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Abstract

A key obstacle to large-scale network simulation over
PC clusters is the memory balancing problem where a
memory-overloaded machine can slow down an entire sim-
ulation due to disk I/O overhead. Memory balancing is
complicated by (i) the difficulty of estimating the peak
memory consumption of a group of nodes during network
partitioning—a consequence of per-node peak memory not
being synchronized—and (ii) trade-off with CPU balanc-
ing whose cost metric depends on total—as opposed to
maximum—number of messages processed over time. We
investigate memory balancing for large-scale network sim-
ulation which admits solutions for memory estimation and
balancing not availed to small-scale or discrete-event sim-
ulation in general. First, we advance a measurement
methodology for accurate and efficient memory estimation,
and we establish a trade-off between memory and CPU
balancing under maximum and total cost metrics. Second,
we show that joint memory-CPU balancing can overcome
the performance trade-off—in general not feasible due to
constraint conflicts—which stems from network simulation
having a tendency to induce correlation between maximum
and total cost metrics. Performance evaluation is car-
ried out using benchmark applications with varying traf-
fic characteristics—BGP routing, worm propagation un-
der local and global scanning, and distributed client/server
system—on a testbed of 32 Intelx86 machines running a
measurement-enhanced DaSSF.

1. Introduction

Large-scale network simulation is a multi-faceted prob-
lem [5, 22] spanning synchronization, network modeling,
simulator design, partitioning, and resource management,
to mention a few. In this paper we focus on a key obsta-
cle to large-scale network simulation over PC clusters—the
memory balancing problem—where a PC whose memory

resources get overloaded can slow down an entire simula-
tion. As with CPU balancing, an overloaded machine is a
weak link whose disk I/O overhead stemming from mem-
ory management by the operating system can significantly
slow down distributed simulation. Fig. 1 illustrates the im-
pact of memory overload on BGP routing simulation run-
ning on a single Linux PC configured with 2 GB or 1 GB
memory (“BGP A”). There is a factor 9.4 slow down be-
tween the two. “BGP B” compares completion time of a
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Figure 1. Completion time slow down of BGP
simulation due to disk I/O overhead.

different BGP simulation instance on 512 MB and 256 MB
memory configurations found in older clusters where there
is a factor 52.3 difference. Slow down due to disk I/O over-
head can vary significantly depending on physical mem-
ory, application memory referencing behavior, and operat-
ing system support [2, 6]. In distributed simulation, the
slow down factor may get further amplified.

We tackle the memory balancing problem for large-scale
network simulation by taking a memory-centric approach
to network simulation partitioning. Memory-centric load
balancing does not mean that we ignore CPU and com-
munication balancing, but that we draw attention to id-
iosyncratic features that inject additional technical subtlety.
Chief among them are (i) the difficulty of estimating the
peak memory consumption of a group of nodes during net-
work partitioning—a consequence of per-node peak mem-



ory (a simulated node’s maximum memory requirement
over time) not being synchronized—and (ii) trade-off with
CPU balancing whose cost metric depends on total, as op-
posed to maximum, number of messages processed over
time. Our study shows that memory balancing for large-
scale network simulation admits solutions for estimation
and balancing that are not availed to small-scale or discrete-
event simulation in general.

The technical contributions are as follows. We ad-
vance a measurement methodology for accurate and effi-
cient memory estimation applicable to large-scale network
simulation which addresses issue (i). We establish a trade-
off between memory and CPU balancing under maximum
and total cost metrics whose performance gap depends on
network topology and application traffic. This addresses
part of issue (ii). We show that joint memory-CPU balanc-
ing can overcome individual performance trade-off which,
is in general, not feasible due to constraint conflicts. We
show that multi-objective optimization prowess is due to
network simulation having a tendency to induce correlation
between maximum and total cost metrics.

The remainder of the paper is organized as follows. In
the next section, we summarize related works. In Sec-
tion 3 we describe the performance evaluation framework.
In Section 4 we evaluate memory and CPU balancing
trade-off. Section 5 provides analysis of balancing perfor-
mance and memory estimation. In Section 6 we study joint
memory-CPU load balancing. We conclude with a discus-
sion of our results.

2. Related Work

Network simulation partitioning has been studied in a
number of papers [12, 27, 29] perhaps the most relevant to
our work being BencHMAP [27]. BencHMAP is a gen-
eral framework for network simulation partitioning whose
scope included memory balancing. The main concern was
managing CPU, communication, and synchronization cost
(i.e., lookahead), with memory balancing receiving tangen-
tial treatment as part of total message balancing which was
given as node weight input during benchmarking. The lat-
ter roughly corresponds to total cost metric in our study.
In [29] topological partitioning is studied for scaling net-
work emulation where component partitioning is driven by
estimated communication cost. In [12] focus is placed on
communication cost with respect to cross traffic and paral-
lel speed-up in PDNS for partitioning simple topologies.

In [3, 8, 28] reducing memory requirement is studied
from an application based perspective, and in [16, 18] sim-
ulator memory requirements are considered from the sys-
tems side. In [18] subtleties underlying comparative evalu-
ation of simulators, including memory footprint, are high-
lighted where workload configuration, as a function of net-

work size, is shown to significantly influence outcome.
Several works follow a benchmark driven partitioning ap-
proach to scalable network partitioning [21, 27]. Paucity
of memory-centric load balancing also holds in the paral-
lel distributed computing community where focus has been
on computation and communication balancing [9, 11]. In
recent work [17], CPU-memory balancing has been stud-
ied using an adaptive application-driven approach aimed at
scientific applications. In [26, 30], CPU-memory balanc-
ing is evaluated from a dynamic load balancing perspective
with job assignment and migration incorporating CPU and
memory balancing constraints.

3. Performance Evaluation Framework

3.1. Distributed Simulation Environment

We use a modified version of DaSSFNet as our dis-
tributed network simulation environment. DaSSF (Dart-
mouth SSF) [24] is a realization of SSF [23] written in C++
that is well suited for distributed simulation over PC clus-
ters. DaSSFNet is an extension of DaSSF that implements
a network stack and user API over its simulation kernel.
The main modification we have added is a measurement
subsystem that keeps track of dynamic simulation events
spanning memory, computation, and communication both
inside the simulation kernel and in the protocol stack out-
side the kernel. Distributed synchronization across network
partitions is effected through a barrier mechanism that oc-
curs at fixed time granulity (i.e., epoch)—the the minimum
link latency of inter-partition links—which assures causal
ordering of distributed simulation events [15, 19]. To fo-
cus on memory and CPU balancing, we set link latency to
a uniform value which limits dependence of synchroniza-
tion cost with respect to lookahead on network partitioning.
Distributed coordination is implemented over MPI.

3.2. Measurement Subsystem

3.2.1. Message-centric Monitoring Evaluating the ef-
ficacy of memory, CPU, and communication balancing re-
quires accurate and efficient monitoring of dynamic net-
work simulation events. Network simulation events are
dominated by message related objects that are generated,
processed, stored, forwarded, and deleted. We track all
message related events in DaSSFNet both inside the simu-
lation kernel and the network stack outside the kernel. The
protocol stack in DaSSFNet is comprised of IP/NIC, TCP,
UDP, and BGP which are accessed via a socket API-like
interface. A message related eventm is represented by a
data structure which has a size attributes(m) that is depen-
dent on the event type and whether it is copied or pointer
based.m has a start timets(m) at which it is generated
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Figure 2. TCP based message event evolution and footprint sp anning application layer, DaSSFNet
protocol stack, and DaSSF simulation kernel.

and a finish timetf (m) at which it is deleted. Time stamps
are recorded with respect to both simulation time and wall
clock time. An important issue for memory consumption
monitoring is accurate accounting of dynamic memory al-
location and deallocation which is system library and OS
dependent. We discuss memory leakage and garbage col-
lection issues in Section 5.2.

3.2.2. Message Event Evolution and Footprint We
describe event monitoring for TCP based messaging which
is a representative example. Per-node memory, computa-
tion, and communication cost accounting is performed by
aggregating—maximum over time for memory and total
over time for computation and communication—message
related events. Fig. 2 shows TCP based message event evo-
lution spanning application, DaSSFNet protocol stack, and

DaSSF simulation kernel. The starting point is the appli-
cation layer where a message is created and passed to TCP
at simulation timet. The application message is copied to
the TCP send buffer. All instances where message copy-
ing is instituted are highlighted in bold. The queued TCP
message is processed after a delayd1 determined by TCP
and forwarded to the IP/NIC layer. Another copy opera-
tion results when a frame message is created which is en-
queued in the IP/NIC output buffer. Queueing delay and
transmission time are computed and passed to the simu-
lation kernel along with the frame message by writing to
outChannel of the network link.1 This triggers creation
of kernel event KEVTOUTCH that is enqueued in the
kernel event queue. These steps occur in zero simulation

1outChannel and inChannel are message interface classes defined by
the simulation kernel.



time. KEVT OUTCH is dequeued at timet + d1 + d2

whered2 is the sum of queueing delay and transmission
time. If the receiving node is on the same network parti-
tion as the sending node, KEVTOUTCH is transformed
to inChannel event KEVTINCH that is enqueued in the
kernel event queue. KEVTOUTCH is deleted. When link
latencyd3 has elapsed, KEVTINCH is dequeued and the
frame message is popped up the protocol stack at the re-
ceiving node. If the receiving node is on a different net-
work partition, KEVT OUTCH is mapped to an intermedi-
ate channel event that is held at the machine simulating the
sending node until the epoch barrier completes (i.e., MPI
packs and transfers the channel object to the machine where
the receiving node is simulated). At the receiving machine
the intermediate channel event is mapped to KEVTINCH
and enqueued in its kernel event queue with time stamp
t + d1 + d2 + d3.

Fig. 3 shows monitored memory consumption of mes-
sage related events of a BGP simulation from a 16-machine
distributed simulation. Message related events are aggre-
gated over nodes partitioned to one of the 16 machines.
Fig. 3 shows that memory consumption is variable reach-
ing its peak at 1477.81 sec wall clock time (90.0062 sec
simulation time). Events are stacked (i.e., cumulative) and
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Figure 3. Dynamic monitoring of message re-
lated events. tcp-snd-buf dominates peak
memory usage.

memory consumption is dominated by TCP send buffer
queueing. We note that Fig. 2 and Fig. 3 are summary
descriptions of the measurement subsystem that highlight
the main components. Additional details such as timer and
semaphore kernel events and per-node BGP table update
events are omitted in the two figures for brevity. Per-node
time series logging of measurement data for accurate mem-
ory partitioning is infeasible in large-scale network simu-
lation. We discuss space-efficient memory monitoring in
Sections 4.1.2 and 5.2 in conjunction with measurement
accuracy and overhead.

3.3. Benchmark Set-up

Hardware testbed. The PC cluster used in benchmark
experiments consists of 32 Intelx86 PCs running Linux
2.4.x and 2.6.x. Ten are Pentium 4, 2 GHz machines
with 1 GB memory, six are 2.4 GHz with 1 GB mem-
ory, and six are 2.53 GHz with 1 GB memory. Five ma-
chines are Pentium 2.4 GHz with 2 GB memory and five
are Xeon 2.4 GHz with 4 GB memory. L1 cache is 8 KB
on all machines, and L2 cache is 512 KB except on the
ten 2 GHz machines where it is 256 KB. When com-
paring CPU balancing performance across different par-
titions processor speed can become a factor. Testing has
shown that 16 2.4 GHz machines yield approximately in-
terchangeable and predictable performance. They are used
for CPU balancing comparisons. An even more impor-
tant factor for meaningful completion time comparison is
the variable influence of VM swapping whose magnitude
is difficult to predict. To achieve quantitative results that
are stable and repeatable, we disable VM swapping so that
hidden disk I/O swapping overhead is removed. The PCs
form a dedicated testbed connected by 2 GigE and 2 FE
switches. Network congestion is not an issue, i.e., there
are no packet drops and end-to-end latency is in the sub-
millisecond range.

Benchmark applications. We consider benchmark ap-
plications with varying traffic characteristics—BGP, worm
propagation under local (i.e., topological) and global scan-
ning, and distributed client/server system—that engage dif-
ferent aspects of the DaSSFNet protocol stack. BGP is a
port of the Java SSF implementation of BGP-4 with both
hash and trie based route table support. We use Route-
Views/NLANR Internet autonomous system (AS) topolo-
gies [25] as our default benchmark network graphs. Prob-
lem size refers to the number of nodes in the network
graphs. In BGP simulations ASes are treated as BGP router
nodes. Worm propagation simulation is done at host IP
granularity where IP addresses are mapped to individual
ASes. Thus the higher the number of infected hosts at
an AS, the higher the collective scan rate of the AS. The
distributed client/server system assigns file server nodesto
transit ASes that are accessed by clients at stub ASes. File
servers possess heavy-tailed file sizes (Pareto with tail in-
dex 1.35) [1] that induce self-similar burstiness of aggre-
gated traffic [13]. Session arrivals at a client are Pois-
son. BGP and distributed client/server system run over
TCP whereas local and global worm propagation use UDP.

4. Memory-centric Load Balancing

In this section, we evaluate the basic features and perfor-
mance traits of memory-centric load balancing. Diagnosis
of distributed simulation is carried out in Section 5.



4.1. Memory Cost Metric

4.1.1. Per-node Maximum vs. Total Cost Metric
Computation cost in network simulation is dominated by
messages. They are proportional to the total number of
messages that a PC processes over the course of a simu-
lation. If processing cost varies significantly between mes-
sage types, weighting may be necessary to arrive at nor-
malized cost. The processing cost,Ci, associated with
a single nodei—for sending, receiving, and mangling
messages—is the sum of all messagesXi(t) processed at
the node over time,Ci =

∑
t Xi(t), which requires con-

stant space to monitor. The memory cost,Mi, of nodei

depends on the maximum number of messages over time,
Mi = maxt Xi(t), which can significantly differ from the
totalCi. If the memory footprint of different message types
varies, weighting is necessary for accurate accounting. All
else being equal, we expectMi to be superior for memory
balancing whileCi is expected to favor CPU balancing.

4.1.2. Per-partition Memory Cost An additional is-
sue that arises in the case of maximum cost metric but
not total cost metric is when network partitioning based
on Mi provided by the measurement subsystem is carried
out. Suppose that a partitioning algorithmA which re-
ceivesM1, . . . , Mn as node weight input assigns two nodes
i andj to the same partition based on their sumMi + Mj .
The problem with doing so is that although their individ-
ual memory peaks areMi andMj, their collective mem-
ory footprint is given bymaxt{Xi(t)+Xj(t)} which need
not equalmaxt Xi(t) + maxt Xj(t). This is depicted in
Fig. 4 for memory consumption dynamics of two nodes
in a worm propagation simulation where their memory
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Figure 4. Network partitioning: sum-of-max
vs. max-of-sum problem.

peaks are not synchronized—both wall clock and simula-
tion time—leading to significant overestimation of sum-of-
max over max-of-sum. This problem does not arise for the
total cost metric due to its closure property. The sum-of-
max vs. max-of-sum problem cannot be addressed by log-
ging per-node time series of memory consumption due to
prohibitive space complexity (i.e.,O(nT ) whereT is simu-
lation time). We useMi as input to partitioning algorithms
to evaluate memory and CPU balancing performance. In
Section 5.2 we explain whyMi is effective despite the sum-
of-max overestimation problem.

4.2. Memory Balancing Performance

We use Metis [10] which implements a multilevel re-
cursivek-way partitioning algorithm [11] as the default
network partitioning tool. Multilevel recursive bisection
methods have been shown to yield improved partitioning
vis-à-vis spectral methods [9], and their fast running time
has made Metis and Chaco [7] commonly used benchmark
tools for network partitioning.

4.2.1. Comparison of Maximum vs. Total Cost Metric
Fig. 5 compares memory balancing performance with re-
spect to memory usage betweenMi (max) andCi (total) for
the BGP, worm, and client/server benchmark applications
for a range of problem sizes. Memory usage is with respect
to the maximum across all machines. We giveM1, . . . , Mn

or C1, . . . , Cn as node weight input to Metis which tries to
find ak-way partitioning that minimizes edge cut while bal-
ancing node weight across thek partitions. As a reference
point, we include memory balancing under uniform node
weight in which premium is assigned to reducing edge cut.

We use up to 32 machines (i.e.,k ≤ 32) in the dis-
tributed simulations, with 32 machines used for the largest
problem instances. Fig. 5 shows that, overall,Mi out-
performsCi with the magnitude of the gap depending on
benchmark application and problem size. Worm local and
distributed client/server show the biggest gaps with BGP
and worm global exhibiting marginal difference between
maximum and total cost metrics. We also find thatCi can
lead to memory imbalance that is significantly worse than
the uniform cost metric (cf. Fig. 5(b)).

4.2.2. Memory vs. CPU Balancing Trade-off As indi-
cated in Section 3.3, to carry out meaningful CPU balanc-
ing comparison we need to ensure that processor speeds
across different PCs are comparable. This limits us to 16
PCs which also curbs the largest problem instances we can
run without engaging VM swapping.

Fig. 6 summarizes memory balancing performance
comparing the maximum and total cost metrics. Problem
sizes are specified in parentheses. We find that the max-
imum metric, overall, outperforms the total cost metric
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Figure 5. Memory balancing performance of Mi (max), Ci (total), and uniform cost metrics as a
function of problem size for different benchmark applicati ons.

with the gap being highest for worm local and distributed
client/server benchmark applications consistent with the
above results.
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Fig. 7 (top) shows CPU balancing performance with
respect to computation time—usr andsys time of the
slowest (i.e., highest processing load) machine—for the
same benchmark runs. The memory and CPU balanc-
ing results are averages of 5 runs, per problem instance,
under different random seeds in Metis where randomiza-
tion is used to affect improved bisectioning and match-
ing. As expected, the total cost metric, overall, outper-
forms the maximum cost metric with respect to CPU bal-
ancing. The biggest gaps occur in the cases of worm global
and BGP. Fig. 7 (bottom) shows CPU balancing perfor-
mance with respect to completion time which includes syn-
chronization penalty among PCs in distributed simulation
stemming from per-epoch barriers. An across-the-board
upward shift is accompanied by a decrease in the maxi-
mum vs. total cost metric performance gap. Communica-
tion cost—processing time expended for sending and re-

ceiving of messages across network partitions—is domi-
nated by MPI packing and unpacking operations which are
accounted for in both computation and completion time.
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5. Simulation Performance Diagnosis

In this section we discuss the causes underlying the
memory and CPU balancing trade-off results, and why the
maximum cost metric works effectively for memory bal-
ancing despite the sum-of-max overestimation problem.

5.1. Effect of Topology and Application

5.1.1. Influence of Power-law Connectivity We com-
pare BGP and worm local benchmark applications for



which the performance gaps between maximum and total
cost metrics are small and large, respectively. Fig. 8 (top)
shows per-nodeMi andCi load distribution as a function
of node rank—nodes are ranked by their degree with rank
1 indicating a node with the largest number of neighbors—
for the BGP benchmark application. The abscissa is
shown in log-scale to highlight the load values of high-
degree nodes. We observe a pronounced skew in the
load distribution—both for the maximum and total cost
metrics—which stems from traffic concentration at high-
degree nodes. Traffic skewness, in turn, is induced by
power-law tendencies characteristic of Internet measure-
ment topologies [4].2 The total cost metricCi exhibits a
greater skew than the maximum metricMi since the for-
mer is a sum over time whereas the latter is the maximum.
Fig. 8 (bottom) shows the corresponding plots for worm
local which exhibit similar power-law skews.
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5.1.2. Influence of Application Behavior The key dif-
ference between BGP and worm local is shown in Fig. 9
which plots the cumulative node load distribution corre-
sponding to Fig. 8. In BGP, we observe that both total and
max increase rapidly initially withCi climbing a bit higher
thanMi. In worm local the initial rate of increase ofMi

is significantly slower than that ofCi, almost resembling a
linear curve. The sharp increase in cumulativeMi in BGP
is caused by a sharp rise in message memory which dom-
inates table memory (i.e., BGP and IP routing tables). In
both BGP and worm local, cumulative table memory in-
creases gradually.

2Power-law tendencies also exist in router-level topologies [4, 14] al-
though their detailed structure and causality differ.

All else being equal, the more skewed a node load dis-
tribution, the harder it is to balance. In both Fig. 8 and 9,
total cost metric has a higher node load skew than maxi-
mum cost metric. The key difference is that worm local
has a significantly bigger skew gap between total and max-
imum cost metrics as shown in Fig. 9 (bottom) which leads
to a commensurately large memory imbalance under total
vs. maximum cost metric seen in Fig. 6. The difference
in initial ramp-up in message memory can be explained by
differences in application behavior of BGP and worm local.
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5.2. Measurement Accuracy and Overhead

5.2.1. Effect of Scale In Section 4.1.2 we described the
sum-of-max vs. max-of-sum problem where the maximum
memory metric can significantly overestimate actual mem-
ory load during partitioning. Despite the fact that the total
cost metric does not have this problem due to its closure
property, the maximum cost metric, overall, outperforms
the total cost metric with respect to memory balancing.
This is due to two factors.

First, in large-scale network simulation where the num-
ber of nodesn is large, the law of large numbers helps
mitigate the sum-of-max overestimation problem by aver-
aging out the time instances where individual nodes reach
peak memory. Fig. 10 quantifies this effect by showing in-
creasing prowess of sum-of-max in predicting actual mem-
ory consumption (i.e., max-of-sum) as problem size is in-
creased from 300 to 3213 for worm global. The number of
partitions is held constant at 24 (i.e., 24 machines partici-
pate in distributed simulation). To highlight the law of large
number effect, we use random graphs of same edge density



as power-law graphs where all nodes have approximately
similar degrees. This removes complications introduced by
high-degree nodes whose memory peaks are significantly
higher than other nodes (the “elephants and mice” feature).
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Figure 10. Correlation between sum-of-max
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The second factor is the increased role of table mem-
ory in large problem instances. In worm local, per-node
route table size is fixed (in BGP table sizes are variable),
and in the absence of table memory reduction optimiza-
tion per-node table memory grows linearly inn. Con-
sider Fig. 9 (bottom) which shows that per-node message
memory is about twice that of table memory. Although
this is true on a per-node basis, when multiple nodes are
mapped to a common partition the sum-of-max overestima-
tion problem kicks in which reduces their actual collective
message memory footprint. The per-partition make-up of
message vs. table memory of Fig. 9 (bottom) is about half-
half. This dampens node load skewness during partitioning
which is conducive to easier memory balancing.3

5.2.2. Memory Leakage and Garbage Collection Ac-
curate monitoring is essential for effective load balancing.
As indicated in Section 3.2, memory accounting at the sys-
tem level is complicated by memory leakage and garbage
collection that, in general, are system dependent. Coding
based memory leakage can be prevented by deallocating
message related memory in accordance with reference mes-
sage evolution diagrams (e.g., Fig. 2 for TCP).

Fig. 11 quantifies measurement overhead and accuracy
with respect to memory consumption monitoring for the
BGP simulation of Fig. 3. The bottom two curves show
measured memory usage with and without memory over-
head needed to maintain per-node memory, computation,
and communication load. Overhead is small due to con-
stant per-node space needed ofMi andCi. The same goes
for communication cost which requires constant memory

3If table memory were dominant, memory balancing would be trivial
since all nodes would have approximately equal weight.

per link—in power-law measurement topologies the num-
ber of links is about 2–3 times the number of nodes.
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Figure 11. Measurement subsystem memory
monitoring overhead and accuracy.

In our version of DaSSF we use the malloc library (part
of standard C library) to manage dynamic memory alloca-
tion and deallocation by-passing Hoard and QuickMem. In
Fig. 11 “in-use” indicates memory used by a user process.
The gap between measured memory usage with overhead
and in-use represents memory that is not tracked as part
of reference message evolution diagrams (i.e., BGP, TCP,
and UDP). The gap tends to be small, in this instance, less
than 5.2%. “system size” specifies total memory that mal-
loc has allocated. The gap between in-use and system size
arises when deallocation calls are made which do not nec-
essarily result in actual garbage collection due to malloc’s
internal memory pool management. The gap between the
two is not small and variable. Since at time instances of
maximum memory usage they coincide, impact on mem-
ory estimation and balancing is limited. Linux keeps track
of memory usage in/proc which is almost identical to
system size.

6. Joint Memory-CPU Balancing

Sections 4 and 5 studied basic properties of memory bal-
ancing, established a trade-off between memory and CPU
balancing, and considered their causes. In this section we
examine joint memory-CPU balancing.

6.1. Multi-constraint Optimization

Multilevel recursive bisection methods including
Metis [10] and Chaco [7] that implementk-way parti-
tioning seek to find heuristic solutions to the NP-hard
constrained optimization problem: minimize edge cut
subject to node weight balancing. Multilevel recursive
bisection heuristics may be extended to include a memory



balance constraint in which case every nodei has a
2-dimensional weight vector(Mi, Ci). Metis has support
for multi-dimensional node weights and we use this set-up
for joint memory-CPU balancing.

6.2. Joint Balancing Performance

In general, a trade-off between two objectives implies
that to improve one there has to be a sacrifice of the other.
We show that in network simulation this need not be the
case. Fig. 12 shows memory balancing performance for the
benchmark set-up of Section 4 under joint memory-CPU
balancing. We find that joint memory-CPU balancing per-

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

c/s
(14577)

global
(16921)

local
(14577)

bgp
(6582)

m
e

m
o

ry
 u

sa
g

e
 (

M
B

)

total
max
joint

Figure 12. Memory balancing performance
under joint max-total cost metric.

forms as well as memory-centric load balancing which uses
only node weightMi. Fig. 13 shows computation and com-
pletion time results under joint memory-CPU balancing.
As with memory balancing, we observe that joint memory-
CPU balancing performs as well as CPU-centric balancing
that uses node weightCi only. This appears to be a case of
“can have the cake and eat it too.”

6.3. Overcoming Memory-CPU Trade-off

How is it possible for joint memory-CPU using the max-
total metric to circumvent the balancing trade-off? The an-
swer lies with network simulation having a tendency to in-
duce strong positive correlation betweenMi andCi. For
high-degree nodes, this can be gleaned from Fig. 8 for both
BGP and worm local. For worm local the correlation coef-
ficient, corr(Mi, Ci), is 0.94. Individually they face balanc-
ing trade-off difficulties as discussed in Section 5. When
combined, their individual feasible regions have non-empty
intersection due to strong correlation such that a partition-
ing is found that can balance both memory and CPU well.
That this is not a property available to discrete-event sim-
ulation in general can be surmised from Fig. 14 which
shows memory and CPU balancing performance across
16 machines participating in distributed simulation when
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Figure 13. CPU balancing under joint max-
total cost metric. computation time (top) and
completion time (bottom).

corr(Mi, Ci) is strong—original worm local benchmark—
or weak. In the latter, node load skew ofMi in Fig. 8 (bot-
tom) is severely flattened such that corr(Mi, Ci) = 0.01.
The ordinate of Fig. 14 shows the average and spread of
aggregate node weight sum—both memory (Mi) and CPU
(Ci)—across the 16 partitions with node weight normalized
for comparison. We find that whenMi andCi are weakly
correlated memory and CPU balancing trade-off may not
be overcome.
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Figure 14. Joint memory-CPU balancing
when corr(Mi, Ci) is strong and weak.

7. Conclusion

In this paper we studied the memory balancing prob-
lem in large-scale network simulation where a memory-
overloaded machine can become a bottleneck of distributed
simulation. We identified two issues pertinent to memory



load balancing: (i) sum-of-max vs. max-of-sum problem in
memory usage estimation for network partitioning, and (ii)
memory vs. CPU balancing trade-off. We advanced diag-
nostic tools to explain distributed network simulation per-
formance, including why joint memory-CPU balancing in
network simulation is feasible and can achieve the best of
both worlds. Although our measurement subsystem im-
plementation is DaSSF dependent, our measurement archi-
tecture and performance evaluation methodology are ap-
plicable to other distributed network simulation platforms
including PDNS [20].
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