
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Theoretical Computer Science 393 (2008) 220–230
www.elsevier.com/locate/tcs

On the hardness of optimization in power-law graphs

Alessandro Ferrantea, Gopal Panduranganb,∗, Kihong Parkb

a Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, Università degli Studi di Salerno, Via Ponte don Melillo, 84084,
Fisciano (SA), Italy

b Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

Received 24 January 2007; received in revised form 14 September 2007; accepted 8 December 2007

Communicated by O.H. Ibarra

Abstract

Our motivation for this work is the remarkable discovery that many large-scale real-world graphs ranging from Internet and
World Wide Web to social and biological networks appear to exhibit a power-law distribution: the number of nodes yi of a given
degree i is proportional to i−β where β > 0 is a constant that depends on the application domain. There is practical evidence
that combinatorial optimization in power-law graphs is easier than in general graphs, prompting the basic theoretical question: Is
combinatorial optimization in power-law graphs easy? Does the answer depend on the power-law exponent β? Our main result
is the proof that many classical NP-hard graph-theoretic optimization problems remain NP-hard on power-law graphs for certain
values of β. In particular, we show that some classical problems, such as CLIQUE and COLORING, remain NP-hard for all β ≥ 1.
Moreover, we show that all the problems that satisfy the so-called “optimal substructure property” remain NP-hard for all β > 0.
This includes classical problems such as MINIMUM VERTEX COVER, MAXIMUM INDEPENDENT SET, and MINIMUM
DOMINATING SET. Our proofs involve designing efficient algorithms for constructing graphs with prescribed degree sequences
that are tractable with respect to various optimization problems.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Power-law graphs; Graph optimization problems; NP-hardness; Graph construction algorithms

1. Overview and results

In this paper, we focus on studying the hardness of combinatorial optimization in power-law graphs. Our motivation
for this work is the remarkable discovery that many large-scale real-world graphs ranging from Internet and World
Wide Web to social and biological networks appear to exhibit a power-law distribution [3]. In power-law networks,
the number of nodes yi of a given degree i is proportional to i−β where β > 0 is a constant that depends on the
application domain. Power-law degree distribution has been observed in the Internet (β = 2.1), World Wide Web

∗ Corresponding author. Tel.: +1 765 494 0916; fax: +1 765 494 0739.
E-mail addresses: ferrante@dia.unisa.it (A. Ferrante), gopal@cs.purdue.edu (G. Pandurangan), park@cs.purdue.edu (K. Park).
URLs: http://www.dia.unisa.it/dottorandi/ferrante (A. Ferrante), http://www.cs.purdue.edu/people/gopal (G. Pandurangan),

http://www.cs.purdue.edu/people/park (K. Park).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.12.007

Author's personal copy

A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230 221

(β = 2.1), social networks (movie actors’ graph with β = 2.3, citation graph with β = 3), and biological networks
(protein domains with β = 1.6, protein–protein interaction graphs with β = 2.5). In most real-world graphs, β ranges
between 1 and 4 (see [3] for a comprehensive list).

There is practical evidence that combinatorial optimization in real-world power-law graphs is easier than in general
graphs. For example, experiments in Internet measurement graphs (power-law with β = 2.1) show that a simple
greedy algorithm that exploits the power-law property yields a very good approximation to the MINIMUM VERTEX
COVER problem (much better than random graphs with no power law) [13,14]. In particular, for Internet graphs
(AS topologies), they show that the sizes of the vertex covers obtained by the greedy algorithm are very close to the
optimal, with an accuracy level greater than 90%. On the other hand, for random graphs the corresponding accuracy
level is less than 75%. Gkantsidis, Mihail, and Saberi [9] argue that the performance of the Internet suggests that
multi-commodity flow can be routed more efficiently (i.e., with near-optimal congestion) in Internet graphs than in
general graphs. More formally they show that power-law random graphs can support routing of O(dudv) units of
flow between each pair of vertices u and v with degrees du and dv respectively, with congestion O(n log2 n). This
congestion is optimal to within a logarithmic factor (achieved by linear sized regular graphs with constant expansion).
Eubank et al. [7] show that in power-law social networks, a simple and natural greedy algorithm that again exploits
the power-law property (choose enough high-degree vertices) gives a 1 + o(1) approximation to the DOMINATING
SET problem. All these results on disparate problems on various real-world graphs motivate a coherent and systematic
algorithmic theory of optimization in power-law graphs (and in general, graphs with prescribed degree sequences).

In this work, we study the following theoretical questions: What are the implications of power-law degree
distribution to the algorithmic complexity of NP-hard optimization problems? Can the power-law degree distribution
property alone be sufficient to design polynomial-time algorithms for NP-hard problems on power-law graphs? And
does the answer depend on the power-law exponent β?

A number of power-law graph models have been proposed in the last few years to capture and/or explain the
empirically observed power-law degree distribution in real-world graphs. They can be classified into two types. The
first takes a power-law degree sequence and generates graph instances with this distribution. The second type arises
from attempts to explain the power law starting from basic assumptions about a growth evolution. Both approaches
are well motivated and there is a large literature on both (e.g., [4,1,2]). Following Aiello, Chung, and Lu [1,2], we
adopt the first approach, and use the following model for (undirected) power-law graphs (henceforth called the (β, α)

model): the number of vertices yi with degree i is roughly given1 by yi = eα/ iβ , where eα is a normalization constant
(so that the total number of vertices sum to the size of the graph, thus α determines the size). We note that unlike the
model of Aiello, Chung, and Lu [1,2], the (β, α) model is not a random graph model.

Investigating the complexity of problems in power-law graphs (in particular, the (β, α) model) involves an
important subtlety. The (β, α) model allows graphs with self-loops and multi-edges. However, many real-world
networks, such as Internet domain graphs, are simple undirected power-law graphs. Thus, we restrict ourselves to
simple undirected power-law graphs (no multi-edges or self-loops). In this paper we study the complexity of many
classical graph problems in the (β, α) model. We first show that problems such as COLORING and CLIQUE remain
NP-hard in simple power-law graphs of the (β, α) model for all β ≥ 1. We then show that all the graph problems that
satisfy an “optimal substructure” property (such as MINIMUM VERTEX COVER, MAXIMUM INDEPENDENT
SET and MINIMUM DOMINATING SET) remain NP-hard on simple power-law graphs of the (β, α) model for all
β > 0. This property essentially states that any optimal solution for a problem on a given graph is the union of the
optimal (sub)solutions on its maximal connected components. A main ingredient in our proof is a technical lemma
that guarantees that any arbitrary graph can be “embedded” in a suitably large (but polynomial in the size of the
given graph) graph that conforms to the prescribed power-law degree sequence. This lemma may be of independent
interest and can have other applications as well e.g., in showing hardness of approximation of problems in power-
law graphs (cf. Section 5). Another contribution is constructions of graphs with prescribed degree sequences that
admit polynomial-time algorithms. These constructions are useful in showing the NP-hardness of certain optimization
problems that do not satisfy the optimal substructure property. In particular, we will use them to show the NP-hardness
of CLIQUE and COLORING for all β ≥ 1. We should point out that our results do not directly imply hardness of
connected power-law graphs. This is because the (simple) power-law graphs that we construct in our proofs are

1 Our model is defined precisely in Section 2.

Author's personal copy

222 A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230

disconnected. To have more relevance to real-world power-law graphs (see e.g., [10]), it will be interesting to extend
our techniques to show hardness of simple and connected power-law graphs (cf. Section 5).

Our results show that, many important graph optimization problems remain NP-hard even for power-law graphs.
However, experimental evidence shows that optimization is considerably easier in real-world power-law graphs. This
suggests that real-world graphs are not “worst-case” instances of power-law graphs, but rather typical instances which
may be well modeled by power-law random graph models (e.g., [1,7,3,4,9,11,12]). Combinatorial optimization is
generally easier in random graphs and hence from an optimization perspective this somewhat justifies using power-
law random graphs to model real-world power-law graphs. We believe that further investigation, both in the modeling
of real-world graphs and in the optimization complexity of real-world graphs and their models, is needed to gain a
better understanding of this important issue.
Organization: In Section 2 we will introduce some notations and definitions that will be used throughout the paper.
In Section 3 we first introduce a general technique to prove the NP-completeness of decision problems in power-law
graphs and then use this technique to show the NP-completeness of CLIQUE and COLORING. In Section 4 we will
show that optimization problems obeying the optimal substructure property that are NP-hard in general graphs are
NP-hard in power-law graphs too. We conclude with some open questions in Section 5.

2. Notations and definitions

In this section we introduce some notations and definitions that we will use throughout the paper. For all x, y ∈ N
with x ≤ y, we will use [x, y] to denote {x, x + 1, . . . , y} and [x] to denote [1, x].

Given a graph, we will refer to two types of sequences of integers: y-degree sequences and d-degree sequences.
The first type lists the number of vertices with a certain degree (i.e., the degree distribution) and the latter lists the
degrees of the vertices in non-increasing order (i.e., the degree sequence of the graph in non-increasing order). More
formally, we can define the y-degree sequence as follows. Given a graph G = (V, E) with maximum degree m, the
y-degree sequence is the sequence Y G

= 〈yG
1 , . . . , yG

m 〉 where yi = |{v ∈ V : degree(v) = i}|, i ∈ [m]. Given a
graph of n vertices, the d-degree sequence will be denoted by DG

= 〈dG
1 , . . . , dG

n 〉, where dG
i ’s are the vertex degrees

in non-increasing order. When the referred graph is clear from the context, we will use only Y and D to denote the
y- and d-degree sequences respectively. (We note that we do not allow vertices with zero degree (i.e., isolated nodes)
in G. This is not really a issue, because we will deal with problems in which isolated nodes can be treated separately
from the rest of the graph to obtain a (optimum) solution to the problem with “minor effects” on the running time.)

Given a sequence of integers S = 〈s1, . . . , sm〉, we define the following operator that expands S into a new non-
increasing sequence of integers.

Definition 1 (Expansion). Let S = 〈s1, . . . , sn〉 be a sequence of integers and j ∈ [n]. Then we define

EX(S) = 〈

sn︷ ︸︸ ︷
n, . . . , n, . . . ,

s1︷ ︸︸ ︷
1, . . . , 1〉.

Note that the expansion operation converts a y-degree sequence into a d-degree sequence. In the rest of the paper,
given two degree sequences S = 〈s1, . . . , sn〉 and T = 〈t1, . . . , tm〉 with n ≥ m, we will denote S− T = 〈x1, . . . , xn〉

with xi = si − ti if i ∈ [m] and xi = si otherwise.
The (β, α) model of power-law graphs uses the following y-degree sequences which we henceforth call (β, α)-

degree sequences and is defined as follows.

Definition 2 ((β, α)-degree Sequence). Given α, β ∈ R+, the y-degree sequence of a graph G = (V, E) is a (β, α)-
degree sequence (and is denoted by Y (β,α)

= 〈y(β,α)

1 , . . . , y(β,α)
m 〉) if m = beα/β

c and, for i ∈ [m]

yi =

⌊

eα

iβ

⌋
if i > 1 or

m∑
k=1

⌊
eα

kβ

⌋
is even

beαc + 1 otherwise.

In the rest of the paper, given a sequence of integers S = 〈s1, . . . , sk〉, we will define tot(S) =
∑k

i=1 si and
w(S) =

∑k
i=1 isi . Note that if S is the y-degree sequence of a graph, then w(S) is the total degree of the graph,

whereas if S is the d-degree sequence of a graph, then tot(S) is the total degree of the graph.

Author's personal copy

A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230 223

Our aim is to study the NP-hardness of graph-theoretic optimization problems when they are restricted to (β, α)

model with a fixed β, in particular, simple graphs belonging to this class. (Of course, showing hardness results for this
class implies hardness for arbitrary power-law graphs as well.) Formally, we define such graphs as:

Definition 3 (β-graph). Given β ∈ R+, a graph G = (V, E) is a β-graph if it is simple and there exists α ∈ R+ such
that the y-degree sequence of G is a (β, α)-degree sequence.

3. NP-Hardness of CLIQUE AND COLORING

In this section we introduce a general technique to prove the NP-hardness of some optimization problems. The
main idea of the proof is the following. Given an arbitrary graph G, it is possible to construct a simple graph G1
which contains G as a set of maximal connected components. Let G2 = G1\G be the remaining graph. Obviously,
G2 is simple and if we can show that we can efficiently (i.e., in polynomial time) compute an optimal solution in G2
then this essentially gives us the result. However, it is a priori not obvious how to design an efficient algorithm given
a particular problem. The key idea we will use here is that we have the choice of constructing G1 (and hence G2)
and thus we can construct the graph in such a way that it admits an efficient algorithm. If we construct the graph in a
careful way, it will be possible to design a polynomial-time algorithm that finds an optimal solution.

Below we illustrate this idea by showing the NP-completeness of certain problems, including CLIQUE AND
COLORING, in β-graphs for β ≥ 1. Our idea here is to make G2 a simple bipartite graph. Since bipartite graphs are
2-colorable and have a maximum clique of size 2, this immediately gives the reduction. Obviously, the main difficulty
is in constructing the bipartite graph. We first need the following definitions.

Definition 4 (Contiguous Sequences). A sequence D = 〈d1, . . . , dn〉with maximum value m is contiguous if yD
i > 0

for all i ∈ [m], where yD
i = |{ j ∈ [n] s.t. d j = i}|. Intuitively, D is contiguous if each value i ∈ [m] appears at least

once in D.

Definition 5 (Bipartite-Eligible Sequences). A sequence D = 〈d1, . . . , dn〉 with maximum value m is bipartite-
eligible if it is contiguous and m ≤ bn/2c.

Lemma 1. Let D = 〈d1, . . . , dn〉 be a sequence. If D is non-increasing and bipartite-eligible and tot(D) is even, then
it is possible to construct in time O(n2) a simple bipartite graph G = (V, E) such that DG

= D.

Proof. First note that since D is non-increasing and bipartite-eligible, d1 ≤ bn/2c. We build the graph iteratively by
adding some edges to certain vertices. Define the residual degree of a vertex as its final degree minus its “current”
degree. Initially all the vertices have degree 0. To build the graph we use the following algorithm (let S and T be two
initially empty sets of vertices):

(1) let rd(si) and rd(ti) be the residual degree of the i th vertex of S and T ;
(2) E ← ∅; S← ∅; T ← ∅; tot(S)← 0; tot(S)← 0; k ← |S|; l ← |T |;
(3) while i ≤ n do

(a) while i ≤ n and tot(S) ≤ tot(T) do
(i) let u be a new vertex;
(ii) S← S ∪ {u}; k ← k + 1; rd(sk)← di ; tot(S)← tot(S)+ di ;

(b) while i ≤ n and tot(T) ≤ tot(S) do
(i) let v be a new vertex;
(ii) T ← T ∪ {v}; l ← l + 1; rd(tl)← di ; tot(T)← tot(T)+ di ;

(4) while tot(S) > 0 do
(a) SORT S and T separately in non-increasing order of the residual degree;
(b) for i ← 1 to rd(s1) do

(i) E ← E ∪ {(s1, ti)}; rd(s1)← rd(s1)− 1; rd(ti)← rd(ti)− 1; tot(S)← tot(S)− 1; tot(T)← tot(T)− 1;
(c) for i ← 2 to rd(t1)+ 1 do

(i) E ← E ∪ {(t1, si)};
(ii) rd(t1)← rd(t1)− 1; rd(si)← rd(si)− 1; tot(T)← tot(T)− 1; tot(S)← tot(S)− 1;

(5) return G = (S ∪ T, E);

Author's personal copy

224 A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230

Note that the entire loop (3) requires O(n2) time to be completed. Moreover, in every iteration of the loop (4), at
least one vertex is completed and will be no longer considered in the algorithm. Therefore, the loop (4) is completed
in O(n2) time and the algorithm has complexity O(n2).

Now we prove that the algorithm works correctly. We first introduce some notations. The residual degree of the set
S (T respectively) after the SORT instruction of the round i is denoted by Ri (S) (Ri (T) respectively). The number of
vertices with positive residual degree (non-full vertices) in S (T) is denoted by Ni (S) (Ni (T)). The set S is si

1, . . . , si
h

and the set T is t i
1, . . . , t i

k .
The proof is by induction on the round i . More exactly, we prove the following invariant: After the SORT instruction

we have:

(1) Ri (S) = Ri (T) and
(2) Ni (T) ≥ rd(si

1) and Ni (S) ≥ rd(t i
1).

It is easy to see that if this invariant holds, then the algorithm correctly builds a bipartite graph. We start proving
the base case (i = 1) by showing that the above two conditions hold.

(1) Let tot j (S) and tot j (T) be the total degrees of the sets S and T after the insertion of the j th vertex. We first
show that |tot j (S) − tot j (T)| ≤ d j+1 for all j ∈ [2, n − 1]. This is obvious for j = 2 since the sequence is
non-increasing and contiguous. Let us suppose that this is true until j − 1 and let us show it for j .

Without loss of generality, let us suppose that the j th vertex is assigned to T . Then this implies that
tot j−1(S) ≥ tot j−1(T) and by induction tot j−1(S)− tot j−1(T) ≤ d j and, therefore, tot j (S)− tot j (T) ≤ 0.

Now we can complete the proof of the base case. Without loss of generality let us suppose that the last vertex is
assigned to T . Then we have R1(S) ≥ R1(T)−1. But from the preceding proof we also know that R1(S) ≤ R1(T)

and, from the fact that the last vertex has degree 1 and that the total degree of D is even, we have the claim.
(2) Since the degree sequence is contiguous and after the insertion we have tot(S) = tot(T), it is easy to see that after

the insertion we have −1 ≤ |S| − |T | ≤ 1. From this and from the hypothesis d1 ≤ bn/2c the claim follows.

Let us suppose that the invariant is true until i − 1 and let us prove it for i .

(1) We have Ri (S) = Ri−1(S) − rd(si−1
1) − (rd(t i−1

1) − 1) = Ri−1(T) − rd(t i−1
1) − (rd(si−1

1) − 1) = Ri (T) as
claimed.

(2) The case rd(si
1) = 0 is trivial, therefore let us suppose that rd(si

1) ≥ 1. If rd(si−1
2) = 1, then rd(si

1) = 1 since the
degrees in S are non-increasing. Moreover, from item (1) we have Ri (T) = Ri (S) ≥ 1 and this completes this
case.

If rd(si−1
2) > 1, then we have two cases. If rd(t i−1

2) = 1, from item (1) and the fact that rd(t i
j) ≤ 1 for all j

the claim follows. On the other hand, if rd(si−1
2) > 1, we have Ni (T) = Ni−1(T) ≥ rd(si−1

1) ≥ rd(si
1). �

The following lemma shows that for β ≥ 1 it is possible to embed a simple graph G in a polynomial-sized β-graph
G1 such that G is a set of maximal connected components of G1 and G2 = G1\G is bipartite-eligible.

Lemma 2. Let G = (V, E) be a simple graph with n1 vertices and β ≥ 1. Let α0 = max{4β, β ln n1 + ln(n1 + 1)}.
Then, for all α ≥ α0 the sequence D = EX(Y (β,α)

− Y G) is contiguous and bipartite-eligible.

Proof. Let n2 be the number of elements in D, α ≥ α0 and m = beα/β
c be the maximum value in D. We have

n2 ≥

beα/β
c∑

i=1

⌊
eα

iβ

⌋
− n1 > eα

beα/β
c∑

i=1

1
iβ
− beα/β

c − n1 ≥ eα

∫
beα/β

c+1

i=1

1
iβ
− beα/β

c − n1.

If β = 1, then we have

n2 ≥ αeα
− eα

− n1 ≥ 4eα
− 2eα

+ 1 ≥ 2m + 1

and if β > 1 we have

n2 ≥
eα

β − 1
− eα/β

− n1 ≥ 4eα/β
− 2eα/β

+ 1 ≥ 2m + 1,

Author's personal copy

A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230 225

that is m ≤ n2/2− 1 ≤ bn2/2c. Moreover, as

y(β,α)
n1
≥

⌊
eα

nβ

1

⌋
>

eα

nβ

1

− 1 ≥
nβ+1

1 + nβ

1

nβ

1

− 1 = n1,

so EX(Y) is contiguous. Therefore, EX(Y) is bipartite-eligible and this completes the proof of this lemma. �

We finally show the NP-completeness of certain problems in β-graphs with β ≥ 1. The following definition is
useful to introduce the class of problems we analyze in what follows.

Definition 6 (c-Oracle). Let P be an optimization problem and c > 0 a constant. A c-oracle for the problem P is a
polynomial-time algorithm AP

c (I) which takes as input an instance I of P and correctly returns an optimum solution
for P given that on the instance I the problem has an optimum solution with size at most c.

The following theorem shows the NP-completeness of a particular class of decision problems defined using the
c-oracle in β-graphs with β ≥ 1.

Theorem 1. Let β ≥ 1. Let P be a graph decision problem such that its optimization version obeys the following
properties:

(1) OPT(G) = max1≤i≤k OPT(Ci) (where Ci are the maximal connected components of G),
(2) there exists a constant c > 0 such that for all bipartite simple graphs H it holds |OPT(H)| ≤ c and
(3) it admits a c-oracle.

If P is NP-complete for general graphs, then it is NP-complete for β-graphs too.

Proof. From Lemmas 1 and 2, it is possible to construct, in time poly(|G|), a β-graph G1 embedding G such that
|G1| = poly(|G|), G is a set of maximal connected components of G1 and G2 = G1\G is a simple bipartite graph.
Since OPT(G1) = maxk{OPT(Ck)}, |OPT(G2)| ≤ c and the optimization version of P admits a c-oracle, it is easy
to see that P can be reduced in polynomial time to β-P (where β-P is P restricted to β-graphs). �

Since CLIQUE and COLORING satisfy all conditions of Theorem 1 with c = 2, we easily obtain the following
corollary.

Corollary 1. CLIQUE and COLORING are NP-complete in β-graphs for all β ≥ 1.

4. Hardness of optimization problems with optimal substructure

We show that if an optimization problem is NP-hard on (simple) general graphs (i.e., computing a solution in
polynomial time is hard) and it satisfies the following “optimal substructure” property, then it is NP-hard on β-graphs
also. We state this property as follows. Let P be an optimization problem which takes a graph as input. For every
input G, the following should be true: every optimum solution of P on G should contain an optimum solution of
P on each of G’s maximal connected components. To illustrate with an example, it is easy to see that MINIMUM
VERTEX COVER problem satisfies this property: an optimal vertex cover on any graph G should contain within it
an optimal vertex cover of its maximal connected components. Other important problems which satisfy this property
include MINIMUM DOMINATING SET, MAXIMUM CUBIC SUBGRAPH, MAXIMUM INDEPENDENT SET
[8]. On the other hand, MINIMUM COLORING does not satisfy the above property, since the optimal coloring of
a graph need not contain an optimal coloring of all its maximal connected components. Similarly the MAXIMUM
CLIQUE problem does not satisfy the property. We first need some definitions. We say that a sequence D is graphic
if there exists a simple graph G such that DG

= D.

Definition 7 (Eligible Sequences). A sequence of integers S = 〈s1, . . . , sn〉 is eligible if s1 ≥ · · · ≥ sn and, for all
k ∈ [n], fS(k) ≥ 0, where

fS(k) = k(k − 1)+

n∑
i=k+1

min{k, si } −

k∑
i=1

si .

Author's personal copy

226 A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230

Erdős and Gallai showed a key result [6,5] which gives a necessary and sufficient condition for a sequence of
integers to be graphic.

Lemma 3 ([6,5]). A sequence of integers D is graphic if and only if it is non-increasing, tot(D) is even and D is
eligible.

Note that this condition is different from the somewhat simpler condition that maxi d2
i <

∑
i di and

∑
i di is

even which is also due to Erdős and Gallai [6]. This condition only ensures that the di ’s can be realized as a multi-
graph (without self-loops), but not as a simple graph. The following result due to Havel and Hakimi [5] gives a
straightforward algorithm to construct a simple graph from a graphic degree sequence.

Lemma 4 ([5]). A sequence of integers D = 〈d1, . . . , dn〉 is graphic if and only if it is non-increasing, and the
sequence of values D′ = 〈d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn〉 when sorted in non-increasing order is
graphic.

In the next technical lemma, we introduce a new sufficient condition for a sequence of integers to be eligible.

Lemma 5. Let Y (1) and Y (2) be two y-degree sequences with m1 and m2 elements respectively such that (i) y(1)
j ≤ y(2)

j

for all j ∈ [m1], and (ii) D(1)
= EX(Y (1)) and D(2)

= EX(Y (2)) are contiguous. If D(1) is eligible then D(2) is
eligible.

Proof. Let us note that the transformation from the degree sequence Y (1) to the degree sequence Y (2) (and hence
from D(1) to D(2)) can be seen as a sequence of rounds of the following type: in every step a vertex with degree d
is transformed into a vertex with degree (d + 1) and the global sequence is rearranged with respect to the relation
y(1)

j ≤ y(2)
j for all j ∈ [m1]. In other words, to transform Y (1) to Y (2) (and hence D(1) to D(2)) we can execute the

following simple algorithm (for a better readability, in the rest of the paper, given a sequence S = 〈s1, . . . , sn〉 and an
integer x we will use the notation S + x = 〈s1, . . . , sn, x〉 to denote the concatenation of S with the integer x):

(1) S(0)
← D(1);

(2) i ← 0;
(3) while S(i)

6= D(2) do
(a) for j ← m2 downto 2 do

(i) if |{x ∈ S(i+1) s.t. x = j}| < y(2)
j and |{x ∈ S(i+1) s.t. x = j − 1}| > 0 then

(A) k ← min{x ∈ S(i+1) s.t. s(i+1)
x = j − 1};

(B) s(i+1)
k ← s(i+1)

k + 1;

(b) S(i+1)
← S(i+1)

+ x ;
(c) i ← i + 1;

Let n2 = |D(2)
|. From the definition of eligibility, D(2) is eligible if fD(2)(k) > 0 for all k ∈ [n2]. Since fS(0)(k) ≥ 0

for k ∈ n(0), to show this we only have to prove that at the end of each iteration of the while loop of the previous
algorithms, if fS(i−1)(k) ≥ 0 for all i ∈ [n(i−1)

] then fS(i)(k) ≥ 0 for all i ∈ [n(i)
], where n(i)

= |S(i)
|.

Let k ∈ n(i) and r ∈ [2, m2] be the maximum integer such that the if of the algorithm is executed. Notice that
in each iteration of the while loop of the algorithm, the if clause is executed for all j ∈ [2, r] and is not executed
for j ∈ [r + 1, m2]. Let m(i), i ≥ 0, be the maximum value in the sequence S(i). Now, we consider the following
cases.

• Case A (k ≤ s(i−1)
k and r < k): Notice that r ≤ s(i−1)

k . Therefore, since the if clause will be executed only for

j ∈ [2, r] and S(i−1) is non-increasing, then it is obvious that s(i)
t = s(i−1)

t for t ∈ [k]. Therefore the following
formula holds.

k∑
j=1

s(i)
j =

k∑
j=1

s(i−1)
j .

Author's personal copy

A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230 227

Moreover, from the algorithm it is obvious that n(i) > n(i−1) and s(i)
j ≥ s(i−1)

j for j ∈ n(i−1). Therefore we have
the following result.

n(i)∑
j=k+1

min{k, s(i)
j } >

n(i−1)∑
j=k+1

min{k, s(i−1)
j }.

From the previous two formulas we easily have that

fS(i)(k) = k(k − 1)+

n(i)∑
j=k+1

min{k, s(i)
j } −

k∑
j=1

s(i)
j

> k(k − 1)+

n(i−1)∑
j=k+1

min{k, s(i−1)
j } −

k∑
j=1

s(i−1)
j = fS(i−1)(k) ≥ 0

which completes the proof of this case.
• Case B (k ≤ s(i−1)

k and r ≥ k): From the algorithm we can see that s(i)
j ≤ s(i−1)

j + 1 for all j ∈ [k]. Therefore we
have that

k∑
j=1

s(i)
j ≤

k∑
j=1

s(i−1)
j + k.

From the algorithm, it is easy to show that S(i−1) and S(i) are contiguous. To see this, first note that S(0)
= D(1)

is contiguous. Moreover, it can be easily showed that if the for loop is executed for a given l ∈ [m2], then it is
executed for all l ′ ∈ [l]. By considering that the for loop, when executed for a given l increases by one the number
of elements equal to l and, if l > 1 decreases by one the number of elements equal to l − 1, we can easily obtain
that S(i−1) and S(i) are contiguous.

Therefore, there is at least one element t (j) ∈ n(i−1) such that s(i)
t (j) = s(i−1)

t (j) + 1 for all j ∈ [k − 1]. Moreover,

from the algorithm it is obvious that n(i)
= n(i−1)

+ 1. Therefore, we have that the following holds.

n(i)∑
j=k+1

min{k, s(i)
j } ≥

n(i−1)∑
j=k+1

min{k, s(i−1)
j } + k.

From the previous two relations we easily have that:

fS(i)(k) = k(k − 1)+

n(i)∑
j=k+1

min{k, s(i)
j } −

k∑
j=1

s(i)
j

≥ k(k − 1)+

n(i−1)∑
j=k+1

min{k, s(i−1)
j } + k −

k∑
j=1

s(i−1)
j − k

= fS(i−1)(k) ≥ 0

which completes the proof for this case.
• Case C (s(i−1)

k < k = s(i)
k): Note that, since k = s(i)

k then k ≤ m(i). Let k = s(i)
k = m(i)

− t where t ≥ 0. Since
S(i) is contiguous and non-increasing, we have that

k∑
j=1

s(i)
j = s(i)

k + s(i)
k−1 + · · · + s(i)

k−t+1 + s(i)
k−t + · · · + s(i)

1

= (m(i)
− t)+ (m(i)

− t + 1)+ · · · + (m(i)
− 1)+ m(i)

+ · · · + m(i)

=

m(i)
−1∑

j=m(i)−t

j + m(i)(k − t)

Author's personal copy

228 A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230

=
(m(i)

− 1)m(i)

2
−

(m(i)
− t)(m(i)

− t + 1)

2
+ m(i)(m(i)

− 2t)

= (m(i))2
− tm(i)

− m(i)
−

t2

2
+

t

2
.

Since S(i) is non-increasing, it obviously holds that k = s(i)
k ≥ s(i)

j for all j ∈ [k + 1, n(i)
]; moreover, since S(i)

is contiguous then in the set [k+ 1, n(i)
] there is at least one element l j with value s(i)

l j
= j for all j ∈ [s(i)

k+1]. Thus

we have (recall that s(i)
k+1 ≥ s(i)

k − 1)

n(i)∑
j=k+1

min{k, s(i)
j } =

n(i)∑
j=k+1

s(i)
j ≥

s(i)
k −1∑
j=1

j =
(s(i)

k − 1)s(i)
k

2

=
(m(i)

− t − 1)(m(i)
− t)

2

=
(m(i))2

− 2tm(i)
− m(i)

+ t2
+ t

2

=
(m(i))2

2
− tm(i)

−
m(i)

2
+

t2

2
+

t

2
.

Moreover we have:

k(k − 1) = (m(i)
− t)(m(i)

− t − 1) = (m(i))2
− 2tm(i)

+ t2
− m(i)

+ t.

From the previous formulas we have

fS(i)(k) = k(k − 1)+

n(i)∑
j=k+1

min{k, s(i)
j } −

k∑
j=1

s(i)
j

≥ (m(i))2
− 2tm(i)

+ t2
− m(i)

+ t +
(m(i))2

2
− tm(i)

−
m(i)

2

+
t2

2
+

t

2
− (m(i))2

+ tm(i)
+ m(i)

+
t2

2
−

t

2

=
(m(i))2

2
−

m(i)

2
+ 2t2

− t (2m(i)
− 1).

It is easy to see that the function

g(t) = 2t2
− t (2m(i)

− 1)

has minimum value in t∗ = (2m(i)
− 1)/4 and its value is g(t∗) = 0 therefore

fS(i)(k) ≥
(m(i))2

2
−

m(i)

2
≥ 0

which completes the proof of this case.
• Case D (k > s(i)

k): Since, from case C, fS(i)(s(i)
k) ≥ 0, to prove this case it is enough to show that for all k > s(i)

k ,
fS(i)(k) ≥ fS(i)(k − 1) which is true since

fS(i)(k) = k(k − 1)+

n(i)∑
j=k+1

min{k, s(i)
j } −

k∑
j=1

s(i)
j

= (k − 1)(k − 2)+ 2(k − 1)+

n(i)∑
j=k

min{k, s(i)
j } −min{k, s(i)

k } −

k−1∑
j=1

s(i)
j − s(i)

k

= fS(i)(k − 1)+ 2(k − s(i)
k − 1) ≥ fS(i)(k − 1)

since k > s(i)
k , and this completes the proof of the lemma. �

Author's personal copy

A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230 229

The previous lemma is useful to show the following key lemma (Embedding Lemma) which shows that it is possible
to quickly construct a β-graph with a certain property.

Lemma 6 (Embedding Lemma). Let G = (V, E) be a simple undirected graph and β ∈ R+. Then there exists
a simple undirected graph G1 = (V1, E1) such that G is a set of maximal connected components of G1, |V1| =

poly(|V |) and G1 is a β-graph. Furthermore, given G, we can construct G1 in polynomial time in the size of G.

Proof. Let n1 = |V |. From Lemma 4, we only have to show that there exists α0 = O(ln n1) such that for all α ≥ α0,
the degree sequence D = EX(Y) = Y (β,α)

− Y G is graphic, that is, from Lemma 4 such that D is eligible. For β ≥ 1
the proof directly comes from Lemmas 2 and 1. Let us complete the proof for 0 < β < 1.

Note that, y(1,α)
i ≤ y(β,α)

i and beα/β
c ≥ beα

c for 0 < β < 1 and i ∈ beα
c and, from Lemma 2, EX(Y (1,α)

− Y G)

is contiguous for α ≥ max{4, ln n1 + ln(n1 + 1)}.
Therefore, from Lemma 5, the sequence EX(Y (β,α)

− Y G) is eligible for 0 < β < 1 and α ≥ max{4, ln n1 +

ln(n1 + 1)} and this completes the proof of this lemma. �

Now we are ready to show the main theorem of this section.

Theorem 2. Let P be an optimization problem on graphs with the optimal substructure property. If P is NP-hard on
(simple) general graphs, then it is also NP-hard on β-graphs for all β > 0.

Proof. We show that we can reduce the problem of computing an optimal solution on general graphs to computing an
optimal solution on β-graphs and this reduction takes polynomial time. Let G = (V, E) be a simple undirected graph.
Lemma 6 says that we can construct (in polynomial time in the size of G) a simple undirected graph G1 = (V1, E1)

such that G is a set of maximal connected components of G1, and G1 is a β-graph with |V1| = poly(|V |). Since P
has the optimal substructure property and G is a set of maximal connected components of G1, this implies that an
optimum solution for the graph G can be computed easily from an optimal solution for G1. �

5. Concluding remarks and open problems

We have shown a general technique for establishing NP-hardness and NP-completeness of a large class of problems
in power-law graphs. Our technique of “embedding” any arbitrary (given) graph into a polynomial-sized power-
law graph is quite general and can have other applications, e.g., in showing hardness of approximation of NP-hard
problems in power-law graphs (which is the next important question, now that we have established hardness). For
example, a concrete question is: Can MAXIMUM INDEPENDENT SET be approximated better in β-graphs than in
general graphs? Using the Embedding Lemma and our general methodology (cf. Section 3), one can derive bounds
on hardness of approximation on β-graphs based on known hardness bounds on general graphs. It is not difficult to
verify that to get non-trivial hardness bounds one needs good bounds on the optimum solution of G2. As it stands
now, our Embedding Lemma construction does not directly yield a good bound on the optimum solution of G2.

On the positive side, one may investigate approximation algorithms that exploit the power-law property to get
better approximation ratios compared to general graphs. Another interesting and relevant direction is to investigate
the hardness (or easiness) of non-trivial restrictions of the (β, α) model. In particular, we note that our technique does
not directly imply hardness in connected power-law graphs. Establishing hardness in connected and simple graphs in
our model (i.e., connected β-graphs) is an important and relevant question. We conjecture that our techniques can be
extended to show these results.

We conclude by mentioning some open problems that follow directly from our work. We showed NP-hardness of
CLIQUE and COLORING only for power-law graphs with β ≥ 1. We believe that a different construction might
show that these problems are NP-complete for all β > 0. It will also be interesting to investigate the complexity of
node- and edge-deletion problems. This is a general and important class of problems defined in [15].

Acknowledgments

We are grateful to the referees for their careful reading of the paper and detailed comments which helped in
improving the presentation of the paper.

Author's personal copy

230 A. Ferrante et al. / Theoretical Computer Science 393 (2008) 220–230

References

[1] W. Aiello, F.R.K. Chung, L. Lu, A random graph model for massive graphs, in: Proceedings of 32nd Annual Symposium on Theory of
Computing, STOC 2000, ACM, 2000, pp. 171–180.

[2] W. Aiello, F.R.K. Chung, L. Lu, A random graph model for power-law graphs, Experimental Mathematics 10 (2000) 53–66.
[3] A. Barabasi, Emergence of scaling in complex networks, in: S. Bornholdt, H. Schuster (Eds.), Handbook of Graphs and Networks, Wiley,

2003.
[4] B. Bollobás, O. Riordan, Mathematical results on scale-free random graphs, in: S. Bornholdt, H. Schuster (Eds.), Handbook of Graphs and

Networks, Wiley, 2003.
[5] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, 1976.
[6] P. Erdős, T. Gallai, Graphs with prescribed degree of vertices, Matematikai Lopak 11 (1960) 264–274 (in Hungarian).
[7] S. Eubank, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, N. Wang, Structural and algorithmic aspects of massive social networks,

in: Proceedings of 15th ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, SIAM, 2004, pp. 711–720.
[8] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, 1975.
[9] C. Gkantsidis, M. Mihail, A. Saberi, Throughput and congestion in power-law graphs, in: Proceedings of the International Conference on

Measurements and Modeling of Computer Systems, SIGMETRICS 2003, ACM, 2003, pp. 148–159.
[10] L. Li, D. Alderson, J. Doyle, W. Willinger, Towards a theory of scale-free graphs: Definition, properties, and implications, Internet

Mathematics 2 (4) (2005) 431–523.
[11] M. Mihail, C. Papadimitriou, A. Saberi, On certain connectivity properties of the internet topology, in: Proceedings of the 44th Symposium

on Foundations of Computer Science, FOCS 2003, IEEE Computer Society, 2003, pp. 28–35.
[12] M. Newman, Random graphs as models of networks, in: S. Bornholdt, H. Schuster (Eds.), Handbook of Graphs and Networks, Wiley, 2003.
[13] K. Park, H. Lee, On the effectiveness of route-based packet filtering for distributed DoS attack prevention in power-law internets,

in: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM
2001, ACM, 2001, pp. 15–26.

[14] K. Park, The Internet as a complex system, in: K. Park, W. Willinger (Eds.), The Internet as a Large-Scale Complex System, Santa Fe Institute
Studies on the Sciences of Complexity, Oxford University Press, 2005.

[15] M. Yannakakis, Node- and edge-deletion NP-complete problems, in: Proceedings of Tenth Annual SIAM Symposium on Theory of
Computing, STOC 1978, SIAM, San Diego, CA, USA, 1978, pp. 253–264.

