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Abstract— Architecting networks capable of providing scalable, effi-
cient, and fair services to users with diverse QoS requirements is a chal-
lenging problem. The differentiated services framework has advanced a
set of building blocks comprised of per-hop and access point behaviors
with the aim of facilitating scalable services through aggregate-flow con-
trol inside the network and per-flow traffic control at the edge. In spite
of recent efforts, little is known about how to select “good” per-hop and
edge controls, in part, due to a lack of cohesive criteria with respect to
which the choices can be effectively reasoned, evaluated, and justified.

In this paper, we provide a theoretical framework for reasoning about
differentiated services networks, constrained to be implementable in IP
networks. The control framework incorporates assumptions, albeit weak,
about selfish user behavior and service provider behavior. This is ne-
cessitated by the essential role they play in influencing end-to-end QoS,
without which an effective evaluation of Diff-Serv architectures remains
incomplete. We show that there is an intimate relationship between the
properties exported by per-hop and edge control, and the “goodness” of
the resource allocation and QoS attained in a noncooperative network
environment.

Our control framework—Scalar QoS Control—generalizes per-hop
and edge control achievable by setting a scalar value in packet headers,
e.g., the TOS field of IP. We develop a theory of optimal classifiers and
the properties they exhibit which facilitate end-to-end QoS via the joint
action of aggregate-flow control per-hop and per-flow control at the edge.
We show the stability and efficiency properties of the overall network sys-
tem when users are allowed to influence the choice of scalar values in the
DS field at the edge, and service providers export costs to users commen-
surate with the QoS received.

I. I NTRODUCTION

A. Motivation

Architecting networks capable of providing scalable, effi-
cient, and fair services to users with diverse QoS requirements
is a challenging problem. The traditional approach uses re-
source reservation and admission control to provide bothguar-
anteesandgradedservices to application traffic flows. An-
alytical tools for computing and provisioning QoS guaran-
tees [1], [2], [3], [4] rely on overprovisioning coupled with
traffic shaping/policing to preserve well-behavedness proper-
ties across switches that implement a form of generalized pro-
cessor sharing packet scheduling. For applications needing
guaranteed services, the unconditional protection afforded by
per-flow resource reservation and admission control is a ne-
cessity. For the population of elastic applications that require
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QoS-sensitive services but not guarantees, it would be overkill
to provision QoS using the mechanisms of per-flow reserva-
tion and admission control. In addition to the service mis-
match, overhead associated with administering resource reser-
vation and admission control which require per-flow state at
routers impedes scalability. On the other hand, relying on ho-
mogenous best-effort service, characteristic of today’s Inter-
net, would be equally unsatisfactory.

Recently, efforts have been directed at designing network
architectures with the aim of delivering QoS-sensitive services
by introducing weaker forms of protection or assurance to
achieve scalability [5], [6], [7], [8], [9]. The differentiated
services framework [10], [6], [11], [9] has advanced a set of
building blocks comprised of per-hop and access point be-
haviors with the aim of facilitating scalable services through
aggregate-flow resource control inside the network and per-
flow traffic control at the edge. By performing a many-to-
one mapping, as flows enter the network, from the large space
of individual flows to the much smaller space of aggregate
flow labels, scalability of per-hop control is achieved while at
the same time introducing uncertainty and volatility by flow-
aggregation and aggregate-flow packet switching per-hop.

B. Key Issues

A number of works have studied the behavioral characteris-
tics of specific instances of differentiated services networks.
In previous work [5], [12], [13], we introduced aggregate-
flow per-hop control mechanisms motivated by game theoretic
considerations—a router performs class-based label switching
which emulates user optimal service class selection with re-
spect to selfish users—without considering the space of all
aggregate-flow per-hop controls which is carried out in this
paper. In [14] simplified models of Assured Service [11] and
Premium (or Expedited) Service [15] are presented and ana-
lyzed with respect to their performance when compared with
simulations. In [16], an adaptive 1-bit marking scheme is de-
scribed, and the resulting bandwidth sharing behavior demon-
strated via simulations when the priority level is controlled
end-to-end. In [7], the authors describe the proportional dif-
ferentiation model which seeks to achieve robust, configurable
service class separation—i.e., QoS differentiation—with the
support of two candidate packet schedulers. They use simu-
lation to study the behavioral properties. Other related works



include [5], [6], [8], [17].
In spite of these efforts, a comprehensive understanding of

the power and limitation of differentiated services networks
is still in its infancy. Little is known about how to select
“good” aggregate-flow per-hop controls—including optimal
ones—per-flow end-to-end (or edge) controls, and what cri-
teria to apply when designing these components. Following
the divide-and-conquerapproach to network design, we would
like to reduce the scalable QoS provisioning problem to sub-
problems and solve them individually without worrying about
the details of other subsystems except through well-defined
interfaces and “black box” function definitions. Although the
same approach is undertaken in this work, we find that there
are intimate relationships between the selection of per-hop and
end-to-end controls, on the one hand, and the dynamics of a
differentiated services network when driven by selfish users
and service providers, on the other. The efficiency and sta-
bility of noncooperative network systems is influenced by the
properties of the per-hop and edge controls, and this depen-
dence necessitates the joint consideration of network mecha-
nism selection and user behavior in an expanded framework
within which the relevance of per-hop and edge control prop-
erties can be evaluated. The two key focus points of this paper
are: (1) formulation and solution of optimal per-hop and edge
controls for differentiated services networks, first,without re-
gard to user behavior issues, and (2) relating the network con-
trol properties to the dynamics of the system when engaged
in a noncooperative network environment with respect to effi-
ciency and stability.

C. New Contributions

Our contributions are twofold. First, we give a general
framework of differentiated services networks where packet
labels can be set from a finite label set and routers provide dif-
ferentiated treatment of packets based on the labels enscribed.
We define the meaning of optimal per-hop control within this
context and find the optimal solution for aggregate-flow con-
trol. We show that the optimal per-hop control satisfies certain
properties—denoted (A1), (A2), and (B), and defined in Sec-
tion II-C—which relate how label values impact the service a
flow receives at a router. We augment the general result by pre-
senting optimal solutions when restricting the packet schedul-
ing disciplines to variants of GPS, and the consequences on
the core properties.

Second, we expand the framework by introducing self-
ish users who can influence QoS provisioning behavior by
regulating the label values assigned to their traffic streams.
Based on the properties exported by the network control—
(A1), (A2), and (B)—we show how a population of selfish
users with diverse QoS requirements setting their packet la-
bels can arrive at a global allocation of resources that isstable
(Nash equilibrium) andefficient(system optimal). We show
that even in situations when network resources are scarce such
that no resource allocation—differentiated service, per-flow

reservation, or otherwise—can satisfy all users’ QoS require-
ments, the system is stable and reaches a Nash equilibrium.
We show that the optimal per-hop control is also “optimal”
in the noncooperative game context in the sense that when
network resources are configurable such that all users’ QoS
requirements can be satisfied, then there exists a Nash equi-
librium that is system optimal. We augment the user con-
trol results by introducing a selfish service provider who is
able to export specific costs—i.e., prices—to users commen-
surate with the general requirement that a superior QoS (and
thus greater resource consumption) incurs a higher cost than a
lower QoS (and thus smaller relative resource usage)1.

II. A RCHITECTURE ANDMODELING ASSUMPTIONS

A. Overall System Structure

The network system is comprised of four principal
components—per-hop control, edge control, user control, and
service provider control—where the first two make up the net-
work system proper, and the latter two are incorporated to
evaluate the “goodness” of the first two components. Fig-
ure II.1 depicts the overall system structure. A user’s traffic
flow, upon entering the network, is assigned a label from a
set ofL values, e.g., enscribed in the TOS field of IPv4. The
routers provide differentiated treatment of packets based on
their enscribed labels, and end-to-end QoS is determined by
the treatment of an user’s flow on all hops along a given path.
The label values are set at the edge on a per-flow basis—either
once-and-for-all (open-loop), or dynamically as a function of
network state (closed-loop)—facilitatingend-to-end control as
part of edge control. A second component of edge control is
access controlwhich prevents users from arbitrarily assign-
ing labels to their packet flows without consequences. Access
control may be achieved by policing, traffic shaping, and pric-
ing. We assume that the network (in general, service provider)
exports a cost to each user which increases with service qual-
ity, or equivalently, with the resources received. The system
is completed by incorporating selfish users who can regulate
the label values on their packet streams to satisfy their QoS
requirements at least cost, and a selfish service provider who
sets prices—which determines user cost—to maximize profit.

The job of the network system proper—per-hop control and
edge-control—is to provide sufficient and efficient network
mechanisms such that for a set of users or traffic flows with
diverse QoS requirements, by suitable setting of the packet
labels, user-specified services in the form oftarget end-to-
end QoScan be provided. The setting of the label value,
whether it is done by access control on behalf of a user or by
a user directly, should be powerful enough so that the users’
QoS requirements can be satisfied without necessitating the
engagement of other traffic controls to the extent possible2.

1We omit the service provider results due to space constraints. The full
paper, including the proofs, is available as a technical report [18].
2If an end-to-end delay of 30ms is desired but the route assigned has a prop-

agation latency of 50ms, then clearly no amount of class-based label switching
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Fig. II.1. Overall QoS provisioning architecture. Network exports per-hop
and edge control, user exercises scalar QoS control (�-control), and ser-
vice provider exports QoS cost to user.

The network control substrate should also promote stability
in a noncooperative network habited by selfish users and ser-
vice providers, and facilitate efficient allocation of network
resources as an outcome of selfish interactions.

B. Basic Definitions

Assume there aren flows or users. A useri 2 [1; n] sends
a traffic stream at average rate�i � 0 (bps). In the follow-
ing, we will assume�i is given and fixed (“fixed bandwidth
demand”). The case when�i is variable (“variable bandwidth
demand”) is considered separately. Letx

i = (xi1; x
i
2; : : : ; x

i
s)

denote the vector of end-to-end QoS rendered to useri. For
example,xi1 may represent mean delay,xi2 packet loss rate,xi3
delay jitter (e.g., as measured by some second-order statistic),
and so forth. We assume that all QoS measures are represented
such that a smaller magnitude means better QoS. A packet be-
longing to useri is enscribed with a scalar

�i 2 f1; 2; : : : ; Lg

taking onL distinct values. Unless otherwise specified, we
will use [a; b], for a � b, to denote the set of integers between
a andb. Typically, the number of users is very large vis-`a-
vis the range of�i, i.e., n � L, and per-flow identity—as
conveyed by�i—is lost as soon as a packet enters the net-
work. Thus by the many-to-one mapping implied byn > L,
aggregate-flow QoS controlis imposed on per-hop behavior
and executed per-hop at routers on an end-to-end path. In our
implementation design [19], we use a number of bits in the DS
field of IPv4 (and IPv6) to carry the� value (i.e., DSCP).

C. Per-hop Control

C.1 Per-hop Control Components

Per-hop control consists of aclassifierand apacket sched-
uler. We assume a GPS packet scheduler withm service

can achieve the target QoS.

classes and service weights�k � 0,
Pm

k=1 �k = 1, for an
output port whose link bandwidth� is shared in accordance
with the service weights. It is not necessary to have GPS
as the underlying packet scheduling discipline—e.g., priority
queues, multiple copies of RED with different thresholds are
alternatives—but we will show that GPS has certain desirable
properties when considering the problem of selecting an opti-
mal aggregate-flow per-hop control for differentiated services.
An important component is the classifier which is given by
a map� : [1; L] ! [1;m]. That is,n flows—effectivelyL
(or less) flows from the router’s perspective since packets are
scheduled by their label values only—routed to the same out-
put port on a switch are mapped tom service classes. For
aggregate-flowcontrol,n > L andL � m. Thus

n > L � m;

and if L > m, this leads to a further aggregation per-hop in
addition to the many-to-one mapping exercised at the edge due
to n > L. For some choice of classifier and packet scheduler,
the QoS received by flowi 2 [1; n] at a switch is determined—
explicitly or implicitly—by a performance functionxi, xi =
xi(�;�), where� = (�1; : : : ; �n) and� = (�1; : : : ; �n).
More precisely, flowi’s performance, in the aggregate-flow
case, is determined by the performance functionxk(�a;�a)
associated with service classk 2 [1;m] where

k = �(�i); �a = (1; 2; : : : ; L); �a = (�a1 ; �
a
2 ; : : : ; �

a
L);

and �a` =
X

j:�j=`

�j :

That is, the switch sees only (up to)L “super users” (or aggre-
gate flows). With a slight abuse of notation, we will denote an
aggregate flow at a switch by the indexi, and�a, �a by �, �
without the superscript. The distinction will be clear from the
context.

C.2 Per-hop Control Properties

There are three properties of the per-hop control, listed be-
low, which are of interest and deemed desirable from a QoS
control perspective. Letei = (0; : : : ; 0; 1; 0; : : : ; 0) denote
the unit vector whosei’th (i 2 [1; n]) component is 1, and 0,
otherwise. In the following,i 2 [1; n] refers to the end user,
andxi(�) denotes the individual user’s performance function
induced by the performance function of the service class that
the user is mapped to by�. The properties are:

(A1) for each flowi and configuration�, xi(� + ei) �
xi(�) andxi(� � ei) � xi(�);

(A2) for any two flowsi 6= j and configuration�, xj(� +
ei) � xj(�) andxj(� � ei) � xj(�);

(B) for two flows i 6= j and configuration�, �i � �j
impliesxi(�) � xj(�).

In the definitions, the range of� is such that the perturbations
remain in then-dimensional lattice, i.e.,� + ei;� � ei 2
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Fig. II.2. Left: Aggregate-flow QoS control affected by two stages of “information loss” via many-to-one coarsification—at edge and per-hop. Right:� value
in DS field of IP datagram is used by the classifier to select service class in GPS packet scheduler.

[1; L]n. Property (A1) states that, other things being equal, in-
creasing the label value of flowi improves the QoS received
by flow i (recall that “small” means “better” QoS in our rep-
resentation). Property (A2) states that increasing�i will not
increase the QoS received by any other flowj. Property (B)
states that if flowi has a higher� value than flowj, then the
QoS it receives is superior to that of flowj. We call property
(B) the differentiated serviceproperty. Note that (B) has the
immediate consequencexi(�) = xj(�) , �i = �j . Thus
there is no absolute, a priori QoS level attached to the�i val-
ues. It is the magnitude of�i—relative to other flows’ la-
bel values—that will determine the QoS received by a flow
i. We will show that the three properties, collectively, facili-
tate effective QoS differentiation and control via� control—
i.e., scalar QoS control—and furthermore, allow selfish users
to share resources efficiently when setting their� values com-
mensurate with their QoS requirements.

D. Edge Control

D.1 Access Control

The properties exported by per-hop control—if satisfied—
are not sufficient by themselves to render end-to-end QoS
commensurate with user requirements. End-to-end (or edge)
control complements per-hop control by setting the value of
� per-flow in accordance with user needs. We assume that
the network exercisesaccess controlat the edge such that
users are not permitted to assign� values to their packets at
will—if every user assigns the maximum� valueL to their
flows, then QoS control via� loses its meaning (degenerates
to FIFO-based best-effort service by property (B)). This can
be done by performing per-flow policing, traffic shaping, or
assigning costs via pricing. Open-loop control is used in the
Assured Service and Expedited Service instantiations of dif-
ferentiated services—also calledabsolutedifferentiated ser-
vices [7]—and is generally suited for short-lived flows for
which feedback control, when subject to long round-trip times
(RTT), is ineffective. Figure II.3 depicts the overall structure
of the end-to-end control framework.

D.2 End-to-end Control

Our framework (also referred to asrelative differentiated
services in [7]) allows end-to-end control to dynamically ad-

just the� value in accordance with a user’s QoS needs. Prop-
erties (A1), (A2), and (B) admit to composability in a WAN
environment where a user’s traffic flow goes through several
hops along an end-to-end path. That is, if a property holds for
any single per-hop control, it also holds for a sequence of per-
hop controls in a network of switches when viewed as imple-
menting a composite performance function3. An end-to-end
control of the form

�i(t+ �) =

8><
>:
�i(t) + 1; if xi > �i,

�i(t)� 1; if xi < �i,

�i(t); otherwise,

(II.1)

where�i represents useri’s QoS requirement vector—i.e., ex-
pressed as a threshold with delay less than�i1, packet loss rate
less than�i2—and� > 0 represents the next update, is asymp-
totically stable with respect to asingleuser4. Properties (A2)
and (B) reflect theresource-boundednessproperty of a router,
and come into play when considering a collection of selfish
users engaged in end-to-end scalar QoS control, and the dy-
namics this induces as a result of interaction.

E. User Control

E.1 User Utility and Selfishness

User i’s QoS requirement can be represented by autility
functionUi which has the formUi(�i;x

i; pi) where�i is the
traffic rate,xi the end-to-end QoS received, andpi the unit
price charged by the service provider. The total cost to useri
is given bypi�i. We assume thatUi satisfies themonotonicity
properties5

@Ui=@�i � 0; @Ui=@x
i � 0; and @Ui=@pi � 0: (II.2)

Other things being equal, an increase in the traffic rate is
favourably received by a user, so is an improvement in QoS,
but an increase in the price charged by the service provider has
a detrimental effect on user satisfaction. These are minimal,

3In general, under flow conservation for (A1) and (A2), or certain packet
loss dominance conditions.
4This assumes a total order on the union of reachable and required QoS

vectors. See [20] for a discussion of QoS ordering.
5Ui need not be differentiable, nor even be continuous. We use continuous

notation here for notational clarity; monotonicity is the only property required.
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weak requirements on the qualitative form of user utility. If
� control is allowed to be exercised by the user, then aselfish
useri can be defined as performing the self-optimization

max
�i2[1;L]

Ui(�i;x
i; pi) (II.3)

where�i influences useri’s utility Ui via its effect on the QoS
receivedxi. We assumepi(xi) is a monotone (nonincreas-
ing) function ofxi which corresponds to the price function
exported by the service provider. A slightly different formula-
tion of selfish, “cost-conscious” user behavior is obtained by
the constrained optimization formulation

min
�i

�ipi(x
i) (II.4)

subject to x
i � �i

where �i is user i’s QoS requirement vector. Thus the
user wants to minimize cost—i.e., achieve efficient resource
allocation—while satisfying his QoS requirements. Thresh-
old utilities expressed as bounds on the QoS received is a
useful means of representing and conveying a user’s QoS
requirement—delay less than 33ms, packet loss rate less10�4,
jitter less than 3ms, and so forth. The user is asked to convey
her QoS preference as a quantifiable threshold when interact-
ing with the network system (e.g., through a Web browser in-
terface) which is employed in some practical systems [21].

E.2 Noncooperative Game

Useri’s QoS is influenced by the actions (�j values) of other
usersj 6= i via x

i = xi(�) as captured by properties (A2)
and (B). If all users engage in self-optimization, this leads to
a noncooperative game. The first point-of-interest isstability.
In a noncooperative game, a configuration� = (�1; : : : ; �n)
which determines the global QoS allocation is stable if no user,
under (unilateral) selfish actions, can improve her utility from
that achieved at�. More precisely,� is a stable configuration
or Nash equilibriumif for all usersi 2 [1; n],

Ui(�i; x
i(� + c ei); pi(� + c ei)) �

Ui(�i; x
i(�); pi(�)) (II.5)

for all c 2 Z such that�i + c ei 2 [1; L]. Since all users are
stuck at� with respect to selfish moves, the system finds itself
at an impasse, i.e., rest point. A similar characterization holds
for (II.4). Existence of Nash equilibria and their efficiency
properties are of import since they characterize the behavioral
aspect of a differentiated services network when put into ac-
tion in a noncooperative environment such as the Internet. We
will show that the global resource allocation properties in a
noncooperative network environment are intimately tied with
the properties exported by the per-hop control.

F. Service Provider Control

For a single routersharedby flowsi andj, the only pricing
constraint we impose is

x
i � x

j ) pi � pj : (II.6)

That is, the better the QoS received at a shared resource (i.e.,
router), the higher the per unit flow cost charged to the user
receiving superior QoS. Sincexi � x

j if, and only if, the
relative resources (in the present framework, bandwidth) al-
located to flowi is greater than that of flowj, relation (II.6)
just says that the more resources a flow consumes—thus re-
ceiving superior QoS—the higher the cost it incurs vis-`a-vis
a flow that consumes comparatively less resources. Relation
(II.6), due to its generality, leaves open the degree of freedom
of setting themagnitudeof the prices which we assume is un-
der the control of a service provider. The service provider can
be treated as yet another player in the game—assigned the in-
dex zero—and, if selfish, will try to maximize his individual
utility U0. U0 is assumed to have the form of revenue minus
cost (i.e., profit) given byU0(�;�) =

Pn

i=1 �ipi(x
i)�Cost0

whereCost0 is the total cost incurred by the service provider
in delivering the services. The service provider exports aprice
functionp = p(x) wherep(�) is monotone decreasing inx.
Thus a selfish service provider performs the self-optimization

max
p(�)

nX
i=1

�ipi(x
i) (II.7)



assuming fixedCost0 . “Closing” the system by incorporating
the actions of a selfish ISP leads to a(n+1)-player noncoop-
erative game.

III. O PTIMAL CLASSIFIERS ANDPER-HOP CONTROL

We take a reductionist approach to optimal aggregate-flow
per-hop control by first defining what optimalper-flowcontrol
is when packets are enscribed with a value fromL possible
choices. Aggregate-flow control can then be viewed as anap-
proximationto the QoS achieved by per-flow control in a well-
defined sense. Comparability between aggregate-flow and per-
flow control is facilitated by the fact that, even in aggregate-
flow control, an end user’s QoS remains well-defined, and the
loss in power due to coarsification affected by flow aggrega-
tion can be exactly quantified.

A. Optimal Per-flow Classification

Consider the per-flow control or classifier problem forn
users who choose packet labels from[1; L]. Technically, per-
flow classification meansn = m (each flow’s service can be
individually configured), andL is either greater or smaller
thann. The rangeL may be finite or unbounded, and the
variable�i 2 [1; L] discrete or continuous. The influence of
boundednessanddiscretenesscan be subtle, and its effect is
shown in Section IV with respect to system optimality of Nash
equilibria where we quantify the negative performance impact
of boundedness and discreteness affected by loss of resolution.
Whenn users mark their flows with a value�i 2 [1; L] drawn
from the metric space[1; L] with property (A1) satisfied—
larger�i values, other things being equal, result in a greater
apportionment of resources and thus better QoS—�i can be
viewed as codifying a user’s QoS or resource demand with
respect to some measurement unit. For example,�i may rep-
resent bandwidth demand in units of Mbps. If network re-
sources areinfinite, then a flow’s request can be satisfied based
on the�i value specified, without consideration of the needs
specified by other flows (except, possibly, for pricing issues).
That is, independence or decoupling holds. If, on the other
hand, resources arefinite—an OC-12 link is shared among
bandwidth intensitive users—then, in general, the users’ col-
lective resource demand may exceed the available bandwidth.
In the presence of suchresource contention, a conflict resolu-
tion scheme is needed, including the criteria by which resource
allocation is decided.

Assume available bandwidth is normalized such that total
available bandwidth is� = 1. First, assume�i 2 R+ is a
continuousvariable over the real unit interval[0; 1], express-
ing useri’s normalized bandwidth demandper unit flow. Let
� = (�1; : : : ; �n) with �i � 0,

Pn

k=1 �k = 1, represent the
fraction of resources apportioned by the per-flow classifier to
i 2 [1; n], and let!i = �i=�i denote the fraction of resources
allocated toi per unit flow. Under the abovesemantics, given

� (and�), the optimization

min
�

nX
i=1

(�i � !i)
2 (III.1)

measures the “goodness” of a resource allocation! with re-
spect to users’ codified needs� in the mean-square sense6.
Since (III.1) penalizes by thedifferenceerror, the relative im-
portance of higher�i values is preserved, and resources are
apportioned accordingly. For general�i 2 R+ , including the
discrete and bounded case�i 2 f1; : : : ; Lgwhich is of special
interest, define the normalization

�̂i =

(
�i��min
�max��min

; if �max 6= �min,

1; otherwise,
(III.2)

where�min, �max are the minimum and maximum values of
f�1; �2; : : : ; �ng, respectively. Note that̂�i 2 [0; 1], and un-
less all�i values are equal,�min = 0 and�max = 1. Let !̂i
denote the normalization of!i via (III.2). Given�, the opti-
mization corresponding to (III.1) is

min
�

nX
i=1

(�̂i � !̂i)
2: (III.3)

(III.3) realizes the same semantics as (III.1), however, gener-
alized by the function or “code” (it is not 1-1) given by (III.2)
to �i values not restricted to the real unit interval[0; 1]. If L
is bounded, then the 1-1 function̂�i = �i=L achieves a simi-
lar purpose. (III.3) possesses the same desirable properties as
(III.1), which are characterized by the following two results.

Proposition III.4 (Optimal Per-flow Classifier) Given �,
� 2 Rn+ , the solution to(III.3) is

�i = (1� �)
�i�̂iPn

j=1 �j �̂j
+ �

�iPn

j=1 �j
(III.5)

for all i 2 [1; n] where0 � � � 1 is a parameter which
defines a continuous family of solutions.

The parameter�, which stems from the dimension reduc-
tion associated with (III.2), has an appealing interpretation.
The second term in (III.5) corresponds to the proportional
share achieved by FIFO scheduling, whereas the first term
corresponds to proportional share of the correspondingvirtual
flows�i�̂i, which are the original flow rates weighted by their
relevancy variablê�i derived from�i. Thus, if � = 1, then
the per-hop control effectively ignores the label values and be-
haves as a FIFO queue. If� = 0, then the router acts like
a GPS scheduler with service weights given by the first term.
For any other value of�, (III.5) represents a convex combina-
tion of the two behavioral modes.

Proposition III.6 (Per-flow Classifier Properties) The op-
timal per-flow classifier given in(III.5) satisfies properties
(A1), (A2), and(B).

6The generalization to other norms is treated separately.



B. Optimal Aggregate-flow Classification

With the semantic set-up of optimal per-flow classification,
let us consider the aggregate-flow classifier problem where
n > m. The original aggregate-flow classifier problem,n >
L = m, is subsumed by the more general set-up whereL can
take on any value. From a QoS provisioning perspective, the
ultimate goal of a differentiated services network comprised
of aggregate-flow per-hop controls is the provisioning ofend-
to-end QoScommensurate with each user’s needs. Aggregate-
flow control, whether it has many or few labels, must servicen
flows usingm < n service classes which results in a reduced
ability to effectively shape end-to-end QoS with respect to the
performance criterion (III.3) when compared to per-flow con-
trol. That is, the minimum value of (III.3) achieved by optimal
per-hop control is smaller than that of optimal aggregate-flow
control. This is a consequence of a more general result given
by Proposition III.9.

We give a formal definition of aggregate-flow per-hop
control. An aggregate-flow per-hop control with parameter
(m;L) is a function

�m;L : (�;�) 7! (�;�) (III.7)

where � : [1; L] ! [1;m] is the classifier and � =
(�1; : : : ; �m) is the vector of service weights assigned to the
m service classes. With respect to end users,�m;L induces—
explicitly or implicitly—a performance function'im;L for
each useri 2 [1; n]

'im;L : (�;�) 7! �i; (III.8)

where�i = 'im;L(�;�) � 0 is useri’s share of the bandwidth
allocated by�m;L. With a slight abuse of notation, we use�i
to denote both useri’s (i 2 [1; n]) apportioned resource, as
well as the service weight allocated by�m;L to service class
i (i 2 [1;m]). In the per-flow case, they coincide. Since the
traffic rate� is fixed, we will omit it from the argument list.
The two-stage interpretation of aggregate-flow per-hop control
is depicted in Figure II.2.

Proposition III.9 (Service Class Monotonicity) Let �m;L

be an aggregate-flow per-hop control, and letSm = f� :
'm;L(�) = � for some�g. Then(III.3) achieves a smaller
value with more service classes, i.e.,m0 � m implies

n
min
�2Sm0

nX
i=1

(�̂i � !̂i)
2
o
�
n
min
�2Sm

nX
i=1

(�̂i � !̂i)
2
o
:

Consider a special type of aggregate-flow per-hop control
�m;L—calledReduction Classifier—whose behavior is com-
pletely determined by its classifier� : [1; L] ! [1;m], in the
following sense. Let

Uk = fi 2 [1; L] : �(i) = kg; k 2 [1;m];

be the partition of[1; L] induced by�. On input(�;�), �m;L

behaves as

�m;L(�;�):

1. Compute�k =
P

i2Uk
�i for eachk 2 [1;m].

2. Compute�̂k for k 2 [1;m] as follows,

�̂k =

8><
>:
0; if 9i 2 Uk, �̂i = 0;

1; if 9i 2 Uk, �̂i = 1;P
i2Uk

�̂i=jUkj; otherwise.

3. Use per-flow optimal solution (Proposition III.4)
with new input ~� = (�̂1; : : : ; �̂m), ~� =
(�1; : : : ; �m), to solve the reduced per-flow classifier
problem consisting ofm superusers.

A reduction classifier reduces theL label (orn user) prob-
lem to anm user per-flow classification problem by aggrega-
tion of component flows and centroid computation, then solves
the reduced problem by applying the optimal per-flow classi-
fication solution. The resource share received by individual
flows can be computed as follows. Let�k, k 2 [1;m], be
the solution returned by Step 3. Fori 2 Uk, set�i such thatP

i2Uk
�i = �k, and�i=�i = constant. This is the share

received by useri 2 [1; n].

Theorem III.10 (Reduction Classifier) Let �m;L be a re-
duction classifier represented by its classifier�. Then�m;L is
anoptimal aggregate-flow per-hop control, i.e., satisfies(III.3)
if, and only if,� is a solution to

min
�0

X
k2[1;m]

X
i2Uk

(�̂i � �̂k)2 (III.11)

where the minimum ranges over all reduction classifiers�0.

Theorem III.10 shows that an optimal aggregate-flow classifier
must be a reduction classifier, and furthermore, it must effi-
ciently cover—in the mean-square sense—the set of label val-
uesf�̂1; �̂2; : : : ; �̂ng usingm centroidsf�̂1; : : : ; �̂mg. Thus
optimal aggregate-flow per-hop control is a clustering or clas-
sification problem in the statistical classification sense. This is
made more precise by the next result.

A classifier� is well-formed(also called agrouping) if the
three conditions�i < �j , �(i) = �(j), and�i � �k � �j
jointly imply �(k) = �(i). Thus if two different label val-
ues are mapped to the same service class, then all� values
“sandwiched” in-between must be mapped to the same ser-
vice class.� can be represented by well-formed parentheses
on the totally ordered set�1 � �2 � : : : � �n, where adjacent
values are grouped into the same partition except, possibly, at
boundaries.

Theorem III.12 (Grouping) An optimal aggregate-flow clas-
sifier is well-formed.



Thus aggregate-flow per-hop control is, mathematically, an
optimal clustering problem. Unlike its many brethren
in higher dimensions that are, with few exceptions, NP-
complete [22], the clustering problem given by (III.11) in The-
orem III.10 has a poly-time algorithm; e.g., it can be solved by
dynamic programming. WhenL = m—the practically rele-
vant case where there are as many labels as service classes—
optimal aggregate-flow classification has a linear time algo-
rithm.

C. Properties of Optimal Aggregate-flow Classifiers

Although optimal per-flow classifiers satisfy properties
(A1), (A2), and (B), the same is not necessarily true of op-
timal aggregate-flow classifiers.

Theorem III.13 (Aggregate-flow Classifier Properties) An
optimal aggregate-flow per-hop control satisfies property(B),
but need not satisfy properties(A1) and(A2).

Property (A2) is more subtle than (A1) and (B), but of import
in influencing the stability and dynamical structure of nonco-
operative networks built on top of a differentiated services net-
work substrate.

Theorem III.14 (Classifier Properties with L = m) An op-
timal aggregate-flow per-hop control with parametersL = m
satisfies properties(A1), (A2), and(B).

The L = m constraint advanced by Theorem III.14 coin-
cides with practical considerations that derive from an im-
plementation perspective. For example, assuming four bits
from the TOS field in IPv4 are used to encode the label set
fa; a+ 1; : : : ; a + 15g for somea � 0, then we may config-
ure 16 service classes at routers, one for each of the 16 possi-
ble label values. The classifier results and properties for fixed
service weights are treated separately.

IV. GAME THEORETICSTRUCTURE

The roadmap of the game theoretic results is as follows.
First, we derive stability properties—existence of Nash equi-
libria and their structure—and dynamics of the noncooperative
QoS provision game when users are allowed to set their� val-
ues end-to-end. Second, we show efficiency properties with
respect to system optimality, in particular, when Nash equilib-
ria are system optimal.

A. Basic Definitions

To satisfy useri’s QoS requirement�i, the per-hop
control—whatever its specific form—must apportion a frac-
tion ��i � 0 of the available bandwidth. Let��i denote the
minimal such bandwidth. We will find it more convenient to
work in the service weight spacef� : � � 0 and

Pn

i=1 �i �
1g. We will use'i(�) to denote the performance function cor-
reponding toxi(�) which allocates—explicitly or implicitly—
a service weight to useri for a given input�.

We will call the pair(�;�0) of control vectors aselfish move
of useri 2 [1; n] with respect to��i if �0 = � � ei, and the
following two conditions are satisfied:
(i) 'i(�) < ��i implies�0 = � + ei and'i(�0) > 'i(�);
(ii) 'i(�) > ��i implies�0 = � � ei and��i � 'i(�0) <
'i(�).
Thus an “unhappy” user tries to improve his happiness by in-
creasing�i, while an “overly” satisfied user tries to reduce the
satisfaction level to match his actual needs. We will call a pair
of control vectors(�;�0) aconcurrent selfish move(in the neg-
ative direction) if for someJ � [1; n], � = � �

P
i2J ei, and

(�;��ei) is a selfish move for alli 2 J . An analogous defini-
tions holds for concurrent selfish moves in thepositive direc-
tion. We will sometimes refer to selfish moves assequential
selfish moves to distinguish from concurrent ones. The defi-
nition of selfish move describes an efficient or cost conscious
user who only consumes just enough resources to satisfy her
QoS needs.

For useri, let Ai = f� : 'i(�) � ��i g. ThusAi repre-
sents the set of configuration where useri’s QoS requirement
is satisfied. Let

A� =

n\
i=1

Ai:

Thus all users’ QoS requirements are satisfied at� 2 A�.
A configuration� is system optimalif � 2 A�, and for all
�0 6= �, '(�0) > '(�) does not hold. In a system optimal
configuration, the users’ QoS requirements are met while ex-
pending the minimal amount of resources. In anoverloaded
system, i.e.,

Pn

i=1 �
�

i > 1, by definition, there cannot exist a
way of allocating network resources such that all users’ QoS
requirements are satisfied.� 2 A� is acorner pointof A� if
the set of selfish moves from� is empty.

B. Nash Equilibria and Stability Properties

B.1 Dynamics insideA�

First, we will present the dynamical properties of the non-
cooperative QoS provision game whenA� exists (i.e., is
nonempty) and� 2 A�.

Proposition IV.1 (Projection) For useri and configuration
� 2 Ai, letMi(�) = f�0 : �0i = �i; and�0j � �j for j 6= ig.
ThenMi(�) � Ai.

Proposition IV.1 is a consequence of property (A2) of the per-
hop control. We can use Proposition IV.1 and property (A1) to
show a closure property ofA�.

Lemma IV.2 (Closure) A� is closed under selfish moves,
sequential and concurrent. That is, for� 2 A� and any subset
of usersJ � [1; n] such that(�;� � ei) is a selfish move for
all i 2 J ,

� �
X
i2J

ei 2 A
�:



Thus selfish users, even when making simutaneous selfish
changes to their� values, cannot escape from the setA� where
their QoS requirements are all satisfied, some more than nec-
essary. A concurrent selfish move, with respect to users in
J � [1; n] and intersection set

T
i2J Ai, can be represented

by a subset ofJ 0 � J that shows the users making a move
since selfish moves within

T
i2J Ai can only occur in the

downward direction (a consequence of the more general result
Lemma IV.6).

Theorem IV.3 (Monotone Convergence) Any initial con-
figuration� 2 A� converges to a corner point ofA� under
selfish moves, sequential or concurrent.

Thus a corner point ofA� is a fixed point under the dynamics
of selfish moves withinA�, from which users cannot escape
by selfish actions due to closure. Theorem IV.3 also shows that
A� always possesses a corner point, not necessarily unique. A
corner point� represents anefficientallocation of resources
for all users in the sense that each useri’s QoS requirement is
satisfied by�, i.e.,��i = 'i(�) � ��i . Furthermore, any incre-
mental action byi will either violate his QoS requirement or
increase the apportioned resources beyond what is needed to
satisfy the user’s QoS requirement. We will show that a non-
incremental action by useri will have the same consequences
(Theorem IV.4). If'i(�) = ��i then� is efficient in an abso-
lute sense.

Theorem IV.4 (Corner Point and Nash) Let� be a corner
point ofA�. Then� is a Nash equilibrium.

We remark that a corner point ofA� must be Nash equilib-
rium, but the converse need not be true. Indeed, there are Nash
equilibria that need not be inA�, even when it is nonempty.

Theorem IV.5 (Nash and System Optimality) A configu-
ration � is Nash and system optimal if, and only if,� is a
corner point ofA�.

B.2 Dynamics outsideA�

When proving Lemma IV.2, it turns out to be inessential that
the intersection set beA�. ForJ � [1; n], the same argument
goes through when selfish moves are restricted to users inJ .
In fact, Lemma IV.2 is a special case of the following more
general result.

Lemma IV.6 (Closure with User Restriction) For J �
[1; n],

T
i2J Ai is closed under sequential and concurrent self-

ish moves when restricted to users inJ .

Thus keeping the� values of some users fixed, there are sub-
spaces in lower dimensions where closure with respect to the
remaining users’ selfish moves can hold for a more relaxed
intersection set. For any configuration�, define

J(�) = J+(�) [ J�(�)

as the set of all selfish moves whereJ+(�) is the set of moves
in the positive direction andJ�(�) represents the set of selfish

moves in the negative direction. By the definition of selfish
move, it follows thatJ+(�), J�(�) form a partition, andi 2
J+(�) implies� 2 Ai, andi 2 J�(�) implies� 2 Ai.

Theorem IV.7 (Cycles) There exist network systems with
A� 6= ; such that for some� 2 A� and fi-
nite sequenceJ1; J2; : : : ; Jr of concurrent selfish moves,
Jr(Jr�1(� � � J1(�) � � � )) = �. That is, configurations outside
A� can exist from which concurrent selfish moves lead to a
cycle.

Cycles turn out to have limited impact with respect to insta-
bility in that they cannot arise under sequential selfish moves,
and they are transient as shown by the next result.

Theorem IV.8 (Transience of Cycles) Cycles, when they
exist, aretransientin the sense that from any configuration�
on the cycle, there exist sequential or concurrent selfish moves
that lead to a Nash equilibrium.

Corollary IV.9 (Nash Existence) There always exist Nash
equilibria.

We have presented the results such that existence of Nash is an
immediate consequence of Theorem IV.4 and Theorem IV.8.
A Nash equilibrium� =2 A� has a specific monotonic form;
we omit the detailed characterization due to space constraints.

C. System Optimality and Structural Properties

We turn our focus to characterizing whenA� is nonempty.
The next result is the only general result that holds from (A1),
(A2), and (B) without exploiting further properties of the op-
timal aggregate-flow classifier solution forL = m.

Proposition IV.10 (Diagonal Inclusion) Let D = f� :
�i = �j for all i; j 2 [1; n]g. If ��i � �i=

Pn

j=1 �j for all
usersi 2 [1; n], thenD � A�.

Note that��i � �i=
Pn

j=1 �j for all i 2 [1; n] implies thatP
i2[1;n] �

�

i � 1. Next, we find weaker conditions forA� 6=

;, and characterize the loss of power resulting from having a
bounded, discrete label setf1; 2; : : : ; Lg. To achieve this, we
utilize the properties of the optimal aggregate-flow classifier
solution forL = m. First, consider the case when�i 2 R+

for all i 2 [1; n], andn = m. The case of interest,� 2 [1; L]n

in the aggregate-flow case can be analyzed by relating it to the
unrestricted case.

Theorem IV.11 (Unrestricted Intersection) Assume�i 2
R+ for all i 2 [1; n]. Let n = m, and let� be the optimal
per-flow classifier. ThenA� 6= ; if, and only if,
(a) 9 i 2 [1; n] such that��i � ��i=

Pn

j=1 �j , and
(b)
Pn

j=1maxf��i ; ��i=
Pn

j=1 �jg � 1.

Here� � 0 is the solution parameter of the optimal per-flow
classifier which determines how much proportional sharing to
inject in the service weight allocation (� = 1 degenerates per-
hop control to FIFO). Theorem IV.11 is a tight characterization
ofA�’s nonemptiness in the unrestricted case where properties



(a) and (b) stem from the particular form of the optimal per-
flow classifier solution given by Proposition III.4. Note that
as� ! 0, (b) becomes

Pn

j=1 �
�

i � 1 which is the weakest
possible condition for nonemptiness ofA�. The next result is
an immediate consequence of Theorem IV.11.

Corollary IV.12 (Empty Restricted Intersection) If A� =
; in the unrestricted case, thenA� = ; in the restricted case
where�i 2 f1; 2; : : : ; Lg for all i 2 [1; n], andL <1.

The aggregate-flow and per-flow cases with respect to
nonemptiness ofA� can be related by the next result which
is a consequence of Theorem III.14.

Proposition IV.13 (Per-flow and Aggregate-flow Relation)
Let�i 2 f1; 2; : : : ; Lg for all i 2 [1; n], andL <1. A� 6= ;
in the per-flow case(i.e.,n = m) if, and only if,A� 6= ; in
the aggregate-flow case withm = L.

Given the relationship of nonemptiness ofA� between the per-
flow and aggregate-flow case under�i 2 f1; 2; : : : ; Lg, what
remains is a quantitative characterization of the loss of power
due to discreteness and boundedness of the label set[1; L] in
the aggregate-flow case.

Theorem IV.14 (Loss of Power due to Restriction) Let
L = m < n. If there exists� = (�1; �2; : : : ; �n) with
�min = 0, �max= 1, 0 � �i � 1, such that

(1� �)
�i�iPn

j=1 �j�j
+ �

�iPn

j=1 �j
�

��i +
1� �

L� 1

�iPn
j=1 �j�j

(IV.15)

for all i 2 [1; n], thenA� 6= ;.

The left-hand-side of inequality (IV.15) just denotes a valid
service weight vector with respect to the optimal aggregate-
flow classifier. The second term in the right-hand-side of
(IV.15) of Theorem IV.14 quantifies the loss of power due to
coarsification. IfL ! 1, then the loss-of-power term drops
out. In practice,L is a small finite value (e.g., using 4 bits in
the precedence field of IP,L = 16). The next result shows
that n � L—the raison d’etre of aggregate-flow control—
facilitates tightness of the bound.

Corollary IV.16 (Nonempty Discrete Intersection) Under
the same conditions asTheorem IV.14, let di = b(L� 1)�ic,
i 2 [1; n]. Then,A� 6= ; if for all i 2 [1; n]

(1� �)
�i�iPn

j=1 �j�j
+ �

�iPn

j=1 �j
�

��i + (1� �)
�iPL�1

k=1 k
P

j:dj=k
�j

(IV.17)

For n � L, we can expect �iPL�1

k=1
k
P

j:dj=k
�j

� 1, and

(IV.15) gives a tight bound on the existence condition of sys-
tem optimal Nash equilibria.
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