slope values to be
used by the aggressiveness schedule. SSC bases its computation on the under-
lying feedback congestion control’s per-flow, observable input—output behavior
(number of TCP segments transmitted), as well as incoming ACKs. Only the
sender-side is augmented by the large time scale module; the receiver-side stays
untouched. The overall structure of TCP-MT is depicted in Figure 3. The next
sections describe the various components of TCP in more detail including the
specific instantiations on top of Tahoe, Reno, and Vegas, and a rate-based ex-
tension of TCP.

3.3 Explicit Prediction

Per-connection, online estimation of conditional probability densities
Pr{L, | L1 = ¢}, £ € [1, A], is achieved via a conditional execution estimator.
In TCP, there are a number of approaches (e.g., timeout and ACK arrival pat-
tern, congestion window update, throughput behavior) that can be employed
to estimate network state. We use a uniform approach to inferring persistent
network state where Xi(m) (aggregation m corresponds to the time scale T7) is
defined to be the number of bits transmitted by TCP over a 7}, time interval,
which is a simple observable quantity at the sender side. Although timeouts
and ACK arrivals can be used directly to estimate network state, a drawback
of this method lies in its dependence on the idiosyncracies of the underlying
TCP congestion control (different versions of TCP, principally, diverge in the
mechanism that they employ to estimate and react to the network state) that
would require nontrivial customization to couple SSC on top of each TCP. Our
approach is predicated on the fact that, whatever the underlying TCP’s pri-
vate estimation and control method, ultimately its impact and effectiveness is
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Fig. 3. Structure of TCP-MT. Information extracted at large time scale Ty, in the SSC module
is used to modulate the bandwidth consumption behavior of TCP acting at time scale Ts of the
feedback loop (77, > Tx).

captured and conveyed by the sender’s throughput behavior which is the quan-
tity we employ. The same approach was successfully used in the rate-based
congestion control context [Tuan and Park 1999]. We note that the meaning of
the quantization x\™ = L(X,"™) is reversed: high X, implies large “available
bandwidth” and small X, implies that available bandwidth is small.

Online estimation can be accomplished using O(1) operations at every update
interval, that is, SSC’s time scale T7. On the sender side, the explicit prediction
module of SSC maintains a two-dimensional array CondProb [-][-] of size A x
(h+1), one row for each ¢ € [1, h]. The last column of CondProb, CondProbl[{]
[A+ 1], is used to keep track of Ay, the number of blocks observed thus far
whose traffic level maps to ¢. For each ¢’ € [1, h], CondProb[£][¢'] maintains the
count A, . Since

Pr{ilo=0"|Li=4¢}=hy/hy

in the long run, having the table CondProb is tantamount to knowing the condi-
tional probability densities. Given a current observed traffic level x > 0 at time
scale Tr,, we compute the conditional expectation ¢ = E[Ly|L; = x] which is
then used to index the aggressiveness schedule. A discussion of the conditional
mean as a predictor for long-range dependent traffic can be found in Beran
[1994].

3.4 Aggressiveness Schedule

In the application of selective slope adjustment, SSC makes the following as-
sumptions about the underlying TCP. The magnitude of congestion window
changes in TCP is parameterized by an aggressiveness constant a > 0, typically
a = 1 for the TCP flavors considered, and a is replaced by an aggressiveness
variable &. That is, it is turned into a control variable. We use TCP; to denote
the parameterized version of TCP. TCP; degenerates to TCP if & = a. TCP; is
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more aggressive than TCP; if £’ > & since the slope of increase in the linear
increase phase is strictly greater in one over the other. Coupling of the large
time scale module with TCP is completed by setting & = (Ly), where Ly is the
predicted contention level at time scale T;, computed by the explicit prediction
module. &(-) is called the aggressiveness schedule and is a decreasing function
of Ly = E[L, | L1]. A specific schedule of interest is the inverse linear schedule
given by

s A— A s
e(Lg) = h_;l(h—Lz)—i-a, Ly € [1, A,
where A represents the maximum aggressiveness level. Ly = 1 yields the

largest slope, and thus, effects the most aggressive action, while Ly = h yields
the least aggressive action reducing to the default slope £ = a. In the latter,
TCP-MT degenerates to the default action of its underlying TCP congestion con-
trol. It is due to this asymmetry (motivated by Kim [1995] and Kim and Farber
[1995]) that we call selective slope control a form of selective aggressiveness
control.> The metacontrol is responsible for setting the maximum slope value
A which, then, in the inverse linear schedule, determines the rest of the values.
More generally, the aggressiveness schedule is made to satisfy

<l = et)>el),

and each value ¢(¢) can be computed separately, that is, independently of the
other values of ¢(-) by the metacontrol. For TCP-MT, we have used the inverse
linear schedule as the default aggressiveness schedule. The generalized sched-
ule (used in multiple time scale redundancy control for real-time data trans-
port [Tuan and Park 2000]) can yield slightly improved performance, however,
at the cost of more overhead for estimation. Moreover, the individually esti-
mated ¢(¢) values are approximated by a linear aggressiveness schedule [Tuan
and Park 2000]. It is for these reasons that we use the inverse linear schedule
in this article. The effect of using a nonlinear inverse schedule, e(Ly) = h/Ls, is
studied in Tuan and Park [1999]. The threshold schedule,

A, ife<6, 06ell,h],
e() = .
a, otherwise,

is a performance evaluation tool that is used to discern the impact of statically
varying aggressiveness. As 0 is increased, the underlying congestion control is
made more aggressive.

3.5 Metacontrol

The maximum aggressiveness parameter A can be set to a fixed a priori value
or, more generally, it can be adjusted dynamically as a function of network state.
Since A itself governs the feedback control behavior of the small time scale con-
gestion control (i.e., TCP), dynamic adjustment of A is a form of metacontrol.
For a stationary or quasistationary (i.e., piecewise stationary) network envi-
ronment, A is well-defined and the problem becomes one of designing a control
that converges to the equilibrium value of A; call it A*. A symmetric control

3The generalization to & < a is of interest and a task for future work.
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Table I. Coupling of SSC with Different Flavors of TCP

[ [ Feedback Congestion Control [ Coupling with SSC [
T&?E\ﬁleoréo cwnd < cwnd+ cTJlnd s cwnd < cwnd+ ;(Lfnzzi 5
ssthresh <— cwnd/2 ssthresh <— cwnd(L o)
cwnd+ —L— if Diff <a, cwnd+ 2520 if Diff <a,
TCP Vegas | cwnd < { cwnd, ifa <Diff <B, | cwnd < cwnd, if o < Diff < B,
cwnd—1, if Diff > B cwnd—1, if Diff > B
_a 3 s(Lz) .
TCP Rate cwnd <— cwndt cu;nd ’ 1? ARTT<0, cwnd <— cwnd+ cu:nd’ lf ARTT<D,
cwnd— 457 b, 11 ARTT=0 cwnd— pton b, if ARTT=0
Rate-Based dh _ s, if dy /dr>0, dr _ e(Lgy), if dy/dr>0,
dt —ba, if dy/dr<0 dt —bn,  if dy/dr<0

law that converges to A* under stationary and quasi-stationary conditions is
given by

dA (v, if dy,/dA, >0,

dt {—v, if dy,/dA, <O,

where v > 0 is an adjustment factor, y > 0 is throughput, and ¢ € [1, A].
The control actions are conditioned on the current observed contention level
Ly = ¢ € [1,h], and dy,/dA, is computed with respect to the latest time block
classified into the same level ¢, ¢ € [1, h]. Stability analysis of symmetric con-
gestion controls of the preceding form can be found in Park [1993]. When the
network system is “congestion susceptible” in the sense of having a unimodal
load-throughput curve, then asymmetry is needed to assure stability; other-
wise, a sufficiently small v > 0 suffices to achieve asymptotic stability [Park
1993]. The reason that the multilevel feedback control system (feedback con-
trol of TCP coupled with the control law governing SSC’s metacontrol) remains
stable in spite of a symmetric metacontrol lies in the large gap between the
time scales T}, and Ts. Since A is held constant over time intervals of duration
T;, while TCP’s congestion control is active, by the stability property of linear
increase/exponential decrease control and Ts <« T}, we have a quasistationary
system that achieves stability during each 7T}, interval. The parameter A influ-
ences the output rate of the overall system but it does not determine it: the small
time scale feedback congestion control acting at the time scale of Tg remains
the dominant factor.

At the start, A is set to the default aggressiveness of TCP (i.e., A(0) = a). For
each nonoverlapping time block of size 77, the maximum aggressiveness A is
dynamically adjusted such that the reliable throughput at each level L; is max-
imized based on the sign of throughput changes with respect to A conditioned
on the A levels. A is always kept positive and larger than a, A > a. With A
evolving in time, individual levels of aggressiveness are set in accordance with
the inverse linear schedule taking on values in the range [a, Al.

3.6 Instantiations of Couplings with TCP

This section describes the various instantiations of couplings with SSC based on
different flavors of TCP: Tahoe, Reno, Vegas, and a rate-based extension called
TCP Rate. We also show a rate-based congestion control for ATM as a reference
that points toward the broad applicability of our scheme. The couplings are
summarized in Table I.
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3.6.1 TCP Reno and Tahoe. Multiple time scale coupling for TCP Reno is
constructed in two separate forms, one for its Congestion Avoidance component
and another for Slow Start. The latter is used as a further optimization. By
straightforward extension, the same couplings also hold for TCP Tahoe.

Congestion Avoidance. During TCP Reno’s congestion avoidance phase, the
aggressiveness constant a as mentioned in Section 3.4 can be understood as the
slope of the congestion window change; that is, cwnd < cwnd + (a/cwnd) with
a = 1. The coupling replaces a with ¢(Ls) and affects the slope of the linear
increase phase such that a more aggressive—but still linear—climb is affected
during the next 77, interval if the overall network state is deemed beneficial to
do so.

Slow Start. Whenever a timeout occurs, we make an association between
the size of the congestion window cwnd and the current traffic level L;; that
is, cwnd = cwnd(L1). Based on the empirical association, we set the slow-start
threshold to ssthresh < cwnd(Ls) where cwnd is indexed by the predicted
traffic level Lo. Similar ways of coupling can be constructed for Reno’s Fast
Recovery mechanism for further optimization. The dominant performance gain,
however, is affected by congestion avoidance.

3.6.2 TCP Vegas. TCP Vegas [Brakmo and Peterson 1995] tries to keep an
amount of extra data in the network by maintaining the estimated difference
between the actual and expected rate, Diff, within prespecified target bounds
a < Diff < B. If successful, this induces a measure of proactivity by preventing,
and thus reducing, timeouts and retransmissions leading to a more continu-
ous, efficient transmission. The coupling with TCP Vegas is achieved through
its modified Congestion Avoidance mechanism by adjusting the slope of linear
increase when Diff < «. Thus, except for the triggering event, the coupling
instantiation is the same as for Reno and Tahoe.

3.6.3 TCP Rate. TCP Rate is a rate-based extension of TCP Reno that mod-
ifies Reno’s Congestion Avoidance procedure based on delay variation as shown
in Table I. In the control law, ARTT is the difference between two consecutive
RTT values, 7 is the packet spacing of the corresponding ACK packets, and
0 < a < b. Coupling replaces the constant a of the increase part with s(L,). We
use TCP Rate, in part, to study the influence of the feedback congestion control’s
“tracking ability” on the effectiveness of the large time scale module SSC. The
better the tracking ability of the underlying feedback congestion control with
respect to network state, the greater the performance gain due to coupling with
SSC.

3.6.4 Rate-Based Linear Increase/Exponential Decrease Control. The last
row of Table I shows a rate-based linear increase/exponential decrease feedback
congestion control in the context of ATM where A denotes data rate, y repre-
sents throughput, and §,b > 0 are positive constants. If increasing the data
rate results in increased throughput (i.e., dy/di > 0) then a linear increase
in the data rate is affected. Conversely, if increasing the data rate results in
a decrease in throughput (i.e., dy /d). < 0) then the data rate is exponentially
decreased. In general, condition dy/dA < 0 can be replaced by various mea-
sures of congestion. In the coupling, we replace the constant § by e(Ls). The
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qualitative performance results when running on top of UDP are analogous to
that of TCP, and are omitted in this article.

4. SIMULATION ISSUES FOR SELF-SIMILAR TRAFFIC CONTROL

4.1 Protocol Stack Influence

Setting up a framework where the impact of changes in transport
protocols under self-similar traffic conditions can be effectively evaluated is
a nontrivial problem. In traditional queueingoriented performance evaluation
for self-similar traffic [Erramilli et al. 1996; Grossglauser and Bolot 1996; Hey-
man and Lakshman 1996], a queue is fed with self-similar input, either from
analytic source models or traffic traces, and the resulting queueing behavior is
observed and analyzed. Simulation-based evaluation closely follows the analyt-
ical framework comprised of an open-loop queueing system where the input is
independent of network (i.e., queue) state. It is for this reason that simulation
is frequently used to validate analysis which, for self-similar traffic, has thus
far been successful only in the asymptotic case where buffer capacity is taken
to infinity. It is difficult to generalize this set-up to performance evaluation of
congestion control since self-similar network traffic, either in trace form or as
analytical source models, is produced by the very protocols being studied (the
“horse before the cart” problem), and furthermore, congestion controls typically
are feedback controls whose behavior is a function of network state leading to
a closed-loop system.

4.2 Physical Models

Physical models [Feldmann et al. 1998; Gilbert et al. 1999; Park et al. 1996]
address this problem by pushing the causality of self-similarity and burstiness
to the application layer which is supported by empirical evidence of file systems
and WWW servers possessing heavy-tailed object size distributions [Crovella
and Bestavros 1996; Park et al. 1996]. A comprehensive discussion of traffic
modeling issues, including physical models, can be found in Riedi and Will-
inger [2000]. The on-off model of Willinger et al. [1995], Likhanov et al.’s
[1995] source model, and the M/G/oco based input model [Cox 1984], pro-
vide the theoretical underpinning for why heavy-tailed traffic sources (mul-
tiplexed or singular) lead to self-similarity and long-range dependence as-
suming source behavior is independent of other sources and network state.
Park et al’s [1996] application layer model addresses dependency issues aris-
ing from feedback congestion control in closed-loop network systems. They
show that aggregate traffic self-similarity is an intrinsic property of net-
worked client/server systems mediated by TCP/UDP/IP protocol stacks where
the size of the objects being accessed is heavy-tailed. In particular, there ex-
ists a linear relationship between the heavy-tailedness measure of file size
distributions as captured by «, the shape parameter of the Pareto distribution,
and the Hurst parameter of the resulting multiplexed traffic. This is shown in
Figure 4(a). This relationship holds under the fact that dependencies arising
from interconnection coupling at bottleneck routers—which affect the behav-
ior of transport layer feedback congestion controls which, in turn, affect mea-
sured traffic and performance—are incorporated. The induced self-similar net-
work traffic, in terms of its traffic characteristics, is insensitive to details in
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Fig.4. (a): Hurst parameter estimates for tail index o varying from 1.05 to 1.95 when file transport
is mediated by TCP. (b): Application layer causality.

the transport layer protocols TCP Tahoe, Reno, Vegas, and flow-controlled UDP,
although extremities in control actions and resource configurations can affect
the property of induced network traffic, in some instances, diminishing self-
similar burstiness significantly [Park et al. 1996].# Thus by controlling the tail
index parameter « at the application layer, it is possible to induce self-similarity
at the link layer while incorporating the influence of transport protocols in the
protocol stack. Furthermore, by fixing the application layer access pattern in
conjunction with «, we are able to facilitate a comparative performance evalu-
ation environment where two different transport protocols (e.g., one stemming
from modifications to the other) can be evaluated under the same network con-
ditions with respect to the propensity of generating self-similar burstiness in
network traffic.

4.3 Sampling from Heavy-tailed Distributions

A core component of our comparative performance evaluation framework is
sampling from heavy-tailed distributions to generate file sizes at the applica-
tion layer which then drive the rest of the system. A random variable obeying
a heavy-tailed distribution exhibits extreme variability. Practically speaking,
a heavy-tailed distribution gives rise to very large values with nonnegligible
probability so that sampling from such a distribution results in the bulk of
values being “small” but a few samples having “very” large values. Not surpris-
ingly, heavy-tailedness affects sampling by slowing down the convergence rate
of the sample mean to the population mean, dilating it as the tail index o ap-
proaches 1. For example, depending on the sample size m, the sample mean Z,,
of a Pareto distributed random variable Z may significantly deviate from the
population mean ab/(« — 1), oftentimes underestimating it. In fact, the absolute
estimation error |Z,, — E(Z)| asymptotically behaves as m/®~1 (see, e.g., Crov-
ella and Lipsky [1997]), and thus for o ~ 1, care must be taken when sampling

4Refined structure in the form of multiplicative scaling in short-range correlation structure, first
considered in Levy-Vehel and Riedi [1997] for network traffic, has been recently observed in em-
pirical IP traffic measurements [Feldmann et al. 1998]; it is conjectured to be attributable to TCP’s
feedback congestion control mechanisms. Traffic modeling using cascades has been carried out in
Riedi et al. [1999], and the performance impact of multiplicative scaling has been investigated in
Ribeiro et al. [2000].
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from heavy-tailed distributions such that conclusions about network behavior
and performance attributable to sampling error are not advanced.

Sampling variations and errors have a ripple effect in that they influence
the average traffic intensity at the network layer which, in turn, affects per-
formance measures such as packet loss rate and mean delay. Of practical rel-
evance is the case where a number of connections are used as “background”
traffic for other connections whose throughput behavior we observe as we make
changes to their control protocol. To ascertain the impact of long-range depen-
dence on performance, we would like to vary the tail index o while generating
the same average traffic intensity at the link layer so that observed perfor-
mance differences are due to burstiness characteristics, and not sampling vari-
ations. For example, in the case of the Pareto distribution with population mean
ab/(a — 1), to compare performance of the same protocol under o; = 1.05 and
ag = 1.95 traffic conditions, we would solve a1b1 /(a1 — 1) = agby/(ag — 1) for a
pair of values (b1, b2) to keep the population mean invariant while allowing the
burstiness structure to differ. For light-tailed distributions (e.g., exponential,
Gaussian) this approach works fine. For heavy-tailed distributions, however,
even with “large” sample sizes [Crovella and Lipsky 1997; Park et al. 1996],
the sample means of the respective distributions can significantly differ, which
has direct bearing on the traffic intensities, rendering the performance results
inconclusive. Our approach is a form of sample path normalization where by
varying (b1, by) while keeping (a1, ag) fixed, we reach a regime where the mea-
sured traffic intensities, on average, are constant for « = «; and «s. Since b1, by
do not have a significant impact on the burstiness property of underlying traffic
as captured by the Hurst parameter (recall that H = (3 — «)/2 in the analytic
models) we are able to achieve comparability by normalizing traffic intensities
while holding invariant the traffic’s long-range dependence properties.

5. PERFORMANCE RESULTS

5.1 Network Configuration and Simulation Set-Up

We use the LBNL Network Simulator, ns (version 2), as the basis of our
simulation environment. ns is an event-driven simulator derived from Ke-
shav’s REAL network simulator supporting several flavors of TCP and
router packet scheduling algorithms. We have modified ns in order to
model a bottleneck network environment where several concurrent con-
nections are multiplexed over a shared bottleneck link. A rate-based ex-
tension of TCP, TCP Rate, was added to the existing protocol suite as
were a number of UDP-based unreliable transport protocols. TCP-MT was
realized by coupling SSC with the various versions of TCP under ns.
Figure 5 shows a two-server, n-client (n > 33) network configuration with a
bottleneck link connecting gateways G; and G». The link bandwidths were set
at 10 Mbps and the latency on each link was set to 5 ms. The maximum seg-
ment size was fixed at 1 kB. Some of the clients (i.e., 32 connections) act as
background traffic for other connections by engaging in interactive transport
of files with heavy-tailed sizes across the bottleneck link to the servers (the
nomenclature for “client” and “server” is reversed here), sleeping for an expo-
nential time between successive transfers. The connections whose performance
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O

Fig. 5. Network configuration with bottleneck link (G1, Gg). Traffic flows from left to right.

we measure are infinite sources (they always have data to send) executing the
various flavors of TCP and their corresponding multiple time scale extensions
TCP-MT with the objective of maximizing reliable throughput. We study fair-
ness issues by increasing the number of TCP-MT connections while keeping
the background traffic flows the same and observing the resulting bandwidth
sharing behavior.

For any assignment of bandwidth, buffer size, mean file request size, and
other system parameters, by either adjusting the number of clients or the
mean idle time between successive file transfers, we were able to produce
a target contention level. In a typical configuration, the first 32 connections
serve as background traffic transferring files from clients to servers (or sinks)
where the file sizes are drawn from Pareto distributions with shape parameter
a = 1.05,1.35,1.65, and 1.95. As shown in Park et al. [1996], there is a linear
relationship between o and the Hurst parameter H of aggregate traffic mea-
sured at the bottleneck link (G, G2). H was close to 1 when « was near 1, and H
was close to % when a was near 2. A typical run lasted for 10,000 seconds (sim-
ulated time) with traces collected at 10 ms granularity. This yields 1 million
datapoints for a single run which helps offset some of the variability associ-
ated with heavy-tailed sampling in addition to the sample path normalization
method described in Section 4.3. The basic performance evaluation set-up, with
variations, has been employed in previous studies [Park et al. 1996, 1997; Park
1997b] where the focus has been on causality and performance impact issues
of self-similar network traffic.

5.2 Basic Performance Characteristics of Selective Slope Control

5.2.1 Unimodal Throughput Curve. We measure the incremental benefit
gained by applying aggressiveness in the form of slope control selectively, first,
by applying it only when the chances for benefit are highest (i.e., Ly = 1), then
second highest (L =2), and so on. Eventually, we expect to reach a point when
the cost of aggressiveness outweighs its gain, thus leading to a net decrease
in throughput as the stringency of selectivity is further relaxed. We use the
threshold schedule—aggressive action is taken if, and only if, Ly < 6 where 6
is the aggressiveness threshold—to demonstrate this phenomenon. Figure 6(a)
shows reliable throughput versus aggressiveness threshold curve for threshold
values in the range 1 < 0 < 8 for « = 1.05 traffic. We observe that the curve
is unimodal with peak at 6 = 4. If § = 8, this corresponds to the case where
aggressiveness is applied at all times; that is, there is no selectivity.
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5.2.2 Monotone Throughput Curve. Although the unimodal throughput
curve is a representative shape, two other monotonically increasing or decreas-
ing shapes are possible depending on the network configuration. The shape
of the curve is dependent upon the relative magnitude of available resources
versus the magnitude of aggressiveness. If resources are “plentiful” then ag-
gressiveness is least penalized, and it can lead to a monotonically increasing
throughput curve. On the other hand, if resources are “scarce” then aggressive-
ness is penalized most heavily and this can result in a monotonically decreasing
throughput curve. These effects are shown in Figure 6(b) and (c), respectively.
TCP-MT is designed to operate under all three network conditions finding a
near-optimum throughput in each case. The most challenging task arises when
the network configuration leads to a unimodal throughput curve for which find-
ing the maximum throughput is least trivial. That is, neither blindly applying
aggressiveness nor abstaining from it are optimal strategies. SSC’s adaptabil-
ity is also useful in nonstationary situations where network state can shift from
one quasistatic regime to another.

Figure 7 shows the throughput versus aggressiveness threshold curves for the
previous set-up except that TCP Reno is replaced by TCP Rate. We observe that
both performance as well as curvature of the throughput curves have increased
which is, in part, due to TCP Rate’s superior tracking ability (cf. Section 5.2.3)
which allows SSC to extract large-time scale correlation structure more effec-
tively. Figure 7 also shows the individual effect of employing SSC in Congestion
Avoidance, Slow Start, and both.

5.2.3 Tracking Ability. The tracking ability of the underlying feedback con-
gestion control can exert a nonnegligible influence on performance and thus
have an impact on the effectiveness of selective slope modulation. The better
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Fig. 8. (a) Tracking ability in terms of correlation coefficient for TCP Reno, Vegas, and Rate.
(b) Synergy effect of TCP-MT which increases tracking ability when SSC is coupled with TCP
Reno, Vegas, and Rate.

the feedback congestion control at tracking network state, the more accurate
the large time scale correlation structure extracted, hence resulting in more
effective control actions. This dependence of TCP-MT on the underlying TCP
congestion control stems from SSC using TCP’s per-connection output behavior
to estimate network contention at large time scales. This is more efficient in
terms of overhead than constructing a separate state observation module that
sends probe packets into the network to estimate state, or otherwise assume co-
operation by the network. We measure the tracking ability of TCP Reno, Vegas,
and Rate by computing the correlation coefficients of their reliable throughput
with the aggregate background traffic at the bottleneck link (G1, G2). Effective
tracking implies that when background traffic level is low (i.e., available band-
width is high), reliable throughput should be high, and vice versa. Hence, under
perfect tracking, the correlation coefficient computed should equal —1. The cor-
relation coefficient values for Reno, Vegas, and Rate are shown in Figure 8(a).
We observe that TCP Rate exhibits the best tracking ability followed by Vegas
and Reno. Reno’s reduced tracking ability can be understood in terms of Reno’s
linear increase phase during which speedy and accurate discerning of avail-
able bandwidth is impeded. Another feature we observe is that as round-trip
time increases, tracking ability decreases due to the outdatedness of feedback
information which is characteristic of reactive controls. Figure 8(b) shows the
correlation coefficients for the same set-up with the difference that SSC was cou-
pled with TCP Reno, Vegas, and Rate. We observe that all curves have shifted
downward toward —1 indicating a synergy effect stemming from coupling which
enhances the tracking ability of TCP-MT vis-a-vis TCP due to improved time-
liness of its actions.

5.3 RTT and Proactivity

An important—perhaps the most important—property of multiple time scale
TCPisits ability to mitigate some of the cost of reactive congestion control when
subject to long round-trip times. As the RTT associated with the feedback loop
increases, the state information conveyed by feedback becomes more outdated,
and the effectiveness of reactions undertaken by TCP diminishes. The penalty is
especially severe in broadband wide area networks where the delay-bandwidth
product increases proportionally with delay or bandwidth. By exercising explicit
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Fig. 9. Performance gain as a function of RTT when coupling SSC on top of TCP Reno, Vegas, and
Rate. The increasing gain with RTT shows the proactivity property of TCP-MT.

prediction at time scale T, which exceeds the time scale T of the feedback loop
by an order of magnitude or more, TCP-MT is able to bridge the “uncertainty
gap” and affect actions that remain timely and accurate thus offsetting the cost
incurred by reactive control. Figure 9 shows performance gain as a function of
RTT where performance gain v is defined as

Arcp-MT — ATCP

ki

Arcp

where Arcp is the reliable throughput of TCP for any fixed particular flavor,
and Apcp-mr is the reliable throughput of the corresponding multiple time scale
extension. Thus, assuming Arcp-mT > ATcp, v > 0 represents the percentage of
improvement achieved by TCP-MT vis-a-vis its underlying TCP.

We observe that performance gain amplifies as RTT is increased, reaching
up to 45% in the case of TCP Rate for RTT = 450ms. Thus SSC endows the
underlying feedback congestion control with proactivity which increases as the
feedback loop is increased. We can also relate the performance gain in Figure 9
with the tracking ability shown in Figure 8, both of which are obtained from the
same set-up. We observe that the tracking ability of the underlying feedback
congestion control influences performance. In fact, in spite of the diminished
room for improvement when going from TCP Reno to Vegas to Rate (the better
a feedback congestion control is able to utilize available bandwidth, the less
unused bandwidth there is for TCP-MT to further exploit) we observe a robust,
even increasing, performance gain when SSC is coupled on top of ever “better”
feedback congestion controls.

5.4 Impact of Long-Range Dependence

Another dimension of interest is the impact of long-range dependence on per-
formance. As « \( 1, H / 1 (empirical network traffic has Hurst parameter
H =~ 1), and the strength of large time scale correlation structure increases.
Figure 10 shows performance gain for « = 1.05, 1.35, 1.65, and 1.95 background
traffic. First, the throughput level for the feedback congestion control (not
shown here) is higher for « = 1.95 traffic than o« = 1.05 traffic. This is as ex-
pected since self-similar burstiness is known to lead to degraded performance
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unless resources are overextended, at which point the burstiness associated
with short-range dependent traffic can dominate queueing behavior. More im-
portantly, we observe that performance gain increases by a factor of two or
more for ¢« = 1.05 background traffic when compared with the corresponding
gain for o = 1.95 traffic. This indicates that self-similar burstiness, although,
in general, detrimental to network performance, possesses structure that can
be exploited to reduce its negative performance impact. Figure 10 shows that
the more long-range dependent the network traffic, the more structure there is
to exploit.

5.5 Short Duration Connection Management

Network measurements have shown that most connections are short-lived but
the bulk of traffic is contributed by the few long-lived ones [Feldmann et al.
1998; Park et al. 1996]. Thus, by Amdahl’s law, effectively managing long-lived
connections is of disproportionate importance. In fact, since about 80% of cur-
rent Internet traffic is governed by TCP, a trend which is expected to persist
due to the growth and dominance of HTTP-based World Wide Web traffic [Arlitt
and Williamson 1996; Barford and Crovella 1998; Crovella and Bestavros 1996],
managing long-lived TCP flows takes on special relevance. Nonetheless, since
most connections are short-lived (on the order of a few TCP segments), improv-
ing service to short-lived flows to the extent possible is a desirable objective.
Two constraints that are intrinsically difficult to overcome are: it is infeasible
to consider performing per-connection, online estimation with any degree of ac-
curacy when connection duration is short; and when a transmission consists of
a few segments, even feedback control is of limited utility [Kim 1995]. We con-
sider several cases with successively decreasing connection duration times, and
the effectiveness of open- and closed-loop control. In Case I, an accurate, a priori
conditional probability table is assumed given, and a connection accesses this
table to engage SSC, bypassing its explicit prediction module which is disabled.
In Case II, online prediction is engaged for 300 seconds before turning on the
aggressiveness schedule of SSC. In Case III, after affecting online prediction
for 30 seconds, SSC is activated full-fledged. Table II gives performance results
showing the performance gain for the three cases when a connection is run
for 100, 500, 1,000, and 2,000 seconds after estimation. We observe that the
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Table II. Performance Gain for Short-Lived SSC Connections
‘ Short Conn. ‘ 100 sec (%) ‘ 500 sec (%) ‘ 1000 sec (%) ‘ 2000 sec (%) ‘

Casel 25.4 23.2 31.6 29.7
Case II 4.5 13.75 20.23 25.39
Case III 6.3 9.2 19.2 27.2
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Fig.11. Dynamics of symmetric metacontrol as a function of adjustment factor v and the resultant
evolution of A. Top: v = 0.01; middle: v = 0.05; bottom: v = 0.25.

performance gain is highest for Case I which assumes access to an a priori
information base. Case III possesses the least accurate table and thus yields
the smallest performance gain among the three cases. Case II lies inbetween.
As connection duration increases, the performance impact of SSC for Case III
eventually catches up with that of Cases II and I. These results indicate that
although SSC is optimally suited for long-lived connections, it can yield perfor-
mance gains even for short-lived connections depending on the exact duration
and availability of a priori information. The approach of using a priori infor-
mation (e.g., by interconnection sharing and statefulness) also holds promise
from an estimation perspective due to the fact that under long-range dependent
traffic conditions, the conditional expectation estimator Ly = E[Ls | L] can be
shown to degenerate to E[L;] under certain simplifying assumptions [Beran
1994]. That is, extrapolate the current traffic level as the traffic level for the
next 17, interval.

5.6 Symmetric Metacontrol

Section 3.5 showed the role of metacontrol for dynamically adjusting the max-
imum slope level A within SSC. Assuming sufficient time scale separation
(Tr, > Ts) between the long and short time scale modules, stability of the sym-
metric metacontrol depends on the adjustment factor v where v sufficiently
small leads to asymptotic stability, and bigger v values can lead to oscillatory
behavior. Figure 11 shows the dynamics of the symmetric metacontrol for differ-
ent adjustment factors v where the value is successively increased by a factor
of five. As expected, we observe that the larger v, the more pronounced the
resulting oscillation. What is most interesting is that the traces show that in
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Fig. 12. Throughput performance with different maximum slope levels A.

all three cases, the symmetric metacontrol “settles” to a common equilibrium
A* ~ 6 with the magnitude of oscillation around A* determined by v.

Figure 12 shows throughput performance for static versus dynamic setting
of maximum aggressiveness. The unimodal curve shows reliable throughput
for the static case where A is set to a fixed a priori value in the range 1-10.
The throughput corresponding to the dynamic metacontrol is shown by the
upper dashed line. It closely approximates the performance of the optimal static
maximum aggressiveness value A* = 6. In general, it is difficult to know a priori
what A should be for a given network configuration, and dynamic metacontrol
is needed to address this problem. The lower dashed line shows the throughput
of TCP Rate as a reference.

5.7 Fairness

TCP-MT is designed to run in shared network environments where multiple
connections compete for available resources. We investigate the behavior of
TCP-MT with respect to fairness when multiple connections engage in SSC.
We compare the bandwidth sharing behavior of TCP-MT connections with
that of multiple TCP Reno connections. We show that fairness is well pre-
served when SSC is applied on top of TCP in the sense that bandwidth shar-
ing behavior, and the resultant fairness property, is qualitatively the same as
TCP. This also implies that SSC suffers under the same fairness problems
as TCP such as those associated with long- and short-latency connections,
and packet and window sizes. The results are based on the set-up shown in
Figure 5 except for an increase in the bottleneck link bandwidth to 20 Mbps to
accommodate up to 18 TCP-MT connections for a total of 50. The mean traf-
fic rate of the first 32 connections (i.e., non-SSC background traffic sources) is
held constant at 5 Mbps. Figure 13(a) shows that as we increase the number of
TCP-MT connections from 2 to 18 (i.e., 33rd connection and beyond), bandwidth
continues to be shared fairly in the max-min sense. The spread in individual
throughput, even for 18 connections, stays within a narrow range with the in-
dividual share decreasing as the number of TCP-MT connections is increased.
Figure 13(b) shows the corresponding performance figures when TCP-MT is
replaced by TCP Reno. We observe a qualitatively similar behavior as before.
Table III gives more detailed information with respect to total throughput
and range of throughput values for individual connections. The first row of
Table III shows that the total throughput of TCP-MT increases with the num-
ber of connections up until n = 6 after which it begins to decline. That is, as the
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Table III. Multiple TCP-MT Connections
[ SSC [ n=2 [ n=4 [ n=6 [ n=38 [ n=10 [ n=12 [ n=14 [ n=16 [ n=18 ‘
Total | 1623.2 | 1725.0 | 1764.0 | 1738.0 | 1692.0 | 1609.9 | 1537.9 | 1405.9 | 1251.0
Ave. 811.6 431.2 294.0 217.2 169.2 134.2 109.8 87.9 69.5

Max. 821.6 439.1 302.2 227.3 179.4 143.7 120.3 94.2 78.4
Min. 801.6 418.6 286.7 207.4 154.3 116.2 93.2 77.2 54.9
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Fig. 13. Bandwidth sharing behavior: (a) dashed line denotes mean throughput of multiple TCP-
MT connections; dark marks show the spread of individual throughput values; (b) corresponding
plot for TCP Reno connections.

number of TCP-MT connections is further increased, the amplification of the
overall aggressiveness (due to its additive nature) asserts a negative impact
on throughput, eventually yielding a net decrease. A similar result holds for
TCP Reno due to the amplification in overall aggressiveness as the number of
concurrent feedback congestion control connections is increased.

We remark that the generalization of TCP-MT to conservativeness control
where the slope of increase is allowed to be smaller than the default value
in TCP (i.e., £ <a; see Section 3.4) may facilitate further improvement in per-
formance when the number of TCP connections is large by counteracting the
impact of simultaneous control actions. A study of integrated aggressiveness
and conservativeness control is an item for future work.

6. CONCLUSION

In this article, we have shown that the multiple time scale congestion control
framework [Tuan and Park 1999] can be successfully applied to TCP yielding
its multiple time scale extension TCP-MT. The large time scale unit, selective
slope control, is modular with a simple well-defined interface that allows the
same module to be coupled on top of various flavors of TCP including Tahoe,
Reno, Vegas, and a rate-based extension. The relevance of this work derives
from the fact that network traffic has been shown to exhibit self-similarity and
long-range dependence, and TCP—being a dominant protocol governing the
bulk of current Internet traffic—can benefit from performance improvement
stemming from a novel traffic control dimension: self-similar burstiness of
network traffic. An important property of TCP-MT is its ability to mitigate the
performance cost of reactive congestion controls, which is especially severe in
broadband wide area networks where the delay-bandwidth product is high.
By engaging predictability structure resident at time scales exceeding typical
RTT values, TCP-MT is able to offset the outdatedness of feedback information
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and, thus, inject a measure of proactivity. The relative performance gain
of TCP-MT vis-a-vis its underlying feedback congestion control is shown to
increase as the RTT of the feedback loop is increased. Current work is directed
at implementing TCP-MT over TCP Reno in the Linux and Solaris kernels,
and carrying out performance measurements over wide area network environ-
ments. We are also extending the short duration connection management work
by employing a priori state information to improve performance, for example,
average completion time, when transmissions comprise only a few segments.
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