Network Systems Design
(Agere Version)

Douglas Comer

Computer Science Department
Purdue University
250 N. University Street
West Lafayette, IN 47907-2066

http://www.cs.purdue.edu/people/comer

[Copyright 2004. All rightsreserved. This
document may not be reproduced by any means
without the express written consent of the author.

NOTES

Copy permission: these materials are copyright 0 2004 by

Pearson Education and Douglas Comer, and may not be
reproduced by any means without written permission from
the author or the publisher. Permission is granted to use the

materials in any course for which Comer’s text Network
Systems Design Using Network Processors is a required

textbook. In addition to use for in-class presentation, each
student who purchases a copy of the textbook is authorized
to receive an electronic or paper copy. For permission to

use the materials in any way other than the above, contact
the author or the publisher.

Course Introduction

And Overview

NSD-Agere -- Chapt. 1 1 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

Copy permission: these materials are copyright 0 2004 by Pearson Education and
Douglas Comer, and may not be reproduced by any means without written

permission from the author or the publisher. Permission is granted to use the
materials in any course for which Comer’s text Network Systems Design Using
Network Processors is a required textbook. In addition to use for in-class

presentation, each student who purchases a copy of the textbook is authorized to
receive an electronic or paper copy. For permission to use the materias in any way

other than the above, contact the author or the publisher.

NSD-Agere -- Chapt. 1 2 2004

Topic And Scope

The concepts, principles, and technologies that underlie the
design of hardware and software systems used in computer

networks and the Internet, focusing on the emerging field of
network processors.

NSD-Agere -- Chapt. 1 3 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

You Will Learn NOTES

o Review of

— Network systems

— Protocols and protocol processing tasks

e Hardware architectures for protocol processing

e Software-based network systems and software architectures

o (Classification

— Concept

— Software and hardware implementations

e Switching fabrics

NSD-Agere -- Chapt. 1 4 2004

You Will Learn

(continued)

e Network processors. definition, architectures, and use

e Design tradeoffs and consequences

e Survey of commercia network processors

e Details of one example network processor

— Architecture and instruction set(s)

— Programming model and program optimization

— Cross-development environment

NSD-Agere -- Chapt. 1 5 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

What You Will NOT Learn

e EE details
— VLS technology and design rules
— Chip interfaces: ICs and pin-outs
— Waveforms, timing, or voltage
— How to wire wrap or solder
e Economic details
— Comprehensive list of vendors and commercial products

— Price points

NSD-Agere -- Chapt. 1 6 2004

NOTES

Background Required

e Basic knowledge of
— Network and Internet protocols
— Packet headers
e Basic understanding of hardware architecture
— Registers
— Memory organization
— Typicd instruction set

e Willingness to use an assembly language

NSD-Agere -- Chapt. 1 7 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Schedule Of Topics NOTES

e Quick review of basic networking

e Protocol processing tasks and classification

e Software-based systems using conventional hardware

e Specia-purpose hardware for high speed

e Motivation and role of network processors

e Network processor architectures

NSD-Agere -- Chapt. 1 8 2004

Schedule Of Topics

(continued)

e An example network processor technology in detail

— Hardware architecture and parallelism

— Programming model

— Testbed architecture and features

e Design tradeoffs

e Scaling a network processor

e Survey of network processor architectures

NSD-Agere -- Chapt. 1 9 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Course Administration

o Textbook

— D. Comer, Network Systems Design Using Network
Processors, Agere Version, Prentice Hall, 2005.

o Grade
— Quizzes 5%
— Midterm and fina exam 35%

— Programming projects 60%

NSD-Agere -- Chapt. 1 10 2004

NOTES

Lab Facilities Available

e Extensive network processor testbed facilities
e Donations from

— Agere Systems

— IBM (now sold to Hifn)

— Intel

e Includes hardware and cross-development software

NSD-Agere -- Chapt. 1 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

What You Will Doln The Lab NOTES

e Write and compile software for an NP

e Download software into an NP

e Monitor the NP as it runs

¢ Interconnect Ethernet ports on an NP board

— To other ports on other NP boards

— To other computers in the lab

e Send Ethernet traffic to the NP

e Receive Ethernet traffic from the NP

NSD-Agere -- Chapt. 1 12 2004

Example Programming Projects

e A packet analyzer

— |P datagrams

— TCP segments
e An Ethernet bridge

e An |P fragmenter

e A classification program

e A bump-in-the-wire system using low-level packet

jprocessors

NSD-Agere -- Chapt. 1 13 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

A QUICK OVERVIEW

OF NETWORK PROCESSORS

NSD-Agere -- Chapt. 1 15 2004

The Network Systems Problem

e Datarates keep increasing

e Protocols and applications keep evolving

e System design is expensive

e System implementation and testing take too long

e Systems often contain errors

e Specia-purpose hardware designed for one system cannot
be reused

NSD-Agere -- Chapt. 1 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

The Challenge

Find ways to improve the design and manufacture of
complex networking systems.

NSD-Agere -- Chapt. 1 17

2004

NOTES

The Big Questions

e What systems?
— Everything we have now
— New devices not yet designed

e What physica communication mechanisms?
— Everything we have now

— New communication systems not yet
designed/ standardized

e What speeds?
— Everything we have now

— New speeds much faster than those in use

NSD-Agere -- Chapt. 1 18

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

More Big Questions

e What protocols?

— Everything we have now

— New protocols not yet designed/ standardized
e What applications?

— Everything we have now

— New applications not yet designed/ standardized

NSD-Agere -- Chapt. 1 19 2004

NOTES

The Challenge
(restated)

Find flexible, general technologies that enable rapid,
low-cost design and manufacture of a variety of scalable,
robust, efficient network systems that run a variety of
existing and new protocols, perform a variety of existing and
new functions for a variety of existing and new, higher-speed
networks to support a variety of existing and new
applications.

NSD-Agere -- Chapt. 1 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Special Difficulties

e Ambitious goa
e Vague problem statement
e Problem is evolving with the solution
e Pressure from
— Changing infrastructure

— Changing applications

NSD-Agere -- Chapt. 1 21

2004

NOTES

Desider ata

e High speed

e Fexible and extensible to accommodate
— Arbitrary protocols
— Arbitrary applications
— Arbitrary physical layer

e [ow cost

NSD-Agere -- Chapt. 1 22

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Statement Of Hope NOTES
(2004 version)

programmers!

If there is hope, it liesin A%mrs.

NSD-Agere -- Chapt. 1 23 2004

Programmability

¢ Key to low-cost hardware for next generation network

systems
e More flexibility than ASIC designs

e Easier/faster to update than ASIC designs

e Lessexpensive to develop than ASIC designs

e What we need: a programmable device with more capability

than a conventional CPU

NSD-Agere -- Chapt. 1 24 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

The ldea In A Nutshell NOTES

e Devise new hardware building blocks

e Make them programmable

¢ Include support for protocol processing and 1/0O

— General-purpose processor(s) for control tasks

— Special-purpose processor(s) for packet processing and

table lookup

e |nclude functional units for tasks such as checksum

computation

e [Integrate as much as possible onto one chip

e Call the result a network processor

NSD-Agere -- Chapt. 1 25 2004

The Rest Of The Course

o Wewill

— Examine the general problem being solved

— Survey some approaches vendors have taken

— Explore possible architectures

— Study example technologies

— Consider how to implement systems using network
processors

NSD-Agere -- Chapt. 1 26 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Disclaimer #1 NOTES

In the field of network processors, | am atyro.

NSD-Agere -- Chapt. 1 27 2004

Definition

Tyro \Ty'ro\, n.; pl. Tyros. A beginner in learning; one who isin
the rudiments of any branch of study; a person imperfectly

acquainted with a subject; a novice.

NSD-Agere -- Chapt. 1 28 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

By Definition NOTES

In the field of network processors, you are all tyros.

NSD-Agere -- Chapt. 1 29 2004

In Our Defense

When it comes to network processors, everyone is a tyro.

NSD-Agere -- Chapt. 1 30 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Basic Terminology And Example Systems

(A Quick Review)

NSD-Agere -- Chapt. 2 1 2004

NOTES

Packets Cells And Frames

o Packet

NSD-Agere -- Chapt. 2 2

Generic term
Small unit of data being transferred
Travels independently

Upper and lower bounds on size

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Packets Cells And Frames
(continued)

e Cdl

— Fixed-size packet (e.g., ATM)
e Frame or layer-2 packet

— Packet understood by hardware
e |P datagram

— Internet packet

NSD-Agere -- Chapt. 2 3

2004

NOTES

Types Of Networks

e Paradigm
— Connectionless
— Connection-oriented
e Accesstype
— Shared (i.e., multiaccess)

— Point-To-Point

NSD-Agere -- Chapt. 2 4

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Connection-Oriented Networks

e Telephone paradigm (connection, use, disconnect)
e Examples

— Frame Relay

— Asynchronous Transfer Mode (ATM)

NSD-Agere -- Chapt. 2 5

2004

NOTES

Point-To-Point Networ k

¢ Connects exactly two systems
e Often used for long distance

e Example: data circuit connecting two routers

NSD-Agere -- Chapt. 2 6

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Data Circuit

e | eased from phone company

e Also called serial line because data is transmitted bit-
serialy

e Originally designed to carry digital voice

e Cost depends on speed and distance

e T-series standards define low speeds (e.g. T1)
e STS and OC standards define high speeds

NSD-Agere -- Chapt. 2 7 2004

NOTES

Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits
- 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
ocC-1 51.840 Mbps 810
ocC-3 155.520 Mbps 2430
0oC-12 622.080 Mbps 9720
0oC-24 1,244.160 Mbps 19440
0C-48 2,488.320 Mbps 38880
0C-192 9,953.280 Mbps 155520
0OC-768 39,813.120 Mbps 622080

e Holy grail of networking: devices capable of accepting and
forwarding data at 10 Gbps (OC-192).

NSD-Agere -- Chapt. 2 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Local Area Networks

e Ethernet technology dominates

e Layer 1 standards

Media and wiring
Signaling
Handled by dedicated interface chips

Unimportant to us

e Layer 2 standards

MAC framing and addressing

NSD-Agere -- Chapt. 2 9

2004

NOTES

MAC Addressing

e Three address types

Unicast (single computer)
Broadcast (all computers in broadcast domain)

Multicast (some computers in broadcast domain)

NSD-Agere -- Chapt. 2 10

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

More Terminology

e Internet
— Interconnection of multiple networks
— Allows heterogeneity of underlying networks
e Network scope
— Local Area Network (LAN) covers limited distance
— Wide Area Network (WAN) covers arbitrary distance

NSD-Agere -- Chapt. 2 11 2004

NOTES

Network System

e Individua hardware component

e Serves as fundamental building block
e Used in networks and internets

e May contain processor and software

e Operates at one or more layers of the protocol stack

NSD-Agere -- Chapt. 2 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Network Systems NOTES

e Layer2
— Bridge
— Ethernet switch
— VLAN switch
NSD-Agere -- Chapt. 2 13 2004

VLAN Switch

e Similar to conventional layer 2 switch

— Connects multiple computers

— Forwards frames among them

— Each computer has unique unicast address

e Differs from conventional layer 2 switch

— Allows manager to configure broadcast domains

e Broadcast domain known as virtual network

NSD-Agere -- Chapt. 2 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Broadcast Domain

e Determines propagation of broadcast/ multicast
e Originally corresponded to fixed hardware

— One per cable segment

— One per hub or switch
e Now configurable via VLAN switch

— Manager assigns portsto VLANs

NSD-Agere -- Chapt. 2 15

2004

NOTES

Example Network Systems
(continued)

e Layer3
— Internet host computer
— [P router (layer 3 switch)
e lLayer4d
— Basic Network Address Translator (NAT)
— Round-robin Web load balancer
— TCP terminator

NSD-Agere -- Chapt. 2 16

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Network Systems NOTES
(continued)

e Layer5

Firewall
Intrusion Detection System (IDS)

— Virtual Private Network (VPN)

— Softswitch running SIP
— Application gateway

— TCP splicer (also known as NAPT — Network Address
and Protocol Translator)

— Smart Web load balancer

— Set-top box

NSD-Agere -- Chapt. 2 17 2004

Example Network Systems

(continued)

e Network control systems

— Packet/flow analyzer

Traffic monitor

Traffic policer

Traffic shaper

NSD-Agere -- Chapt. 2 18 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Review Of Protocols And Packet Formats

NOTES

NSD-Agere -- Chapt. 3 1 2004
Protocol Layering
Application <~—— Layer 5
Transport <~—— Layer 4
Internet <—— Layer 3
Network Interface <—— Layer 2
Physical <~ Layer 1
e Fivelayer Internet reference model
e Multiple protocols can occur at each layer
NSD-Agere -- Chapt. 3 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Layer 2 Protocols NOTES

e Two protocols are important

— Ethernet (widely used)

— ATM (defines per-flow QoS)

e \We will concentrate on Ethernet

NSD-Agere -- Chapt. 3 3 2004

Ethernet Addressing

e 48-bit addressing

e Unigue address assigned to each station (NIC)

e Destination address in each packet can specify delivery to

— A single computer (unicast)

— All computers in broadcast domain (broadcast)

— Some computers in broadcast domain (multicast)

NSD-Agere -- Chapt. 3 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Ethernet Addressing NOTES
(continued)

e Broadcast addressis all 1s

e Single bit determines whether remaining addresses are
unicast or multicast

multicast bit

A\l
|XXXXXXXm|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX XXXXXXXX

e Multicast bit travels first on the wire

NSD-Agere -- Chapt. 3 5 2004

Ethernet Frame Processing

Dest. Source Frame
Address Address Type Data In Frame
| s | & [2] 46 - 1500 |

}7 Header —+7 Payload 4{

e Dedicated physical layer hardware

— Checks and removes preamble and CRC on input

— Computes and appends CRC and preamble on output

e Layer 2 systems use source, destination and (possibly) type

fields

NSD-Agere -- Chapt. 3 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

| nter net

e Set of (heterogeneous) computer networks interconnected by
IP routers

e End-user computers, called hosts, each attach to specific
network

e Protocol software
— Runs on both hosts and routers

— Providesillusion of homogeneity

NSD-Agere -- Chapt. 3 7 2004

NOTES

Internet Protocols Of Interest

e lLayer?2

— Address Resolution Protocol (ARP)
e Layer3

— Internet Protocol (IP)
e lLayer4

— User Datagram Protocol (UDP)

— Transmission Control Protocol (TCP)

NSD-Agere -- Chapt. 3 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

| P Datagram Format

4 8 16 19 24 31
VERS | HLEN | SERVICE TOTAL LENGTH
ID FLAGS F. OFFSET
TTL J TYPE HDR CHECKSUM
SOURCE
DESTINATION
IP OPTIONS (MAY BE OMITTED) PADDING
BEGINNING OF PAYLOAD

NSD-Agere -- Chapt. 3

Format of each packet sent across Internet

Fixed-size fields make parsing efficient

NOTES

| P Datagram Fields

Field Meaning
VERS Version number of IP being used (4)
HLEN Header length measured in 32-bit units
SERVICE Level of service desired

TOTAL LENGTH
ID

FLAGS

F. OFFSET

TTL

TYPE

HDR CHECKSUM
SOURCE
DESTINATION
IP OPTIONS
PADDING

NSD-Agere -- Chapt. 3

Datagram length in octets including header
Unique value for this datagram

Bits to control fragmentation

Position of fragment in original datagram
Time to live (hop countdown)

Contents of payload area
One's-complement checksum over header
IP address of original sender

IP address of ultimate destination

Special handling parameters

To make options a 32-bit multiple

10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

| P addressing

e 32-bit Internet address assigned to each computer

e Virtual, hardware independent value

o Prefix identifies network; suffix identifies host

e Network systems use an address mask to specify the

boundary between prefix and suffix

NSD-Agere -- Chapt. 3 11

2004

NOTES

Next-Hop Forwarding

e Routing table

— Found in both hosts and routers

— Stores (destination, mask, next_hop) tuples
e Route lookup

— Takes destination address as argument

— Finds next hop

— Uses longest-prefix match

NSD-Agere -- Chapt. 3 12

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

UDP Datagram For mat NOTES

SOURCE PORT DESTINATION PORT

MESSAGE LENGTH CHECKSUM

BEGINNING OF PAYLOAD

Field Meaning

SOURCE PORT ID of sending application
DESTINATION PORT ID of receiving application
MESSAGE LENGTH Length of datagram including the header

CHECKSUM One’s-complement checksum over entire datagram

NSD-Agere -- Chapt. 3 13 2004

TCP Segment Format

0 4 10 16 24 31
SOURCE PORT | DESTINATION PORT
SEQUENCE
ACKNOWLEDGEMENT
HLEN NOT USED CODE BITS WINDOW
CHECKSUM URGENT PTR
OPTIONS (MAY BE OMITTED) PADDING
BEGINNING OF PAYLOAD

e Sent end-to-end

e Fixed-size fields make parsing efficient

NSD-Agere -- Chapt. 3 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

TCP Segment Fields

Field Meaning
SOURCE PORT ID of sending application
DESTINATION PORT ID of receiving application
SEQUENCE Sequence number for data in payload
ACKNOWLEDGEMENT Acknowledgement of data received
HLEN Header length measured in 32-bit units
NOT USED Currently unassigned
CODE BITS URGENT, ACK, PUSH, RESET, SYN, FIN
WINDOW Receiver’s buffer size for additional data
CHECKSUM One’s-complement checksum over entire segment
URGENT PTR Pointer to urgent data in segment
OPTIONS Special handling
PADDING To make options a 32-bit multiple
NSD-Agere -- Chapt. 3 15 2004

NOTES

[llustration Of Encapsulation

| UDP HEADER J UDP PAYLOAD

l

| IP HEADER | IP PAYLOAD

l

ETHERNET HDR. | ETHERNET PAYLOAD

I RS SN R S

e Field in each header specifies type of encapsulated packet

NSD-Agere -- Chapt. 3 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example ARP Packet Format

NOTES

8

16 24 31
ETHERNET ADDRESS TYPE (1) IP ADDRESS TYPE (0800) I
ETH ADDR LEN (6) IP ADDR LEN (4) OPERATION |

SENDER'S ETH ADDR (first 4 octets)

SENDER'S ETH ADDR (last 2 octets) SENDER'’S IP ADDR (first 2 octets)

SENDER'’S IP ADDR (last 2 octets)

TARGET'S ETH ADDR (first 2 octets)

TARGET'S ETH ADDR (last 4 octets)

TARGET'S IP ADDR (all 4 octets)

e Format when ARP used with Ethernet and IP
e Each Ethernet address is six octets
[]

Each IP address is four octets

NSD-Agere -- Chapt. 3

17 2004

End Of Review

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

1V

Conventional Computer Hardware Architecture

NSD-Agere -- Chapt. 4 1 2004

Softwar e-Based Network System

e Uses conventiona hardware (e.g., PC)

e Software

— Runs the entire system

— Allocates memory

— Controls I/0O devices

— Performs all protocol processing

NSD-Agere -- Chapt. 4 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Why Study Protocol Processing NOTES
On Conventional Hardware?

o Past

— Employed in early IP routers
— Many agorithms developed/ optimized for conventional

hardware

e Present
— Used in low-speed network systems

— Easiest to create/ modify

— Costs less than special-purpose hardware

NSD-Agere -- Chapt. 4 3 2004

Why Study Protocol Processing

On Conventional Hardwar e?
(continued)

e Future

— Processors continue to increase in speed

— Some conventional hardware present in all systems

— You will build software-based systems in lab!

NSD-Agere -- Chapt. 4 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Serious Question

e Which is growing faster?
— Processing power
— Network bandwidth

¢ Note: if network bandwidth growing faster
— Need specia-purpose hardware

— Conventional hardware will become irrelevant

NSD-Agere -- Chapt. 4 5 2004

NOTES

Conventional Computer Hardware

e Four important aspects
— Processor
— Memory
— /O interfaces

— One or more buses

NSD-Agere -- Chapt. 4 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

[llustration Of Conventional
Computer Architecture

CPU MEMORY

oL L

J

>

network interfaces and other 1/0 devices

e Busis central, shared interconnect

¢ All components contend for use

NSD-Agere -- Chapt. 4 7 2004

NOTES

Bus Organization And Operations

N J N ~ J N ~ J

control lines address lines data lines

e Parallel wires (C+A+D total)

e Used to pass
— Control information (C hits)
— An address (A bits)
— A datavaue (D bits)

NSD-Agere -- Chapt. 4 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Bus Width

e Number of parallel data bits known as width of bus
e Wider bus

— Transfers more data per unit time

— Costs more

— Requires more physical space

e Compromise: to simulate wider bus, use hardware that
multiplexes transfers

NSD-Agere -- Chapt. 4 9 2004

NOTES

Bus Paradigm

e Only two basic operations
— Fetch
— Store

e All operations cast as forms of the above

NSD-Agere -- Chapt. 4 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Fetch/Store

e Fundamental paradigm

e Used throughout hardware, including network processors

NSD-Agere -- Chapt. 4 11 2004

NOTES

Fetch Operation

e Place address of a device on address lines
e |ssue fetch on control lines

e Use control lines to wait for device that owns the address to
respond

e |f operation successful, extract value (response) from data
lines

e |f not successful, report error

NSD-Agere -- Chapt. 4 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Store Operation NOTES

o Place address of a device on address lines

e Place value on data lines

e |ssue store on control lines

e Use control lines to wait for device that owns the address to
respond

e |f operation does not succeed, report error

NSD-Agere -- Chapt. 4 13 2004

Example Of Operations M apped

Into Fetch/Store Paradigm

e |Imagine disk device attached to a bus

e Assume disk hardware supports three (nontransfer)

operations:

— Start disk spinning
— Stop disk

— Determine current status

NSD-Agere -- Chapt. 4 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Of Operations Mapped NOTES
Into Fetch/Store Paradigm
(continued)

e Assign the disk two contiguous bus addresses D and D+1

e Arrange for store of nonzero to address D to start disk

spinning
e Arrange for store of zero to address D to stop disk

e Arrange for fetch from address D+1 to return current status

o Note: effect of store to address D+1 can be defined as

— Appears to work, but has no effect

— Returns an error

NSD-Agere -- Chapt. 4 15 2004

Bus Address Space

e Arbitrary hardware can be attached to bus

e K address lines result in 2% possible bus addresses

e Address can refer to

— Memory (e.g., RAM or ROM)

— /O device

e Arbitrary devices can be placed at arbitrary addresses

e Address space can contain ‘‘holes’’

NSD-Agere -- Chapt. 4 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Bus Address Terminology NOTES

e Device on bus known as memory mapped 1/0O

e Locations that correspond to nontransfer operations known
as Control and Satus Registers (CSRs)

NSD-Agere -- Chapt. 4 17 2004

Example Bus Address Space
highest bus address ——
<«——— hole (unassigned)
disk
<«—— hole (unassigned)
NIC
<—— hole (unassigned)
memory
lowest bus address ——
NSD-Agere -- Chapt. 4 18 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Network /0O On
Conventional Hardware

e Network Interface Card (NIC)

Attaches between bus and network
Operates like other 1/0O devices

Handles electrical /optical details of network
Handles electrical details of bus

Communicates over bus with CPU or other devices

NSD-Agere -- Chapt. 4 19 2004

NOTES

Making Network 1/O Fast

¢ Key idear migrate more functionality onto NIC

e Four techniques used with bus

Onboard address recognition & filtering
Onboard packet buffering
Direct Memory Access (DMA)

Operation and buffer chaining

NSD-Agere -- Chapt. 4 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Onboard Address Recognition And Filtering

e NIC given set of addresses to accept
— Station’s unicast address
— Network broadcast address
— Zero or more multicast addresses
e When packet arrives, NIC checks destination address
— Accept packet if address on list

— Discard others

NSD-Agere -- Chapt. 4 21

2004

NOTES

Onboard Packet Buffering

¢ NIC given high-speed loca memory
e Incoming packet placed in NIC's memory

e Allows computer’s memory/bus to operate slower than
network

e Handles small packet bursts

NSD-Agere -- Chapt. 4 22

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Direct Memory Access (DMA)

e CPU
— Allocates packet buffer in memory
— Passes buffer address to NIC
— Goes on with other computation
e NIC
— Accepts incoming packet from network
— Copies packet over bus to buffer in memory

— Informs CPU that packet has arrived

NSD-Agere -- Chapt. 4 23 2004

NOTES

Buffer Chaining

e CPU
— Allocates multiple buffers
— Passes linked list to NIC
e NIC
— Receives next packet
— Divides into one or more buffers

e Advantage: a buffer can be smaller than a packet

NSD-Agere -- Chapt. 4 24 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Operation Chaining NOTES

e CPU

— Allocates multiple buffers

— Buildslinked list of operations
— Passeslist to NIC

e NIC

— Follows list and performs instructions

— Interrupts CPU after each operation
e Advantage: multiple operations proceed without CPU

intervention

NSD-Agere -- Chapt. 4 25 2004

[llustration Of

Operation Chaining

[packet buffer] packet buffer packet buffer |

e Optimizes movement of data to memory

NSD-Agere -- Chapt. 4 26 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Data Flow Diagram

memory
data |leaves
—

data arrives — :
C| KT

¢ Depicts flow of data through hardware units
e Size of arrow represents throughput

e Used throughout the course and text

NSD-Agere -- Chapt. 4 27

2004

NOTES

Summary

hardware

— Processor

— Memory

— 1/O devices

— Bus

load

NSD-Agere -- Chapt. 4 28

e Software-based network systems run on conventional

e Network interface cards can be optimized to reduce CPU

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

\%

Basic Packet Processing:
Algorithms And Data Structures

1 2004

NSD-Agere -- Chapt. 5

Copying

e Used when packet moved from one memory location to

another

e Expensive

e Must be avoided whenever possible

— Leave packet in buffer

— Pass buffer address among threads/layers

NSD-Agere -- Chapt. 5 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Possibilities For Buffer Allocation NOTES

o Fixed-sze buffers

* Large enough for largest packet

* Small, with bultiple buffers linked together for large
packets

o Variable-size buffers

NSD-Agere -- Chapt. 5 3 2004

Buffer Addressing

o Buffer address must be resolvable in all contexts

e Easiest implementation: keep buffers in kernel space

NSD-Agere -- Chapt. 5 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

I nteger Representation

e Two standards
— Little endian (least-significant byte at lowest address)
— Big endian (most-significant byte at lowest address)

NSD-Agere -- Chapt. 5 5 2004

NOTES

[llustration Of Big And
Little Endian Integers

increasing memory addresses
- -

12 3 4

little endian

increasing memory addresses
- -

4 3 2 1

big endian

NSD-Agere -- Chapt. 5 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

e Needed when heterogeneous computers communicate

Integer Conversion

e Protocols define network byte order

e Computers convert to network byte order

e Typical library functions

Function data size Translation

ntohs 16 bits Network byte order to host’s byte order
htons 16 bits Host’s byte order to network byte order
ntohl 32 bits Network byte order to host’s byte order
htonl 32 bits Host’s byte order to network byte order

NSD-Agere -- Chapt. 5

2004

NOTES

e lLayer4

e Other

NSD-Agere -- Chapt. 5

e Layer2

— Ethernet bridge
e lLayer3

— IPforwarding

— Hash table lookup

Examples Of Algorithms Implemented
With Softwar e-Based Systems

— |P fragmentation and reassembly

— TCP connection recognition and splicing

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Ethernet Bridge NOTES

Ethernet 1 Ethernet 2

BRIDGE

e Used between a pair of Ethernets

e Provides transparent, layer 2 connection

e Listens in promiscuous mode

e Forwards frames in both directions

o Uses addresses to filter

NSD-Agere -- Chapt. 5 9 2004

Bridge Filtering

e Uses source address in frames to identify computers on each

network

e Uses destination address to decide whether to forward frame

NSD-Agere -- Chapt. 5 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Bridge Algorithm NOTES

Assume: two network interfaces each operating in promiscuous

mode.
Create an empty list, L, that will contain pairs of values;

Do forever {
Acquire the next frame to arrive;
Set | to the interface over which the frame arrived;

Extract the source address, S;
Extract the destination address, D;

Add the pair (S, 1) to list L if not already present.
If the pair (D, |) appears in list L {

Drop the frame;
} Else {
Forward the frame over the other interface;

}

NSD-Agere -- Chapt. 5 11 2004

| mplementation Of Table L ookup
¢ Need high speed (more on this later)
e Software-based systems typically use hashing for table
lookup
NSD-Agere -- Chapt. 5 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Hashing

e Optimizes number of probes
e Works well if table not full
¢ Practical technique: double hashing

NSD-Agere -- Chapt. 5 13 2004

NOTES

Hashing Algorithm

Given: a key, a table in memory, and the table size N.
Produce: a slot in the table that corresponds to the key
or an empty table slot if the key is not in the table.
Method: double hashing with open addressing.
Choose P4 and P, to be prime numbers;
Fold the key to produce an integer, K;
Compute table pointer Q equal to (P41 xK) modulo N;
Compute increment R equal to (P, xK) modulo N;
While (table slot Q not equal to K and nonempty) {
Q <« (Q +R) modulo N;
}
At this point, Q either points to an empty table slot or to the
slot containing the key.

NSD-Agere -- Chapt. 5 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Address L ookup

e Computer can compare integer in one operation
e Network address can be longer than integer (e.g., 48 bits)
e Two possihilities

— Use multiple comparisons per probe

— Fold address into integer key

NSD-Agere -- Chapt. 5 15

2004

NOTES

Folding

¢ Maps N-bit value into M-bit key, M <N
e Typica technique: exclusive or
e Potential problem: two values map to same key

e Solution: compare full value when key matches

NSD-Agere -- Chapt. 5 16

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

|P Forwarding

e Used in hosts as well as routers
e Conceptua mapping
(next hop, interface) — f(datagram, routing table)

e Tabledriven

NSD-Agere -- Chapt. 5 17

2004

NOTES

| P Routing Table

e One entry per destination
e Entry contains
— 32-bit IP address of destination
32-bit address mask
32-bit next-hop address

N-bit interface number

NSD-Agere -- Chapt. 5 18

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example IP Routing Table NOTES

Destination Address Next-Hop Interface
Address Mask Address Number
192.5.48.0 255.255.255.0 128.210.30.5 2
128.10.0.0 255.255.0.0 128.210.141.12 1
0.0.0.0 0.0.0.0 128.210.30.5 2

e Values stored in binary

e Interface number is for internal use only

e Zero mask produces default route

NSD-Agere -- Chapt. 5 19 2004

IP Forwarding Algorithm

Given: destination address A and routing table R.

Find: a next hop and interface used to route datagrams to A.
For each entry in table R {

Set MASK to the Address Mask in the entry;
Set DEST to the Destination Address in the entry;
If (A & MASK) == DEST {

Stop; use the next hop and interface in the entry;

}

If this point is reached, declare error: no route exists;

e Note: algorithm assumes table is sorted in longest-prefix
order

NSD-Agere -- Chapt. 5 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

| P Fragmentation NOTES

e Needed when datagram larger than network MTU

e Divides IP datagram into fragments

e Uses FLAGS bits in datagram header

L 0 = last fragment; 1 = more fragments
0 = may fragment; 1 = do not fragment
Reserved (must be zero)

NSD-Agere -- Chapt. 5 21 2004

| P Fragmentation Algorithm

(Part 1: Initialization)

Given: an IP datagram, D, and a network MTU.
Produce: a set of fragments for D.

If the DO NOT FRAGMENT bit is set {
Stop and report an error;

}

Compute the size of the datagram header, H;
Choose N to be the largest multiple of 8 such
that H+N<MTU;

Initialize an offset counter, O, to zero;

NSD-Agere -- Chapt. 5 22 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

| P Fragmentation Algorithm NOTES
(Part 2. Processing)

Repeat until datagram empty {
Create a new fragment that has a copy of D’s header;

Extract up to the next N octets of data from D and place
the data in the fragment;

Set the MORE FRAGMENTS bit in fragment header;
Set TOTAL LENGTH field in fragment header to be H+N;

Set FRAGMENT OFFSET field in fragment header to O;
Compute and set the CHECKSUM field in fragment

header;
Increment O by N/8;

NSD-Agere -- Chapt. 5 23 2004

Reassembly

e Complement of fragmentation

e Uses|P SOURCE ADDRESS and IDENTIFICATION fields
in datagram header to group related fragments

e Joins fragments to form original datagram

NSD-Agere -- Chapt. 5 24 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Reassembly Algorithm

Given: a fragment, F, add to a partial reassembly.
Method: maintain a set of fragments for each datagram.
Extract the IP source address, S, and ID fields from F;
Combine S and ID to produce a lookup key, K;
Find the fragment set with key K or create a new set;
Insert F into the set;

If the set contains all the data for the datagram {

Form a completely reassembled datagram and process it;

NOTES

NSD-Agere -- Chapt. 5 25 2004

Data Structure For Reassembly

e Two parts
— Buffer large enough to hold original datagram
— Linked list of pieces that have arrived

{1 20] 4 {3 [s0] 4 {3 [20]A]

/ reassembly buffer
L v v v

NSD-Agere -- Chapt. 5 26 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

TCP Connection

e Involves apair of endpoints

e Started with SYN segment

¢ Terminated with FIN or RESET segment
e Identified by 4-tuple

('src addr, dest addr, src port, dest port)

NSD-Agere -- Chapt. 5 27 2004

NOTES

TCP Connection Recognition Algorithm
(Part 1)

Given: a copy of traffic passing across a network.
Produce: a record of TCP connections present in the traffic.
Initialize a connection table, C, to empty;
For each IP datagram that carries a TCP segment {
Extract the IP source, S, and destination, D, addresses;
Extract the source, P4, and destination, P,, port numbers;
Use (S,D,P4,P,) as a lookup key for table C and
create a new entry, if needed;

NSD-Agere -- Chapt. 5 28 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

TCP Connection Recognition Algorithm
(Part 2)

If the segment has the RESET bit set, delete the entry;
Else if the segment has the FIN bit set, mark the
connection
closed in one direction, removing the entry from C if
the connection was previously closed in the other;
Else if the segment has the SYN bit set, mark the
connection as
being established in one direction, making it completely
established if it was previously marked as being
established in the other;

NOTES

NSD-Agere -- Chapt. 5 29 2004

TCP Splicing

e Join two TCP connections
e Allow datato pass between them

e To avoid termination overhead translate segment header
fields

— Acknowledgement number

— Seguence number

NSD-Agere -- Chapt. 5 30 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

[llustration Of TCP Splicing

Host

Host TCP connection #1 . TCP connection #2
A splicer
sequence 200 sequence 50 sequence 860 sequence 1200

Connection Sequence Connection Sequence

& Direction Number & Direction Number

Incoming #1 200 Incoming #2 1200

Outgoing #2 860 Outgoing #1 50
Change 660 Change -1150

NSD-Agere -- Chapt. 5

31

2004

NOTES

TCP Splicing Algorithm
(Part 1)

NSD-Agere -- Chapt. 5

Given: two TCP connections.

Produce: sequence translations for splicing the connection.

Compute D1, the difference between the starting sequences
on incoming connection 1 and outgoing connection 2;

32

Compute D2, the difference between the starting sequences
on incoming connection 2 and outgoing connection 1;

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

TCP Splicing Algorithm
(Part 2)

For each segment {

If segment arrived on connection 1 {
Add D1 to sequence number;

Subtract D2 from acknowledgement number;

} else if segment arrived on connection 2 {

Add D2 to sequence number;

Subtract D1 from acknowledgement number;

NOTES

NSD-Agere -- Chapt. 5 33

2004

Summary

e Packet processing agorithms include
— Ethernet bridging
— IP fragmentation and reassembly
— IPforwarding
— TCP splicing

e Table lookup important
— Full match for layer 2
— Longest prefix match for layer 3

NSD-Agere -- Chapt. 5 34

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

Vi

Packet Processing Functions

NSD-Agere -- Chapt. 6 1 2004

Goal

e Identify functions that occur in packet processing

e Devise set of operations sufficient for all packet processing

e Find an efficient implementation for the operations

NSD-Agere -- Chapt. 6 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Packet Processing Functions We Will Consider NOTES

Address lookup and packet forwarding

Error detection and correction

e Fragmentation, segmentation, and reassembly

e Frame and protocol demultiplexing

o Packet classification

e Queueing and packet discard

e Scheduling and timing

e Security: authentication and privacy

e Traffic measurement, policing, and shaping

NSD-Agere -- Chapt. 6 3 2004

Address Lookup And Packet Forwarding

e Forwarding requires address lookup

e Lookup istable driven

e Two types

— Exact match (typically layer 2)

— Longest-prefix match (typically layer 3)

e Cost depends on size of table and type of lookup

NSD-Agere -- Chapt. 6 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Error Detection And Correction

e Data sent with packet used as verification
— Checksum
- CRC

e Cost proportional to size of packet

e Often implemented with special-purpose hardware

NSD-Agere -- Chapt. 6 5 2004

NOTES

An Important Note About Cost

The cost of an operation is proportional to the amount of data
processed. An operation such as checksum computation that
requires examination of all the data in a packet is among the
most expensive.

NSD-Agere -- Chapt. 6 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Fragmentation, Segmentation, And Reassembly

e |P fragments and reassembles datagrams
e ATM segments and reassembles AALS packets
e Same idea; details differ
e Cost is high because
— State must be kept and managed

— Unreassembled fragments occupy memory

NSD-Agere -- Chapt. 6 7 2004

NOTES

Frame And Protocol Demultiplexing

e Traditional technique used in layered protocols
e Type appears in each header

— Assigned on output

— Used on input to select ‘“next’’ protocol

e Cost of demultiplexing proportional to number of layers

NSD-Agere -- Chapt. 6 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Packet Classification

e Alternative to demultiplexing
e Crosses multiple layers
e Achieves lower cost

e More on classification later in the course

NSD-Agere -- Chapt. 6 9 2004

NOTES

Queueing And Packet Discard

e Genera paradigm is store-and-forward
— Incoming packet placed in queue
— Outgoing packet placed in queue
e When queue is full, choose packet to discard

e Affects throughput of higher-layer protocols

NSD-Agere -- Chapt. 6 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Queueing Priorities

e Multiple queues used to enforce priority among packets
e Incoming packet

— Assigned priority as function of contents

— Placed in appropriate priority queue
e Queueing discipline

— Examines priority queues

— Chooses which packet to send

NSD-Agere -- Chapt. 6 11

2004

NOTES

Examples Of Queueing Disciplines

e Priority Queueing
— Assign unique priority number to each queue

— Choose packet from highest priority queue that is
nonempty

— Known as strict priority queueing

— Can lead to starvation

NSD-Agere -- Chapt. 6 12

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Examples Of Queueing Disciplines
(continued)
e Weighted Round Robin (WRR)
— Assign unique priority number to each queue
— Process al queues round-robin

— Compute N, max number of packets to select from a
queue proportional to priority

— Take up to N packets before moving to next queue

— Workswell if all packets equal size

NSD-Agere -- Chapt. 6 13 2004

NOTES

Examples Of Queueing Disciplines
(continued)
e Weighted Fair Queueing (WFQ)
— Make selection from queue proportional to priority
— Use packet size rather than number of packets

— Allocates priority to amount of data from a queue rather
than number of packets

NSD-Agere -- Chapt. 6 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Scheduling And Timing

e |mportant mechanisms

e Used to coordinate paralel and concurrent tasks
— Processing on multiple packets
— Processing on multiple protocols
— Multiple processors

e Scheduler attempts to achieve fairness

NSD-Agere -- Chapt. 6 15 2004

NOTES

Security: Authentication And Privacy

e Authentication mechanisms
— Ensure sender’s identity
e Confidentiality mechanisms

— Ensure that intermediaries cannot interpret packet
contents

e Note: in common networking terminology, privacy refers to
confidentiality

— Example: Virtua Private Networks

NSD-Agere -- Chapt. 6 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Traffic Measurement And Policing

e Used by network managers

e Can measure aggregate traffic or per-flow traffic
e Often related to Service Level Agreement (SLA)
e Costishigh if performed in real-time

NSD-Agere -- Chapt. 6 17 2004

NOTES

Traffic Shaping

e Make traffic conform to statistical bounds
e Typica use

— Smooth bursts

— Avoid packet trains
e Only possibilities

— Discard packets (seldom used)

— Delay packets

NSD-Agere -- Chapt. 6 18 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Traffic Shaping M echanisms

e | eaky bucket

Easy to implement

Popular

Sends steady number of packets per second
Rate depends on number of packets waiting

Does not guarantee steady data rate

NSD-Agere -- Chapt. 6 19

2004

NOTES

Example Traffic Shaping M echanisms
(continued)

e Token bucket

Sends steady number of bits per second
Rate depends on number of bits waiting
Achieves steady data rate

More difficult to implement

NSD-Agere -- Chapt. 6 20

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

[llustration Of Traffic Shaper NOTES
forv;asr[tégg)??l;?ésat
packet queue l
packets | (50— Rt

o Packets

— Arrivein bursts

— Leave a steady rate
NSD-Agere -- Chapt. 6 21 2004

Timer Management

e Fundamental piece of network system

o Needed for

— Scheduling
— Traffic shaping

— Other protocol processing (e.g., retransmission)

e Cost

— Depends on number of timer operations (e.g., Set,
cancel)

— Can be high

NSD-Agere -- Chapt. 6 22 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary

e Primary packet processing functions are

Address lookup and forwarding
Error detection and correction
Fragmentation and reassembly
Demultiplexing and classification
Queueing and discard
Scheduling and timing

Security functions

Traffic measurement, policing, and shaping

NSD-Agere -- Chapt. 6 23

2004

NOTES

Vi

Protocol Software On A
Conventional Processor

NSD-Agere -- Chapt. 7 1

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Possible Implementations Of NOTES
Protocol Software

e |n an application program

— [Easy to program

— Runs as user-level process

— No direct access to network devices

— High cost to copy data from kernel address space
— Cannot run at wire speed

NSD-Agere -- Chapt. 7 2 2004

Possible | mplementations Of

Protocol Software
(continued)

¢ |n an embedded system

— Special-purpose hardware device

— Dedicated to specific task
— ldedl for stand-alone system

— Software has full control

— You will experience thisin lab!

NSD-Agere -- Chapt. 7 3 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Possible | mplementations Of
Protocol Software
(continued)

e |n an operating system kernel
— More difficult to program than application
— Runs with kerndl privilege

— Direct access to network devices

NSD-Agere -- Chapt. 7 4

2004

NOTES

Interface To The Network

¢ Known as Application Program Interface (API)
e Canbe

— Asynchronous

— Synchronous
e Synchronous interface can use

— Blocking

— Poalling

NSD-Agere -- Chapt. 7 5

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Asynchronous API

e Also known as event-driven
e Programmer
— Writes set of functions
— Specifies which function to invoke for each event type
e Programmer has no control over function invocation
e Functions keep state in shared memory
e Difficult to program

e Example: function f() called when packet arrives

NSD-Agere -- Chapt. 7 6

NOTES

2004

Synchronous API Using Blocking

e Programmer
— Writes main flow-of-control
— Explicitly invokes functions as needed
— Built-in functions block until request satisfied

e Example: function wait_for_packet() blocks until packet
arrives

e Easier to program

NSD-Agere -- Chapt. 7 7 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Synchronous API Using Polling

e Nonblocking form of synchronous API
e Each function call returns immediately
— Performs operation if available

— Returns error code otherwise

e Example: function try _for_packet() either returns next
packet or error code if no packet has arrived

e Closer to underlying hardware

NSD-Agere -- Chapt. 7 8

2004

NOTES

Typical Implementations And APIs

e Application program
— Synchronous API using blocking (e.g., socket API)

— Another application thread runs while an application
blocks

e Embedded systems
— Synchronous API using polling
— CPU dedicated to one task

e Operating systems
— Asynchronous API

— Built on interrupt mechanism

NSD-Agere -- Chapt. 7 9

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Asynchronous API

e Design goals

— For use with network processor

— Simplest possible interface

— Sufficient for basic packet processing tasks
e Includes

— 1/0O functions

— Timer manipulation functions

NSD-Agere -- Chapt. 7 10 2004

NOTES

Example Asynchronous API
(continued)

e Initialization and termination functions
— on_startup()
— on_shutdown()

e |nput function (called asynchronously)
— recv_frame()

e OQutput functions
— new_fbuf()

— send_frame()

NSD-Agere -- Chapt. 7 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Asynchronous API
(continued)

e Timer functions (called asynchronously)
— delayed_cal()
— periodic_cal()
— cancel_cal()

e Invoked by outside application

— console_command()

NSD-Agere -- Chapt. 7 12 2004

NOTES

Processing Priorities

e Determine which code CPU runs at any time
e General idea

— Hardware devices need highest priority

— Protocol software has medium priority

— Application programs have lowest priority

e Queues provide buffering across priorities

NSD-Agere -- Chapt. 7 13 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Applications

=

protocol
processing

packet queue
between levels — [————= %

device drivers
handling frames

[llustration Of Priorities

~<—— lowest priority

~—— medium priority

~«—— highest priority

NOTES

NSD-Agere -- Chapt. 7 14 2004
| mplementation Of Priorities
In An Operating System
e Two possible approaches
— Interrupt mechanism
— Kernel threads
NSD-Agere -- Chapt. 7 15 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Interrupt Mechanism

e Built into hardware

e QOperates asynchronously

e Saves current processing state
e Changes processor status

e Branches to specified location

NSD-Agere -- Chapt. 7 16

2004

NOTES

Two Types Of Interrupts

e Hardware interrupt
— Caused by device (bus)
— Must be serviced quickly
e Software interrupt
— Caused by executing program
— Lower priority than hardware interrupt

— Higher priority than other OS code

NSD-Agere -- Chapt. 7 17

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Softwar e Interrupts And
Protocol Code

e Protocol stack operates as software interrupt
e When packet arrives

— Hardware interrupts

— Device driver raises software interrupt
e When device driver finishes

— Hardware interrupt clears

— Protocol code is invoked

NSD-Agere -- Chapt. 7 18

2004

NOTES

Kerne Threads

e Alternative to interrupts
e Familiar to programmer
e Finer-grain control than software interrupts

e Can be assigned arbitrary range of priorities

NSD-Agere -- Chapt. 7 19

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Conceptual Organization

e Packet passes among multiple threads of control
e Queue of packets between each pair of threads

¢ Threads synchronize to access queues

NSD-Agere -- Chapt. 7 20

2004

NOTES

Possible Organization Of
Kernel Threads For Layered Protocols

e Onethread per layer
e One thread per protocol
e Multiple threads per protocol

e Multiple threads per protocol plus timer management
thread(s)

e One thread per packet

NSD-Agere -- Chapt. 7 21

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

One Thread Per Layer

e Easy for programmer to understand
e Implementation matches concept
¢ Allows priority to be assigned to each layer

e Means packet is enqueued once per layer

NSD-Agere -- Chapt. 7 22

NOTES

2004
[llustration Of One Thread Per Layer
applications
app. sends ——f—= —<]—— app. receives
bueue

- Layer 4
< Layer 3
- Layer 2

packets arrive ———= r ~j—— packets leave

NSD-Agere -- Chapt. 7 23 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

One Thread Per Protocol

e Like one thread per layer

— Implementation matches concept

— Means packet is enqueued once per layer
e Advantages over one thread per layer

— Easier for programmer to understand

— Finer-grain control

— Allows priority to be assigned to each protocol

NSD-Agere -- Chapt. 7 24 2004

NOTES

[llustration Of One Thread Per Protocol

applications

=y

e TCP and UDP reside at same layer

e Separation alows priority

NSD-Agere -- Chapt. 7 25 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Multiple Threads Per Protocol

e Further division of duties
e Simplifies programming
e More control than single thread
e Typica division
— Thread for incoming packets
— Thread for outgoing packets
— Thread for management/timing

NSD-Agere -- Chapt. 7 26 2004

NOTES

[llustration Of Multiple
Threads Used With TCP

applications

timer thread —» @

e Separate timer makes programming easier

NSD-Agere -- Chapt. 7 27 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Timers And Protocols

e Many protocols implement timeouts
- TCP
* Retransmission timeout
* 2MSL timeout
— ARP
* Cache entry timeout
- IP

* Reassembly timeout

NSD-Agere -- Chapt. 7 28 2004

NOTES

Multiple Threads Per Protocol
Plus Timer Management Thread(s)

e Observations
— Many protocols each need timer functionality
— Each timer thread incurs overhead

e Solution: consolidate timers for multiple protocols

NSD-Agere -- Chapt. 7 29 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

IsOne Timer Thread Sufficient?

e Intheory
— Yes
e In practice

— Large range of timeouts (microseconds to tens of
seconds)

— May want to give priority to some timeouts

e Solution: two or more timer threads

NSD-Agere -- Chapt. 7 30 2004

NOTES

Multiple Timer Threads

e Two threads usually suffice
e Large-granularity timer
— Values specified in seconds
— Operates at lower priority
e Small-granularity timer
— Vaues specified in microseconds

— Operates at higher priority

NSD-Agere -- Chapt. 7 31 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Thread Synchronization NOTES

e Thread for layer i

— Needs to pass a packet to layer i + 1

— Enqueues the packet

e Thread for layer i+ 1

— Retrieves packet from the queue

e Context switch required!

NSD-Agere -- Chapt. 7 32 2004

Context Switch

e OS function

e CPU passes from current thread to a waiting thread

e High cost

e Must be minimized

NSD-Agere -- Chapt. 7 33 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

One Thread Per Packet

e Predlocate set of threads

e Thread operation
— Waits for packet to arrive
— Moves through protocol stack
— Returns to wait for next packet

e Minimizes context switches

NSD-Agere -- Chapt. 7 34

2004

NOTES

Summary

e Packet processing software usualy runsin OS
e API can be synchronous or asynchronous
e Priorities achieved with
— Software interrupts
— Threads
e Variety of thread architectures possible

NSD-Agere -- Chapt. 7 35

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

VIl

Hardware Architectures
For Protocol Processing
And
Aggregate Rates

NSD-Agere -- Chapt. 8 1 2004

NOTES

A Brief History Of
Computer Hardware

e 1940s
— Beginnings
e 1950s
— Consolidation of von Neumann architecture
— 1/0O controlled by CPU
e 1960s
— 1/0O becomes important

— Evolution of third generation architecture with interrupts

NSD-Agere -- Chapt. 8 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

| /O Processing

e Evolved from after-thought to central influence

e Low-end systems (e.g., microcontrollers)

Dumb I/0O interfaces

CPU does al the work (polls devices)
Single, shared memory

Low cost, but low speed

NSD-Agere -- Chapt. 8 3

2004

NOTES

| /O Processing
(continued)

e Mid-range systems (e.g., minicomputers)

Single, shared memory

I/O interfaces contain logic for transfer and status
operations

CPU

* Starts device then resumes processing
Device

* Transfers data to/ from memory

* Interrupts when operation complete

NSD-Agere -- Chapt. 8 4

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

| /O Processing
(continued)

e High-end systems (e.g., mainframes)

Separate, programmable | /O processor
OS downloads code to be run
Device has private on-board buffer memory

Examples: IBM channel, CDC peripheral processor

NSD-Agere -- Chapt. 8 5 2004

NOTES

Networ king Systems Evolution

e Twenty year history

e Same trend as computer architecture

Began with central CPU
Shift to emphasison 1/0

e Three main generations

NSD-Agere -- Chapt. 8 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

First Generation Network Systems NOTES

e Traditiona software-based router

e Used conventional (minicomputer) hardware

— Single general-purpose processor

— Single shared memory

— |/O over abus

— Network interface cards use same design as other 1/0O
devices

NSD-Agere -- Chapt. 8 7 2004

Protocol Processing In

First Generation Network Systems

N|J c, Sandald cPU NI"CZ

framing & framing &
address all othe;r address
recognition processing recognition

e General-purpose processor handles most tasks

e Sufficient for low-speed systems

e Note: we will examine other generations later in the course

NSD-Agere -- Chapt. 8 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

How Fast Does A CPU Need To Be? NOTES

e Depends on

— Rate at which data arrives

— Amount of processing to be performed

NSD-Agere -- Chapt. 8 9 2004

Two Measures Of Speed

e Datarate (bits per second)

— Per interface rate

— Aggregate rate
e Packet rate (packets per second)

— Per interface rate

— Aggregate rate

NSD-Agere -- Chapt. 8 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

How Fast Is A Fast Connection? NOTES

e Definition of fast data rate keeps changing

— 1960: 10 Kbps

— 1970: 1 Mbps
— 1980: 10 Mbps

— 1990: 100 Mbps

— 2000: 1000 Mbps (1 Gbps)
— 2004: 2400 Mbps

NSD-Agere -- Chapt. 8 11 2004

Aggregate Rate Vs.

Per -I nterface Rate

e |nterfacerate

— Rate at which data enters/ leaves

e Aggregate

— Sum of interface rates

— Measure of total data rate system can handle

¢ Note: aggregate rate crucial if CPU handles traffic from all

interfaces

NSD-Agere -- Chapt. 8 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

A Note About System Scale

The aggregate data rate is defined to be the sum of the rates at
which traffic enters or leaves a system. The maximum
aggregate data rate of a system is important because it limits
the type and number of network connections the system can
handle.

NSD-Agere -- Chapt. 8 13 2004

NOTES

Packet Rate Vs. Data Rate

e Sources of CPU overhead
— Per-bit processing
— Per-packet processing

e |nterface hardware handles much of per-bit processing

NSD-Agere -- Chapt. 8 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

A Note About System Scale NOTES

For protocol processing tasks that have a fixed cost per packet,

the number of packets processed is more important than the
aggregate data rate.

NSD-Agere -- Chapt. 8 15 2004

Example Packet Rates

Technology Network Packet Rate Packet Rate
Data Rate For Small Packets For Large Packets
In Gbps In Kpps In Kpps
10Base-T 0.010 19.5 0.8
100Base-T 0.100 195.3 8.2
OC-3 0.156 303.8 12.8
OC-12 0.622 1,214.8 51.2
1000Base-T 1.000 1,953.1 82.3
0OC-48 2.488 4,860.0 204.9
0C-192 9.953 19,440.0 819.6
OC-768 39.813 77,760.0 3,278.4

e Key concept: maximum packet rate occurs with minimum-
size packets

NSD-Agere -- Chapt. 8 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Bar Chart Of Example Packet Rates

10° Kpps 4+ 77760.0

19440.0
10%Kpps - 4860.0
1953.1
1214.8
108 Kpps 4+
303.8
195.3

102 Kpps 4

19.5

10! Kpps

10° Kpps 4

10Base-T 100Base-T OC-3 OC-12 1000Base-T OC-48 0OC-192 OC-768

e Gray areas show rates for large packets

NSD-Agere -- Chapt. 8 17 2004

NOTES

Time Per Packet

Technology Time per packet Time per packet
for small packets for large packets

(in ps) (in ps)
10Base-T 51.20 1,214.40
100Base-T 5.12 121.44
oc-3 3.29 78.09
oc-12 0.82 19.52
1000Base-T 0.51 12.14
ocC-48 0.21 4.88
0C-192 0.05 1.22
0C-768 0.01 0.31

e Note: these numbers are for a single connection!

NSD-Agere -- Chapt. 8 18 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Conclusion NOTES

Software running on a general-purpose processor is an

insufficient architecture to handle high-speed networks because
the aggregate packet rate exceeds the capabilities of a CPU.

NSD-Agere -- Chapt. 8 19 2004

Possible Ways To Solve

The CPU Bottleneck

e Fine-grain paralelism

e Symmetric coarse-grain parallelism

e Asymmetric coarse-grain parallelism

e Special-purpose Coprocessors

e NICs with onboard processing

e Smart NICs with onboard stacks

e Cdll switching

e Data pipelines

NSD-Agere -- Chapt. 8 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Fine-Grain Parallelism NOTES

e Multiple processors

e |nstruction-level parallelism

e Example:

— Parallel checksum: add values of eight consecutive

memory locations at the same time

e Assessment: insignificant advantages for packet processing

NSD-Agere -- Chapt. 8 21 2004

Symmetric Coarse-Grain Parallelism

e Symmetric multiprocessor hardware

— Multiple, identical processors

e Typica design: each CPU operates on one packet

e Requires coordination

e Assessment: coordination and data access means N
processors cannot handle N times more packets than one

jprocessor

NSD-Agere -- Chapt. 8 22 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Asymmetric Coarse-Grain Parallelism NOTES

e Multiple processors

e Each processor

— Optimized for specific task

— Includes generic instructions for control

e Assessment

— Same problems of coordination and data access as
Ssymmetric case

— Designer must choose how many copies of each
processor type

NSD-Agere -- Chapt. 8 23 2004

Special-Pur pose Coprocessor s

e Specia-purpose hardware

e Added to conventional processor to speed computation

e |nvoked like software subroutine

e Typica implementation: ASIC chip

e Choose operations that yield greatest improvement in speed

NSD-Agere -- Chapt. 8 24 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

General Principle NOTES

To optimize computation, move operations that account for the
most CPU time from software into hardware.

e Idea known as Amdahl’s law (performance improvement
from faster hardware technology is limited to the fraction of
time the faster technology can be used)

2004

NSD-Agere -- Chapt. 8 25

NICs And Onboard Processing

e Basic optimizations

— Onboard address recognition and filtering

— Onboard buffering
— DMA

— Buffer and operation chaining

e Further optimization possible

NSD-Agere -- Chapt. 8 26 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Smart NICs With Onboard Stacks NOTES

e Add hardwareto NIC

— Off-the-shelf chips for layer 2

— ASICsfor layer 3

e Allows each NIC to operate independently

— Effectively a multiprocessor

— Tota processing power increased dramatically

NSD-Agere -- Chapt. 8 27 2004

[llustration Of Smart NICs

With Onboard Processing

Smart NIC; Sandard CPU Smart NIC,
most layer 2 processing all other most layer 2 processing
some layer 3 processing processing some layer 3 processing

e NIC handles layers 2 and 3

e CPU only handles exceptions

NSD-Agere -- Chapt. 8 28 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Cell Switching

e Alternative to new hardware
e Changes

— Basic paradigm

— All details (e.g., protocols)

e Connection-oriented

NSD-Agere -- Chapt. 8 29

2004

NOTES

Cell Switching Details

e Fixed-size packets
— Allows fixed-size buffers
— Guaranteed time to transmit/receive

e Relative (connection-oriented) addressing
— Smaller address size
— Label on packet changes at each switch
— Requires connection setup

e Example ATM

NSD-Agere -- Chapt. 8 30

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Data Pipeline NOTES

e Move each packet through series of processors

e Each processor handles some tasks

e Assessment

— Waell-suited to many protocol processing tasks

— Individual processor can be fast

NSD-Agere -- Chapt. 8 31 2004
[llustration Of Data Pipeline
e etne Inierstage packe: buffr stage 4 P e
l stage 1 J stage 3 stage 5 l
stage 2

——jm—-D—:m—-D—-jm—-D— S I Sy L
e Pipeline can contain heterogeneous processors
e Packets pass through each stage
NSD-Agere -- Chapt. 8 32 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary NOTES

e Packet rate can be more important than data rate

e Highest packet rate achieved with smallest packets

¢ Rates measured per interface or aggregate
e Specia hardware needed for highest-speed network systems

— Smart NIC can include part of protocol stack

— Parallél and pipelined hardware also possible

NSD-Agere -- Chapt. 8 33 2004

I X

Classification
And

Forwarding

NSD-Agere -- Chapt. 9 1 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Recall NOTES

e Packet demultiplexing

— Used with layered protocols

— Packet proceeds through one layer at atime

— On input, software in each layer chooses module at next

higher layer
— On output, type field in each header specifies
encapsulation
NSD-Agere -- Chapt. 9 2 2004

The Disadvantage Of Demultiplexing

Although it provides freedom to define and use arbitrary
protocols without introducing transmission overhead,

demultiplexing is inefficient because it imposes sequential
processing among layers.

NSD-Agere -- Chapt. 9 3 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Packet Classification

e Alternative to demultiplexing
e Designed for higher speed
e Considers dl layers at the same time
e Linear in number of fields
e Two possible implementations
— Software
— Hardware

NSD-Agere -- Chapt. 9 4

2004

NOTES

Example Classification

e C(Classify Ethernet frames carrying traffic to Web server
e Specify exact header contents in rule set
e Example

— Ethernet type field specifies IP

— IP type field specifies TCP

— TCP destination port specifies Web server

NSD-Agere -- Chapt. 9 5

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Classification
(continued)

o Field sizes and values

— 2-octet Ethernet type is 080044

— l-octet IPtypeis 6

— 2-octet TCP destination port is 80

NSD-Agere -- Chapt. 9 6

2004

NOTES

[llustration Of Encapsulated Headers

0 4 8 10 16 19 24

31

[

ETHERNET DEST. (0-1)

ETHERNET DESTINATION (2-5)

ETHERNET SOURCE (0-3)

ETHERNET SOURCE (4-5) [

ETHERNET TYPE

VERS | HLEN | SERVICE IP TOTAL LENGTH
IP IDENT FLAGSl FRAG. OFFSET
1P TTL | IP TYPE IP HDR. CHECKSUM
IP SOURCE ADDRESS

IP DESTINATION ADDRESS

TCP SOURCE PORT I

TCP DESTINATION PORT

TCP SEQUENCE

TCP ACKNOWLEDGEMENT

HLEN NOT USED | CODE BITS |

TCP WINDOW

TCP CHECKSUM |

TCP URGENT PTR

Start Of TCP Data.. .

e Highlighted fields are used for classification of Web server

traffic

NSD-Agere -- Chapt. 9 7

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Softwar e | mplementation
Of Classification

e Compare vaues in header fields
e Conceptually alogical and of all field comparisons
e Example
if ((frame type == 0x0800) && (IP type ==6) && (TCP port == 80))
declare the packet matches the classification;

else
declare the packet does not match the classification;

NSD-Agere -- Chapt. 9 8 2004

NOTES

Optimizing Softwar e Classification

e Comparisons performed sequentially

e Can reorder comparisons to minimize effort

NSD-Agere -- Chapt. 9 9 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Of Optimizing
Softwar e Classification
e Assume
— 95.0% of all frames have frame type 0800,
— 87.4% of al frames have IP type 6
— 74.3% of al frames have TCP port 80

e Also assume values 6 and 80 do not occur in corresponding
positions in non-1P packet headers

e Reordering tests can optimize processing time

NSD-Agere -- Chapt. 9 10 2004

NOTES

Example Of Optimizing
Softwar e Classification
(continued)

if ((TCP port ==280)&& (IP type == 6) && (frame type == 0x0800))
declare the packet matches the classification;
else

declare the packet does not match the classification;

e At each step, test the field that will eliminate the most
packets

NSD-Agere -- Chapt. 9 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Note About Optimization NOTES

Although the maximum number of comparisons in a software
classifier is fixed, the average number of comparisons is

determined by the order of the tests; minimum comparisons
result if, at each step, the classifier tests the field that

eliminates the most packets.

NSD-Agere -- Chapt. 9 12 2004

Hardwar e Implementation Of Classification

e Can build special-purpose hardware

e Steps
— Extract needed fields

— Concatenate bits

— Placeresult in register

— Perform comparison

e Hardware can operate in parallel

NSD-Agere -- Chapt. 9 13 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

[llustration Of Hardwar e Classifier NOTES

Memory

—~— packet in memory —>

wide data path to move
packet headers from memory ——=
to a hardware register

| hardware register |

specific header bytes constant to compare
extracted for comparison — /

comparator

result of comparison —»1

e Constant for Web classifier is 08.00.06.00.501¢

NSD-Agere -- Chapt. 9 14 2004

Special Cases Of Classification

e Multiple categories

o Variable-size headers

e Dynamic classification

NSD-Agere -- Chapt. 9 15 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

In Practice

e (Classification usually involves multiple categories
e Packets grouped together into flows

e May have a default category

e Each category specified with rule set

NSD-Agere -- Chapt. 9 16 2004

NOTES

Example Multi-Category Classification

e Flow 1: traffic destined for Web server
e FHow 2: traffic consisting of ICMP echo request packets
e Flow 3: al other traffic (default)

NSD-Agere -- Chapt. 9 17 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Rule Sets

e Web server traffic

— 2-octet Ethernet type is 080046

— l-octet IPtypeis 6

— 2-octet TCP destination port is 80
e |ICMP echo traffic

— 2-octet Ethernet type is 080016

— 1-octet IP typeis 1

— 1-octet ICMP typeis 8

NSD-Agere -- Chapt. 9 18 2004

NOTES

Softwar e Implementation Of Multiple Rules

if (frame type != 0x0800) {
send frame to flow 3;
} else if (IPtype ==6 && TCP destination port == 80) {
send packet to flow 1;
} else if (IPtype==1 && ICMP type ==8) {
send packet to flow 2;
} else {
send frame to flow 3;

}

e Further optimization possible

NSD-Agere -- Chapt. 9 19 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Variable-Size Packet Headers NOTES

o Fields not at fixed offsets

e Easily handled with software

¢ Finite cases can be specified in rules

NSD-Agere -- Chapt. 9 20 2004

Example Variable-Size Header: | P Options

e RuleSet1l

— 2-octet frame type field contains 0800, ¢
— l-octet field at the start of the datagram contains 45,4

— 1l-octet type field in the |P datagram contains 6

— 2-octet field 22 octets from start of the datagram
contains 80

e Rule Set2
— 2-octet frame type field contains 080044

— l-octet field at the start of the datagram contains 46,4

— 1-octet type field in the IP datagram contains 6
— 2-octet field 26 octets from the start of datagram

contains 80

NSD-Agere -- Chapt. 9 21 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Effect Of Protocol Design On Classification

e Fixed headers fastest to classify
e Each variable-size header adds one computation step
e In worst case, classification no faster than demultiplexing

e Extreme example: IPv6

NSD-Agere -- Chapt. 9 22 2004

NOTES

Hybrid Classification

packets classified into o
flows by hardware packets classified into
flows by software

/—)%
hardware software
I = classifier [classifier [~]

packets arrive packets unrecognized exit for
for classification by hardware unclassified packets

e Combines hardware and software mechanisms
— Hardware used for standard cases
— Software used for exceptions

e Note: software classifier can operate at slower rate

NSD-Agere -- Chapt. 9 23 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Two Basic Types Of Classification NOTES

e Static

— Flows specified in rule sets

— Header fields and values known a priori

e Dynamic

— Flows created by observing packet stream

— Values taken from headers

— Allows fine-grain flows

— Requires state information

NSD-Agere -- Chapt. 9 24 2004

Example Static Classification

e Allocate one flow per service type

e One header field used to identify flow

— IPTYPE OF SERVICE (TOS)
e Use DIFFSERYV interpretation

e Note: Ethernet type field also checked

NSD-Agere -- Chapt. 9 25 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Dynamic Classification

e Allocate flow per TCP connection

e Header fields used to identify flow

| P source address
| P destination address
TCP source port number

TCP destination port number

¢ Note: Ethernet type and IP type fields also checked

NSD-Agere -- Chapt. 9 26

2004

NOTES

I mplementation Of Dynamic Classification

e Usualy performed in software
e State kept in memory
e State information created/updated at wire speed

NSD-Agere -- Chapt. 9 27

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Two Conceptual Bindings

classification: packet — flow

forwarding: flow - packet disposition

e Classification binding is usually 1-to-1

e Forwarding binding can be 1-to-1 or many-to-1

NSD-Agere -- Chapt. 9 28

2004

NOTES

Flow ldentification

¢ Connection-oriented network
— Per-flow SVC can be created on demand
— Fow ID equals connection ID
e Connectionless network
— Flow ID used internally
— Each flow 1D mapped to (next hop, interface)

NSD-Agere -- Chapt. 9 29

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Relationship Of Classification And Forwarding NOTES
In A Connection-Oriented Network

In a connection-oriented network, flow identifiers assigned by
classification can be chosen to match connection identifiers

used by the underlying network. Doing so makes forwarding
more efficient by eliminating one binding.

NSD-Agere -- Chapt. 9 30 2004

Forwarding In A Connectionless Networ k

¢ Route for flow determined when flow created

e Indexing used in place of route lookup

e Flow identifier corresponds to index of entry in forwarding
cache

e Forwarding cache must be changed when route changes

NSD-Agere -- Chapt. 9 31 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Second Generation Network Systems

e Designed for greater scale

e Use classification instead of demultiplexing

o Decentraized architecture

— Additional computational power on each NIC

— NIC implements classification and forwarding

e High-speed internal interconnection mechanism

— Interconnects NICs

— Provides fast data path

NOTES

NSD-Agere -- Chapt. 9 32 2004
[Hlustration Of Second Generation
Networ k Systems Architecture
Interface, Sandard CPU Interface,
Control
And
Layer 1& 2 Class- Forward- Exceptions Forward- Class- Layer 1& 2
(framing) ification ing fast data path ing ification (framing)
33 2004

NSD-Agere -- Chapt. 9

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Classification And Forwarding Chips

e Sold by vendors
e Implement hardware classification and forwarding

e Typica configuration: rule sets given in ROM

NSD-Agere -- Chapt. 9 34

2004

NOTES

Summary

¢ Classification faster than demultiplexing
e Can be implemented in hardware or software
e Dynamic classification

— Uses packet contents to assign flows

— Requires state information

NSD-Agere -- Chapt. 9 35

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

Xl

Network Processors: Motivation And Purpose

NSD-Agere -- Chapt. 11 1 2004

Second Generation Network Systems

e Concurrent with ATM development (early 1990s)

e Purpose: scale to speeds faster than single CPU capacity

e [eatures

— Use classification instead of demultiplexing

— Decentralized architecture to offload CPU

— Design optimized for fast data path

NSD-Agere -- Chapt. 11 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Second Generation Network Systems NOTES
(details)

e Multiple network interfaces

— Powerful NIC

— Private buffer memory

e High-speed hardware interconnects NICs

e General-purpose processor only handles exceptions

e Sufficient for medium speed interfaces (100 Mbps)

NSD-Agere -- Chapt. 11 3 2004

Reminder: Protocol Processing In

Second Generation Network Systems

Interface, Sandard CPU Interface,
Control
And
Layer 1 & 2| Class- | Forward- Exceptions Forward- | Class- [Layer1& 2
(framing) | ification ing fast data path ing ification | (framing)

e NIC handles most of layers 1-3

e Fast-path forwarding avoids CPU completely

NSD-Agere -- Chapt. 11 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Third Generation Network Systems NOTES

e Late 1990s

e Functionality partitioned further

¢ Additional hardware on each NIC
e Almost all packet processing off-loaded from CPU

NSD-Agere -- Chapt. 11 5 2004

Third Generation Design

e NIC contains

— ASIC hardware

— Embedded processor plus code in ROM
e NIC handles

— Classification

— Forwarding

— Traffic policing

Monitoring and statistics

NSD-Agere -- Chapt. 11 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Embedded Processor NOTES

e Two possibilities

— Complex Instruction Set Computer (CISC)

— Reduced Instruction Set Computer (RISC)
¢ RISC used often because

— Higher clock rates

— Smaller

— Lower power consumption

NSD-Agere -- Chapt. 11 7 2004

Pur pose Of Embedded Processor

In Third Generation Systems

Third generation systems use an embedded processor to handle
layer 4 functionality and exception packets that cannot be
forwarded across the fast path. An embedded processor

architecture is chosen because ease of implementation and
amenability to change are more important than speed.

NSD-Agere -- Chapt. 11 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Protocol Processing In Third Generation Systems NOTES

Interface; standard CPU Interface,
Layer 4 Other processing Layer 4
Embedded - Embedded
processor Traffic Mgmt. (ASIC) | processor
Layers 1& 2 Layers 1& 2
Layer 3 & class. switching fabric Layer 3 & class.
ASIC ASIC

e Specia-purpose ASICs handle lower layer functions
e Embedded (RISC) processor handles layer 4

e CPU only handles low-demand processing

NSD-Agere -- Chapt. 11 9 2004

Are Third Generation Systems Sufficient?

e Almost ... but not quite.

NSD-Agere -- Chapt. 11 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Problems With Third Generation Systems NOTES

e High cost

e Long time to market

e Difficult to ssimulate/test

e Expensive and time-consuming to change

— Even trivial changes require silicon respin

— 18-20 month development cycle

e Little reuse across products

e Limited reuse across versions

NSD-Agere -- Chapt. 11 11 2004

Problems With Third Generation Systems

(continued)

o No consensus on overall framework

e No standards for special-purpose support chips

¢ Requires in-house expertise (ASIC designers)

NSD-Agere -- Chapt. 11 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

A Fourth Generation NOTES

e Goal: combine best features of first generation and third

generation systems

— Flexibility of programmable processor

— High speed of ASICs

e Technology called network processors

NSD-Agere -- Chapt. 11 13 2004

Definition Of A Network Processor

A network processor is a special-purpose, programmable
hardware device that combines the low cost and flexibility of a

RISC processor with the speed and scalability of custom silicon
(i.e., ASIC chips). Network processors are building blocks used

to construct network systems.

NSD-Agere -- Chapt. 11 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Network Processors. Potential Advantages

e Relatively low cost

e Straightforward hardware interface

e Facilities to access

Memory

Network interface devices

e Programmable

e Ability to scale to higher

Data rates
Packet rates

NSD-Agere -- Chapt. 11 15

2004

NOTES

The Promise Of Programmability

e For producers

Lower initial development costs
Reuse software in later releases and related systems
Faster time-to-market

Same high speed as ASICs

e [or consumers

Much lower product cost

Inexpensive (firmware) upgrades

NSD-Agere -- Chapt. 11 16

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Choice Of Instruction Set NOTES

e Programmability alone insufficient

e Also need higher speed

e Should network processors have

— Instructions for specific protocols?

— Instructions for specific protocol processing tasks?

e Choices difficult

NSD-Agere -- Chapt. 11 17 2004

I nstruction Set

¢ Need to choose one instruction set

e No single instruction set best for all uses

e Other factors

— Power consumption

— Heat dissipation

— Cost

e More discussion later in the course

NSD-Agere -- Chapt. 11 18 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Scalability
e Two primary techniques
— Pardlelism
— Data pipelining
e Questions

— How many processors?
— How should they be interconnected?

e More discussion later

NSD-Agere -- Chapt. 11 19 2004

NOTES

Costs And Benefits Of Networ k Processors

e Currently
— More expensive than conventional processor
— Slower than ASIC design

e Where do network processors fit?

— Somewhere in the middle

NSD-Agere -- Chapt. 11 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Where Networ k Processors Fit

ASIC
Designs

Network
Processor
Designs

Increasing
Performance

Software
On Conventional
Processor

NOTES

Increasing cost

e Network processors. the middle ground

NSD-Agere -- Chapt. 11 21

Achieving Higher Speed

e \What is known

with separate hardware
e What is unknown
— Exactly what functions to choose

— Exactly what hardware building blocks to use

NSD-Agere -- Chapt. 11 22

— Must partition packet processing into separate functions

— To achieve highest speed, must handle each function

— Exactly how building blocks should be interconnected

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Variety Of Network Processors NOTES

e Economics driving a gold rush

— NPs will dramatically lower production costs for

network systems

— A good NP design potentially worth lots of $$

o Result

— Wide variety of architectural experiments

— Wild rush to try yet another variation

NSD-Agere -- Chapt. 11 23 2004

An Interesting Observation

e System developed using ASICs

— High development cost ($1M)

— Lower cost to replicate

e System developed using network processors

— Lower development cost

— Higher cost to replicate

e Conclusion: amortized cost favors ASICs for most high-

volume systems

NSD-Agere -- Chapt. 11 24 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary NOTES

e Third generation network systems have embedded processor

on each NIC

e Network processor is programmable chip with facilities to
process packets faster than conventional processor

e Primary motivation is economic

— Lower development cost than ASICs

— Higher processing rates than conventional processor

NSD-Agere -- Chapt. 11 25 2004

XIl

The Complexity Of
Networ k Processor Design

NSD-Agere -- Chapt. 12 1 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

How Should A Network Processor
Be Designed?

e Depends on
— Operations network processor will perform

— Role of network processor in overall system

NSD-Agere -- Chapt. 12 2

2004

NOTES

Goals

e Generdlity
— Sufficient for all protocols
— Sufficient for all protocol processing tasks
— Sufficient for all possible networks
e High speed
— Scaleto high bit rates
— Scaleto high packet rates
e Elegance

— Minimality, not merely comprehensiveness

NSD-Agere -- Chapt. 12 3

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

The Key Point

A network processor is not designed to process a specific
protocol or part of a protocol. Instead, designers seek a
minimal set of instructions that are sufficient to handle an
arbitrary protocol processing task at high speed.

NSD-Agere -- Chapt. 12 4 2004

NOTES

Network Processor Design

e To understand network processors, consider problem to be
solved

— Protocols being implemented

— Packet processing tasks

NSD-Agere -- Chapt. 12 5 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Packet Processing Functions NOTES

e Error detection and correction

e Traffic measurement and policing

e Frame and protocol demultiplexing

e Address lookup and packet forwarding

e Segmentation, fragmentation, and reassembly

e Packet classification

e Traffic shaping

e Timing and scheduling

e Queueing

e Security: authentication and privacy

NSD-Agere -- Chapt. 12 6 2004

Questions

e Doesour list of functions encompass all protocol

processing?

e Which function(s) are most important to optimize?

e How do the functions map onto hardware units in a typical

network system?

e Which hardware units in a network system can be replaced

with network processors?

e What minimal set of instructions is sufficiently general to

implement al functions?

NSD-Agere -- Chapt. 12 7 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Division Of Functionality

e Partition problem to reduce complexity

e Basic division into two parts

e Functions applied when packet arrives known as
ingress processing

e Functions applied when packet |leaves known as

egress processing

NSD-Agere -- Chapt. 12 8

2004

NOTES

I ngress Processing

e Security and error detection

e Classification or demultiplexing

e Traffic measurement and policing

e Address lookup and packet forwarding

e Header modification and transport splicing
e Reassembly or flow termination

e Forwarding, queueing, and scheduling

NSD-Agere -- Chapt. 12 9

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Egress Processing

e Traffic shaping

e Addition of error detection codes
e Address lookup and packet forwarding

e Segmentation or fragmentation

e Timing and scheduling
e Queueing and buffering

e Output security processing

NOTES

NSD-Agere -- Chapt. 12 10 2004
Ilustration Of Packet Flow
Ingress Processing
p * Error and security checking
H e Classification or demultiplexing
> Y > » Traffic measurement and policing >
s * Address lookup and packet forwarding
T | * Header modification and transport splicing
c * Reassembly or flow termination
packets A * Forwarding, queueing, and scheduling
arrive L F
A
B
! R
N
T |
packets E C
leave R Egress Processing
i F * Addition of error detection codes
A * Address lookup and packet forwarding
C * Segmentation or fragmentation
E * Traffic shaping
* Timing and scheduling
* Queueing and buffering
* Output security Processing
NSD-Agere -- Chapt. 12 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

A Note About Scalability NOTES

Unlike a conventional processor, scalability is essential for

network processors. To achieve maximum scalability, a
network processor offers a variety of special-purpose functional

units, allows parallel or pipelined execution, and operates in a
distributed environment.

NSD-Agere -- Chapt. 12 12 2004

How Will Network Processors

Be Used?

e For ingress processing only?

e For egress processing only?

e For combination?

e Answer: No single role

NSD-Agere -- Chapt. 12 13 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Potential Architectural Roles NOTES
For Network Processor

e Replacement for a conventional CPU

e Augmentation of a conventional CPU

e On theinput path of a network interface card

o Between a network interface card and central interconnect

e Between central interconnect and an output interface

e On the output path of a network interface card

e Attached to central interconnect like other ports

NSD-Agere -- Chapt. 12 14 2004

An Interesting Potential

Role For Network Processors

In addition to replacing elements of a traditional third
generation architecture, network processors can be attached

directly to a central interconnect and used to implement stages
of a macroscopic data pipeline. The interconnect allows

forwarding among stages to be optimized.

NSD-Agere -- Chapt. 12 15 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Conventional Processor Design

e Design aninstruction set, S
e Build an emulator/simulator for Sin software
e Build acompiler that trandlates into S
e Compile and emulate example programs
e Compare results to
— Extant processors

— Alternative designs

NSD-Agere -- Chapt. 12 16

2004

NOTES

Networ k Processor Emulation

e Can emulate low-level logic (e.g., Verilog)
e Software implementation

— Slow

— Cannot handle real packet traffic
e FPGA implementation

— Expensive and time-consuming

— Difficult to make major changes

NSD-Agere -- Chapt. 12 17

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Network Processor Design NOTES

e Unlike conventional processor design

e No existing code base

¢ No prior hardware experience

e Each design differs

NSD-Agere -- Chapt. 12 18 2004

Hardware And Softwar e Design

Because a network processor includes many low-level hardware

details that require specialized software, the hardware and
software designs are codependent; software for a network

processor must be created along with the hardware.

NSD-Agere -- Chapt. 12 19 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

Summary

e Protocol processing divided into ingress and egress

operations

e Network processor design is challenging because

— Desire generality and efficiency

— No existing code base

— Software designs evolving with hardware

2004

NSD-Agere -- Chapt. 12 20

XI

Network Processor Architectures

2004

NSD-Agere -- Chapt. 13 1

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Architectural Explosion NOTES

An excess of exuberance and a lack of experience have

produced a wide variety of approaches and architectures.

NSD-Agere -- Chapt. 13 2 2004

Principle Components

e Processor hierarchy

e Memory hierarchy

e |nternal transfer mechanisms

e Externa interface and commmunication mechanisms

e Special-purpose hardware

e Polling and notification mechanisms

e Concurrent and parallel execution support

e Programming model and paradigm

e Hardware and software dispatch mechanisms

NSD-Agere -- Chapt. 13 3 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Processing Hierarchy

e Consists of hardware units

e Performs various aspects of packet processing

¢ Includes onboard and external processors

¢ Individual processor can be

— Programmable

— Configurable

— Fixed

NOTES

NSD-Agere -- Chapt. 13 4 2004
Typical Processor Hierarchy
Level Processor Type Programmable? On Chip?
8 General purpose CPU yes possibly
7 Embedded processor yes typically
5 1/0 processor yes typically
6 Coprocessor no typically
4 Fabric interface no typically
3 Data transfer unit no typically
2 Framer no possibly
1 Physical transmitter no possibly
NSD-Agere -- Chapt. 13 5 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Memory Hierarchy

e Memory measurements
— Random access latency

— Seguential access latency

NOTES

— Throughput
— Cost
e Canbe
— Internd
— Externd
NSD-Agere -- Chapt. 13 6 2004
Typical Memory Hierarchy
Memory Type Rel. Speed Approx. Size On Chip?
Control store 100 103 yes
G.P. Registerst 90 102 yes
Onboard Cache 40 103 yes
Onboard RAM 7 103 yes
Static RAM 2 107 no
Dynamic RAM 1 108 no
NSD-Agere -- Chapt. 13 7 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Internal Transfer M echanisms NOTES

e |nterna bus

e Hardware FIFOs

e Transfer registers

e Onboard shared memory

NSD-Agere -- Chapt. 13 8 2004

External Interface And

Communication M echanisms

e Standard and specialized bus interfaces

e Memory interfaces

e Direct I/0O interfaces

e Switching fabric interface

NSD-Agere -- Chapt. 13 9 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example I nterfaces

e System Packet Interface Level 3 or 4 (SPI-3 or SPI-4)
e SerDes Framer Interface (SFI)
e CSIX fabric interface

Note: The Optical Internetworking Forum (OIF) controls the SPI and SFI
Standards.

NSD-Agere -- Chapt. 13 10 2004

NOTES

Polling And Notification M echanisms

¢ Handle asynchronous events

— Arrival of packet

— Timer expiration

— Completion of transfer across the fabric
e Two paradigms

— Polling

— Notification

NSD-Agere -- Chapt. 13 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Concurrent Execution Support

e Improves overall throughput
e Multiple threads of execution

e Processor switches context when a thread blocks

NSD-Agere -- Chapt. 13 12

2004

NOTES

Support For Concurrent Execution

e Embedded processor
— Standard operating system
— Context switching in software
e 1/O processors
— No operating system
— Hardware support for context switching

— Low-overhead or zero-overhead

NSD-Agere -- Chapt. 13 13

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Concurrent Support Questions NOTES
e Local or global threads (does thread execution span
multiple processors)?
e Forced or voluntary context switching (are threads
preemptable)?
NSD-Agere -- Chapt. 13 14 2004

Hardware And Softwar e Dispatch M echanisms

¢ Refersto overall control of paralel operations

e Dispatcher

— Chooses operation to perform

— Assigns to a processor

NSD-Agere -- Chapt. 13 15 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Implicit And Explicit Parallelism

e Explicit paralelism

— Exposes parallelism to programmer

— Requires software to understand parallel hardware
e Implicit parallelism

— Hides parallel copies of functional units

— Software written as if single copy executing

NSD-Agere -- Chapt. 13 16 2004

NOTES

Architecture Styles, Packet Flow,
And Clock Rates

e Embedded processor plus fixed coprocessors

e Embedded processor plus programmable | /O processors
e Paralel (number of processors scales to handle load)

e Pipeline processors

o Dataflow

NSD-Agere -- Chapt. 13 17 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Embedded Processor Architecture NOTES

)| oo)

e Single processor

— Handles al functions

— Passes packet on

e Known as run-to-completion

NSD-Agere -- Chapt. 13 18 2004
Parallel Architecture
coordination f(; g0 h()
mechfnisr/ \
) O=»mf=0C)
\ f0; 90; h(Q /

e Each processor handles 1/N of total load
NSD-Agere -- Chapt. 13 19 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Pipeline Architecture NOTES

o))|))

e Each processor handles one function

e Packet moves through ‘* pipeline

NSD-Agere -- Chapt. 13 20 2004

Clock Rates

¢ Embedded processor runs at > wire speed

e Parallel processor runs at < wire speed

e Pipeline processor runs at wire speed

NSD-Agere -- Chapt. 13 21 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NSD-Agere -- Chapt. 13

Softwar e Architecture

e Central program that interacts with code on intelligent,
programmable | /O processors

e Communicating threads
e Event-driven program
e RPC-style (program partitioned among processors)
¢ Pipeline (even if hardware does not use pipeline)

e Combinations of the above

22

e Central program that invokes coprocessors like subroutines

2004

NOTES

NSD-Agere -- Chapt. 13

Example Uses Of Programmable Processors

General purpose CPU

Highest level functionality
Administrative interface
System control

Overall management functions
Routing protocols

Embedded processor

Intermediate functionality

Higher-layer protocols

Control of I/O processors

Exception and error handling
High-level ingress (e.g., reassembly)
High-level egress (e.g., traffic shaping)

1/0 processor

Basic packet processing
Classification

Forwarding

Low-level ingress operations
Low-level egress operations

23

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Using The Processor Hierarchy NOTES

To maximize performance, packet processing tasks should be

assigned to the lowest level processor capable of performing
the task.

NSD-Agere -- Chapt. 13 24 2004

Packet Flow Through The Hierarchy

Standard CPU (external)

almost no
~ data =

Embedded (RISC) Processor

small amount
= of data =

I/O Processor

data to/ from
programmable processors

Lower Levels Of Processor Hierarchy

data data
arrives = = leaves

NSD-Agere -- Chapt. 13 25 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary NOTES

e Network processor architectures characterized by

— Processor hierarchy

— Memory hierarchy

— Interna buses

— External interfaces

— Special-purpose functional units

— Support for concurrent or parallel execution

— Programming model

— Digpatch mechanisms

NSD-Agere -- Chapt. 13 26 2004

XVII

Overview Of The Agere Networ k Processor

NSD-Agere -- Chapt. 17 1 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

An Example Networ k Processor

e Wewill

e QOur choice for this course: Agere Systems APP550

Choose one example
Examine the hardware
Understand the programming model

Consider the capabilities and limitations

NSD-Agere -- Chapt. 17 2

2004

NOTES

Agere Hardware Organization

e Conceptua pipeline
e Three major blocks
— Classifier
— Forwarder

— State Engine

NSD-Agere -- Chapt. 17

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

[llustration Of Hardwar e Pipeline

packet packet
ingress egress

|:> Classifier |:> Forwarder |:>

e All packets flow through classifier and forwarder

NOTES

NSD-Agere -- Chapt. 17 4 2004
Classifier

¢ Classifies packets or cells

e |Implemented with pattern matching engine

e Passes packet to forwarder along with classification

e On fast path

NSD-Agere -- Chapt. 17 5 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

State Engine NOTES

e Invoked by classifier

e Provides host interface

o Collects statistics

¢ Not on fast path

NSD-Agere -- Chapt. 17 6 2004

Forwarder

¢ Receives packets from the classifier

e Performs traffic management and shaping

e Handles scheduling and packet queueing

e Modifies the packet if necessary

e Programmed via scripts

e On fast path

NSD-Agere -- Chapt. 17 7 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

e Three separate chips

e Among the first network processors
e Named PayloadPlus 2.5
e Handled 2.5 Gbps

— Fast Pattern Processor (FPP)

— Agere System Interface (ASI)

Original Agere Design

— Routing Switching Processor (RSP)

NOTES

NSD-Agere -- Chapt. 17 8 2004
[llustration Of First-Generation Design
Fast Routing
|:> Pattern |:> Switch |:>
Processor Processor
[(FPP) (RSP)]
packets packets sent
arrive to fabric
configuration bus
Agere
System
Interface
(ASI)
NSD-Agere -- Chapt. 17 9 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Second Generation Agere Design

e Same basic architecture as first generation

e All three functions combined onto single chip

¢ Internal communication paths provide faster pipeline
¢ Designed to handle 10 Gbps

e Multiple models

NOTES

NSD-Agere -- Chapt. 17 10 2004
Agere Second Generation Models
Model Throughput Features
APP520 5+ Gbps 2 GigE ports, no external memory
APP530 2.5 Gbps Slower speed version of the 550
APP530TM 2.5 Gbps 530 plus traffic management software
APP540 5+ Gbps Packet traffic with no external reassembly
APP550 5+ Gbps 4 GigE ports, full capability
APP750 10.0 Gbps Higher speed than a 550
e Models 520 and 540 provide traffic management only
e Wewill focus on the APP550
NSD-Agere -- Chapt. 17 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

[Hlustration Of APP550 Architecture NOTES
APP550
packet packet
ingress egress
Forwarding:
|:> ; If‘> Classification: If‘> traffic manager If‘> |:>
in out
pattern processor and
packet modifier
State Engine:
statistics and
host communication
NSD-Agere -- Chapt. 17 12 2004

APP550 Features

e Unconventional design with special-purpose hardware

e Programmable using high-level languages

e Specialized onboard engines for protocol processing tasks

e Connection for external coprocessor

e Hardware support for classification, scheduling, policing,
shaping, and packet modification

e Interfaces for various physical media

NSD-Agere -- Chapt. 17 13 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

APP550 External Interfaces

e Multiple memory interfaces
e Coprocessor interface
e Multiple packet 1/0O interfaces
e Control interfaces
— Externa scheduling

— Host processor (PCI bus)

NSD-Agere -- Chapt. 17 14

2004

NOTES

[llustration Of APP550 External Connections

classif. buffer schedul. buffer SED memory
| (FCRAM) (FCRAM) (FCRAM) c
ngress ress
9 t 4 b1t 9
GMII, GMII,
SMIl, —= —e SMII,
PMA PMA
SPI-3, SPI-3,
Utopia - = Utopia
(— — }
coprocessor coprocessor
input output
(SPI-3) APP550 (SPI-3)
classif.
memory |
(FCRAM)
¥ 1
statistics memory scheduler memory
(DDR-SRAM) (DDR-SRAM)
NSD-Agere -- Chapt. 17 15 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Pur pose Of External Connections

Interface To Purpose
memory Access to storage for packet buffers, queues,
instructions, and other parameters
media Packet or cell ingress from physical network

or egress to physical network
switching fabric Packet transfer to an output port
PCI bus Allows host computer to control the APP550
scheduler Access to external scheduler
coprocessor Access to external coprocessor hardware

NSD-Agere -- Chapt. 17 16

2004

NOTES

External Media I nterface Hardware

¢ Divides packet into 64-byte blocks
o Dedliversone block at atime

e Sends additional information

Bit to indicate first block of packet
Bit to indicate last block of packet

Integer to indicate size of block (64 except for final
block)

Integer to indicate interface over which block arrived

e Note: if packet fits into single block, bits indicate both
“first’”” and “‘last’” block of packet

NSD-Agere -- Chapt. 17 17

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

APP550 M edia I nterfaces

Standard Name

Meaning

GMII
PMIl
SMII
PMA
SPI-3
Utopia

NSD-Agere -- Chapt. 17

Gigabit Media Independent Interface

Physical Media Independent Interface

Serial Media Independent Interface

Physical Medium Attachment

System Packet Interface Level 3

Universal Test and Operations PHY Interface for ATM

18 2004

NOTES

APP550 External Memory Uses

Engine Memory Use
Classifier FCRAM Packet buffer memory
FCRAM Program memory (patterns)
FCRAM Control memory
State Engine DDR-SRAM Flow statistics and profile memory
DDR-SRAM OAM data memory
Stream Editor DDR-SRAM Context memory
FCRAM Parameter memory
Reorder Buffer FCRAM Scheduler buffer memory
and Shaper DDR-SRAM Scheduler linked list memory
DDR-SRAM Scheduler parameter memory
DDR-SRAM Scheduler queue memory

NSD-Agere -- Chapt. 17

19 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

APP550 External Memory Technologies

e Fast Cycle Random Access Memory (FCRAM)
— Low cycle time alows rapid storage of sequential bytes
— Used for packet storage

¢ Double Data Rate Static Random Access Memory (DDR-
SRAM)

— Low latency for random data access
— Used for table lookup

NSD-Agere -- Chapt. 17 20 2004

NOTES

APP550 Internal Architecture

e Multiple onboard engines
— Some programmable
— Some configurable
e |/O interface units handle
— Cdls
— Frames
e External memory interface units

e Onboard memory

NSD-Agere -- Chapt. 17 21 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

classif. buffer

schedul. buffer

SED memory

[llustration Of APP550 Internal Architecture

e Many internal connections not shown

| (FCRAM) (FCRAM) (FCRAM) c
ngress APP550 gress
GMIl, GMII,
SMil, SMII,
PMA PMA
~ Input Output R
US[EI i?’é Inter- PDU Stream Inter- Sf! 3i'a
P face > Assembler Editor ™ face P
I }
coprocessor coprocessor
inpu output
(SPI-3) (5P13)
Pattern Reorder Buffer
classif. Processing an
memory Engine Traffic Shaper memory
(FCRAM)
State PCl bus
Engine interface
L] L] }
statistics memory scheduler memory
(DDR-SRAM) (DDR-SRAM)

NOTES

NSD-Agere -- Chapt. 17 22 2004
Example Engines On The APP550
Engine Purpose
Pattern Processing Engine Classification
State Engine Gathering state information for scheduling
and verifying flow is within bounds

Reorder Buffer Manager Ensure packet order

PDU Assembler Collect all blocks of a frame

Traffic Manager Schedule packets and shape traffic flow

Stream EDitor (SED) Modify outgoing packet
NSD-Agere -- Chapt. 17 23 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved

Full-Duplex Operation
e Single APP550 does not have sufficient capacity to handle
flow in two directions
e Solution: use two APP550s per physical interface
— One handles ingress

— One handles egress

NSD-Agere -- Chapt. 17 24 2004

NOTES

Illustration Of Two APP550s Used For Full Duplex

—> APP550 —

r>»0-—-nwW<IDT
O — X0 @ > T

— APPS50 —

e Note: egress processor does not need classification

NSD-Agere -- Chapt. 17 25 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

XVIHI

Functional Units
On
The Agere APP550

NOTES

NSD-Agere -- Chapt. 18 1 2004
Major Functional Units On the APP550
Unit Programming Purpose
Language
Buffer Manager C-NP Store or drop packets
Input Interface none Interface to network devices
Pattern Processor FPL Classification
PDU Assembler none Collect blocks of a frame
Policing/OAM Engine C-NP Gather statistics and
administrative functions
Reorder Buffer none Ensure packet order
Stream Editor C-NP Modify outgoing packet
Traffic Shaper C-NP Shape outgoing flows
NSD-Agere -- Chapt. 18 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Input Interface

Receives packets from

— Up to four high-speed sources
— Coprocessor

— Fabric

— host via PCI bus

Passes packets to classifier

NSD-Agere -- Chapt. 18 3

2004

NOTES

Input Interface

(continued)
Configurable for
— SPI-3
— UTOPIA 2 or UTOPIA 3
— PLATO

Up to 256 MultiPHY (MPHY) addresses

NSD-Agere -- Chapt. 18 4

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Pattern Processing Engine (PPE)

e Used for classification

e Unconventional architecture (no fetch-execute)
¢ Implements form of pattern matching

e Programmable using FPL (more later)

e Usesimplicit paralelism

e |Invoked automatically when packet arrives

NSD-Agere -- Chapt. 18 5 2004

NOTES

Pattern Processing Engine (PPE)
(continued)

e Can access multiple memories
— Classifier PDU Buffer (CPDUB)
— Classifier Program Memory (CPM)
— Classifier Control Memory (CCM)

NSD-Agere -- Chapt. 18 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

PDU Assembler NOTES

e Accepts blocks of data from Pattern Processing Engine

e Combines blocks to form a complete packet

2004

NSD-Agere -- Chapt. 18 7

Data Flow Through Classifier Block

¢ [Ingress storage

— Packet divided into blocks

— Blocks written to Classification PDU buffer (CPDUB)

e First pass of classification

— Blocks pass through PPE

— PPE runs root program on each block

NSD-Agere -- Chapt. 18 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Data Flow Through Classifier Block NOTES
(continued)

e Second pass of classification

— Packet passes through PPE
— PPE runs replay program on packet

e Reassembly and handoff

— Needed for implicit parallelism

— Packets emitted in order

— ReOrder Buffer (ROB) used

NSD-Agere -- Chapt. 18 9 2004

A Key ldea

Each packet passes through the PPE twice: in the first pass, a
root program is invoked once for each sixty-four byte block of

the packet, and in the second pass a replay program is invoked
once for the entire packet.

NSD-Agere -- Chapt. 18 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

State Engine

e Invoked by Pattern Processing Engine

e Collects statistics needed for policing

¢ Provide host interface

e Configures and controls other functional units
e Operates like coprocessor (function call)

e Collects statistics for policing and traffic management
functions

e Programmable

e Programming language is ASL, ak.a. C-NP (more later)

NSD-Agere -- Chapt. 18 11 2004

NOTES

Reorder Buffer

e Associated with buffer manager
e Needed because classifier has

— Implicit paralelism

— Variable processing time (depends on the packet)
e Purpose: guarantee packet order unchanged

— Required for some protocols (e.g., ATM)

— Beneficia for other protocols (e.g., TCP)

NSD-Agere -- Chapt. 18 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Reorder Buffer NOTES

(continued)

e |nvoked after classification

¢ Not programmable

NSD-Agere -- Chapt. 18 13 2004

Function Of the Reorder Buffer

The Reorder Buffer Manager provides transfer between the

Classifier and Traffic Manager. The Traffic Manager extracts
packets from the ROB table in sequential order, waiting for the

Classifier to finish processing a packet, even if later packets are
already finished.

NSD-Agere -- Chapt. 18 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Traffic Manager Block NOTES

e On the fast path

e Programmable with scripts

e TM script invoked once per packet

¢ Receives packets from the Classifier

o Polices traffic

e Queues packets

e Schedules and shapes traffic
e Modifies outgoing packets

NSD-Agere -- Chapt. 18 15 2004

Traffic Manager Block

(continued)

e Transmits each packet on the appropriate output port

e Several subsystems

e Uses two types of scripts (programs)

— Buffer manager script invoked when packet arrives

— Scheduler script invoked to select packets for egress

NSD-Agere -- Chapt. 18 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Buffer Manager NOTES

e Part of Traffic Manager block

e Receives packets from classifier

e Decides to enqueue or discard packet

e Decision based on

— Memory use

— Thresholds

— Classification and/ or policing results

NSD-Agere -- Chapt. 18 17 2004

Traffic Shaper

e Part of Traffic Manager block

e Invoked for outgoing packet

e Programmable

e Programming language is ASL, ak.a. C-NP (more later)

e Handles hierarchy of output queues

e Scheduling based on

— Time

Current congestion

Classification results

Priorities

NSD-Agere -- Chapt. 18 18 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Stream editor (SED)

e Part of Traffic Manager block

e Invoked for outgoing packet

¢ Handles packet modification/ update
e Not aconventional processor

e Changes specified with parameters

e Example: compute checksum

NSD-Agere -- Chapt. 18 19 2004

NOTES

Stream editor (SED)
(continued)

e Capabilities

Create up to 127 bytes of frame header, and prepend to
frame

Create up to 20 bytes of cell header, and prepend to
block

Update items in the packet such as the TTL or checksum
Change an MPHY address.

e Parameters used to control processing

HeaderDeltaParameters
SED parameters

NSD-Agere -- Chapt. 18 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Programming, Performance, And Global Pulse Rate
e To process packets at wire speed, cannot spend too long on

any packet
e Clock rate of APP550 is fixed at 266 MHz

e For given interface speed, can compute maximum cycles
available per packet

e Agere uses term Global Pulse

e Example: for OC-48 interface, global pulse is 23
instructions

e Compiler flags program that exceeds global pulse

NSD-Agere -- Chapt. 18 21 2004

NOTES

Global Pulse And SED Engine

e SED engine
— Exception to global pulse
— Can execute twice as many instructions as other engines

e Reason: hardware provides two copies of the SED engine
(implicit parallelism)

NSD-Agere -- Chapt. 18 22 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Other Functional Units NOTES

e External Scheduling Interface
e Configuration Bus Interface (CBI)

e Packet Generation Engine

e OQutput Interface

NSD-Agere -- Chapt. 18 23 2004

Summary

e APP550 contains many functional units

e Some units are programmable; others are not

e C(Classifier, Traffic Manager, and State Engine handle basic
packet processing functions

¢ All packets proceed through the Pattern Processing Engine
e PPE uses the State Engine to collect statistics

e Disposition decisions made in the Traffic Manager

NSD-Agere -- Chapt. 18 24 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

XIX
Reference Platform

And Simulator
(HDS, SPA)

NSD-Agere -- Chapt. 19 1

2004

NOTES

Refer ence System

e Provided by vendor
e Targeted at potential customers
e Usualy includes
— Hardware testbed
— Development software
— Simulator or emulator
— Download and bootstrap software

— Reference implementations

NSD-Agere -- Chapt. 19 2

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Simulation Vs. Emulation

e Simulator

— Software that mimics external actions of a network
processor

— Usudlly runs on conventional computer (e.g., PC)
— Takes program and sequence of packets as input
e Emulator

— Software that mimics internal actions of a network
processor

— Attempts to be cycle accurate
— Usually runs on conventional computer (e.g., PC)

— Takes program and sequence of packets as input

NSD-Agere -- Chapt. 19 3 2004

NOTES

Simulation Vs. Emulation
(continued)

e Simulator
— Not as accurate, but faster
e Emulator

— Not as fast, but more accurate

NSD-Agere -- Chapt. 19 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Ager e Reference System NOTES

e Software Development Environment (SDE)

e Hardware Development System (HDS)

¢ Run Time Environment (RTE)

NSD-Agere -- Chapt. 19 5 2004

Softwar e Development Environment

(SDE)

e Used by programmer to prepare and test software

e Runs on conventional computer

NSD-Agere -- Chapt. 19 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Agere SDE Components NOTES

e FPL compiler

e FPL source code optimizer

e FPL debugger

e C-NP compiler

e Configuration generator

e Simulator

e Traffic generator
e Traffic analyzer and plotter

NSD-Agere -- Chapt. 19 7 2004

System Performance Analyzer

(SPA)

e Graphica User Interface (GUI) for tools in the SDE
e Permits programmer to compile, test, and debug APP550

software

e Can invoke the simulator, generate traffic, and allow a
programmer to monitor the results

NSD-Agere -- Chapt. 19 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Hardwar e Development System
(HDS)
e Hardware testbed
e Manufactured as a stand-alone system (chassis)
e Composed of three boards

¢ Includes cross-development and downloading facilities

NSD-Agere -- Chapt. 19 9

2004

NOTES

The Three Boards In Agere sHDS

Port card
An Agere APP550 with associated memory and a
connection to the HDS bus over which the APP550
can access 1/0 ports.

I/0O card
Facilities for packet input and output: four 1-Gbps
optical Ethernet connections and an OC-48 TADM
connection that can be configured as an OC-48C
connection or a mixture of up to four OC-12 ATM
and/or Packet Over SONET connections.

CPU card
A PowerPC processor used to control the APP550,
RAM, ROM, and PROM memories, a serial port, an
Ethernet connection, and a debugging port.

NSD-Agere -- Chapt. 19 10

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

HDS Bootstrap And Operation

e HDS does contain
— Conventiona processor (PowerPC)
— Ethernet interface

¢ HDS does not contain
— Stable storage (e.g., a disk)

e Can still run conventional OS

NSD-Agere -- Chapt. 19 11 2004

NOTES

Five-Step HDS Bootstrap Procedure

1. CPU card runs an initial bootstrap program from ROM.

2. Boot program obtains address of TFTP server either from
PROM or via BOOTP, and runs TFTP to obtain an
operating system image (embedded Linux or VxXWorks),
which is loaded into memory. All communication
proceeds over the Ethernet interface on the CPU card.

3. When it boots, the operating system creates a RAM disk.
The operating system uses NFS to mount a remote file
system. Once the operating system is running, a user can
log in and receive a shell prompt for command input.

NSD-Agere -- Chapt. 19 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Five-Step HDS Bootstrap Procedure

4. The operating system proceeds to load a set of libraries and
functions that comprise the APl (VxWorks) or a kernel
module that can load libraries on demand (Linux).

5. One of the API functions downloads the Agere
Configuration Image onto the Port card. The configuration
image contains parameters for the APP550 as well as
compiled code from FPL and C-NP (i.e., data and
instructions for the APP550).

5. Another of the API functions downloads values into the
FPGA on the I1/0O card.

6. The programmer uses the API (from a command or from a
program) to interact with the APP550.

NSD-Agere -- Chapt. 19 13 2004

NOTES

Testing Paradigms

e APP550 does not
— Provide convenient, efficient host interface
— Support for instrumentation of code

e Hardware testbed allows programmer to
— Test at wire speed

— Measure with actual traffic

NSD-Agere -- Chapt. 19 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Testing Paradigms
(continued)

e Simulator allows programmer to
— Control input

— Step through a program

— Generate arbitrary flows (e,g, to test queueing or scheduling)

NSD-Agere -- Chapt. 19 15 2004

NOTES

Summary

¢ Reference systems
— Provided by vendor
— Targeted at potential customers
— Usually include
* Hardware testbed
* Cross-development software
* Download and bootstrap software

* Reference implementations

NSD-Agere -- Chapt. 19 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary NOTES

(continued)

e Agere offers

— Hardware Development System (HDS)

— Software Development Environment

e System Performance Analyzer (SPA) is graphical interface for
reference platforms

NSD-Agere -- Chapt. 19 17 2004

XXI

State Engine And
Scripting Language

(C-NP)

NSD-Agere -- Chapt. 21 1 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

We Will Discuss NOTES

e State Engine role and interface

e C-NP programming language

NSD-Agere -- Chapt. 21 2 2004

State Engine Functionality

e Contains memory used to store statistics

e Performs computations needed for traffic policing

e Provides interface to external host processor

NSD-Agere -- Chapt. 21 3 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Memory For Statistics

e State Engine provides
— Interface to memory

— Memory access functionsin FPL (e.g., store or
increment)

e Intended to be used with classifier
e Notes
— Statistics needed for monitoring and control
— Classifier hardware has no memory except for packets

— FPL cannot have static variables

NSD-Agere -- Chapt. 21 4 2004

NOTES

Computations For Traffic Policing

¢ Determine whether flow exceeds performance profile
e Results passed to Traffic Manager for drop decision
e Performed by Policing Engine

NSD-Agere -- Chapt. 21 5 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Policing Engine NOTES

e Part of the State Engine

e Programmable via scripts

e Languageis C for Network Processors (C-NP), which was
formerly known as Agere Scripting Language (ASL)

NSD-Agere -- Chapt. 21 6 2004

Interface To Host Processor

e External host necessary

e Functionality

— Overdl control

— Chip configuration and initialization

— Dynamic updates to runtime data structures

— Handling traffic on the slow path

* Routing protocols

* Exceptions

NSD-Agere -- Chapt. 21 7 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Interface To Host Processor
(continued)

e Physical interconnection to external host
— Peripheral Component Interconnect (PCl) bus
— Terminated by State Engine hardware

e Logica interconnection

— Internal Configuration Bus Interconnect (CBI) connects
State Engine to Classifier and Traffic Manager

— Externa (PCI) and internal (CBI) buses are mapped

NSD-Agere -- Chapt. 21 8 2004

NOTES

Communication Paradigm

e Standard bus paradigm
e Host issues fetch or store operation

e APP550 hardware provides large set of Control and Satus
Registers (CSRs)

e Semantics of each CSR defined independently
— Meaning of fetch

— Meaning of store

NSD-Agere -- Chapt. 21 9 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

CSRs On The APP550 NOTES

e Separate groups of CSRs for

— State Engine

— Classifier

— Traffic Manager

— Internal Memory

— MAC interfaces

e State Engine maps requests and responses between PCl and

CBI buses
NSD-Agere -- Chapt. 21 10 2004
State Engine Memory
e Upto

— 32 MBytes of external DDR-SRAM

— 2.6 Mbytes of internal memory

e Integrated into single address space along with CSRs

e Address space defined by CBI

e Byte addressable

e Divided into four-byte units known as registers

— 135 registers of address space for control functions

— 1280 registers of address space for physical memory

NSD-Agere -- Chapt. 21 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Policing Scripts

e Programs used by Policing Engine
e Stored in State Engine memory
e Memory holds

— 1024 standard scripts

— 256 user-defined scripts

NSD-Agere -- Chapt. 21 12

2004

NOTES

Two Types Of Policing Scripts

e Void script

— Does not return avaue

— Typica use: accumulate statistics
e Value-returning script

— Computes and returns a value

— Typica use: notify FPL of a policing decision

NSD-Agere -- Chapt. 21 13

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

AS| Functions NOTES

e Defined by Agere

e Called from FPL program

e Performed by State Engine

e Typica use: access memory

e Name retained from first-generation chip in which State
Engine was called Agere System Interface

¢ Functionality offered

— Memory access
— Arithmetic operations

— Logical operations

NSD-Agere -- Chapt. 21 14 2004

Example ASI Function

e Name asWrite

e Used to store values in memory

e Two arguments: 24-bit memory address and 32-bit value

e Example

asiWrite(0x4:24,949:32)

e Stores integer 949 into memory location 4

NSD-Agere -- Chapt. 21 15 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Memory For Policing Scripts NOTES

e |nvoked from FPL

e Run by Policing Engine

e Use on-chip data store known as policing database

NSD-Agere -- Chapt. 21 16 2004

Policing Database

e |Implemented as array in memory

e Values persist across multiple packets

e Can be used to accumulate statistics for entire flow

e Upto 512K entries, one entry per flow

e Indexed by integer flow ID

e Occupies up to 32 Mbytes of memory

NSD-Agere -- Chapt. 21 17 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Policing Database NOTES

(continued)

e Each entry in database contains 64 bytes

e Policing script decides how to use content of entry

e Examples

— Count of packets on flow

— Count of bytes on flow

— Record size of burst

e Note: to optimize performance, policing database items are

cached in register file

NSD-Agere -- Chapt. 21 18 2004

Policing Scripts

e \Written in C-NP

e Up to 16 scripts

e Each script given name

e Compiler produces .aso file for script

e Invoked via generic functions

NSD-Agere -- Chapt. 21 19 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Generic Policing Functions NOTES

e Cadlled from FPL

e How ID is part of nhame

e Two forms (N denotes flow ID):

— Function asiPoliceN does not return value

— Function asiPoliceEOFN returns a value

e Example call for flow ID 3:

asiPolice3

NSD-Agere -- Chapt. 21 20 2004

Per for mance

¢ Functions invoked with asiPolice (no return value)

performed in parallel with FPL

e Programmer can optimize performance by

— Minimizing asiPoliceEOF calls

— Starting computation with asiPolice early

NSD-Agere -- Chapt. 21 21 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Binding Script Names

e FPL uses generic functions such as asiPoliceO

e Programmer gives each script a descriptive name

e Therefore, must bind generic function to specific script
¢ Binding specified as flow ID - script file

e Example of binding ID zero:

ID O myscript.aso

NSD-Agere -- Chapt. 21 22 2004

NOTES

Binding Script Names
(continued)

e Binding
— Controlled by programmer
— Specified before chip configured
— Does not change during execution
e Two possibilities
— Use SPA to specify
— Edit XML configuration file

NSD-Agere -- Chapt. 21 23 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Function Prototypes In FPL NOTES

e Used to declare external functions

e FPL statement is SETUP PROTO

e Specifies number and size of arguments

e Example

SETUP PROTO (asiPoliceEOF3, 24, 16, 24);

e Specifies that function asiPoliceEOF3 takes three arguments

that are 24, 16, and 24 bits long

NSD-Agere -- Chapt. 21 24 2004

Example Organization Of Policing Script

#include "np5.fpl"

#include "np5asi .fpl"

/I Note: other initialization code goes here

SETUP PROTO(asi PoliceEOFO, 24, 16, 24),

/I Note: classification code goes here

/* Assume flow ID has been placed in variable FID and that ~ */
[* variable currlength contains the current length of the packet. */

outcome = asi PoliceEOFO($FID: 24, $currlength: 16, 0:24);

/I Note: code to place outcome in tm_flags goes here

fTransmit(0:1, 0:1, $DID: 20, 0:16, 0:5, $tm_flags: 10, $info: 24);

NSD-Agere -- Chapt. 21 25 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Policing Database I nitialization

e Entry in database must be initialized before APP550 begins
e XML configuration file used

e Values given as pairs.

(flow 1D, 64 bytes of parameters for the flow)

NSD-Agere -- Chapt. 21 26 2004

NOTES

State Engine Register File

e Hardware mechanism

e Much faster than memory access
e Used when policing script runs

e Needed because memory too slow

e Essentially a preloaded cache

NSD-Agere -- Chapt. 21 27 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

State Engine Register File NOTES

e Before script for flow ID N runs

— State Engine automatically preloads values from policing

database entry into register file

e During script execution

— All memory references refer to values in register file

— Execution does not wait for (slow) memory

e After script completes

— State Engine copies values from register file back into

policing database entry

e Generic script names provide flow ID to hardware

NSD-Agere -- Chapt. 21 28 2004

Example Policing Function

e Single token bucket

o Test whether flow is over sustained rate

e Adds tokens to bucket for elapsed time

e Compares tokens in bucket to packet rate

NSD-Agere -- Chapt. 21 29 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Policing Script Details NOTES

e Hardware param_block variable preloaded before script runs

e Result stored in hardware predicate register

— Sixteen bit value

— Bit fifteen known as OutOfProfile bit

e Code written in C-NP

NSD-Agere -- Chapt. 21 30 2004

C-NP Language Overview

e Language caled C for Network Processors

e Formerly known as Agere Scripting Language

o We will discuss

— Lexica conventions

— Data declarations

— Expressions

— Statements

— Preprocessor directives

— Script structure

NSD-Agere -- Chapt. 21 31 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

e Comments

Type

C-NP Lexical Conventions

— C++ or C style comments

e Four forms of numeric constants

Syntax

Binary
Decimal
Hexadecimal
Octal

Starts with Ob followed by binary digits
Digits not starting with zero

Starts with 0x followed by hex digits

Starts with 0 followed by digits O through 7

NOTES

NSD-Agere -- Chapt. 21 32 2004
C-NP Lexical Conventions
¢ Reserved words
block else if input output signed true
boolean false inout littleEndian script swap unsigned
¢ Register file references
Syntactic Form Meaning
@[X] type Reference the Xth byte (X is between 0 and 127)
@[X:Y] type Reference astring of bytes from byte X to byte Y
NSD-Agere -- Chapt. 21 33 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

C-NP Lexical Conventions
e Predicate word reference

$[X] type

e |ndirect reference

— Permits reference of bytes within a variable

— Example
block entire_packet @[0:63];
block ip_header packet data[14:33];

unsigned srclPip_header[12:15];
unsigned destlPip_header[16:19];

e Note: default is big endian byte order; programmer can
override

NSD-Agere -- Chapt. 21 34

2004

NOTES

C-NP Expressions

¢ Integers are signed or unsigned

e Arithmetic Operatorsare + - * / unary -

e Type casts are permitted

e Logical operatorsare < > >= <= == I=
e Bitwise shift operators are << >>

e Bitwise Logical Operatorsare & | ™ ~

NSD-Agere -- Chapt. 21 35

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Statements NOTES

e Only four statements types

Statement General Form
assignment identifier = expression
conditional with if (expression) statement
optional else else statement
selection switch (expression) case statements
compound statements separated by semicolons

e Note: no iteration such as for or while

NSD-Agere -- Chapt. 21 36 2004

Preprocessor Directives

#define #else #error #ifdef #include #undef

#elif #endif #if #ifndef #pragma

¢ Only one #pragma directive: multiplySupport for
multiplication

NSD-Agere -- Chapt. 21 37 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Standard Header Files

e Define constants and variables
File Pertinent Engine

policeNp5.h Policing Engine
tmNp5.h Traffic Manager
tsNp5.h Traffic Scheduler
sedNp5.h Stream Editor

NOTES

NSD-Agere -- Chapt. 21 38 2004
Example Header File Contents
¢ File policeNp5.h contains declaration
unsigned current_time @[8:11] input;
2004

NSD-Agere -- Chapt. 21 39

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Alignment And Timing NOTES

e Aligning values in register file speeds access

e Think of register file as 2-dimensional array

— Row corresponds to four-byte register

— Column called adlice

e Example bytes 0, 4, 8,... liein first slice

e Access optimized when both operands lie in the same slice

NSD-Agere -- Chapt. 21 40 2004

Script Structure

optional preprocessor directives

data declarations

script script name

script body

NSD-Agere -- Chapt. 21 41 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Policing Script NOTES

e Compare arriving traffic to token bucket

e Code does not explicitly return a value: uses predicate
instead

e Script can set 15 of 16 bits in the predicate

e Example code used bit 15 for OutOfProfile

NSD-Agere -- Chapt. 21 42 2004

Example Policing Script (part 1)

#include "policeNp5.h"

/* Token Bucket parameters in param_block are */
/* initialized at configuration */

/* Bit Rate (initialized to RTC ticks per byte) */

unsigned BR param_block[0:1] input;

/* Burst Size (initialized to Bytes times BR) */
unsigned BS param_block[2:9] input;

/* Previous arrival time (initialized to zero) */
unsigned last_pdu_arrival param_block[10:13] inout;

/* Token counter (initialized to BS) */

unsigned tokens param_block[14:21] inout;

NSD-Agere -- Chapt. 21 43 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Policing Script (part 2) NOTES

/* Packet length (passed as argument from FPL) */

unsigned pdu_length fpp_argg0:1] input;

unsigned(4) delta t; /* RTC ticks since last packet arrived */

unsigned(4) pdu_len t; [* Packet sizein RTC ticks */

boolean OutOfProfile $[15] output; /* results of policing */

script tokbucket { /* will be bound to asiPoliceEOFO */
delta t = current_time - last_pdu_arrival;
pdu_len t = pdu_length * BR;

tokens = tokens + delta t; /* update bucket length */
if (tokens> BS) {

tokens = BS;
}

NSD-Agere -- Chapt. 21 44 2004

Example Policing Script (part 3)

OutOfProfile = tokens < pdu_len t; /* compute result */

if ('OutOfProfile) {

tokens = tokens - pdu_len t; /* update bucket depth */
}

last pdu_arrival = current_time; /* update timestamp */

NSD-Agere -- Chapt. 21 45 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary

e State Engine provides

— Memory

— Host interface

— Support for policing computation
e Memory accessed via ASI functions
e Host interface

— Uses PCI bus

— Supports fetch-store paradigm

— Defines CSRs

NSD-Agere -- Chapt. 21 46

2004

NOTES

Summary
(continued)

e Traffic policing
— Performed by Policing Engine
— Programmable via C-NP scripts
— Decides whether flow is within performance profile
— Result returned to classifier
e C-NP
— Scripting language derived from C
— Limited expressions
— No iteration

NSD-Agere -- Chapt. 21 47

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

XXI1

Traffic Manager
(TM)

NSD-Agere -- Chapt. 22 1 2004

NOTES

Traffic Management

e Generic term
e Usualy includes

— Bandwidth allocation

— Enforcement of priorities
e May aso include

— Traffic policing

— Buffering, queueing, and memory management

NSD-Agere -- Chapt. 22 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Agere Traffic Manager Block

e Performs five main functions

Buffer management

Completion of flow policing and packet discard
Traffic shaping

Bandwidth allocation

Packet modification

NSD-Agere -- Chapt. 22 3

2004

NOTES

Buffer Management

¢ Needed for store-and-forward paradigm

e Critical decision: what happens when memory exhausted?

Tail drop: wait until memory full and then discard

Random Early Detection (RED): probabilistically

discard as memory fills

NSD-Agere -- Chapt. 22 4

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Tail Drop

e Trivial to implement

e Leadsto globa synchronization of TCP streams

NSD-Agere -- Chapt. 22 5

2004

NOTES

Random Early Detection (RED)

e Alternative to tail drop
e More difficult to implement

e Defined for floating point calculation

NSD-Agere -- Chapt. 22 6

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

RED Algorithm

e Define two thresholds
— Tmin @& which RED starts
— T max beyond which all packets are dropped

e Vary probability of drop linearly when average queue size,
Qavg: lies between the thresholds:

NOTES

P = Qavg = Tmin
Tmax = Tmin
NSD-Agere -- Chapt. 22 7 2004
[llustration Of RED Probability
Probability
1
0
e Probability varies linearly over the range from T i, tO
T max
8 2004

NSD-Agere -- Chapt. 22

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

RED Queue Size Computation

e Uses smoothed average
— Avoids quick response to packet bursts
— Waeights exact queue size and long-term average

e Computation of exact size
Q=Q+N
e Computation of long term average
Qayg = 0 Q + (1 - a) Qayg

e Note: aisafraction (0 <a < 1) that weights the new
queue size (typical value is 0.2)

NSD-Agere -- Chapt. 22 9

2004

NOTES

Completion Of Flow Policing

e Performed by Policing Engine
e Determines whether flow is within profile

e Marks each packet for later processing

NSD-Agere -- Chapt. 22 10

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Flow Policing NOTES

e VBR-style profile

e Four parameters

— Sustained Bit Rate (SBR)

— Peak Bit Rate (SBR)
— Sustained Burst Size (SBS)

— Peak Burst Size (PBS)

¢ Implemented with dual token bucket

NSD-Agere -- Chapt. 22 11 2004

Dual Token Bucket

e First bucket monitors Peak Bit Rate (PBR)

e Second bucket monitors Sustained Bit Rate (SBR)

e Result istri-color labeling:

— Green: flow is less than the SBR

— Yédlow: flow is less then the PBR but exceeds the SBR

— Red: flow exceeds the PBR

NSD-Agere -- Chapt. 22 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Discard Decision

e Also called drop decision

e |mportant concept: single decision handles both buffering

and flow policing
e |nput parameters
— Current average queue size
— Tri-color label
e Algorithm is Weighted RED (WRED)

NSD-Agere -- Chapt. 22 13

2004

NOTES

Weighted RED

e Probabilistic packet discard

e Same basic agorithm as RED

e Three independent sets of parameters
— Tmin and T max for green packest
— Tmin @ad T max for yellow packets

— Tmin @ad T max for red packets

NSD-Agere -- Chapt. 22 14

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

The Point About Discard

A single algorithm, known as Weighted RED, handles both
buffer management and flow policing. WRED requires the
policer to label each packet with one of three colors, and uses
the color to compute a probability of discard.

NSD-Agere -- Chapt. 22 15 2004

NOTES

WRED On The APP550

e Cannot use floating point

Too slow

No floating point hardware on the APP550

e Solution

Use integer arithmetic

Make a an inverse power of two

Replace multiplication and division with bit shifting
Replace linear probability with set of intervals

NSD-Agere -- Chapt. 22 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Approximation

e Divide the interval
Tmin 10 Tmax
into a set of equal-size groups

e Assign each group fixed value of probability

NOTES

NSD-Agere -- Chapt. 22 17 2004
[llustration Of Using Intervals
Probability
range partitioned into sets of size &
14 —
3/4
1/2
1/4
0 T Thax full
e Value of & can be chosen at compile time
e Eliminates multiplication and division
2004

NSD-Agere -- Chapt. 22 18

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

RED Without Multiplication Or Division

if (packet color isred) {
tmin = red_tmin
tmax = red_tmax
delta=red_delta

} dseif (packet colorisyelow) {
tmin = yellow_tmin
tmax = yellow_tmax
delta = yellow_delta

} ese {
tmin = green_tmin
tmax = green_tmax
delta = green_delta

}
invoke RED (tmin, tmax, delta)

e Color constants specified at compile time

NSD-Agere -- Chapt. 22 19

2004

NOTES

Scheduling And Traffic Shaping

e Two problems

— Allocation of bandwidth among flows

— Shape traffic on each flow
e Single hierarchical traffic scheduler solves both problems
e Lowest level of hierarchy

— Programmable via C-NP script

— Known as a scheduler

NSD-Agere -- Chapt. 22 20

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Scheduler M echanism

e Circular time slot table plus global pointer
e On each time dlot, global pointer moves and entry is used
e Each entry points to a queue
e Specific queue can be repeated in table
— Used for queue priorities

— Repetition gives queue higher frequency of selection

NSD-Agere -- Chapt. 22 21

2004

NOTES

[llustration Of Time Slot Table

queue 1
queue 2
queue 3
queue 1
queue 4
queue 5
queue 1
queue 2
queue 3
queue 1
queue 4
queue 5
queue 1
queue 2
queue 3

global
pointer

e Pointer moves at afixed rate

e Entriesin table specified by programmer

NSD-Agere -- Chapt. 22 22

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

CBR Shaping

e Straightforward with time slot table
e Given queue appears at regular interval throughout the table
e Example

— Time dlot table contains six entries

— Output interface rate is OC-12

— Each table dot corresponds to OC-2 rate

— A CBR queueg, call it X, needs OC-4 rate

— Queue X appears twice in table

NSD-Agere -- Chapt. 22 23 2004

NOTES

A Note About Bandwidth Allocation

In a packet switching system, the allocation of bandwidth is
closely interrelated with traffic shaping because both are
achieved by selecting packets from multiple sources.

NSD-Agere -- Chapt. 22 24 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Bandwidth Allocation

e Two forms
— Fixed allocation
— Proportional alocation
e Can apply at multiple levels
e Given network system may need both

NSD-Agere -- Chapt. 22 25

2004

NOTES

Fixed Allocation

e Form of Time Division Multiplexing
e Often used to subdivide physical channel
e Actua bandwidth cannot exceed allocation

e |f sourceisidle, its allocation goes unused

waiting

NSD-Agere -- Chapt. 22 26

e Specified amount of bandwidth allocated to each source

e Consequence: output may be idle even though packets are

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Fixed Allocation NOTES

(continued)

e Example: can be used to divide an OC-48 line into:

— Four channels that operate at OC-12

— Two channels that operate at OC-12 and eight channels
that operate at OC-3

— Other combinations that sum to OC-48

NSD-Agere -- Chapt. 22 27 2004

The Point Of Fixed Bandwidth Allocation

Fixed bandwidth allocation is used to partition bandwidth into

isolated channels. The isolation guarantees that a channel
cannot encroach on the bandwidth allocated to another

channel, but also means that bandwidth can remain unused if a
channdl isidle.

NSD-Agere -- Chapt. 22 28 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

I mplementation Of Fixed Allocation

e For cells
— Especiadly easy
— Similar to CBR scheme
e For variable-size frames
— Not as simple, but still straightforward

— Instead of counting packets, keep track of size of packets
sent

NSD-Agere -- Chapt. 22 29 2004

NOTES

Proportional Allocation

e Each source is assigned percentage of total capacity

e |f asource does not have traffic to send, its bandwidth is
allocated to remaining sources proportional to their
percentages

e Often used to partition capacity among flows
e Consequences

— Output not idle provided at |east one source has packets
to send

— Given source can exceed its percentage

NSD-Agere -- Chapt. 22 30 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Proportional allocation NOTES
(continued)

e When al channels busy, resembles fixed allocation

¢ When only one channel busy, channel receives 100% of the
bandwidth

NSD-Agere -- Chapt. 22 31 2004

The Point Of Proportional Allocation

Proportional bandwidth allocation is used to provide controlled

sharing among a set of channels. When all channels compete,
bandwidth is divided as in a fixed allocation scheme; when

some channels use less than the amount allocated to them, the
excess bandwidth is divided among the remaining channels
proportional to their overall share.

NSD-Agere -- Chapt. 22 32 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Of Proportional Allocation

Channel Proportional Share Effective Bandwidth

1 25.0% OC-6
2 12.5% OC-3
3 50.0% 0OC-12
4 12.5% oC-3

e If channel 3 becomesidle
— Channel 1 receives equivaent of OC-12
— Channel 2 receives equivalent of OC-6
— Channel 4 receives equivalent of OC-6

NSD-Agere -- Chapt. 22 33 2004

NOTES

Analysis Of Proportional Allocation

e Let p; denote percentage of bandwidth devoted to channel i,
(L<isN)

e Tota alocation sums to 100%, so

N

> pi = 100

i=1
e |f channel kisidle, channdl i receives effective bandwidth

of
g = Pi
100 - pk

NSD-Agere -- Chapt. 22 34 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Analysis Of Proportional Allocation NOTES
(continued)

e Let g represent actual use of Channel i measured as
percentage of total bandwidth

e Percentage of unused bandwidth is:

N
A=735 (pi~-&)
i=1

o FEffective bandwidth allocated to Channel i is:

_ _ b
100 - A

NSD-Agere -- Chapt. 22 35 2004

I mplementation Of Proportional Allocation

¢ Theoretically optimum agorithm is Generalized Processor

Sharing (GPS)

e To0o0 expensive in practice

— Cannot use floating point

— Cannot use integer multiplication or division

NSD-Agere -- Chapt. 22 36 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Algorithms For Proportional Allocation

e Weighted Fair Queueing (WFQ)

— Too inefficient

— Does not scale well for large numbers of queues
¢ Weighted Round Robin (WRR)

— Efficient

— Handles variable-size frames

— Scales

— Close to optimal performance

NSD-Agere -- Chapt. 22 37

2004

NOTES

Algorithms For Proportional Allocation
(continued)

e Smoothed Deficit Weighted Round Robin (SDWRR)
— Variant of WRR
— Supported by Agere hardware
e Generalized Processor Sharing (GPS)
— Theoretical optimal
— Impractical for packet switching systems

— Used to assess other algorithms

NSD-Agere -- Chapt. 22 38

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

SDWRR NOTES

e Usesfour FIFO lists (0 through 3)

e Each FIFO list contains a set of packet queues

e Hardware services FIFOs round-robin

e Assigns three limits to each queue

e Uses limits to determine whether queue should move to new

FIFO list

e Computes deficit between amount of data sent and amount

that should have been sent

NSD-Agere -- Chapt. 22 39 2004

SDWRR

(continued)

e |f deficit exceeds limit 1, move queue forward one FIFO list

e |f deficit exceeds limit 2, move queue forward two FIFO

lists

e |f deficit exceeds limit 2, move queue forward three FIFO
lists

e Moving essentially postpones service because the queue has
already exceeded bandwidth

NSD-Agere -- Chapt. 22 40 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

APP550 Traffic Management M echanisms

e Five queueing mechanisms
e Arranged in a hierarchy

— Port Manager

— Logica Port

— Scheduler

— QoS Queue

— CoS Queue

NSD-Agere -- Chapt. 22 41 2004

NOTES

Top Level Port Managers

e Correspond to physical output ports

e Multiple managers can be assigned to given output port
e Configurable, but not programmable

e Configured to provide fixed allocation

e Port manager configurable but not programmable

NSD-Agere -- Chapt. 22 42 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Second Level Logical Ports

e Sources of data for a port manager
e One or more Logica Ports assigned to Port Manager

e Configurable, but not programmable

NSD-Agere -- Chapt. 22 43 2004

NOTES

Third Level Schedulers

e Programmable scheduler
— Spans three lower levels of hierarchy
— Selected at the third level
— Makes decisions about fourth and fifth levels

— Multiple schedulers (up to four) can be assigned to
Logica Port

NSD-Agere -- Chapt. 22 44 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Fourth Level QoS Queues NOTES

e Up to sixty-four thousand QoS queues per scheduler

e Handle per-flow Quality Of Service

e Scheduler selects among queues

e Typica scheduler algorithm: Smoothed Deficit Weighted

Round Robin (SDWRR)

e Can have proportional bandwidth scheduling
e Can be lowest level

NSD-Agere -- Chapt. 22 45 2004

Fifth Level CoS Queues

e Optiond

e Handles Class of Service withing a QoS gueue

e Up to sixteen CoS queues per QoS queue

e Default: priority of CoS queue i higher than priority of CoS

queuei+l

NSD-Agere -- Chapt. 22 46 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary Of Traffic Manager Hierarchy

Level Mechanism Number
1 Port Manager 256 total

2 Logical Port 1024 total
3 Scheduler 4 per Logical Port
4 QoS Queue 64K per Scheduler
5 CoS Queue 16 per QoS Queue
NSD-Agere -- Chapt. 22 47 2004

NOTES

Summary

e APP550 Traffic Manager performs

Buffer management
Completion of flow policing
Packet discard

Traffic shaping

Bandwidth allocation
Packet modification

e Weighted RED used for buffer management

NSD-Agere -- Chapt. 22 48 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary
(continued)

e Bandwidth alocation can be
— Fixed
— Proportional
e Traffic manager has five-level scheduling hierarchy
— Port Manager
— Loca Ports
— Schedulers
— QoS Queues

— Cos Queues

NSD-Agere -- Chapt. 22 49

2004

NOTES

XXI11
Host Interface

And
Control Functions

NSD-Agere -- Chapt. 23 1

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Motivation For An External Processor NOTES

e No general-purpose processor on the APP550

e APP550 hardware is highly specialized

¢ Insufficient computational power on APP550 for other tasks

e Conclusion: externa host needed

NSD-Agere -- Chapt. 23 2 2004

Role Of An External Host Processor

e Initial configuration of an APP550

e Dynamic update of data structures

e Retrieval and update of status information and statistics

e Slow-path packet processing

NSD-Agere -- Chapt. 23 3 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Dynamic Update Of Data Structures

e Host can alter
— Patterns used in classification
— The set of Destination IDs (DIDs)
— Logica ports used by the Traffic Manager

NSD-Agere -- Chapt. 23 4

2004

NOTES

Retrieval And Update Of Status
Information And Statistics

e Performed in conjunction with State Engine

e Allows external host to monitor or reset statistics while

APP550 runs

NSD-Agere -- Chapt. 23 5

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Physical I nterconnection
To An External Host

e Periphera Component Interconnect bus (PCI bus)
e APP550 defines

— Set of hardware registers

— Bus address for each

e State Engine block provides bus interface

NSD-Agere -- Chapt. 23 6 2004

NOTES

Packet Exchange And The
Concept Of Pseudo Interface

e Hardware defines pseudo interface
— Appears to be packet interface
— Allows packet traffic to pass over bus to external host

e Known as the Management Path Interface

NSD-Agere -- Chapt. 23 7 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Application Program Interface (API) NOTES
For External Hosts

o Defines communication between APP550 and host

e Consists of functions that host uses to

— Interrogate APP550

— Control APP550

NSD-Agere -- Chapt. 23 8 2004

Two Levels Of API

e Devicelevd

— Implement low-level communication between the host
and APP550

— Messages sent over PCl bus

e Object level

— Higher-level interface functions

— Invoke device-level functions

— Example: alow host to change data structure for a
Destination 1D

NSD-Agere -- Chapt. 23 9 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Programming Paradigm And Handles

e Used with object-level functions
e Host program
— Create a handle for specific object

— Use handlein series of calls to interrogate or modify the
object

e Example
— Create handle for complex data object
— Call functions that build the object

— Pass handle to function that uses object

NSD-Agere -- Chapt. 23 10 2004

NOTES

ltems For Which A Handle Can Be Defined

Chipset Originally used to refer to the entire set of three chips,
the name is now used for functions that span one or
more APPS50s.

APP550 Used for functions that manipulate the APP550
hardware configuration.

as Used for functions that refer to the State Engine,
which was known as the ASI in the previous
generation.

fpp Used for functions that refer to the Classification

block and the Pattern Processing Engine, which was
known as the FPP in the previous generation.

rsp Used for functions that refer to the Traffic Manager
block, which was known as the RSP in the previous
generation.

NSD-Agere -- Chapt. 23 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Declarations Used For Handles

ag_chipset_t chipset_handle;
ag_nps_t np_handle;
ag_fpp_t fpp_handle;

ag_rep t rsp_handle;
ag as_t asi_handle;

NSD-Agere -- Chapt. 23 12

2004

NOTES

Initialization Functions

e Used to initialize data structure associated with a handle
e Set of functions provided by Agere

e |Invoked in top-down order to initialize

Chipset
APP550
Fpp

Rsp

As

NSD-Agere -- Chapt. 23 13

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

Initialization Functions (Part 1)

ag_chipset_init
Purpose: initialize a data structure that ties together all
secondary data structures.

Notable argument: &chipset_handle

ag_chipset_config
Purpose: extract hardware configuration parameters from an
image generated by Agere’'s SPA or acommand line tool.

Notable argument: chipset_handle
ag_chipset_hdl_get

Purpose: initialize the data structures used with the APP550,
and link them into the chipset.

Notable arguments. chipset_handle, &np_handle

2004

NSD-Agere -- Chapt. 23 14

Initialization Functions (Part 2)

ag_fpp_hdl_get

Purpose: initialize data structures associated with the
Classification block, and link them into data structures for

the chip.
Notable arguments:. np_handle, &fpp_handle

ag_rsp_hdl_get
Purpose: initialize data structures associated with the Traffic

Manager block, and link them into data structures for the
chip.
Notable arguments. np_handle, &rsp_handle

ag_asi_hdl_get
Purpose: initialize data structures associated with the State

Engine block, and link them into data structures for the
chip.

Notable arguments:. np_handle, &asi_handle

NSD-Agere -- Chapt. 23 15 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Initialization Functions

e Note functions initialize items on the host; communication
with APP550 deferred until later

NSD-Agere -- Chapt. 23 16 2004

NOTES

Examples Of Object Functions

¢ API offers many functions host software can invoke to
— Interrogate values
— Modify parameters to control behavior of the APP550

e A few examples include (not a comprehensive list):

Function Purpose
ag_fpp_learn Learn a pattern (add to a tree function)
ag_fpp_list_ptns List all patterns in a tree function
ag_fpp_unlearn Unlearn a pattern (delete from a tree function)
ag_rsp_did_add Add a new DID to the set
ag_rsp_did_get Obtain information about a DID

ag_rsp_queue_add Add aqueue to the Traffic Manager

NSD-Agere -- Chapt. 23 17 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

External Host Capability NOTES

e |n addition to administrative tasks, external host can change

data structures such as

— IP routing table (forwarding)

— Firewall rules (filtering)

— Classification (queueing)

e Dynamic classification significantly more powerful than
static classification

— Permits flow-based classification
— Per-flow scheduling

NSD-Agere -- Chapt. 23 18 2004

A Dynamic Classification Example

¢ Assume FPL program contains a tree function named

Network

Network: 192.168.0.* fReturn(0);
Network: 192.168.1.* fReturn(l);

e FPL assigns tree function a unique internal identifier

e External host uses identifier to update tree function

NSD-Agere -- Chapt. 23 19 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Tree ldentifiers NOTES

e Externa host cannot determine tree function identifier at

run-time

e Instead, programmer can use SETUP ASSGN statement to
specify explicit identifier

e Assignable range is 3072 through 4095

e Example: to assign 3073 as ID for function Network

SETUP ASSIGN(Network, TREE, 3073)

NSD-Agere -- Chapt. 23 20 2004

Tree ldentifiers

(continued)

e To ensure classification code and external host application
code uses same constant for tree identifier, declare constant

in header file and include in both programs

e Note: FPL and C use same syntax for symbolic constant

declaration

e Example: place the following in file example.h

#define NETWORK_TREE_ID 3073

NSD-Agere -- Chapt. 23 21 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Tree ldentifiers
(continued)

e To use constant from file example.h in an FPL program

#include "example.h"
SETUP ASSIGN(Network, TREE, NETWORK_TREE_ID);

Network: 192.168.0.* fReturn(0);
Network: 192.168.1.* fReturn(1);

NSD-Agere -- Chapt. 23 22 2004

NOTES

Example Of Dynamic Tree Update

e To add the following to a dynamic tree function
Network: 192.168.2.* fReturn (2);
e Steps are
— Initidlize handles

— Invoke function ag_fpp_learn

— Use arguments to specify item to be added

NSD-Agere -- Chapt. 23 23 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

CodeTolnsert Item Into A Tree Function NOTES

/* Initialization of handles goes here */

#include "example.h"

unsigned int netaddr = OXxCOA80200; /*192.168.2.0 */
ag_fpp_ptn_t fppPattern;

ag_fpp_action_t fppAction;

fppPattern.data = &netaddr; /* pointer to data */
fppPattern.noDataBits = 24; /* 24 significant bits */
fppPattern.noWildCardBits = 8; /* last 8 bits - wildcard */

fppAction.type = ag_fpp_action_type_return; /* fReturn() action */
fppAction.value = 2; /* fReturn() value */

ag_fpp_learn(fpp_handle, NETWORK_TREE_ID,

&fppPattern, &fppAction);

NSD-Agere -- Chapt. 23 24 2004

Constants And Host Byte Order

e Constant OxC0OA 80200 depends on host byte order

e Example code assumes host is big-endian

e Library functions do not perform conversions

NSD-Agere -- Chapt. 23 25 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Of Slow Path Packet Transfer (Part 1)

/* Example code that runs on an external host and obtains */
/* packets from an APP550. The external host is only used for */
/* the slow path. */

#define BUF_SIZE 2048
#include <agere_np5.h>

int main(int argc, char *argv[]) {

ag_st t rc;

ag_np5_dev_hdl_t devHandle;

unsigned char pdu_buf[BUF_SIZE];

ag_uint32_t pdu_buf_size = BUF_SIZE, pdu_size, devNum;

if (argc <2) {
fprintf(stderr,"\nUsage: %s <device number>\n",argv[0]);
return(-1);

}

NSD-Agere -- Chapt. 23 26 2004

NOTES

Example Of Slow Path Packet Transfer (Part 2)

[* get device number from command line */
devNum = atoi(argv[1]);

/* Open NP5 device */

rc=ag_np5_dev_open(devNum, 0, &devHandle);

if (rc = AG_ST_SUCCESS) {
fprintf(stderr,"\nError: Cannot open device humber %i.\n",devNum);
return(-1);

}
/* read packets sent from the APP550 */

while(1) { /* do forever */
/* read packet from ASI receive queue (block if queue is empty) */

rc = ag_np5_dev_pdu_read(devHandle, pdu_buf, pdu_buf_size,
&pdu_size);

/* use return code to determine processing */

NSD-Agere -- Chapt. 23 27 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Of Slow Path Packet Transfer (Part 3)

switch (rc) {

case AG_ST_DEV_INVALID_HANDLE:
fprintf(stderr,"\nError: Invalid device handle! Exiting.\n");
return(-1);

case AG_ST_DEV_INVALID_BUFFER:
fprintf(stderr,"\nError: Invalid PDU buffer! Exiting.\n");
return(-1);

case AG_ST_SUCCESS:
/* At this point, a packet has been loaded into pdu_buf. */
/* Additional code should be inserted here to handle the */
/* packet. */

break;

NSD-Agere -- Chapt. 23 28 2004

NOTES

Example Of Slow Path Packet Transfer (Part 4)

default:
fprintf(stderr,"\nUnknown return code: %u. Exiting.\n",rc);
return(-1);
} /* end switch */
} /*end while */

} /* end main program */

NSD-Agere -- Chapt. 23 29 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary

e External host is required to
— Initialize chip
— Update dynamic data structures
— Provide slow-path packet processing

e Agere provides API that software on external host uses to
communicate with APP550

— Device-level functions handle bus interface

— Object-level functions permit host to control and manage
FPL data structures

NSD-Agere -- Chapt. 23 30 2004

NOTES

Summary
(continued)

e Paradigm: host software
— Initializes ahandle

— Makes a set of function calls to build and modify data
structure

— Cadlls functions to download the resulting data structure
onto the APP550

NSD-Agere -- Chapt. 23 31 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

XXV

An Example System

NSD-Agere -- Chapt. 24 1 2004

NOTES

| SP Access Node

e Example system
— Operates between ISP and clients
— Uses policing and scheduling
— Monitors traffic

— Enforces Service Level Agreement (SLA) between
customer and ISP

NSD-Agere -- Chapt. 24 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

SLA

SLA

Example Access System Functions

e C(Classification of packets arriving from client, according to
e Policing of client traffic to ensure that the traffic follows the

e Scheduling of traffic in both directions according to the SLA

NOTES

NSD-Agere -- Chapt. 24 3 2004
[llustration Of Example System
Port 1
\ APP550 Port 0
to client 1
...................... to Internet
to client 2
Port 2
NSD-Agere -- Chapt. 24 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Basic Functionality
e Example access system implements Differentiated Services
(DiffServ)
e Traffic divided into five classes

— Four classes are assured forwarding (AF) for normal
traffic

— One class is expedited forwarding (EF) for network
management traffic

e A dropping precedence is appended to class values

NSD-Agere -- Chapt. 24 5 2004

NOTES

Binary Encoding Of DiffServ Values

e Known as codepoint

Encoding Name Encoding Name
001 010 AF11 011 010 AF31
001 100 AF12 011 100 AF32
001 110 AF13 011 110 AF33
010 010 AF21 100 010 AF41
010 100 AF22 100 100 AF42
010 110 AF23 100 110 AF43

101110 EF

NSD-Agere -- Chapt. 24 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Mapping SLA Requirements NOTES
To DiffServ Classes

e Assume four flows given priority

Client IP addr. Flow Profile Class
1 10.%.*.* Video 100 mbps AF4
1 10.%.*.* Audio 10 mbps AF3
2 128.211.*.* Audio 5 mbps AF3
2 128.10.*.* Audio 2 mbps AF3

e Note: all other flows assigned to DiffServ class AFL1.

NSD-Agere -- Chapt. 24 7 2004

Conceptual DiffServ Pipeline
e (Classification
e Metering
e Marking
e Dropping
e Scheduling
NSD-Agere -- Chapt. 24 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Correspondence Between Model And Implementation

packets enter packets enter

PPE (FPL code)

classification

scheduling -

g
c

NSD-Agere -- Chapt. 24 9 2004

NOTES

Queues And Destination IDs

DID Port Class

1 0 EF
2 0 AF1
3 0 AF2
4 0 AF3
5 0 AF4
6 1 EF
7 1 AF1
8 1 AF2
9 1 AF3
10 1 AF4
11 2 EF
12 2 AF1
13 2 AF2
14 2 AF3
15 2 AF4
NSD-Agere -- Chapt. 24 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Classification Algorithm

if (codepoint specified expedited forwarding) {
Run the policing script for EF packets;
Engueue packet on the EF queue for Port O

} elseif (packet carries UDP/RTP/video) {
Run the policing script for 100 Mbps video;
Enqueue packet on the AF4 queue for Port O

} eseif (packet carries UDP/RTP/audio) {
Run the policing script for 10 Mbps audio;

} else{

Enqueue packet on the AF3 queue for Port O

Run the policing script for best-effort traffic
Enqueue packet on the AF1 queue for Port O.

NOTES

NSD-Agere -- Chapt. 24 11 2004
start
H meter 1 mbps
1+ _class EF and enqueue
on EF queue
for Port O
; other class packet contains
Joterclass i
i UDP/RTP/Video m§é§'§r?§u"33§ s
on AF4 queue
for Port 0
'
| packet contains meter 10 mb
i UDP/RTP/Audio And enquete.
on AF3 queue
for Port O
' meter 20 mbps
+_other packet contents and enqueue
on AF1 queue
for Port O
NSD-Agere -- Chapt. 24 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Decision Tree For Packet From Port 2

start
_start
_Src =128.10.%*
L Src =128.10.3;

meter 1 mbps
_class EF and enqueue

h on EF queue
H for Port 0
'
'
‘M—- packet contains meter 2 mbps
1 UDP/RTP/Audio and enqueue
i _____________"|onAF3queue
for Port 0

meter 20 mbps
other packet contents | and enqueue
on AF1 queue

for Port 0

- * %
Src = 128.211.* meter 1 mbps

. class EF and enqueue
on EF queue
for Port 0

‘— = packet contains meter 5 mbps
UDP/RTP/Audio and enqueue
*| on AF3 queue

for Port 0

\
H
;
|
i
i
E meter 20 mbps

other packet contents _| and enqueue

on AF1 queue

for Port 0
! other IP source address discard
NSD-Agere -- Chapt. 24 13 2004

NOTES

Examples Of Decisions

¢ Client 2 sends a packet with an arbitrary source address
— Packet will be discarded
e Client 1 sends a packet with an arbitrary source address

— Packet will be forwarded to Port O

NSD-Agere -- Chapt. 24 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Decision Tree For Packet From Port O

NSD-Agere -- Chapt. 24 15

2004

NOTES

Policing, Coloring, And Flow IDs

e Example code uses dual token bucket
e Traffic measured against
— Sustained rate bucket
— Peak rate bucket
e Resultsis color assigned to packet
— Red: exceeds both rates
— Yellow: only exceeds sustained rate

— Green: does not exceed either

NSD-Agere -- Chapt. 24 16

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Policing, Coloring, And Flow IDs NOTES

e Note: if packet already has DiffServ classification, can use

classification to precolor packet

— Drop precedence 1 green

— Drop precedence 2 yellow

— Drop precedence 3 red

e Policing can move up (green toward red), but never down

NSD-Agere -- Chapt. 24 17 2004

Flow IDs Used In The Example Code
e For traffic forwarded to clients 1 or 2
Flow ID Destination IP Address Profile Class

1 10.%.%.* None EF

2 128.10.*.* None EF

2 128.211.*.* None EF

3 10.*.* . * None AF1

4 128.211.*.* None AF1

4 128.10.*.* None AF1

5 10.*.*%.* 10 mbps AF3

6 128.211.*.* 5 mbps AF3

7 128.10.*.* 2 mbps AF3

8 10.% % 100 mbps AF4
NSD-Agere -- Chapt. 24 18 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Flow IDs Used In The Example Code NOTES

e For traffic received from clients 1 or 2

Flow ID Source IP Address Profile Class
9 10.%.* * None EF
9 128.211.*.* None EF
9 128.10.*.* None EF

10 10.*.*.* None AF1
10 128.211.*.* None AF1
10 128.10.*.* None AF1
11 10.* . * * 10 mbps AF3
12 128.211.*.* 5 mbps AF3
13 128.10.*.* 2 mbps AF3
14 10.% % * 100 mbps AF4

¢ Entry None corresponds to cases where SLA does not
specify avalue

NSD-Agere -- Chapt. 24 19 2004

Example Classification Code (part 1)

~
*

ds_classifier.fpl - classification for the exanpl e O ffServ node */

DffServ classifier for a boundary node.
Supported classes are: B, AFlx, AR2x, AR3x, AFAX
Policing is perforned for packets fromclients; packets to clients are

already policed and narked with a O ffServ codepoi nt
Al franes are B hernet.

*/

)

#incl ude "np5. fpl "
#incl ude "np5asi . fpl "

/* Setup error handl er */

SETWPP BRRRMEror);
| * e iiiieiiil_.

* Input Ports
*/

#define INPCRT O /* traffic fromthe DS network arrives over Port 0 */

#define CL_PCRT 1 /* Traffic fromclient 1 arrives over Port 1 */
#define @ _PCRT 2 /* Traffic fromclient 2 arrives over Port 2 */
NSD-Agere -- Chapt. 24 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Classification Code (part 2) NOTES

il
* Protocol constants

*/
#define | PT_UDP 17
#def i ne RTP_PCRT 5004

e el

* Data types

*/

#define UNK 0 /* Lhknown */
#define AD 1 /* Audio */

#define MD 2 /* Mideo */
2R

* OffServ classes
*/

#define BF 0O
#define AF1 1
#define AF2 2
#define AF3 3

#define AF4 4

#define A1 O/* client 1 */
#define A21PL 1 /* client 2,
#define Q21P2 2 /* client 2,

NSD-Agere -- Chapt. 24 21 2004

Example Classification Code (part 3)

/5
* Qient networks
*/

#define IP.C1 10.*. * *
#define |PL_ 2 128.211.*.*
#define | P2_ 2 128.10.*.*

/5
* Drections
*/
#define IN O
#define QJT 1
/2R
* How IDs
* (flowIDO is dummy flow
*/
#define CLLINEB- AD 1
#define QIPLINB-HAD 2
#define QIP2_INB-FAD 2
#define CL_LIN AF1 FI D 3
#define QIPLINAFL AD 4
#define QIP2 INAFL_ AD 4
#define CLINAR2 A D 0
#define QIPLINAR2 HD 0
#define QIP2_INAR2 AD O
NSD-Agere -- Chapt. 24 22 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Classification Code (part 4)

NOTES

#define CL_IN AF3 FID 5
#define CIPLINARB FAD 6
#define QIF2_ INAR3_AD 7
#define CLIN A _F D 8
#define QIPLINARM FAD 0
#define QIP2_INAM AD O
#define CL_QJI_B- A D 9
#define QIPL_QJT_ - AD 9
#define QIF2_ QUr BF AD 9
#define CLQUT AFL FID 10
#define C2IPL_QUT_AF1_FID 10
#define QI P2_QJT_AF1_F D 10
#define CL_QJT AR2 AID O
#define C2IPL_QJUT_AR2_FAID O
#define QI P2_QUT_AF2 FID O
#define CLQUT ARB FID 11
#define C2IPL_QUT_AF3 FID 12
#define QI P2_QJT_AF3_FI D 13
#define CL_QUT_AF4 AID 14
#define C2IPL_QJT_AF4 FID O
#define QI P2_QUI_AF4 FID O
NSD-Agere -- Chapt. 24 23 2004
Example Classification Code (part 5)
/5
* Destination | Ds
*/
#define CL_IN B- DD 6
#define QIPLINEBF DD 11
#define QIP2 INBF DD 11
#define CLINAFL_ DD 7
#define QIPLINAFL DD 12
#define QIP2ZINAFL DD 12
#define CL_IN AF2 DD 8
#define QIPLINAR DD 13
#define CIP2_INAF2 DD 13
#define CL_INAR3 O D 9
#define QIPLINAR DD 14
#define QIP2ZINAR3 DD 14
#define CLLIN AM DD 10
#define QIPLINARM DD 15
#define CIP2_INAM DD 15
#define CL_QJI_B- DD 1
#define QIPL.QJT B DOD 1
#define QIP2 QUr B DD 1
#define CL_QUT_AF1_D D 2
#define 2IPL_QUI_AF1 DD 2
#define C2IP2_QJI_AFL_DD 2
NSD-Agere -- Chapt. 24 24 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Classification Code (part 6) NOTES

#define ClL_QUT_AF2_ DO D
#define QI PL_QJT.

Jﬁl
)

lvhw)

#defi ne C2I P2_QUT_AR2_|

g
A
ID

#def i ne
#def i ne
#def i ne

A
g
3
g
o

o+
33

A gR

g€
i

#defi ne
#def i ne
#def i ne

S]]
N
gl
EI
oo AR WWW

33
8
EI

lvhw)

¥ e e
* Root functions for first and second pass

*

/

SETWP ROOT (Passl);
SETWP REPLAYROOT (Pass2);

SETUP PROTO (asi Pol i ceECFO, 24, 16, 24) ;

SETUP PROTO (asi Pol i ceECFO, 24, 16, 8, 16) ;

SETUP PROTO (f QueueECF, 2,19, 6, 1, 2, 1, 11, 13);

SETWP PROTO (fTransmt, 1, 1, 20, 16, 5 8, 8, 18);
SETWP PROTO (fTransmt, 1, 1, 20, 16, 5, 8, 2, 8, 16);

NSD-Agere -- Chapt. 24 25 2004

Example Classification Code (part 7)

/*

K okkkkkkkkkkkkkkkkk ko kkkkkk ko okkkkk ok kk ok dkkkkkkkkkdkokkkkkkkkkkkkk ke k ok

* kkkkk PASS 1 *kkkk

B
*/
Passl: fbrnz ($franerBr:1, HF rstPassException)

fbrnz ($franer ECF: 1, ProcessLast B ock)

fQueue (0:2, $portNunber:19, $offset:6, 0:1, 0:2);

ProcesslLast B ock:
f QueueEQH(0: 2, $por t Nunber : 19, $of f set : 6, 0: 1, 0: 2, 0: 1, $por t Nunber : 11, 0: 13);

/*
R T R Ea R e et
* kkkkk PASS 2 *kkkk

R T R R e e e

* Process Bhernet header, only supporting I P

*/
Pass2: f Ski p(96)
0x0800: 16
DenuxPor t ($t ag) ;
X e e ieeeiiiieao-
* Denul tiplex based on port (extracted from $tag)
*/
DenuxPort : CL PCRT:3 BITS 21 Processd Traffic();
DeruxPort :) PCRT: 3 BI TS 21 Processd Traffic();
DenuxPort : INPCRT:3 BITS 21 Processl ncomngTraf fic();
NSD-Agere -- Chapt. 24 26 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Classification Code (part 8)

% il .
* Process traffic fromclients
* (Qassification based on: Port, Protocol and Source IP
*/
Processd Traffic:
fSart! pvaHdr Gksun{$currdfset: 6) /* start cal cul ating header chksum */

0x4: 4

hlen = fExtract (4) /* get header |ength */
D8P QU = fExtract (8) /* get CBCP_ QU (TCH) */
f i p(48) /* skip to TTL */
Veri fyTTL() /* verify TIL */
proto = fExtract (8) /* get transport |ayer protocol */
f Ski p(16) /* skip | P header checksum */
port = get Port Nung $t ag) /* get port nunber */
code = get H owGode($port: 3) /* get code for a flow */
f ski p(32) /* skip destination | P */
opt_words = fSub(hlen: 16, 5:16) /* | Pv4 options size in words */
opt_bits = fShift(opt_words:24,LBFT_SHFT:1,5:5) /* IP options bits */
fSki p(opt_bits) /* skip | Pv4 options*/
data = get Dat aType($pr ot 0: 8) /* get payl oad type */
FID = getH O($code: 2, QJT:1, $data: 2, $08CP AL8) /* get How ID */
/* assign color based on How I D and policing al gorithm */
col or = asi Pol i ceBEGFO($H D 24, $curr Lengt h: 16, 0: 24)

D D= getD O $F D 8) /* get Destination ID */
f Ski pToEnd() /* skip to the end of packet */
checksum = f Get | pHdr Cksuntg) /* get header checksum */
checkChecksung $checksum 2) /* verify checksum */

TM | ags_DSCP = get _TM| ags_DSCP(@1 D 3, $col or: 16) /* get TMflags */
/* finish second pass and transmt */
fTransmt (0:1, 0:1, $0D 20, 0:16, 0:5 0:8, $TMIags_DSCP. 8, 0:18);

NOTES

NSD-Agere -- Chapt. 24 27 2004
Example Classification Code (part 9)
g
* Process traffic for clients
* Qassification based on: Protocol, Destination IP and D8CP (TG field
*/
Process| nconm ngTr af f i c:
fSart! pvaHdr Cksun{$currFfset: 6) /* start cal cul ating header chksum */
0x4: 4
hlen = fBxtract (4) /* get header |ength */
D8P _QU = fExtract (8) /* get DBCAP_ QU (TC®) */
f Ski p(48) /* skip to TTL */
Veri fyTTL() /* verify TIL */
proto = fExtract (8) /* get transport |ayer protocol */
f Ski p(48) /* skip to destination IP */
code = get H onwode(| N_PCRT: 3) /* get code for a traffic flow */
opt_words = fSub(hlen: 16, 5:16) /* I Pv4 options length in words */
opt_bits = fShift(opt_words:24,LBFT_SHFT:1,5:5) /* IP options bits */
f Ski p(opt _bits) /* skip | Pv4 options*/
data = get Dat aType($pr ot 0: 8) /* get payl oad type */
FI D = get A O($code: 2, | N 1, $dat a: 2, $08CP_CU 8) /* get How ID */
/* assign col or based on How ID and policing al gorithm */
col or = asi Pol i ceECFO($H D 24, $curr Lengt h: 16, $D5CP_QU 8, 0: 16)
DD = getD Q$F D 8) /* get Destination ID */
f Ski pToEnd() /* skip to the end of packet */
checksum = f Get | pHir Cksuntg) /* get header checksum */
checkChecksung $checksum 2) /* verify checksum */
TM | ags_D8CP = get _TM| ags_DBOP(@1 D 3, $col or: 16) /* get TMfl ags */
/* finish second pass and transnit */
fTransmt (0:1, 0:1, $0D 20, 0:16, 0:5 0:8, $TMIlags_DSCP. 8, 0:18);
NSD-Agere -- Chapt. 24 28 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

*/

JAIETEES
* Set of functions to get payl oad type (\Voice, M deo or Lhknown)

get RTPDat aType: RANGH O, 19):7 fReturn(ALD ;
get RTPDat aType: RANGH(31,34):7 fReturn(MD);
get RTPDat aType: RANGH(25,26):7 fReturn(M D) ;

Example Classification Code (part 10)

get Dat aType: | PT_UCP. 8 RTP_PCRT: 16

fSkip(57) /* skip to RIP PT field */
get RTPDat aType() ;

get DataType: | PT_UCP. 8 B TS 16

checkUDPDst Port () ;

get DataType: B TS 24 fReturn(UNK);

checkUDPDst Port: RTP_PCRT: 16

fSkip(41) /* skip to RTP PT field */
get RTPDat aType() ;

checkWDPDst Port: Bl TS 16 f Return(UNK) ;

NOTES

get RTPDat aType: 28:7 fReturn(MD;

get RTPDat aType: BITS 7 fRet urn(UNK) ;

.

* Gt HowlID

*/

getAD Q1:2 QJr1 AD 2 0b101110 B TS 2 fReturn(EF, CL_QUT EF AID;

getAD Q1:2 QU1 MD2 0b101110 B TS 2 fReturn(EF, CL_QUT EF AID;

getAD Q1:2 QJI1 UNK 2 0b101110 B TS 2 fReturn(B, CL_QUT_BF A D);

getAD A1:2 Qi1 AD2 BITS 8 fReturn(AR3, CL_QUT_ A3 FID);

getAD A1:2 QL1 MD2 BTS 8 fReturn(AR4, CL_QUT AM4 FID);

getAD A1l:2 QU1 BTS10 fReturn(AFL, CL_QUT_AFL FID;

NSD-Agere -- Chapt. 24 29 2004
Example Classification Code (part 11)

getAD A2 PL2 QJ:1 AD 2 0b101110 B TS 2 fReturn(E, QI P1L_QUT_EF FID);

getAD A2 PL:2 QJr:1 MD 2 0b101110 B TS 2 fReturn(B-, QI PL_QJT_B- F D;

getAD Q2/PL2 QN1 UNK 2 0b101110 B TS 2 fReturn(EF, QI PL_QUT EF FID);

getAD A2PL2 AJ:1 AD2 BITS 8 fReturn(AR3, QIPL_QJIT_AR3 FID;

getAHD A21PL2 QU1 BTS 10 fReturn(AFL QIPL_QJT_AFL FID;

getAHD A2 P2:2 QJ:1 AD 2 0b101110 BITS 2 fReturn(B-, QI P2 QJT_B- F D;

getAD A21P2:2 QJr:1 MD 2 0b101110 B TS 2 fReturn(B-, QI P2 QJT_B- A D;

getAD A2P2:2 AJr: 1 UNK 2 0b101110 BITS 2 fReturn(B, QI P2_QJT_B- A D;

getAD A21P22 QJ:1 AD2 B TS 8 fReturn(AR3, QI P2_QJT_AF3 FID);

getAD Q21P2:2 AJr:1 BITS 10 fReturn(AFL, QIP2_QJT_AFL FHD;

getAHD Al1:2 IN1 AD2 0b101110 BTS2 fReturn(EF, CLLIN B- FID;

getAD A1:2IN1MD2 0b101110 BTS2 fReturn(ER, CLLIN B- AID;

getAHD Al1l:2 IN1 UK 2 0b101110 BITS 2 fReturn(B CL_I N_EF_FID;

getAHD Al1:2 IN1 ALD2 0b011 BITS5 fReturn(AR3, CLINAF3 A D;

getAD A1:2IN1MD20b100 BTSS5 fReturn(AM4, CLINAM AD;

getAHD A1l:2IN1BTS10 fReturn(AFL CLINAFL_HD;

getAD A2PL2IN1AD2 00101110 BTS2 fReturn(EF, QIPLINEF AD);

getFD Q2/PL2IN1MD2 0b101110 BTS2 fReturn(BF, QIPLINE AD;

getAD Q21PL2 IN1 UK 2 0b101110 BITS 2 fReturn(EF, QIPL_INEF AD);

getAHD A2 PL:2 IN1 ALD2 0b011 BITS 5 fReturn(AR3, 2IPLINAR3 FD;

getAHD A2PL:2IN1BTS10 fReturn(AFL, QIPLINAFL FD;

getAD A21P22 IN1AD2 00101110 BTS2 fReturn(EF, QIP2_ INEF AD);

getAD Q21 P22 IN1MVD2 0b101110 BITS 2 fReturn(EF, QIP2_INEF A D);

getAD A21P2:2 IN1 UK 2 0b101110 B TS 2 fReturn(Br, QIFP2_IN BF A D;

getFiD Q21P22IN1AD20b011 BTS5 fReturn(AR3, C2IF2_INARS FID);

getAD A2IP2:2 IN1BTS10 fReturn(AFL, QIP2_INAFLFD;

NSD-Agere -- Chapt. 24 30 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Classification Code (part 12)

NOTES

T U
* Get Destination | D
*/
getDD CL QJI BF AD8 fReturn(ClL_QJT BF OD);
getDD CL_QUT AFL FID8 fReturn(CL_QJT AFL D D);
getDD CL_QJL AF2 AID8 fReturn(Cl_QUT AFR2 D D);
getDD C_QULAF3 FID8 fReturn(ClL_QJI_AF3 D D;
getDD CLQJT A4 FID8 fReturn(ClL_QUT AF4 D D);
getOD QIPLAQJ B AD8 fReturn(QIPLQJ_ B DOD);
getDD QIPL_QJL AFL AID8 fReturn(QIPL_QJ A1 DD);
getDD QIPL_QJL A2 AID8 fReturn(QIPL_QJ A2 DD);
getDD QIPLQJN A3 FAID8 fReturn(QIPLQJ AR DD;
getDD QIPL_QJT AF4 AID8 fReturn(QIPL_QJ A4 DD);
getDD QIR QU B HD8 fReturn(QIP2_QJI_ B DOD;
getDD QIP2 QT AFL FID8 fReturn(QI P2 QUL AFL_OD);
getDD QIP2_ QT AF2 FID8 fReturn(QIP2_ QJT A2 OD);
getDD QIP2QJT AR FAID8 fReturn(QI P2 QT A3 DD);
getDD QIP2_QJT AF4 FAID8 fReturn(QI P2 QT A4 DD);
getDD CLINEH-RADS8 fReturn(CLIN B DOD;
getDD CLINAFL AD8 fReturn(CLINAFL DD);
getDD CLINAR2 AD8 fReturn(CLINAR2 DOD);
getDD CLINARB FAD8 fReturn(ClINAR OD);
getDD CLINAM FAD8 fReturn(Cl_INARM OD);
NSD-Agere -- Chapt. 24 31 2004
Example Classification Code (part 13)
getDD QIPLINEFAD8 fRturn(QIPLINE DD;
getDD QIPLINAFL AD8 fReturn(QIPLINAFL DD
getDD QIPLINA2 AD8 fReturn(QIPLINAR OD);
getDD QIPLINAGB AD8 fReturn(QIPLINARB DD;
getDD QIPL_INA4 AD8 fReturn(QIPLINAM DD;
getDD QIP2INEFAD8 fReturn(QIP2INEFDD;
getDD QIPZINAL AD8 fReturn(QIP2ZINAFL DD
getDD QIP2ZINAZ AD8 fReturn(QIP2ZINAR DOD;
getDD QIFP2ZINARB FADS8 fReturn(QIF2INAR DD;
getDD QIP2ZINA4 FAD8 fReturn(QIP2ZINAMA DOD;
g
* Gt TMflags (col or) and DSCP, depending on cl ass
* and col or of out-bound packet: GR=Geen YE=Yel | ow RED-RE
*/
get_TMlags_DSCP. B=3 0b00:2 B TS 14 f Return(0b00101110); /* R B */
get_TMlags_DSCP. B=3 0b0l:2 B TS 14 f Return(0b01101110); /* YE B */
get_TMlags DBCP. B=3 0Obl:1 B TS 15 f Return(0b10101110); /* RE B */
get_TMI| ags_DSCP. AF1: 3 0b00: 2 B TS 14 f Ret urn(0b00001010); /* QR AF11 */
get _TMI ags_DSCP. AFL: 3 0b01:2 B TS 14 f Ret urn(0b01001100); /* YE AF12 */
get_TMlags DSCP. AF1:3 Obl:1 B TS 15 f Ret urn(0b10001110); /* RE AF13 */
get _TMIlags_DSCP. AR2: 3 0b00: 2 B TS 14 f Ret urn(0b00010010); /* R AR21 */
get_TMIlags_DSCP. AR2: 3 0b01: 2 B TS 14 f Ret urn(0b01010100); /* YE AR22 */
get_TMIlags_DSCP. AR2:3 Obl:1 B TS 15 f Return(0b10010110); /* RE AF23 */
get_TMI ags_DSCP. AF3: 3 0b00: 2 B TS 14 f Ret urn(0b00011010); /* GR AR31 */
get_TMIags DSCP. AR3:3 0b01: 2 B TS 14 f Ret urn(0b01011100); /* YE AF32 */
get_TMlags_DSCP. AR3:3 Obl:1 B TS 15 f Return(0b10011110); /* RE AF33 */
get _TMI ags_DSCP. AR4: 3 0b00: 2 Bl TS 14 f Ret ur n(0b00100010); /* GR AF41 */
NSD-Agere -- Chapt. 24 32 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Classification Code (part 14) NOTES

get_TMIags_DSCP. AF4:3 0b01: 2 B TS 14 f Ret urn(0b01100100); /* YE AF42 */
get_TMlags DSCP. AF4:3 Obl:1 B TS 15 fReturn(0b10100110); /* RE AF43 */

% il .
* Extract port nunber from $tag
*/

get Port Num CLPORT:3 BTS 21 f Ret urn(CL_PCRT) ;

get Port Num CQ PRE:3BTS21 fReturn(C_PCRI) ;

get Port N\um INPCRT:3 BITS 21 fReturn(1 N_PCRT) ;

e oo
* Gt flow code based on port and source or destination |P
*/

get H owGode: CL PCR:3 IP.CL fReturn(Q.1);

get H owode: Q PERE:3 IPLR fReturn(@2l P1);

get H owode: QPR3 IR fReturn(A2l P2);

get H onCode: INPART:3 IP.C1 fReturn(Q.l);

get H onCode: INPCRT:3 I PL_C2 f Return(Q.2l P1);

get H owGode: INPRT:3 IP2_2 fReturn(Q.21 P2);

% e e
* Verify the Tine To Live field in the | P Header
*/

VerifyTTL: 0:8 SecondPassBxcepti on();

VerifyTTL: B TS 8 fReturn();

NSD-Agere -- Chapt. 24 33 2004

Example Classification Code (part 15)

/5
* Verify checksum
*/

checkChecksum 0bl Obl fReturn(); /* check passed */
/* otherwise error handler is called autonatically */

R

* Main error handl er

*/

MEror: ObO B TS 7 FrstPassException(); /* first pass */
MError: Obl B TS 7 SecondPassException(); /* second pass */

2P
* Frst pass error handl er

* Dscard

*/

H r st PassExcept i on:
fQueueEAH0:2, 0:19, $offset:6, 0:1, 0:2, 1:1, 0:24);

* Second pass error handl er
* Send PDUto RSP for discard

*
/
SecondPassExcept i on:
f Ski pToEnd()
fTransmt (0:1, 0:1, 0:20, 0:16, 0:5, 0:10, 0:24);
NSD-Agere -- Chapt. 24 34 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Error Handling

e FPL provides error handling in case none of the patterns in
a tree function matches

e 1-bit argument specifies whether error occurred in pass 1 or
2

e Toinitialize the error handler:

SETUP ERROR(MyETTOr);

e Argument used to choose a pass

MyError: 0b0 BITS:7 FirstPassException(); /* first pass */
MyError: Obl BITS:7 SecondPassException(); /* second pass */

NSD-Agere -- Chapt. 24 35 2004

NOTES

Example Policing Script (part 1)

/* ds_police eof _0.asl - policing functions for OffServ exanpl e */

/*
* Policing script inplenenting dual token bucket al gorithm
*/

#i ncl ude "pol i ceNo5. h*
#define MAX_RTC TI ME Oxffffffff

/
Dual token bucket parangters

(these are initialized during configuration)

Bt rates are neasured in RTC ticks per byte.

Burst sizes are neasured in RTCticks, i.e.

* BurstSze in ticks = BurstSze_ in bytes x ticks_per_byte

* ok % ok ok

*/
unsi gned PBR param bl ock[0: 1] i nput; /* peak bit rate */
unsi gned SBR param bl ock[2: 3] i nput; /* sustained bit rate */
unsi gned PBS parambl ock[4: 11] input; /* peak burst size */

unsi gned SBS par am bl ock[12: 19] input; /* sustai ned burst size */

/*

* Previous pdu arrival tine

* (initialized to zero during configuration)

*/

unsi gned | ast _pdu_arrival parambl ock[20: 23] i nout ;

NSD-Agere -- Chapt. 24 36 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Policing Script (part 2) NOTES

/*
* token counter for peak bucket

* (initialized to PBS during configuration)
*/

unsi gned p_t okens parambl ock[24: 31] inout;

/* token counter for sustained bucket
* (initialized to SBS during configuration)
*/

unsi gned s_t okens param bl ock[32: 39] i nout;

/* PDUlength in bytes (passed by FPP) */
unsi gned pdu_l ength fpp_args[0: 1] input;

/* DBP_QJfield (passed by FPP) */

unsi gned DSCP. QU fpp args[2];

/* RIC ticks since |ast packet arrived, tenporary variable */
unsi gned(4) delta t;

/* PDUlength in RTCticks for sustained rate, tenporary variable */
unsi gned(4) pdu_peak_l en t;

/* PDUlength in RTCticks for peak rate, tenporary variable */
unsi gned(4) pdu_sust _len_t;

/* resulting predicate bits */

bool ean PeakBucket Fai | ed $[15] out put ;
bool ean Sust Bucket Fai | ed $[14] out put ;

NSD-Agere -- Chapt. 24 37 2004

Example Policing Script (part 3)

script dual _tbucket {

delta_t = (MMX RTICTIME - last_pdu arrival) + current_tineg;
if (current_tine >= last_pdu_arrival) {
deltat = current_tine - last_pdu arrival;

}

pdu_peak_| en_t = pdu_| engt h* PBR
pdu_sust _| en_t = pdu_| engt h* SBR

/* update first bucket */
p_tokens = p_tokens + delta t;
if (p_tokens > PBS {

p_tokens = PBS
}

/* updat e second bucket */
s_tokens = s_tokens + delta t;

if (s_tokens > B {
s_tokens = SBS

/* assign color bits (account for pre-colorin

g) */
Sust Bucket Fai | ed = (s_tokens < pdu_sust_|en t)|| ((DSCP_AOXLOx10) =0x10);
PeakBucket Fai | ed = (p_tokens < pdu_peak_|en t)|| ((DSCP_OXROx18) —0x18);

NSD-Agere -- Chapt. 24 38 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Policing Script (part 4)

if (!PeakBucket Failed) {
/* update peak bucket */
p_tokens = p_tokens - pdu_peak_|en_t;

if (!SustBucketFailed) {
/* updat e sustai ned bucket */
s_tokens = s_tokens - pdu_sust_len t;

}

/* tinestanp */
last_pdu_arrival = current_tine;

NSD-Agere -- Chapt. 24 39 2004

NOTES

Buffer Management And Packet Discard

¢ Implementation of Weighted RED (WRED)

e Results of policing passed to the Traffic Manager in two
individual bits

— PeakBucketFailed
— SustBucketFailed

e Implementation uses intervals rather than floating point

NSD-Agere -- Chapt. 24 40 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Buffer Management And Discard Code (part 1)

/* ds_tmwed. asl - buffer nanagenent for D ffServ exanpl e */

/*

* Dscrete Wighted RED for tri-col or schene

*/
#incl ude "t nN\5. h"
#defi ne QLR GREEN 0b00

#defi ne QLR YELLONObO1
#defi ne LR RED 0b10

/* Queue size linits for different colors */

unsi gned gthresh_red mn
unsi gned gt hresh_red_nax
unsi gned gt hresh_yel | ow nmin
unsi gned gt hresh_yel | ow nax
unsi gned gt hresh_green _nin
unsi gned gt hr esh_green_nax

/* average queue size */
unsi gned Qaver age

parambl ock_i n_extended[0:1]
parambl ock_i n_extended[2:3]
param bl ock_i nout _ext ended[O:
par am bl ock_i nout _ext ended[2:
par am bl ock_i nout _ext ended[4:
par am bl ock_i nout _ext ended[6:

1]
3]
5]
7]

param bl ock_i nout _extended] 8:9];

/* Queue steps (4 steps per interval) */

unsi gned gst ep_red par am bl ock_i nout _extended[10:11];

NOTES

unsi gned gstep_yel | ow param bl ock_i nout _extended[12:13];
unsi gned gstep_green parambl ock_i nout _extended[14:15];
/* ds_tmwed. asl - buffer nanagenent for D ffServ exanpl e */

NSD-Agere -- Chapt. 24 41 2004

Buffer Management And Discard Code (part 2)

/* color of the PDU (passed by FPL) */
unsi gned col or paraneters_tnjl];

/* drop probability for current PDU */
unsi gned(1) drop_pr;

/ *

* wei ghted runni ng average for the queue size
* as if current PDUis not dropped

*/

unsi gned(2) q_average;

/* tenporaries for nin and nax queue sizes */
unsi gned(2) qthresh_nmn;

unsi gned(2) qt hresh_nax;

/* step to increment queue size threshol d */
unsi gned(2) q_step;

script tmwed {
/*
* conpute average queue size as if the PDUis not dropped
* (average = Qaverage + 1/ 8*(Qurrent - Qaver age)
*/

g average = Qaverage + ((bl ocks_i n_Q + pdu_bl ocks) >>3) - (Caverage>>3);

NSD-Agere -- Chapt. 24 42 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Buffer Management And Discard Code (part 3)

/* Set threshol ds according to color of current PDU */

if (color == AR GHEN {
gthresh_nin = qgthresh_green_nin;
qt hresh_nax = gt hresh_gr een_nax;
g _step = gstep_green;
} else {
if (coor = CQRYALOY {
gthresh_nmin = qgthresh_yel | ow nin;
qt hresh_nax = gt hresh_yel | ow nax;
g step = gstep_yel | ow
} else {
gthresh_nmin = gthresh red_nin;
gthresh_nax = gt hresh_red_nax;
q step = gstep_red;

}

/'k

* Calculate drop probability, depending on the
* threshold interval for the current packet

*/

if ((qaverage > gthresh_nax) ||
(sch_mem> sch_thresh) ||
(port_nmem> port_thresh) ||
(used_nem> gl ob_threshl)) {
drop_pr = Oxff; /* (100%drop probability) */

NSD-Agere -- Chapt. 24 43 2004

NOTES

Scheduler Ports, Queues, and Weights

Port Port Logical QoS DiffServ Weight
Number Manager Port Queue Class for SDWRR
0 0 0 1 EF 16
0 0 0 2 AF1 1
0 0 0 3 AF2 2
0 0 0 4 AF3 4
0 0 0 5 AF4 8
1 1 1 6 EF 16
1 1 1 7 AF1 1
1 1 1 8 AF2 2
1 1 1 9 AF3 4
1 1 1 10 AF4 8
2 2 2 11 EF 16
2 2 2 12 AF1 1
2 2 2 13 AF2 2
2 2 2 14 AF3 4
2 2 2 15 AF4 8

NSD-Agere -- Chapt. 24 44 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Scheduling Parameters

e Each queue stores three scheduling parameters

e Example: for SDWRR, parameters corresponds to the three
limits used in the algorithm

e To achive weighted bandwidth sharing, assigned values are
function of queue weight

NSD-Agere -- Chapt. 24 45

2004

NOTES

Scheduling Parameters
(continued)

e Thethree limits are assigned for the i th queue as follows:

Wi L max

limitl = ——

2WiL max

limit2; = 2limitl; = 3

limit3; = 3limity = WL max

e For Ethernet, L ypax is 1514

NSD-Agere -- Chapt. 24 46

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Dynamic Scheduling

e Rate of given queue depends on other queues
— noapriori limit

— If no other queues have traffic, given queue can consume
all available bandwidth

e Handled by Shared Dynamic Rescheduler (known as Rate
Limiting Dynamic Rescheduler)

NSD-Agere -- Chapt. 24 47 2004

NOTES

Example SDWRR Scheduler (part 1)

/* ds_ts_sdwr.asl -- scheduling script for DffServ exanpl e */
/*

* Swot hed Wi ghted Deficit Round Robi n schedul er

*/
#incl ude "tsN5. h"
/*

* Typical lints assignnent:

* Quantum = nax_PDU si ze/ 3

* linmtl = queue_wei ght x Quantum

* limt2 = queue_wei ght x Quantumx 2

* limt3 = queue_weight x Quantumx 3

*/
unsigned limtl par am bl ock_i nout _ext ended [O: 3] ;
unsigned limt2 par am bl ock_i nout _ext ended [4: 7];
unsigned limt3 param bl ock_i nout _ext ended [8: 11] ;
unsi gned expense param bl ock_i nout _ext ended [12: 15] ;

unsi gned(4) updat ed_expense;
unsi gned(1) F FO advance;

/*

* Mxinal rate is used to penalize oversubscribed queues wth
* shared dynamc schedul er. Rates are neasured in bl ock tines.

*/
unsi gned nax_rate par am bl ock_i nout _ext ended [16: 17] ;
unsi gned average_rate par am bl ock_i nout _ext ended [18: 19] ;

unsi gned | ast_sched_tinme param bl ock_i nout _extended [20: 23] ;

NSD-Agere -- Chapt. 24 48 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example SDWRR Scheduler (part 2) NOTES

script sdwr {
if (is_first) {

/* average rate= 1/8 (current_rate-average rate) + average rate */
average rate = average rate + ((current_tine - |ast_sched_tine)>>3)
- (average_rate>>3);

/* updat e scheduling tinestanp */
last_sched_tine = current_tine + pdu_ttt;

/*

* see if the queue had just entered busy period,
* in which case initialize expense to 0

*/

if (is_.Qnewto HFOQ

expense = 0;

/* cal cul ate new expense */
updat ed_expense = expense + pdu_| engt h;

/* calculate hownmany A FOlists this queue shoul d advance */
H FO advance = 0;

expense = updat ed_expense;

if (updated expense > limtl) {

F FO advance = 1;
expense = updated_expense - limtl;

NSD-Agere -- Chapt. 24 49 2004

Example SDWRR Scheduler (part 3)

if (updated expense > limt2) {
H FO advance = 2;
expense = updat ed_expense - limt2;

}
if (updated expense > linit3) {
F FO advance = 3;
expense = updated_expense - linit3;

/*
* calculate next HFOlist for current queue:

* current = (current + advance) nod 4
*/

queue_currentlist = (queue_currentlist + Fl FQadvance) & 0x3;

/*

* if naxi numrate exceeded, send queue to
* shared dynam c reschedul er

*/

if (average rate < nax_rate) {

send_Q t o_dynani c_r eschedul er =true;

pdu_interval = nax_rate + pdu_ttt;
upd_interval = true;
NSD-Agere -- Chapt. 24 50 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

* ok R ok k% ok ok

*/

H FO sched_currentlist = (H FQsched_next_currentli st +0x20) 80x3f;

Example SDWRR Scheduler (part 4)

@ to the next AIFOlist and update enqueuing |ist.

Paraneter H FO sched next_currentlist is set only by the hardware
as follows: Bits 0:1 are set to the next FIFOlist, whichis the
sane as current one if there is still a non-enpty queue on the
current one, or is set to the next non-enpty FFOlist otherw se.
Bts 45 are set to (bits 0:1 +1) nod 4

Here we leave bits 0:1 as is, and increnent bits 4:5 by 2 nod 4,
so that enqueuing list is (current list + 3) nod 4

NSD-Agere -- Chapt. 24 51

2004

NOTES

Packet Marking (M odification)

e DiffServ uses the term marking to refer to insertion of a
codepoint value

e Example code used SED engine to perform modification

e SED programmed with script

NSD-Agere -- Chapt. 24 52

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Of Packet Marking NOTES

e Copy Ethernet source and destination addresses from

parameter block to the packet

e Decrement time-to-live

e Assign DiffServ codepoint

e Recompute checksum

NSD-Agere -- Chapt. 24 53 2004

Example Packet Marking Code (part 1)

/* ds_sed_ip_ethernet.asl - SEDscript for DffServ exanpl e */
#i ncl ude "sedNo5. h"

* DffServ for I P over Bhernet
*
/

script O8.ip_ethernet {

unsi gned prmdst _nmac par am bl ock[0: 5] ;
unsi gned prmsrc_nac par am bl ock[6: 11] ;
/* D8P val ue, passed by FPP */
unsi gned prmdscp flags[O];
NSD-Agere -- Chapt. 24 54 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Packet Marking Code (part 2)

/*

* Qnly the first block of the PDUis nodified. Al other blocks are
* passed through the SED CE wi thout nodification.

*/

if (is_first) {

/*

* The format of the first output data bl ock.

* |t consists of an Bhernet MAC header fol |l oned by an | P header.
* Wthin the | P header, the TG5, TTL and the checksumfields are

* defi ned.
*/
unsi gned dst_nac data bl ock[0: 5] ;
unsi gned src_nac data bl ock[6: 11] ;
bl ock i p_header data_bl ock[14: 33] ;
unsi gned ip_tos ip_header[1];
unsi gned ip_ttl ip_header[8];
unsi gned i p_checksumi p_header[10: 11] ;
unsi gned(4) checksum

unsi gned(2) tenp;

/* HI1l in source & destination MAC addresses fromparaneter block */
dst_mac = prmdst_nac;
SrC_NM&c = prmsrc_n&c;

/*

* Lpdate ttl field. Assunming that FPL code has al ready
* verified that it is nonzero

NOTES

*/
ipttl =ip_ttl - 1;

NSD-Agere -- Chapt. 24 55 2004

Example Packet Marking Code (part 3)
/* Set TGS (D8CP) and adj ust the checksum*/
tenp = prmdscp; /* overcomng conversion problens */
checksum = i p_checksum+ i p_tos + 0x0100 + (~tenp);
ip_tos = prmdscp;
/* Wap checksumcarry around */
checksum = checksunj O: 1] +checksunf 2: 3] ;
checksum = checksunj O: 1] +checksunf 2: 3] ;
i p_checksum = checksunj 2: 3] ;
}
}
NSD-Agere -- Chapt. 24 56 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Host I nterface NOTES

e External host

— Initializes APP550

— Loads code and configuration information onto chip

e After chipinitialized, host uses object API to interact with
chip

NSD-Agere -- Chapt. 24 57 2004

Example Host Interface Code (part 1)

/* ds_host _iface.c - external host interface for OffServ exanpl e */
/*

* Load configuration file and provi de cormand interface for host

*/

#i ncl ude <agere_np5. h>

#i ncl ude <stdio. h>

#defi ne MAXQUELE 15 /* naxi nal queue | D nunber */
#defi ne MAX_FRAMES ZE 1514 /* naxi nal frane size */

#define MX LINELEN 16 /* naxinal conmand |ine length */

/* locations of linmits and expense in paraneters bl ock */
#define LIMTL_NM O

#define LIMT2_ NM 1
#define LIMT3_NM 2
#defi ne EXPENSE NUM 3

/* read config function prototype */

int cfg read_func(void *fp, char *buf, int len);

/* chipset handl e definitions */
ag_chi pset _t chi pset Hl ;

ag_np5_t app550Hd ;
ag_rsp_t rspHll;

NSD-Agere -- Chapt. 24 58 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Host Interface Code (part 2)

#ifdef VXWIRKS
static int DffServSart(int argc, char ** argv)
#el se
int main(int argc, char ** argv)
#endi f
t _
int weight, queue, rc;
char crd_buf [MAX LINE LEN ;
ag_uint32_t paraneters[4];
| uint8 t paramnuns[]={LI MTL_NM LI MT2_NM LI MT3_NM EXPENSE NV} ;
char * fil enang;
FHLE * cfg fp;
ag_chi pset _chip_error_t chipEror;

/* get and check argunents */

if (argc !'=2) {
fprintf(stderr,"Usage: DffServSart <cfg file nane>\n");
exit(-1);

filenane = argv[1];

if ((cfg_fp = fopen(filenane, "r")) == NALL) {
fprintf(stderr,"Eror: can not open config file 9%\n",fil enane);
exit(-1);

NSD-Agere -- Chapt. 24 59

2004

NOTES

Example Host Interface Code (part 3)

/* initialize chipset */

rc = ag_chipset_init(0, &hipsetHll);

if (rc!= AGCH PSET_ST_! {
fprintf(stderr,"Eror: ag_chipset_init failedn");
fclose(cfg fp);
exit(-1);

}

/* configure chipset */
rc = ag_chi pset _config(chi psetHll, (ag_read fn t) cfg read_func,
(void *) cfg_fp, NALL, NLL, &hipEror);
if (rc!= AGCHPSET_ST_ {
fprintf(stderr,"Eror: ag_chipset_config failed\n");
fclose(cfg fp);
exit(-1);

/* close config file */
fclose(cfg fp);

/* get object-level APPS50 handl e */
rc = ag_chi pset _hdl _get (chi pset Hll, (char*) "APP550", 0, &app550Hdl);
if (rc !'= AGCH PSET_ST_SUXESS)

fprintf(stderr,"Eror: ag_chipset_hdl _get failed\n");

exit(-1);

NSD-Agere -- Chapt. 24 60

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

/* get object-level RSP handl e */

rc = ag_rsp_hdl _get (app550Hdl , & spHil);

if (rc!=AGST_!
fprintf(stderr, "BEror: ag_rsp_hd _get failed\n");
exit(-1);

/* start our own "shel " */
vhile (1) { /* do forever */
/* read queue |ID and wei ght fromstandard input */

if (fgets(cnu_buf, MMX LINE LBEN stdin) = NULL)
exit(0); /* ECF encountered */

queue = atoi (strtok(cna_buf," \n"));

wei ght = atoi (strtok(N.LL, " \n"));

if (queue <1 || queue >

conti nue;

i}f (vei ght < 1) {

Example Host Interface Code (part 4)

fprintf(stdout,"Enter Queue 1D and Wi ght (separated by space): ");

{
fprintf(stderr,"Bror: invalid queue nunber: 9%\n", queue);

NOTES

fprintf(stderr,"Bror: invalid weight value: %\n", weight);
conti nue;
}
/* conpute new limts */
paraneters[0] = MAX FRAMES ZE*weight/3; /* limtl */
paranet ers[1] = paranet ers[0] *2; /* 1Timt2 */
par anet ers[2] = paranet ers[0] *3; /* 1imt3 */
paraneters[3] = 0; /* expense = 0 */
NSD-Agere -- Chapt. 24 61 2004
Example Host Interface Code (part 5)
/* update paraneters */
rc=ag_rsp_qi d_unatom c_repl ace_ts_parns_words(rspHill, queue,
paraneters, paramnuns, 4);
swtch (rc) {
case AG ST _SUJCESS
/* success */
fprintf(stdout,"Veight for queue % set to %\n", queue, weight);
br eak;
case AG ST RSP QD INALID
fprintf(stderr, "BEror: QD% is invalidn",queue);
conti nue;
case AG ST_RSP_ QD NJO_EX ST:
fprintf(stderr, "Eror: QD % does not exist\n", queue);
conti nue;
case AG ST RSP | NVALI D HANDLE:
fprintf(stderr, "Eror: invalid RSP handl e\n");
exit(-1);
defaul t:
fprintf(stderr, "Eror: invalid return code %\n",rc);
exit(-1);
}
Iy
exit(0);
}
NSD-Agere -- Chapt. 24 62 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Example Host Interface Code (part 6) NOTES

/* function to read configuration file */
int cfg read_func(void *fp, char *buf, int len) {
int nread;
if ((nread=fread(buf, 1, len, (HLE *)fp)) <len) {

if (ferror((ALE *)fp)) {
fprintf(stderr,"Bror: cfg read func failed reading\n");

return -1;
}
return nread;
}
NSD-Agere -- Chapt. 24 63 2004

Summary

¢ We have reviewed complete code for a DiffServ system

— Classification

— Policing and marking

— Buffer management and discard

— Dynamic rescheduling

NSD-Agere -- Chapt. 24 64 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

X

Switching Fabrics

NSD-Agere -- Chapt. 10 1 2004

NOTES

Physical I nterconnection

e Physical box with backplane
e [ndividual blades plug into backplane slots

e Each blade contains one or more network connections

NSD-Agere -- Chapt. 10 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

L ogical Interconnection NOTES

e Known as switching fabric

e Handles transport from one blade to another

o Becomes bottleneck as number of interfaces scales

NSD-Agere -- Chapt. 10 3 2004

[llustration Of Switching Fabric

CPU

input ports output ports

BT
T

input switching output
arrives fabric leaves
e Any input port can send to any output port
NSD-Agere -- Chapt. 10 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Switching Fabric Properties NOTES

e Used inside a single network system

e |Interconnection among I/O ports (and possibly CPU)

e Can transfer unicast, multicast, and broadcast packets
e Scales to arbitrary data rate on any port

e Scales to arbitrary packet rate on any port

e Scadesto arbitrary number of ports

e Haslow overhead

e Haslow cost

NSD-Agere -- Chapt. 10 5 2004

Types Of Switching Fabrics

e Space-division (separate paths)

e Time-division (shared medium)

NSD-Agere -- Chapt. 10 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Space-Division Fabric (separate paths) NOTES

interface hardware

. \ switching fabric
input ports output ports

N>

arrives

e Can use multiple paths simultaneously

e Stll have port contention

NSD-Agere -- Chapt. 10 7 2004

Desires

e High speed and low cost!

NSD-Agere -- Chapt. 10 8 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Possible Compromise NOTES

e Separation of physical paths

e Lesspardlel hardware

e Crossbar design

NSD-Agere -- Chapt. 10 9 2004

Space-Division (Crossbar Fabric)

interface hardwareL controller |
input ports\ l 1
switching fabric
active
connection
4
inactive
: connection
4
output ports .
NSD-Agere -- Chapt. 10 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Crossbar NOTES

e Allows simultaneous transfer on digoint pairs of ports

e Can still have port contention

2004

NSD-Agere -- Chapt. 10 11

Solving Contention

¢ Queues (FIFOs)

— Attached to input

— Attached to output
— At intermediate points

NSD-Agere -- Chapt. 10 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Crossbar Fabric With Queuing NOTES

| controller |

input queues

input ports l l 1

switching fabric
— 11—

NSD-Agere -- Chapt. 10 13 2004

Time-Division Fabric (shared bus)

shared bus

TEITN

input ports output ports

e Chief advantage: low cost
e Chief disadvantage: low speed

NSD-Agere -- Chapt. 10 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Time-Division Fabric (shared memory) NOTES

memory

interface controller |

input ports \ l T output ports

shared memory
switching fabric

=T
£t

e May be better than shared bus

e Usualy more expensive

NSD-Agere -- Chapt. 10 15 2004

Multi-Stage Fabrics

e Compromise between pure time-division and pure space-

division

e Attempt to combine advantages of each

— Lower cost from time-division

— Higher performance from space-division

e Technique: limited sharing

NSD-Agere -- Chapt. 10 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Banyan Fabric

e Example of multi-stage fabric
e Features
— Scaable
— Sdf-routing
— Packet queues allowed, but not required

NOTES

NSD-Agere -- Chapt. 10 17 2004
Basic Banyan Building Block
input #1 2-input
switch
.
i
inpul/#z
e Address added to front of each packet
e One hit of address used to select output
2004

NSD-Agere -- Chapt. 10 18

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

4-Input And 8-Input Banyan Switches NOTES

4-input switch

lo'o’
= 19

inputs outputs

FE

(@)

'000"
'001"

4-input switch

(for details
see above) '010"

'011"

inputs outputs

'100"
'101"

4-input switch

(for details
see above) 110"

111"

(b)

NSD-Agere -- Chapt. 10 19 2004

Summary

e Switching fabric provides connections inside single network

system

e Two basic approaches

— Time-division has lowest cost

— Space-division has highest performance

e Multistage designs compromise between two

e Banyan fabric is example of multistage

NSD-Agere -- Chapt. 10 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

X1V

Issues In Scaling A Networ k Processor

NSD-Agere -- Chapt. 14 1 2004

Design Questions

e Can we make network processors

— Faster?

— Easier to use?

— More powerful ?

— More general?

— Cheaper?
— All of the above?

e Scde is fundamental

NSD-Agere -- Chapt. 14 2 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Scaling The Processor Hierarchy

e Make processors faster
e Use more concurrent threads
¢ Increase processor types

¢ Increase numbers of processors

NOTES

NSD-Agere -- Chapt. 14 3 2004
The Pyramid Of Processor Scale
CPU
Embedded Proc.
1/0 Processors
Lower Levels Of Processor Hierarchy

e Lower levels need the most increase
NSD-Agere -- Chapt. 14 4 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Scaling The Memory Hierarchy

e Sze

e Speed

¢ Throughput

o Cost

NSD-Agere -- Chapt. 14 5 2004

NOTES

Memory Speed

e Access latency

Raw read/write access speed
SRAM 2-10ns
DRAM 50 - 70 ns

External memory takes order of magnitude longer than
onboard

NSD-Agere -- Chapt. 14 6 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Memory Speed
(continued)

e Memory cycletime

Measure of successive read/write operations
Important for networking because packets are large

Read Cycle time (tRC) is time for successive fetch
operations

Write Cycle time (tWC) is time for successive store
operations

NSD-Agere -- Chapt. 14 7 2004

NOTES

The Pyramid Of Memory Scale

Reg.

Onboard mem.

External SRAM

External DRAM

e Largest memory is least expensive

NSD-Agere -- Chapt. 14 8

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

M emory Bandwidth NOTES

e General measure of throughput

e More paralelism in access path yields more throughput

e Cannot scale arbitrarily

— Pinout limits

— Processor must have addresses as wide as bus

NSD-Agere -- Chapt. 14 9 2004

Types Of Memory

Memory Technology Abbreviation Purpose
Synchronized DRAM SDRAM Synchronized with CPU
for lower latency
Quad Data Rate SRAM QDR-SRAM Optimized for low latency

and multiple access
Zero Bus Turnaround SRAM ZBT-SRAM Optimized for random

access

Fast Cycle RAM FCRAM Low cycle time optimized
for block transfer

Double Data Rate DRAM DDR-DRAM Optimized for low
latency

Reduced Latency DRAM RLDRAM Low cycle time and

low power requirements

NSD-Agere -- Chapt. 14 10 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NOTES

Memory Cache

e General-purpose technique

e May not work well in network systems

— Low temporal locality

— Large cache size (either more entries or larger
granularity of access)

2004

NSD-Agere -- Chapt. 14 11

Content Addressable Memory (CAM)

e Combination of mechanisms

— Random access storage

— Exact-match pattern search

e Rapid search enabled with parallel hardware

NSD-Agere -- Chapt. 14 12 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Arrangement Of CAM

one slot CAM

e Organized as array of dots

NSD-Agere -- Chapt. 14 13 2004

NOTES

L ookup In Conventional CAM

e Given
— Pattern for which to search
— Known as key
e CAM returns
— First slot that matches key, or
— All dots that match key

NSD-Agere -- Chapt. 14 14 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Ternary CAM (T-CAM)

e Allows masking of entries

e Good for network processor

NSD-Agere -- Chapt. 14 15 2004

NOTES

T-CAM Lookup

e Each dot has bit mask
e Hardware uses mask to decide which bits to test

e Algorithm

for each slot do {
if ((key & mask) == (dot & mask)) {
declare key matches dlot;
} else {
declare key does not match slot;

}

NSD-Agere -- Chapt. 14 16 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Partial Matching With A T-CAM

key—»lOB|OO|45|06|00|50|00|00|

slot#1 —= | 08 | 00 [45 (06 | 00 | 50 [00 | 02

mask — [ff | ff | ff | ff | ff [ff | 00 | 0O

slot#2 —= (08|00 |45| 06 |00 35|00 |03

mask — | ff | ff | ff | ff | ff [ff | 00 | 00

e Key matches slot #1

NSD-Agere -- Chapt. 14 17 2004

NOTES

Using A T-CAM For Classification

e Extract values from fields in headers
e Form values in contiguous string
e Use akey for T-CAM lookup

e Store classification in slot

NSD-Agere -- Chapt. 14 18 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Classification Using A T-CAM

storage for key pointer

[T 1T 1] M

CAM RAM

NSD-Agere -- Chapt. 14 19 2004

NOTES

Softwar e Scalability

e Not aways easy
e Many resource constraints
e Difficulty arises from
— Explicit paralelism
— Code optimized by hand

— Pipelines on heterogeneous hardware

NSD-Agere -- Chapt. 14 20 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Summary NOTES

e Scaability key issue

e Primary subsystems affecting scale

— Processor hierarchy

— Memory hierarchy

e Many memory types available

- SRAM

— SDRAM
- CAM

e T-CAM useful for classification

NSD-Agere -- Chapt. 14 21 2004

XV

Examples Of Commercial Network Processors

NSD-Agere -- Chapt. 15 1 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

e Emergein late 1990s
e Become popular in early 2000s

e Exceed thirty vendors by 2003

Commercial Products

e Fewer than thirty vendors by 2004

NOTES

— Show broad categories
— Expose the variety

e Not necessarily *‘best’’

e Show a snapshot as of 2004

NSD-Agere -- Chapt. 15 3

e Not meant as an endorsement of specific vendors

NSD-Agere -- Chapt. 15 2 2004
Examples
e Chosento
— Ilustrate concepts

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Augmented RISC (Alchemy) NOTES

e Based on MIPS-32 CPU

— Five-stage pipeline

e Augmented for packet processing

— Instructions (e.g. multiply-and-accumul ate)

— Memory cache

— /O interfaces

NSD-Agere -- Chapt. 15 4 2004

Alchemy Architecture

to

SDRAM
-— SDRAM controller 32-bit PCI 2.2 e

instruct. EJTAG ™
mips.32 | cache

embed. DMA controller -

proc. bus unit

SgAM Ethernet MAC -
us data
cache

MAC Ethernet MAC -~

—-| SRAM controller
USB-Host contr. -

i

RTC (2) USB-Device contr. e

interrupt controller fe——s

- e
GPIO (48)

- AC '97 controller Serial line UART (2) fe——

A%

NSD-Agere -- Chapt. 15 5 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Parallel Embedded Processors NOTES
Plus Coprocessors (AMCC)

e Oneto six nP core processors

e Various engines

— Packet metering

— Packet transform

— Packet policy

NSD-Agere -- Chapt. 15 6 2004

AMCC Architecture

} } 4
)

external search external memory host
interface interface interface
policy metering
engine engine

| memory access unit |

I

six board
nP cores onboar
memory

I

<+ input packet transform engine output je—t—e

control iface] debug port] inter mod.] test iface]

¥ ¥ 1 ¥
v ' ' '

NSD-Agere -- Chapt. 15 7 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Parallel Pipelines Of NOTES
Homogeneous Processor s
(Cisco)

e Parale eXpress Forwarding (PXF)

e Arranged in parallel pipelines

e Packet flows through one pipeline
e Each processor in pipeline dedicated to one task

NSD-Agere -- Chapt. 15 8 2004

Cisco Architecture

input
— MAC classify
— Accounting & ICMP
— FIB & Netflow
| MPLSclassify
+— Access Control
— CARrouting
L MLPPP
+— WRED

output

NSD-Agere -- Chapt. 15 9 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Pipeline Of Parallel Heter ogeneous NOTES
Processor s (EZchip)

e Four processor types

e Each type optimized for specific task

NSD-Agere -- Chapt. 15 10 2004

EZchip NP-1c Architecture
TOPparse TOPsearch TOPresolve TOPmodify
memory memory memory memory
NSD-Agere -- Chapt. 15 11 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

EZchip Processor Types NOTES
Processor Type Optimized For
TOPparse Header field extraction and classification
TOPsearch Table lookup
TOPresolve Queue management and forwarding
TOPmodify Packet header and content modification
NSD-Agere -- Chapt. 15 12 2004

Extensive And Diver se Processors

(Hifn, formerly I1BM)

e Multiple processor types

e Extensive use of parallelism

e Separate ingress and egress processing paths

e Multiple onboard data stores

e Model is NPAGS3

NSD-Agere -- Chapt. 15 13 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Hifn NP4GS3 Architecture

to switching PCI external DRAM from switching
fabric bus and SRAM abric
I]
i ingress i egress
ingress || 'SWitch internal switch |—wf egress
store interface interface store
processor processor
Foce-- o oo X -
' '
' .
' Embedded Prggessor Complex)
SRAM ' ' traffic
_ for ' ' manag.
mgress B 4 and
ata sched.
irp]gressl eht‘:jrejs.sI
sical sical
PVAC PVIAC
multiplexor multiplexor
T T
T T
T T
I | |
packets from packets to egress
physical devices physical devices data store

NOTES

NSD-Agere -- Chapt. 15 14 2004
H ’
Hifn’s Embedded Processor Complex
to onboard memory to external memory
| | | | | | | | | | | | |
| control memory arbiter |
ir:%gﬁ I completion unit |——. gﬁ:ﬁ'
inlarumrs_:' debug & inter. | | hardware regs. | |inter. bus control |¢-
exceptions I H
embed. | § PCI
PowerPC [*i™ bus
programmable H
protocol processors
ingress ingress (16 picoengines)
data ——e ata —
store iface egress | : ress
G data tei—e data
I iface store
[instr.memory | | classifier assist | [bus arbiter |-——— ibrl'}gnaj
ingress egress
data — f di h — d
gg}g —>| rame dispatc |-— st%lfe
NSD-Agere -- Chapt. 15 15 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

NSD-Agere -- Chapt. 15

e Programmable

Packet Engines

e Found in Embedded Processor Complex

e Handle many packet processing tasks
e OQOperate in parallel (sixteen)

e Known as picoengines

16 2004

NOTES

Coprocessor

Other Processors On The IBM Chip

Purpose

Data Store
Checksum
Enqueue
Interface
String Copy
Counter
Policy
Semaphore

NSD-Agere -- Chapt. 15

Provides frame buffer DMA

Calculates or verifies header checksums

Passes outgoing frames to switch or target queues
Provides access to internal registers and memory
Transfers internal bulk data at high speed

Updates counters used in protocol processing
Manages traffic

Coordinates and synchronizes threads

17 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Plus Controller (Intel 1 XP2xxx)

e Two basic models
— IXP2400
— IXP2800

e Connections to externa buses (e.g., for memory)

Homogeneous Par allel Processors

e Eight or sixteen parallel programmable packet processors
known as microengines

e One XScae embedded RISC processor
e High-speed Media and Switch Fabric interface

NOTES

NSD-Agere -- Chapt. 15 18 2004
Intel Chip External Connections
optional host connection ——» < PCI bus >
coprgﬁgssor
R QDR
classif. SRAM
acceler.
DDR
DRAM
ASIC
IXP2400
chip
Flash
Mem. /
Sow Port
interface flow
control
T l bus
Media?];rmr;FabrL» | input and output demux |
NSD-Agere -- Chapt. 15 19 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Intel Chip Internal Architecture

optional host connection —— = <:

PCI bus >

coprocessor
bus 1XP2400 chip
XScale DR
classif. RISC R
acceler. processor
DDR
DRAM
ASIC
Flash
Mem.
Media or Switch Fabric : .
interface —— | receive | | transmit | e
control
T l bus
Mediaﬂ;r%'vv‘i,g:rg':abrm‘» | input and output demux |

NOTES

NSD-Agere -- Chapt. 15 20 2004
Two Intel Chips Used For High Speed
network fabric
interface gasket
—> Jé';?é‘?é’) —> —> z
input = B
<:> demux R
< |
| feress) || | <= e
21 2004

NSD-Agere -- Chapt. 15

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Flexible RISC Plus Coprocessors NOTES
(Motorola C-PORT)
e Onboard processors can be
— Dedicated
— Pardléd clusters
— Pipeline
NSD-Agere -- Chapt. 15 22 2004
C-Port Architecture
| switching fabric |
network network network
procissor procgssor R proc’z\e‘ssor
physical physical physical
interface 1 interface 2 interface N
NSD-Agere -- Chapt. 15 23 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Internal Structure Of A NOTES

C-Port Channel Processor

switching .

S-'\’TAM fabric SRAM PCI bus serial PROM DRfAM
[}] [1 1
queue i table - buffer
mgmt. far%réc lookup pci ser. | [prom mgmt.
unit proc. unit unit

Exec. Processor

< multiple onboard buses >

clusters

CP-O|[CP-1||CP-2||CP-3 CP-12| |CP-13| |CP-14| |CP-15

connections multiplexed
to physical interfaces

NSD-Agere -- Chapt. 15 24 2004

Channel Processor Architectuer

To external DRAM

< memory bus >

RISC Processor

T |

extract merge
space space
Serial Data Serial Data
Processor Processor
(in) (out)
I

;
|

packets arrive

NSD-Agere -- Chapt. 15

!

packets leave

e Actually aprocessor complex

25

2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Extremely Long Pipeline (Xelerated) NOTES

e Pipeline contains 200 processors

e Each processor can execute four instructions per packet

e External coprocessor calls used to pass state

NSD-Agere -- Chapt. 15 26 2004

Xelerated Architecture

packet acket
arrives eaves
B B I I I I

200 processors

e Pipeline has 200 stages

e Four instructions per packet per stage

NSD-Agere -- Chapt. 15 27 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

Xelerated Internal Architecture

external SRAM, DRAM, TCAM oOr COprocessors

! ! | !

lookaside | |lookaside | |lookaside | | lookaside

engine 0 engine 1 engine 2 engine 3
hash metering counter TCAM
engine engine engine engine

| channel multiplexor

linear array of processors

NOTES

inputs (long pipeline) outputs
to CPU
NSD-Agere -- Chapt. 15 28 2004
Summary
¢ Many network processor architecture variations
e Examplesinclude
— Augmented RISC processor
— Embedded parallel processors plus coprocessors
— Parallé pipelines of homogeneous processors
— Pipeline of parallel heterogeneous processors
— Extensive and diverse processors
— Flexible RISC plus coprocessors
— Extremely long pipeline
NSD-Agere -- Chapt. 15 29 2004

Copyright (c) 2004 by Douglas E. Comer. All rights reserved.

