
Towards Performance-Driven System Support for
Distributed Computing in Clustered Environments1

John Cruz2 and Kihong Park3

Network Systems Lab
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, U.S.A.

With the proliferation of workstation clusters connected by high-speed networks,

providing efficient system support for concurrent applications engaging in nontrivial

interaction has become an important problem. Two principal barriers to harness-

ing parallelism are: one, efficient mechanisms that achieve transparent dependency

maintenance while preserving semantic correctness, and two, scheduling algorithms

that match coupled processes to distributed resources while explicitly incorporating

their communication costs. This paper describes a set of performance features, their

properties, and implementation in a system support environment called DUNES that

achieves transparent dependency maintenance—IPC, file access, memory access,

process creation/termination, process relationships—under dynamic load balanc-

ing. The two principal performance features are push/pull-based active and passive

end-point caching and communication-sensitive load balancing. Collectively, they

mitigate the overhead introduced by the transparent dependency maintenance mecha-

nisms. Communication-sensitive load balancing, in addition, affects the scheduling

of distributed resources to application processes where both communication and

computation costs are explicitly taken into account. DUNES’ architecture endows

commodity operating systems with distributed operating system functionality while

achieving transparency with respect to their existing application base. DUNES also

preserves semantic correctness with respect to single processor semantics. We show

performance measurements of a UNIX based implementation on Sparc and x86

architectures over high-speed LAN environments. We show that significant perfor-

mance gains in terms of system throughput and parallel application speed-up are

achievable.

Key Words:Distributed operating systems, communication-sensitive load balancing, workstation

networks, process migration, parallel distributed computing

1

2 CRUZ AND PARK

1. INTRODUCTION

1.1. Motivation

With the advent of high-speed networks connecting a large number of high-performance

workstations via high-speed local area and wide area networks, harnessing their collec-

tive power for distributed computing, including parallel computing, has become a viable

goal. In addition to intrinsic limitations such as latencies introduced by increased physical

distances between networked hosts, two key issues need to be addressed to facilitate a

distributed computing environment capable of emulating the prowess of tightly coupled

parallel computers—efficient mechanisms for transparent dependency maintenance and

resource scheduling which explicitly incorporate communication cost. Although these

issues arise in parallel machines as well, their impact is amplified in workstation networks

requiring new solutions.

With respect to transparent dependency maintenance, we seek to design efficient mech-

anisms that allow the flexibility to perform dynamic resource scheduling—in particular,

load balancing—when it is deemed beneficial to do so without the mechanism itself be-

coming a burdensome cost factor. The mechanism should preserve semantic correctness

when scheduling tasks across distributed resources and it should be easily deployable, to

the extent possible, on commodity computing platforms.

With respect to communication-sensitive resource scheduling, the lack of special cali-

brated communication facilities in the form of interconnection networks renders a work-

station cluster more susceptible to communication overhead including congestion effects.

In the case of load balancing, balancing of processor load without proper regard for com-

munication costs can deteriorate performance when network communication becomes a

1Supported in part by NSF grant ESS-9806741.
2Additionally supported by a fellowship from the Purdue Research Foundation (PRF). E-mail:

cruz@cs.purdue.edu.
3Additionally supported by NSF grants ANI-9714707, ANI-9875789 (CAREER), and grants from PRF and

Sprint. E-mail: park@cs.purdue.edu, tel.: (765) 494-7821.

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 3

dominant factor. A principal lesson learned from load balancing is that processes best

suited for migration are those that are independent, long-lived, and small in size. When

this is not the case, the gain obtained from a more balanced load can be outweighed by the

resulting amplification of communication cost—single host interprocess communication or

file access is turned into network communication—as well as the overhead associated with

process migration itself.

To harness parallelism in workstation networks effectively, an integrated system sup-

port approach is needed that achieves transparent dependency maintenance efficiently and

makes load balancing decisions based on explicit consideration of both computation and

communication costs.

1.2. New Contributions

The contributions of this paper are twofold. First, we design a system support environ-

ment called DUNES (DistributedUNix ExtenSion) which achieves transparent dependency

maintenance of coupled processes under dynamic load balancing. DUNES is implemented

as a user-level distributed operating system which exports a single system image to the user

and achieves single processor UNIX semantics. Second, we design a set of performance

enhancement features that mitigate the overhead introduced by the user-level transparent

dependency maintenance mechanisms. Communication-sensitive load balancing facilitates

an integrated approach to computation and communication control where the scheduling of

application processes to distributed resources is affected by explicit incorporation of both

computation and communication costs.

1.2.1. Transparent Dependency Maintenance

As part of the distributed OS functionality, our system implements dynamic process

migration following the user-level mechanism employed in Condor [23]. However, unlike

in Condor, our dynamic process migration mechanism handlesdependenciesarising from

interprocess communication, file access, memory access, process creation, and process

4 CRUZ AND PARK

relationships, maintaining transparent bindings consistent with single processor UNIX

semantics.

The first form of transparency isfunctional transparencywhere DUNES ensures that

various forms of dependencies including process-to-process and process-to-file dependen-

cies are transparently maintained by the system in the presence of dynamic scheduling.

Thus, for example, if a process migrates to another host, its existing dependencies continue

to be preserved transparent to the process. The second form of transparency issemantic

transparencywhere, in the process of achieving functional transparency, the semantic cor-

rectness of application execution is ensured. DUNES provides a completesingle system

imageto the user which extends to semantic correctness: a concurrent application running

under DUNES across multiple workstations achieves a sequentially consistent execution as

its counterpart on a single processor host. In particular, DUNES preserves single processor

UNIX semantics.

1.2.2. Performance Features

Although implementing transparent dependency maintenance at the user-level that

achieves single processor UNIX semantics is a nontrivial technical challenge, the resulting

support mechanisms would be of limited utility if their associated overheadwere significant.

We mitigate the overhead cost by employing active and passive end-point caching as part

of DUNES’ mechanism design. At the algorithmic level, we use communication-sensitive

load balancing to affect dynamic scheduling which explicitly accounts for communication

costs arising from dependencies.

Active end-point caching To hide the network communication latency incurred by pro-

cesses engaging in IPC that have been split apart due to migration, we employ a prefetching

or push-based caching mechanism which forwards data written to a communication chan-

nel to the target process (or processes) without waiting for the issuance of reads. The

coordination of multiple readers to a singlepipe or fifo when engaging in destructive

read is one of the issues arising in this context.

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 5

Passive end-point caching Similarly to active end-point caching, we seek to reduce the

cost of remote access to files by a process which has been separated due to migration. We

employ a form of prefetching coupled with paging and client-side caching such thatreads

andwrites can be handled locally at the remote host whenever possible. We implement a

cache consistency mechanism with single writer/multiple reader semantics which conforms

to single processor UNIX semantics.

Communication-sensitive load balancing Whereas the aforementioned mechanisms try

to reduce the cost of facilitating dependencies over a distance,communication-sensitive load

balancing tries to, one, prevent strongly coupled processes—coupled with other processes,

files, or memory—from being split apart in the first place if the benefit of parallelism is

deemed less than its cost, and two, trigger migrations if they are deemed beneficial to do

so. This is enabled by an efficient run-time state monitoring mechanism that quantitatively

estimates process-to-process and process-to-file communication patterns which can then be

used to perform a form of cost/benefit analysis to avoid unfruitful migrations and initiate

fruitful ones.

In the context of concurrent application development for parallel and distributed appli-

cations, theprogramming modelthat DUNES exports to the programmer is one of writing

concurrent programs for a single processor UNIX environment. If the concurrent applica-

tion is correctly written for a single processor environment, then DUNES guarantees that

it will execute correctly in the distributed resource environment. If the granularity of an

application’s concurrency is variable and thus controllable by the programmer, then, as with

parallel architectures, sufficient granularity needs to be imparted such that parallelism—if

beneficial—can be exploited over a workstation network environment. This can also be af-

fected with the assistance of parallel compilation tools that transform a serial program into

a concurrent form suitable for parallel execution. If DUNES’ communication-sensitive

load balancer does not deem beneficial to distribute load at the granularity allowed by

6 CRUZ AND PARK

the concurrency of the application, then, as with parallel computers, multiple application

processes are scheduled on a single host.

The rest of the paper is organized as follows. In the next section we summarize related

work. This is followed by Section 3 which describes the DUNES architecture including

its functional and performance features. Section 4 shows performance results of a DUNES

implementation for Solaris UNIX on both Sparc and x86 architectures measured over

private, controlled high-speed LAN workstation networks. We conclude with a discussion

of our results and future work.

2. RELATED WORK

A myriad of software support environments have been advanced with a view toward

facilitating concurrent applications in workstation environments [2, 4, 6, 10, 15, 23]. A

principal focus of previous works has been onenabling technologiesthat achieve vari-

ous forms of transparency including interoperability and ease-of-programming. On the

performance side, significant work has been done in load balancing and process migra-

tion [1, 9, 13, 17, 20, 22, 28, 29, 31], key components to achieving parallel speed-up and

high system throughput.

More recently, performance studies of LAN- and WAN-based systems have shown the

importance of controlling network communication for improving parallel or distributed

application performance [5, 8, 18, 19, 25, 26]. The sensitivity of application performance

to congestion effects is directly dependent upon the communication/computation ratio and

degree of synchrony. An application with a high communication/computation ratio is prone

to generate periods of concentrated congestion which can lead to debilitating communi-

cation bottlenecks. Moreover, if two or more such tightly coupled processes stemming

from communication-intensive applications are split apart and scheduled on separate hosts,

then the resulting communication overhead can overshadow the gain obtained from a more

balanced load.

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 7

Distributed operating systems, for the most part, are written from scratch and are kernel-

based with a well-defined interface to kernel services. The microkernel approach to

operating system design tries to make the functionality exported by a kernel minimal with

behavioral customizations carried out at the user level. Thelibrary OS [21] approach to

imparting resource management functionalities blurs the dividing line between “hard core”

distributed operating systems of the past—by definition, kernel-based—and the abundance

of network computing platforms today. In the libOS approach, resource management

functionalities are purposely implemented using user-level libraries. Our approach to

imparting distributed OS functionality to commodity operating systems can be viewed as

an instance of libOS, albeit interfacing with a monolithic kernel rather than a microkernel.

We seek the best of both worlds—portability from network computing and efficiency from

distributed operating systems.

Our system is similar to Condor [23] in that it follows the latter’s user-level process

migration scheme. However, unlike Condor, our dynamic process migration mechanism

handlesdependenciesarising from interprocess communication, network communication,

file access, memory access, and process creation while maintaining transparent bindings

consistent with UNIX semantics. Condor is restricted to migrating “stand-alone” processes

with support for remote file access using a network file system. The ability to facilitate

transparent dependency maintenance is important from the perspective that present day

applications tend to engage in some form of interaction—frequent or infrequent—and

maintaining dependencies correctly with respect to single processor UNIX semantics is an

important requirement.

Another related system is GLUnix [16]. GLUnix, however, does not support process

migration and dynamic load balancing. As with Condor, it does not possess the performance

enhancement features of DUNES. A similar observation holds for PVM [30], an execution

environment for development and execution of large concurrent and parallel applications

that consist of many interacting, but relatively independent, components. MPVM [7] and

8 CRUZ AND PARK

DynamicPVM [12] are extensions to PVM that support process migration. They follow

the approach used by Condor to checkpoint and restart processes.

3. STRUCTURE OF DUNES

DUNES (DistributedUNix ExtenSion) is a distributed operating system designed using

the approach oflibrary operating systems[14]. Distributed OS functionality is injected

into a commodity OS—our implementation is in the context of Solaris 2.6—by redefining

the service access point or system call interface (mostly wrapper code trapping tosyscall

in Solaris) to kernel services, replacing the system call library with our modified library

and relinking applications with the new library. Thus applications need not be recompiled.

3.1. Functional Features

3.1.1. Transparent Processor Sharing

Process migration As with other distributed operating systems and distributed com-

puting environments, a principal component of DUNES is the transparent enabling of

processor sharing across different workstations which facilitates increased system through-

put and application performance if the associated overhead is not “too large.” The primary

enabling feature of transparent processor sharing isprocess migration. Techniques for

transparent process migration using user-level libraries for checkpointing and restart are

well-known [23, 24, 27] and we follow an analogous strategy in our own implementation.

Application binaries, when being relinked with the modified system call library, are

also linked with the DUNES start-up routineMain() which, after initialization, transfers

control to the application binary proper by callingmain(). DUNES’ start-up routine

installs an “all-purpose” signal handler for the SIGUSR1 signal which encapsulates three

separate functionalities: one, responding to the load balancer’s command to checkpoint

for subsequent process migration, two, respond totimer create’s alarms for periodic

logging of run-time monitored communication and computation information, and three,

for checking if the signal originated from the user process itself, in which case, the user’s

signal disposition is invoked.

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 9

P

MM

H

R

P’

TCP

UDP

PIPE

fork/exec
fork/exec

USR2

(1)

(5)

(6)
(7)

TCP

(8)

(4)

USR1

(3)
USR1

(2)

exec

(6) Fork and exec the application process P’

(7) Fork and exec the remote proxy R

(8) R establishes a TCP connection with H

H : Home proxy

M : Process migration daemon

(1) Receive request for migration

(3) The process sends SIGUSR1 back to inform

(2) Send SIGUSR1 to the process to be migrated

that checkpointing is complete

transmitting data; H sends SIGUSR2 when ready

(4), (5) Establish TCP connection and keep

Host A Host B

P’ : Migrated application process

FIG. 3.1. Migration of processP from hostA to hostB and resulting triangle relation between migrated

processP 0 via remote proxyR to home proxyH.

Basic system configuration A migrating process maintains state information on the host

where it was initially started—called thehome base—in the form of aproxy processthat

subsequently handles its dependencies transparently. This is done byexecing the proxy

code from inside the application process—the last action of DUNES’ SIGUSR1 signal

handler after checkpointing—which then inherits the relevant properties of the migrated

application process. The migrated application process also maintains a corresponding

remote proxyon the destination host which, in addition to acting as a liaison, also carries

out other functionalities including managing the local cache for passive and active end-

point caching. The home base proxy, by monitoring all open descriptors belonging to the

migrated application process on the home base, is able to transparently handle dependency

relations.

If a migrated process is subsequently migrated again, then all state information on the

previous remote host is deleted and the new configuration reached is isomorphic to the

previous migrated configuration: home proxy on the home base and remote proxy and

10 CRUZ AND PARK

migrated application process on the destination host. Thus repeated migration does not

increase the complexity of the system state. A snapshot of the system—when restricted to

the state information for a single migrated process—is shown in Figure 3.1.

3.1.2. Transparent Dependency Maintenance

Functional transparency Transparent process migration, for isolated processes, is a

straightforward matter. All processes have some form of dependency (e.g., parent/child

relation in UNIX), but more importantly, most processes engage in some form of activity

such as file access, interprocess communication (IPC), network communication, and shared

memory access. Furthermore,a process, after migration,may fork off one or more processes

which can complicate the dependency structure significantly.

Condor [23] supports transparent file access but does not allow process migration in the

presence of IPC, network communication, or process creation. One practical justification

for this is that, other things being equal, the processes that benefit most from migration

are isolated processes. More and more, processes engage in some level of IPC and

network communication—for some applications such as parallel computing applications

the communication/computation ratio can be exceedingly high—and excluding them from

dynamic load balancing may incur a significant opportunity cost. DUNES provides the

flexibility to engage in dynamic scheduling through the support of transparent dependency

maintenance mechanisms, and the issue of whether for certain processes it would be

beneficial to migrate is left to analgorithmic component—the communication-sensitive

load balancer—to decide. In this way, we have the option of engaging in migration when it

is beneficial to do so, even in the presence of nontrivial interprocess coupling, and refraining

from doing so if it is deemed detrimental.

Semantic transparency Another important aspect of maintaining dependencies trans-

parently is the issue of correctness. If transparency is “provided” but program execution

correctness—according to some fixed criterion—is not preserved, then the resulting system

can be potentially perilous, burdening the programmer with additional concerns. DUNES’

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 11

functional features provide single processor UNIX semantics exporting a single system

image. The programmer can write concurrent code with single processor UNIX semantics

in mind and the transparent dependency mechanism will guarantee that its execution will be

sequentially consistent with the program’s execution on a single processor UNIX system.

Transparency mechanism When a processP migrates from a host, it leaves a proxy

processH on that machine. On the destination machine a proxy processR is created (cf.

Figure 3.1). The application process talks toR through a pipe andR talks toH over the

network using TCP. For every system call that a migrated application invokes, a request

is sent toR which is forwarded toH. The latter executes the system call on behalf of the

application process and sends the result back to the application process throughR. As H is

execed by the application process, it inherits file descriptors, signal dispositions, and other

relevant properties leaving the dependencies intact for transparent maintenance.

When a migrated process migrates again,Ron the current host is terminated and started

on the new host. This ensures that there is no dependency left on the host on which

a migrated process was previously running. When a migrated processforks, a similar

structure (H andR) is created for the child process. This ensures that the child process can

be separated from the parent process for further migration. Subsequently the child is an

autonomous entity and the resulting configuration is indistinguishable from one where the

child process would have beenforked first—on the home base—and then migrated. In

other words, the two operationscommute.

3.1.3. Shared Memory Segments

DUNES handles accesses toshared memory segments—i.e., segments created and shared

throughshmget and mmap system calls—transparently after processes have migrated.

Memory segments created throughmmap which are markedprivateare no different from

data segments. Due to this data consistency and integrity follow immediately. These

segments are treated as ordinary data segments except that they are flushed back to disk

once the mapping is removed.

12 CRUZ AND PARK

Inaccessible (Page is protected and process does not have read/write access)

Accessible (Page is not protected and process has read/write access)

After fault

Inaccessible (Page is protected and process does not have read/write access)

Accessible (Page is not protected and process has read/write access)

Before fault

FIG. 3.2. Three processes on different machines sharing the same memory segment. Left: Status before an

access fault. Right: Status after changing the access permissions and transferring the page

Memory segments that are created throughmmap with the segments markedsharedand

shmget require special treatment as we have to maintain data consistency and provide

access that is consistent with single processor UNIX semantics. Figure 3.2 illustrates the

basic mechanism. A process has access to only those pages in its virtual address space

that are marked accessible. Any access to a page that is marked inaccessible will result

in a segmentation fault, which is caught by a signal handler. If the access is to a valid

address, DUNES identifies the process that has possession of the page and a signal is sent

to the page owner to relinquish the page: in essence, set the page as inaccessible. It is

then transferred to the process that faulted. When control returns from the signal handler,

the process continues with access to the page restarting at the instruction that caused the

segmentation fault.

3.1.4. Communication and Computation Monitoring

The library OS approach to distributed operating system design has the beneficial side

effect that run-time monitoring of communication activities can be done transparently,

accurately, and efficiently. Since process-to-process and process-to-file communication go

through system calls, by implementing simple counting mechanisms insideread, write,

and other I/O related system calls on a per descriptor basis, the communication behavior

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 13

of application processes can be readily monitored. Computation information such as CPU

utilization on a per process basis is maintained by the kernel (e.g.,/proc file system for

Solaris) and can be queried to obtain both long-term and short-term utilization information.

3.2. Performance Features

3.2.1. Active End-Point Caching

When communicating processes on a single host are split apart onto separate hosts,

or processes engaging in network communication are migrated to more “distant” hosts—

either physically (e.g., link latency and physical bandwidth) or logically (e.g., queuing

effects and available bandwidth)—then even though the resulting action may yield a net

gain in system throughput and application completion time, the performance benefit may

be further improved if the effective communication cost is reduced by employing a form

of push-based caching. For example, in the case offifo or pipe based IPC manifesting

as network communication due to process migration, whenever awrite is executed, the

data is immediately shipped to the reader—in the case of multiple readers to the most

“likely” reader—such that when a reader executes aread operation, the data is already in

the reader’s local cache and access time is close to the cost of alocal read. In the multiple

reader case, care must be taken to prevent one reader from being starved by another as well

as making sure that the cached data is shipped to the correct destination given that for IPC

and network communicationread is destructive. Active end-point caching not only hides

communication latency, it also enables scheduling actions involving process migration to

be fruitful when, without, the same actions may be determined to be detrimental. This

leads to further opportunities for performance improvement that would otherwise not be

accessible.

Figure 3.3 shows a typical scenario involving a read-sharedfifo accessed by two or

more migrated processes. One of the migrated processes’ proxies takes charge as the cache

manager. The other proxies contact the cache manager to get the cached data. When

applications running on the home base want to access data from the active end-point, they

14 CRUZ AND PARK

too have to contact the cache manager. This access subsequently disables caching to reduce

the overhead for processes running on the home base.

pipe

pipe

TCP

UDP

R1

R2

A2’

A1’

H1

UDP
A3

ca
ch

e

Home base

Remote machine 2

Remote machine 1

S

H2
TCP

A1’, A2’, A3 : User Applications

R1, R2 : Remote Proxies - R1 Cache manager

H1, H2 : Home Proxies

S : Shared End-point

FIG. 3.3. Active end-point caching.

3.2.2. Passive End-Point Caching

Analogous to active end-point caching, passive end-point caching uses a push-based or

prefetching mechanism to hide communication latency when files are accessed remotely

by a process due to migration. Network file systems (e.g., Sun NFS) employ caching to

reduce access times. DUNES, by default, doesnot assume the existence of a network file

system for generality—optimizations that interface with particular network file systems, if

present, are in development—but rather engages in its own push-based caching scheme.

We use a system withk pages, page sizeS, and LRU page replacement policy. The overall

structure is shown in Figure 3.4.

DUNES implements single writer/multiple reader semantics using a cache consistency

manager which conforms to single processor UNIX semantics. The granularity of access is

on a per-page basis, and as is generally the case, there is a trade-off between page size and

frequency of conflict, with increased granularity carrying a commensurate management

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 15

overhead cost. Single writer/multiple reader semantics is the simplest but also most

restrictive cache consistency protocol.

valid?

pg no

valid?

pg no

. . .

Pg 1

Pg 25

Pg 3

File 1

File 2

Pg 45

Pg 3

FD

r
r
r
r
w

r
r
r
r

w

w

R
E

A
D

/W
R

IT
E

 D
A

T
A

D
A

T
A

/R
E

T
_V

A
L

APPLICATION PROCESS

PAGE MANAGER (RPXY)

CACHE CONSISTENCY

C
O

N
T

R
O

L

D
A

T
A

SERVER (ONE PER HOST)

FIG. 3.4. Passive end-point caching. The proxy process on the destination machine RPXY acts as the page

manager.

3.2.3. Communication-Sensitive Load Balancing

A principal lesson learned from dynamic load balancing is that processes best suited

for migration are those that are independent, long-lived, and small in size. When this

is not the case, the gain obtained from a more balanced load can be outweighed by the

resulting amplification of communication cost as well as the overhead associated with

process migration itself.

Critical to the success of communication-sensitive load balancing is a method for

cost/benefit analysisthat accurately estimates or predicts the “goodness” of the config-

uration reached after the execution of an action which may entail one or more process

migrations. This, in turn, is dependent upon an effective measure of goodness. We

define such a measure calledprogress ratewhich incorporates both communication and

16 CRUZ AND PARK

computation requirements—as exhibited by a process’ behavior—which is related to the

communication/computation ratio of a process. With the assistance of our run-time moni-

toring mechanism, we are able to predict the progress rate of a potential next configuration,

and by comparing with themeasured(or observed) progress rate of the current configura-

tion, determine the ranking of candidate actions and decide whether it is worthwhile to take

an action. The communication-sensitive load balancer—centralized or distributed—uses

the predicted progress rate of candidate configurations and iteratively takes actions until

no further performance improvement is deemed possible. The progress rate estimation

procedure is accurate as long as actions involving process migrations arenonoverlapping

and admits an efficient form of distributed control. A formal description of progress rate

based dynamic load balancing and its properties can be found in [11]. We describe its

relevant features in Section 4 along with performance results.

4. PERFORMANCE MEASUREMENTS

4.1. Experimental Set-Up

The experiments described in the following sections were conducted on dedicated LAN

clusters in the Network Systems Lab (NSL) which is equipped with ten x86-based machines,

each with a Pentium II processor at 399 MHz running SunOS 5.6, and four UltraSparc 1+

workstations running SunOS 5.5.1. These machines are connected via two 100 Mbps

FastEthernet switches—one connecting the ten x86 machines and the other connecting

the Sparc workstations. Some experiments requiring more machines were conducted in

a separate lab equipped with twenty x86 machines, each with a Pentium processor at 90

MHz, running SunOS 5.5.1. These machines are connected via a 10 Mbps Ethernet.

All times reported in this section are wall clock times measured using thegettimeofday

system call with microsecond granularity. For some test cases such as when measuring the

performance ofread andwrite system calls where the cost depends on transient effects—

e.g., availability of data in the local cache managed by DUNES—the performance cost

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 17

measurements were amortized by repeating the operation a number of times (by default

100).

4.2. Overhead of DUNES’ Functional Mechanism

4.2.1. Overhead Associated with Encapsulation of System Calls

We identify the pure overhead incurred by DUNES as an additional software layer. As

system calls in DUNES are encapsulated by our modified library, there are overhead costs

involved when system calls are invoked. This is shown in Table 1. The caching mentioned

in the table corresponds to passive end-point caching. When caching is enabled, processes

initiated on the home base have to contact the cache consistency manager when performing

file access, thereby increasing access times. In all other cases, the overhead observed are

due to the interposed wrapper code tosyscall. We note that this interposed code, which

allows system calls to implement DUNES’ functional and performance features, almost

doubles the cost of system calls.

TABLE 1
System call execution time (in microseconds) for processes on home base (no

migration) in single host configuration.

Method open lseek read write fork (parent) fork (child)

raw UNIX 86.0 27.7 22.6 24.2 1362.2 5406.8

caching disabled 129.0 47.7 42.0 46.0 5594.2 9057.7

caching enabled 959.8 641.5 618.3 622.9 5638.5 9135.0

4.2.2. Cost of System Calls for Migrated Processes

Section 4.2.1 showed DUNES’ overhead in its worst possible light, namely, when no

parallelism is present and DUNES runs as a single host operating system. In the following,

we show the performance effect of DUNES when two or more hosts are present and

DUNES functions as a distributed operating system. First, in a two host situation, for

18 CRUZ AND PARK

migrated processes with caching disabled, all system calls are routed to the home proxy

through the remote proxy. On the other hand, if caching is enabled, data is obtained from

the remote proxy, assuming it is locally available. Cache misses can cause system calls to

block and consequently slow down a process.

Passive end-point caching Table 2 compares the cost of executing system calls with and

without passive end-point caching. When caching isdisabled, each system call invocation

incurs an overhead of sending messages to the home proxy to fetch data. The second row

of Table 2 reflects this overhead. When caching isenabled, the third and fourth columns

of the third row of Table 2 show a cost reduction ofread andwrite operations by a factor

of 3. If the underlying network is slow or congested, the benefit of caching is further

amplified. For system calls such asopen, the home proxy needs to be contacted to keep the

system in a consistent state. This increase in cost can be seen in the same table. When file

offsets are shared by processes, each file access incurs an additional overhead of updating

the offset maintained at the cache consistency manager. This effect can be discerned for

thelseek system call. The cost offork for a migrated process is about 6 times as high as

a non-migrated process as it involves three separateforks and their initialization.

TABLE 2
System call execution time (in microseconds) for migrated processes in two host

configuration.

Method open lseek read write fork (parent) fork (child)

raw UNIX 86.0 27.7 22.6 24.2 1362.2 5406.8

caching disabled 1242.3 172.3 674.8 652.4 84689.3 32637.0

caching enabled 2053.7 5145.3 227.1 215.8 71468.0 29916.2

Active end-point caching Figure 4.1 summarizes the performance results for active

end-point caching. Active end-points are cached using a push-based scheme. When data

is available, it is pushed to the host where the application process resides and then cached

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 19

locally. Only read system calls benefit from active caching as writes have to be flushed

immediately.

Caching of Active End-Points Enabled

Method read write

lcl write/lcl read 24.8 21.6

rmt write/lcl read 1069.0 1073.8

lcl write/rmt read 173.8 23.7

rmt write/rmt read 1508.7 1509.2

Caching of Active End-Points Disabled

Method read write

lcl write/lcl read 22.0 22.8

rmt write/lcl read 1070.7 1073.8

lcl write/rmt read 992.8 23.1

rmt write/rmt read 1530.3 1531.1

FIG. 4.1. read andwrite system call execution times (in microseconds) for active end-points.

On our testbed, without the presence DUNES, aread system call takes 8.4�s and a

write system call takes 7.6�s to execute for a payload size of 32 bytes. The row withlcl

write/rmt readin Table 4.1 shows the effect of caching.lcl refers to a process running on

the home base (without migration) andrmt refers to a process running on a remote machine

after process migration. Without caching, the cost of aread system call is 992.8�s, and

with caching, it reduces to 173.8�s which is a speed-up of 6. All other values are the same

for both the enabled and disabled cases.

4.2.3. Active/Passive End-Point Caching and Parallel Speed-Up

We increase the number of hosts participating in a concurrent application and show how

this can affect performance measured by application completion time. Figure 4.2 (Left)

shows the experimental set-up. We have one server process (S) and 16 client processes

(C) who communicate usingfifos. The server process sends a series of messages to each

client who, after some computation, send their results back to the server. This is a generic

template for master/slave applications such as those arising in molecular sequence analysis

and other application domains.

20 CRUZ AND PARK

Initially, the server and the clients run on a single host. Subsequent experiments involving

multiple hosts migrate processes to other hosts when balancing load. Figure 4.2 (Right)

shows completion time as the number of participating hosts is increased from 1 to 16. We

observe that due to communication overhead parallel speed-up saturates. The effect of

active caching is discerned by the downward shift in the completion time curve. At the

point of saturation (8 workstations), the performance gain due to active caching is about

50%. Similar results hold for passive end-point caching.

S

C

C

C

C

50

100

150

200

250

300

350

400

450

500

550

0 2 4 6 8 10 12 14 16

C
om

pl
et

io
n

tim
e

(in
 s

ec
on

ds
)

--
->

Number of workstations --->

caching disabled
caching enabled

FIG. 4.2. Left: Client/server communication set-up. Right: Completion time for active caching enabled

and disabled.

4.3. Run-Time Monitoring of Communication

As each system call that performs I/O—on a per descriptor basis—has a counter, we

can easily monitor the communication rate between processes. Consider three processes

where one process talks to the other two in a 1:10 ratio. The communication pattern of the

processes were sampled every 5 seconds at run-time. The measured values are shown in

Figure 4.3 (Left). We see that the observed data rate ratio is about 1:9.5, which is close to

the real ratio. To show the monitoring measurements for passive end-points, we consider

two processes where one process accesses the file at twice the rate as the other process.

Figure 4.3 (Right) shows that the monitored rate is close to the real rate as dictated by

the application’s intrinsic structure. The DUNES load balancer uses run-time monitored

information when making communication-sensitive load balancing decisions.

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 21

0

2

4

6

8

10

12

14

10 20 30 40 50 60

D
a
ta

 r
a
te

 r
a
tio

Time (in seconds)

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30 35 40 45

D
a
ta

 r
a
te

 r
a
tio

Time (in seconds)

FIG. 4.3. Measured data rate ratio for two process benchmark set-up for active (left) and passive (right)

end-points.

4.4. Communication-Sensitive Load Balancing

4.4.1. Set-Up

Figure 4.4 (Left) shows the set-up used in the next experiments. There are three collab-

orating processes—Gw, Grs andGrl—and one independent process (I) that are initially

resident on the same host.Gw is a producer that performs some computation and writes the

result toGrs andGrl, the consumers. The latter read the data written byGw and perform

some computation. The data rate among these processes, however, is not uniform. The

data rate betweenGw andGrs is 10 times that ofGw andGrl. ProcessI , on the other

hand, does not communicate with either of the three processes. It has a CPU utilization of

0.65 when run in isolation.

Gw

GrlGrs

I

x10x x

GetLoad()
Src = getHostWithHighestLoad();
Dst = getHostWithLeastLoad();
If (highest_load - least_load < THETA1) {

return;
}

victim = chooseProcessToMigrate();

issueMigrateRequest(victim);

}

If (estimated_new_diff(Src, Dst) > THETA2) {

FIG. 4.4. Left: Process communication structure.Gw is a producer which writes toGrl andGrs. The

amount of writes toGrs is 10 times that ofGrl. I is a process running in isolation. Right: Template code used

by the heuristic load balancing algorithms.

22 CRUZ AND PARK

4.4.2. Impact of Communication Cost

Consider the case where we have two hosts with all four processes running on one host.

Figure 4.5 (Left) compares the result of migrating a single process to the idle machine vs. the

case when there is no migration. When processI is migrated, its completion time is reduced

from 146 sec to 64 sec. The completion time of the groupGw; Grl; Grs reduces from 330

to 294 seconds. On the other hand, if we migrateGrs (the strongly coupled reader), the

completion time decreases only marginally. We observe that if we migrateGrl instead

of Grs, the completion time decreases significantly. The aforementioned experiments

show that, other things being equal, the weaker the coupling, the larger the performance

gain obtained from migrating a process. Figure 4.5 (Right) shows performance results for

the case when we increase the number of hosts by one and two processes are migrated

instead of one. We observe that the best combination isfI;Grlg followed byfI;Grsg and

fGrl; Grsg.

Process Completion Time (sec)

Migrated Gw; Grl; Grs I

None 330 146

I 294 64

Grl 270 116

Grs 321 146

Processes Completion Time (sec)

Migrated Gw; Grl; Grs I

None 330 146

fI , Grlg 237 63

fI , Grsg 289 64

fGrl, Grsg 277 117

FIG. 4.5. Left: Completion times in a two host scenario with only one process being migrated to the idle

host. Right: Completion times in a three host scenario where two processes are migrated.

4.4.3. Heuristic Load Balancing

We implement three heuristic load balancing schemes that are successively more sensi-

tive to communication costs. All three algorithms have the same structure as depicted in

Figure 4.4 (Right). The algorithms collect load information from the participating machines

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 23

and identify the least utilized and most utilized machines as target and source machines. If

the difference in CPU utilization on these two machines differs by an amount greater than a

threshold�1, then we choose a process from the source machine for migration. Each heuris-

tic has its own way of selecting a process for migration—chooseProcessToMigrate()—

and that is where they differ. After a process is chosen for migration, all schemes perform

a final check before initiating migration. This is accomplished by testing if the pre-

dicted difference in CPU utilization orimbalance—which is obtained by subracting the

CPU utilization of the migrating process from the source machine and adding it to the

target machine, then taking their resulting difference—is greater than the current imbal-

ance by some threshold�2. If not, the migration is cancelled. The rationale behind this

test is based on the progress rate load balancing algorithm where a more comprehensive

cost/benefit analysis is performed prior to process migration. Following are descriptions

of chooseProcessToMigrate() for the three algorithms:

Algorithm 1 This is the simplest scheme which doesnot incorporate communication

cost information; i.e., it makes load balancing decisions based on CPU utilization only. In

particular, it chooses a process which has maximum CPU utilization.

Algorithm 2 This algorithm makes use of both CPU utilization and communication

cost where the latter is captured by thecoupling countof a process—the number of file

descriptors open in the process.Algorithm 2tries to select a process which is as loosely

coupled or independent as possible. The key assumption is that, the greater the number

of open descriptors, the tighter its coupling. The specific criterion is based onaverage

normalized rankwhere, given a set of nonnegative numbersa1; a2; : : : ; ak, thenormalized

rank
ai
of ai, i 2 [1; k], is defined as

ai
=

ai � a�
a� � a�

with a� = minj2[1;k] aj anda� = maxj2[1;k] aj . Given two sets of numbers and a pair

of numbersai, bj belonging to their respective sets, the average normalized rank�
ai;bi is

24 CRUZ AND PARK

defined as

�
ai;bi = !
ai
+ (1� !)
bi

where0 � ! � 1. We form the two sets by choosing the CPU utilization numbers and

coupling count (reordered) of processes belonging to the source host with! = 1=2. We

then compute the average normalized utilization for each process and choose a process with

the maximum value.

Algorithm 3 Algorithm 2assumes that the number of open file descriptors is proportional

to the amount of communication. In general, this need not be the case. A process could

have many file descriptors open and may not use any of them. Similarly, a process could

have just one connection open through which it performs frequent data transfer. To capture

the quantitative data rate,Algorithm 3uses the run-time monitored per-descriptor data rate

to compute the total data rate of processes. It then chooses the process with a maximal

average normalized rank where the latter is computed using the total data rate in place of

coupling count.

4.4.4. Performance Comparison of Algorithms 1, 2, and 3

We compare the three schemes in the same set-up described above with the four processes

Gw, Grl, Grs, andI initiated on a single host.

Two host scenario We examine the actions of the three algorithms for a two host scenario

where on one host the four processes are initiated and the other is idle.Algorithm 1—which

only considers CPU utilization—selectsGw to migrate.Gw happens to be the most strongly

coupled process. It is also the one with the highest CPU utilization which renders it least

suited for migration due to the dominance of communication cost.Algorithm 2choosesI

to migrate as it is the process that has a high CPU utilization but also has the least coupling

count. AfterI terminates,Algorithm 2 selectsGrs to migrate which is a less suitable

choice thanGrl due to the latter’s weaker coupling with respect to data rate.Algorithm

3, which uses the monitored data rate instead of the coupling count, makes the optimal

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 25

1 2 3
0

200

400

600

800

1000

1200

C
o

m
p

le
tio

n
 t
im

e
 (

in
 s

e
co

n
d

s)

Algorithm

1140

95

323

64

285

64

G
w

, G
rl
 & G

rs
I

1 2 3 4
0

200

400

600

800

1000

1200

C
o

m
p

le
tio

n
 t
im

e
 (

in
 s

e
co

n
d

s)

Algorithm

1154

97

318

64

310

64

272

64

G
w

, G
rl
 & G

rs
I

FIG. 4.6. Left: Completion times on two host scenario. Right: Completion times on three host scenario.

The process structure is given in Figure 4.4 (Left).

decision by choosingI followed byGrl. This also results in the smallest completion time.

The performance results are shown in Figure 4.6 (Left).

Three host scenario Consider the set-up above, however, with two idle hosts instead

of one. Algorithm 1selectsGw as before. After migration, the CPU utilization ofGrl

andGrs decrease significantly due to their dependence onGw promptingAlgorithm 1

to migrateI next. Algorithm 2 selectsI andGrs to migrate to the idle hosts—in that

order—and afterI terminates, migratesGrl. Algorithm 3initially movesI andGrl to the

two idle hosts, and upon completion ofI , migratesGrs. AlthoughAlgorithm 3yields the

best performance, the optimal decision—shown asAlgorithm 4 in Figure 4.6 (Right)—is

not to migrateGrs after I terminates. This shows the potential for further performance

improvement by incorporation of refined communication and computation information.

4.5. Parallel Iterative Linear Equation Solver

4.5.1. Problem Domain

In this section, we show the performance of DUNES at facilitating parallel distributed

computing in the context of a parallel iterative procedure for solving linear equations.

Consider the problem of solving a system of linear equationsAx+ b = 0 whereA = (aij)

is anm�m matrix. Finding a numerical solution forx can be formulated as a fixed point

26 CRUZ AND PARK

problem which can be solved by the iterative procedure

xi := �
1

aii

�
bi +

i�1X
j=1

aijxj +
mX

j=i+1

aijxj

�
:

If the spectral radius ofA is less than 1, the iteration can be shown to converge [3].

A generic sample code used for implementing the iterative procedure is shown in Fig-

ure 4.7. After initialization, there is a loop within which a computation phase is followed

by a communication phase. At the end of the latter, abarrier call for synchronization

followed by a termination check are executed. Givenn processes, each process is assigned

m=n variables which it is responsible for updating. The updated values are then mutually

exchanged using regular IPC (e.g.,fifo). Thebarrier function call contacts a barrier

server process and returns when the server process sends back a “go-ahead” message after

synchronization.

main() {
readInput();
for(;;) {

updateX();
sendUpdates();
receiveUpdates();
barrier_sync();
diff = computeDiff();
if (terminate(diff))

break;
}

}

FIG. 4.7. Sample code used in the parallel iterative algorithm to solve system of linear equations.

4.5.2. Parallel Application Speed-Up

Figure 4.8 (Left) shows application performance measured by average completion time

as a function of granularity—i.e., number of processes—when all processes are scheduled

on a single host vs. when each process is scheduled on a separate host by DUNES via

process migration. The matrix in the benchmark problem instance tested was of size

(3000� 3000). The top plot for the single host schedule shows an increase in completion

time as the number of processes is increased which is due to the overhead caused by IPC

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 27

between processes on a single host. The bottom plot shows the completion times when

DUNES is allowed to schedule processes by migrating each process to a separate host.

0

50

100

150

200

250

300

2 3 4 5

C
o

m
p

le
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Number of processes

single host
multiple hosts

0

50

100

150

200

250

300

2 3 4 5

C
o

m
p

le
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Number of processes

single host
multiple hosts (caching on)
multiple hosts (caching off)

FIG. 4.8. Left: Application completion time as a function of the number of processes participating in the

computation when all processes are scheduled on a single host vs. when each process is scheduled on a separate

host. Right: Application completion times for same set-up except that checkpointing of intermediate results is

performed periodically to achieve fault-tolerance.

Figure 4.8 (Right) shows application performance for the same set-up except that the

application code of Figure 4.7 was augmented to implement periodic checkpointing of

its intermediate results—e.g., to impart fault-tolerance when a computation is extremely

long-lasting such as in cryptographic computations—which then induces periodic file I/O.

We observe that when all processes are scheduled on a single host, IPC overhead amplifies

completion time and periodic file I/O causes the completion time curve to shift upwards.

The middle plot shows completion times when each process is scheduled on a separate host

via migration, however, with passive end-point caching turned off. We observe that up to 3

processes (and hosts), the application experiences parallel speed-up. However, with four or

more processes, the communication cost induced by writing the checkpointed intermediate

values periodically to the home base begins to dominate and completion time increases

henceforth. The bottom plot of Figure 4.8 (Right) shows application performance when

DUNES’ passive end-point caching mechanism is active. Client-side passive end-point

28 CRUZ AND PARK

caching allows file I/O that would require network communication to be handled by local

disk I/O and thus hide the communication latency.

4.5.3. Dynamics of Progress Rate Based Load Balancer

We show the dynamics of load balancing based on the progress rate measure and its

effect on performance. Consider four processes that work on solving a system of linear

equations with two hosts available for processor sharing. Figure 4.9 shows the trace of

the 4 processes being scheduled by DUNES’ communication-sensitive load balancer based

on progress rate. Initially, the four processes reside on a single host with the second host

idle. After 10 seconds, one of the processes is migrated to the idle host. The migration

is triggered by a progress rate calculation that dictates that migration will increase overall

progress rate. Subsequent to the first migration, another progress rate calculation reveals

that migrating a second process is beneficial which triggers a further migration. As a result

of this sequence of dynamic load balancing decisions, the processes terminate after 126

seconds. Without any process migration, the completion time is 187 seconds. With a single

process migrating, the completion time is 154 seconds.

Number of
processes
on Host A

Number of
processes
on Host B

CPU
utilization

on A

CPU
utilization

on B

4 0 1.0 0.00

10

18

28

36

(initiate first migration)

(migration complete)
3 1 1.0 0.33

(initiate second migration)

(migration complete)

2 2 0.98 0.98

(Processes terminate)126

T
im

e
(i

n
se

co
nd

s)

FIG. 4.9. Trace of 4 processes solving a system of linear equations with1000 variables.

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 29

5. CONCLUSION

We have described DUNES, a library distributed operating system, organized arounds its

two principal features—transparent dependency maintenance and performance enhance-

ment features—aimed at mitigating the former’s overhead and exploiting its facilitation of

dynamic load balancing of coupled applications. We have shown that user-level system

support for dynamic scheduling of coupled processes is feasible with active/passive end-

point caching reducing the communication cost associated with dependency maintenance,

and communication-sensitive load balancing affecting improved performance with respect

to application completion time and system throughput. The main thrust of current work

is directed at extending the communication-sensitive load balancing model to incorporate

real-time CPU scheduling—built on top of Solaris RT mode—to facilitate both guaranteed

and best-effort services to time-constrained and QoS-sensitive applications.

REFERENCES

1. M. Ashraf Iqbal, J. H. Saltz, and S. H. Bokhari. A comparitive analysis of static and dynamic load balancing

strategies. InProc. Int. Conf. on Parallel Processing, pages 1040–1047, 1986.

2. H. Bal, J. Steiner, and A. Tanenbaum. Programming languages for distributed computer systems.ACM

Computer Surveys, 21(3):262–322, 1989.

3. Dimitri P. Bertsekas and John N. Tsitsiklis.Parallel and distributed computation: numerical methods.

Prentice-Hall, 1989.

4. K.P. Birman and T. Clark. Performance of the Isis distributed computing system. Technical Report TR-94-

1432, Cornell Univ., Computer Science Dept., June 1994.

5. Clemens Cap and Volker Strumpen. Efficient parallel computing in distributed workstation environments.

Parallel Computing, 19:1221–1234, 1993.

6. N. Carriero and D. Gelernter. Linda in context.Communications of the ACM, 32(4):444–459, April 1989.

7. Jeremy Casas, Dan L. Clark, Ravi Konuru, Steve W. Otto, Robert M. Prouty, and Jonathan Walpole. MPVM:

A migration transparent version of PVM.Computing systems: the journal of the USENIX Association,

8(2):171–216, Spring 1995.

30 CRUZ AND PARK

8. Alex Cheung and Anthony Reeves. High performance computing on a cluster of workstations. InProc. First

International Symp. on High-Performance Distributed Computing, pages 152–160, 1992.

9. S. Chowdhury. The greedy load sharing algorithm.Journal of Parallel and Distributed Computing, 9(1):93–99,

May 1990.

10. H. Clark and B. McMillin. Dawgs—a distributed compute server utilizing idle workstations.Journal of

Parallel and Distributed Computing, 14(2):175–186, 1992.

11. J. Cruz and K. Park. Towards performance-driven system support for distributed computing in clustered

environments. Technical Report CSD-TR-98-035, Department of Computer Sciences, Purdue University,

1998.

12. L. Dikken, F. van der Linden, J. J. J. Vesseur, and P. M. A. Sloot. DynamicPVM: Dynamic load balancing

on parallel systems. In W. Gentzsch and U. Harms, editors,High Performance Computing and Networking,

pages 273–277, Munich, Germany, April 1994. Springer Verlag, LNCS 797.

13. F. Douglis and J. Ousterhout. Transparent process migration: Design alternatives and the Sprite implementa-

tion. Software Practice and Experience, November 1989.

14. D. Engler, M. Kaashoek, and J. O’Toole Jr. Exokernel: an operating system architecture for application-level

resource management. InProc. 15th ACM Symp. on Operating System Principles, pages 251–266, 1995.

15. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.PVM: Parallel Virtual Machine.

The MIT Press, 1994.

16. D. Ghormley, D. Petrou, S. Rodrigues, A. Vahdat, and T. Anderson. GLUnix: a globale layer Unix for a

network of workstations. To appear inSoftware: Practice and Experience, 1998.

17. A. Hac and Th.J. Johnson. Sensitivity study of the load balancing algorithm in a distributed system.Journal

of Parallel and Distributed Computing, 10:85–89, 1990.

18. A. Heddaya and K. Park. Mapping parallel iterative algorithms onto workstation networks. InProc. 3rd IEEE

International Symposium on High-Performance Distributed Computing, pages 211–218, 1994.

19. A. Heddaya and K. Park. Congestion control for asynchronous parallel computing on workstation networks.

Parallel Computing, 23:1855–1875, 1997.

TOWARDS PERFORMANCE-DRIVEN SYSTEM SUPPORT 31

20. C. Jacqmot, E. Milgrom, W. Joossen, and Y. Berbers. Unix and load-balancing: A survey. InProc. EUUG

’89, pages 1–15, April 1989.

21. M. Kaashoek, D. Engler, G. Ganger, H. Brice no, R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,

and K. Mackenzie. Application performance and flexibility on exokernel systems. InProc. 16th ACM Symp.

on Operating System Principles, 1997.

22. W. Leland and T. Ott. Load-balancing heuristics and process behavior. InACM Performance Evaluation

Review: Proc. Performance ’86 and ACM SIGMETRICS 1986, Vol. 14, pages 54–69, May 1986.

23. M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. InProc. 8’th International

Conference on Distributed Computing Systems, pages 104–111, 1988.

24. K. I. Mandelberg and V. S. Sunderam. Process migration in UNIX networks. InUSENIX Technical Conference

Proceedings, pages 357–363, Dallas, TX, February 1988.

25. M. Parashar, S. Hariri, A. Mohamed, and G. Fox. A requirement analysis for high performance distributed

computing over LAN’s. InProc. First International Symp. on High-Performance Distributed Computing,

pages 142–151, 1992.

26. Kihong Park. Warp control: a dynamically stable congestion protocol and its analysis. InProc. ACM

SIGCOMM ’93, pages 137–147, 1993.

27. Stefan Petri and Horst Langendörfer. Load balancing and fault tolerance in workstation clusters – migrating

groups of communicating processes.Operating Systems Review, 29(4):25–36, October 1995.

28. K.W. Ross and D.D. Yao. Optimal load balancing and scheduling in a distributed computer system.Journal

of the ACM, 38(3):676–690, July 1991.

29. J.M. Smith. A survey of process migration mechanisms.Operating Systems Review, 22(3):28–40, July 1988.

30. V. S. Sunderam. PVM: A framework for parallel distributed computing.Concurrency, practice and experience,

2(4):315–339, December 1990.

31. S. Zhou and D. Ferrari. An experimental study of load balancing performance. InProc. IEEE Int. Conf. on

Distr. Processing, volume 7, pages 490–497, September 1987.

