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Course I ntroduction
And Overview
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Topic And Scope

The concepts, principles, and technologies that underlie the
design of hardware and software systems used in computer
networks and the Internet, focusing on the emerging field of
network processors.
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You Will Learn

e Review of
— Network systems
— Protocols and protocol processing tasks
e Hardware architectures for protocol processing
e Software-based network systems and software architectures
e (lassification
— Concept
— Software and hardware implementations

e Switching fabrics
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You Will Learn
(continued)

e Network processors: definition, architectures, and use
e Design tradeoffs and consequences
e Survey of commercial network processors

e Detalls of one example network processor

— Architecture and instruction set(s)
— Programming model and program optimization

— Cross-development environment
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What You WIill NOT Learn

e EE details

VLS technology and design rules
Chip interfaces. |Cs and pin-outs
Waveforms, timing, or voltage

How to wire wrap or solder

e [Economic detalls

Comprehensive list of vendors and commercia products

Price points
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Background Required

e Basic knowledge of
— Network and Internet protocols
— Packet headers
e Basic understanding of hardware architecture
— Registers
— Memory organization
— Typical instruction set

e Willingness to use an assembly language
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Schedule Of Topics

e Quick review of basic networking

e Protocol processing tasks and classification

e Software-based systems using conventional hardware
e Special-purpose hardware for high speed

e Motivation and role of network processors

e Network processor architectures
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Schedule Of Topics
(continued)

e An example network processor technology in detail
— Hardware architecture and parallelism
— Programming model
— Testbed architecture and features

e Design tradeoffs

e Scaling a network processor

e Survey of network processor architectures
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Course Administration

e Textbook

— D. Comer, Network Systems Design Using Network
Processors, Agere Version, Prentice Hall, 2005.

e Grade
—  Quizzes 5%
— Midterm and final exam 35%

— Programming projects 60%
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Lab Facilities Available

e Extensive network processor testbed facilities
e Donations from

— Agere Systems

— IBM (now sold to Hifn)

— Intel

e |ncludes hardware and cross-development software
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What You WIill Doln The Lab

e \Write and compile software for an NP

e Download software into an NP

e Monitor the NP as it runs

e |nterconnect Ethernet ports on an NP board
— To other ports on other NP boards
— To other computers in the lab

e Send Ethernet traffic to the NP

e Recelve Ethernet traffic from the NP
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Example Programming Projects

e A packet analyzer
— |P datagrams
— TCP segments
e An Ethernet bridge
e An IP fragmenter
e A classification program

e A bump-in-the-wire system using low-level packet
Processors
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Questions?




A QUICK OVERVIEW

OF NETWORK PROCESSORS
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The Network Systems Problem

e Datarates keep increasing

e Protocols and applications keep evolving

e System design is expensive

e System implementation and testing take too long
e Systems often contain errors

e Special-purpose hardware designed for one system cannot
be reused
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The Challenge

Find ways to improve the design and manufacture of
complex networking systems.
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The Big Questions

e What systems?
— Everything we have now
— New devices not yet designed

e What physical communication mechanisms?
— Everything we have now

— New communication systems not yet
designed/ standardized

e What speeds?
— Everything we have now

— New speeds much faster than those in use
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More Big Questions

e What protocols?

— Everything we have now

— New protocols not yet designed/ standardized
e What applications?

— Everything we have now

— New applications not yet designed/ standardized
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The Challenge
(restated)

Find flexible, general technologies that enable rapid,
low-cost design and manufacture of a variety of scalable,
robust, efficient network systems that run a variety of
existing and new protocols, perform a variety of existing and
new functions for a variety of existing and new, higher-speed
networks to support a variety of existing and new
applications.
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Special Difficulties

e Ambitious goal
e Vague problem statement
e Problem is evolving with the solution
 Pressure from
— Changing infrastructure
— Changing applications
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Desider ata

e High speed

e Fexible and extensible to accommodate
— Arbitrary protocols
— Arbitrary applications
— Arbitrary physical layer

e | OwW cost
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Statement Of Hope
(1995 version)

If there is hope, it liesin ASC designers.
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Statement Of Hope
(1999 version)

?7?7?

If there is hope, it liesin A%gners.
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Statement Of Hope
(2004 version)

programmers!

If there is hope, it liesin A%gners.
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Programmability

e Key to low-cost hardware for next generation network
systems

e More flexibility than ASIC designs
e FEaser/faster to update than ASIC designs
e [ essexpensive to develop than ASIC designs

e What we need: a programmable device with more capability
than a conventional CPU
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The ldea In A Nutshdl

Devise new hardware building blocks

Make them programmable

Include support for protocol processing and 1/0
— General-purpose processor(s) for control tasks

— Special-purpose processor(s) for packet processing and
table lookup

| nclude functional units for tasks such as checksum
computation

Integrate as much as possible onto one chip

Call the result a network processor
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The Rest Of The Course

e Wewill

Examine the genera problem being solved
Survey some approaches vendors have taken
Explore possible architectures

Study example technologies

Consider how to implement systems using network
[Processors
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Disclaimer #1

In the field of network processors, | am atyro.
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Definition

Tyro\Ty'ro\, n.; pl. Tyros. A beginner in learning; one who isin
the rudiments of any branch of study; a person imperfectly
acquainted with a subject; a novice.
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By Definition

In the field of network processors, you are all tyros.
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In Our Defense

When it comes to network processors, everyone is a tyro.
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Questions?




Basic Terminology And Example Systems
(A Quick Review)
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Packets Cdlls And Frames

e Packet
— Generic term
— Small unit of data being transferred
— Travels independently

— Upper and lower bounds on size
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Packets Cells And Frames
(continued)

e Cdl

— Fixed-size packet (e.g., ATM)
e [Frame or layer-2 packet

— Packet understood by hardware
e |P datagram

— Internet packet
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Types Of Networks

e Paradigm
— Connectionless
— Connection-oriented
e Accesstype
— Shared (i.e., multiaccess)

— Point-To-Point
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Connection-Oriented Networks

e Telephone paradigm (connection, use, disconnect)
e Examples

— Frame Relay

— Asynchronous Transfer Mode (ATM)
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Point-T o-Point Networ k

e Connects exactly two systems
e Often used for long distance

e Example: data circuit connecting two routers
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Data Cir cuit

e | eased from phone company

e Also caled serial line because data 1s transmitted bit-
serially

e Originally designed to carry digital voice

e Cost depends on speed and distance

e T-series standards define low speeds (e.g. T1)
e STSand OC standards define high speeds
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Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits
— 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2,488.320 Mbps 38880
OC-192 9,953.280 Mbps 155520
OC-768 39,813.120 Mbps 622080



Digital Circuit Speeds

Standard Name Bit Rate Voice Circuits
— 0.064 Mbps 1
T1 1.544 Mbps 24
T3 44.736 Mbps 672
OC-1 51.840 Mbps 810
OC-3 155.520 Mbps 2430
OC-12 622.080 Mbps 9720
OC-24 1,244.160 Mbps 19440
OC-48 2,488.320 Mbps 38880
OC-192 9,953.280 Mbps 155520
OC-768 39,813.120 Mbps 622080

e Holy grail of networking: devices capable of accepting and
forwarding data at 10 Gbps (OC-192).
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Local Area Networks

e FEthernet technology dominates
e |ayer 1 standards
— Media and wiring
— Signaling
— Handled by dedicated interface chips
— Unimportant to us
e | ayer 2 standards
— MAC framing and addressing
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MAC Addressing

e Three address types
— Unicast (single computer)
— Broadcast (all computers in broadcast domain)

— Multicast (some computers in broadcast domain)

NSD-Agere -- Chapt. 2 10 2004



More Terminology

e |nternet
— Interconnection of multiple networks
— Allows heterogeneity of underlying networks
e Network scope
— Local Area Network (LAN) covers limited distance
— Wide Area Network (WAN) covers arbitrary distance
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Network System

e |ndividual hardware component

e Serves as fundamental building block
e Used in networks and internets

e May contain processor and software

e QOperates at one or more layers of the protocol stack
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Example Network Systems

e |Layer?2
— Bridge
— Ethernet switch
— VLAN switch
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VLAN Switch

e Similar to conventional layer 2 switch
— Connects multiple computers
— Forwards frames among them
— Each computer has unique unicast address
e Differs from conventional layer 2 switch
— Allows manager to configure broadcast domains

e Broadcast domain known as virtual network
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Broadcast Domain

e Determines propagation of broadcast/ multicast
e Originally corresponded to fixed hardware

— One per cable segment

— One per hub or switch
e Now configurable via VLAN switch

— Manager assigns ports to VLANS
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Example Network Systems
(continued)

e lLayer3
— Internet host computer
— IProuter (layer 3 switch)
e |Layer4
— Basic Network Address Trandator (NAT)
— Round-robin Web load balancer
— TCP terminator
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Example Network Systems
(continued)

e |ayer>b
—  Firewall
— Intrusion Detection System (IDS)
— Virtua Private Network (VPN)
— Softswitch running SIP
— Application gateway

— TCP splicer (also known as NAPT — Network Address
and Protocol Tranglator)

—  Smart Web load balancer
—  Set-top box
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Example Network Systems
(continued)

Network control systems

Packet / flow analyzer
Traffic monitor
Traffic policer
Traffic shaper
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Questions?




Review Of Protocols And Packet Formats
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e Five-layer Internet reference model

Protocol Layering

Application

Transport

Internet

Network Interface

Physical

<—— Layer 5

<~—— Layer 4

<—— Layer 3

<—— Layer 2

<~—— Layer 1

e Multiple protocols can occur at each layer
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Layer 2 Protocols

e Two protocols are important
— Ethernet (widely used)
— ATM (defines per-flow QoS)

e \We will concentrate on Ethernet
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Ethernet Addressing

e 48-bit addressing

e Unique address assigned to each station (NIC)

e Destination address in each packet can specify delivery to
— A single computer (unicast)
— All computers in broadcast domain (broadcast)

— Some computers in broadcast domain (multicast)
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Ethernet Addressing
(continued)

e Broadcast addressis dl 1s

e Single bit determines whether remaining addresses are

unicast or multicast

multicast bit

|

XXXXXXXM

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

e Multicast bit travels first on the wire
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Ethernet Frame Processing

Dest. Source Frame
Address  Address Type Data In Frame

6 6 2 46 - 1500

<~—— Header Payload

Dedicated physical layer hardware

— Checks and removes preamble and CRC on input
— Computes and appends CRC and preamble on output

e [ayer 2 systems use source, destination and (possibly) type
fields
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| Nnter net

e Set of (heterogeneous) computer networks interconnected by
|P routers

e End-user computers, called hosts, each attach to specific
network

e Protocol software
— Runs on both hosts and routers

— Provides illusion of homogeneity
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| nter net Protocols Of | nterest

e |Layer?2

— Address Resolution Protocol (ARP)
e Layer3

— Internet Protocol (1P)
e |Layer4

— User Datagram Protocol (UDP)

— Transmission Control Protocol (TCP)
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| P Datagram For mat

0 4 8 16 19 24 31
VERS HLEN SERVICE TOTAL LENGTH
ID FLAGS F. OFFSET
TTL TYPE HDR CHECKSUM
SOURCE
DESTINATION

IP OPTIONS (MAY BE OMITTED)

PADDING

BEGINNING OF PAYLOAD

e [Format of each packet sent across Internet

e Fixed-size fields make parsing efficient

NSD-Agere -- Chapt. 3

2004



|P Datagram Fields

Field Meaning
VERS Version number of IP being used (4)
HLEN Header length measured in 32-bit units
SERVICE Level of service desired
TOTAL LENGTH Datagram length in octets including header
ID Unique value for this datagram
FLAGS Bits to control fragmentation
F. OFFSET Position of fragment in original datagram
TTL Time to live (hop countdown)
TYPE Contents of payload area
HDR CHECKSUM  One’s-complement checksum over header
SOURCE IP address of original sender
DESTINATION IP address of ultimate destination
IP OPTIONS Special handling parameters
PADDING To make options a 32-bit multiple
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| P addressing

e 32-bit Internet address assigned to each computer
e Virtual, hardware independent value
e Prefix identifies network; suffix identifies host

e Network systems use an address mask to specify the
boundary between prefix and suffix
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Next-Hop Forwarding

e Routing table

— Found in both hosts and routers

— Stores ( destination, mask, next_hop) tuples
e Route lookup

— Takes destination address as argument

— Finds next hop

— Uses longest-prefix match
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Next-Hop Forwarding
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UDP Datagram Format

0 16 31
SOURCE PORT DESTINATION PORT
MESSAGE LENGTH CHECKSUM
BEGINNING OF PAYLOAD
Field Meaning
SOURCE PORT ID of sending application

DESTINATION PORT ID of receiving application
MESSAGE LENGTH Length of datagram including the header
CHECKSUM One’s-complement checksum over entire datagram
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TCP Segment Format

0 10 16 24 31
SOURCE PORT DESTINATION PORT
SEQUENCE
ACKNOWLEDGEMENT
HLEN NOT USED CODE BITS WINDOW
CHECKSUM URGENT PTR
OPTIONS (MAY BE OMITTED) PADDING

BEGINNING OF PAYLOAD

e Sent end-to-end

e Fixed-size fields make parsing efficient
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TCP Segment Fields

Field Meaning
SOURCE PORT ID of sending application
DESTINATION PORT ID of receiving application
SEQUENCE Sequence number for data in payload
ACKNOWLEDGEMENT Acknowledgement of data received
HLEN Header length measured in 32-bit units
NOT USED Currently unassigned
CODE BITS URGENT, ACK, PUSH, RESET, SYN, FIN
WINDOW Receiver’s buffer size for additional data
CHECKSUM One’s-complement checksum over entire segment
URGENT PTR Pointer to urgent data in segment
OPTIONS Special handling
PADDING To make options a 32-bit multiple
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lllustration Of Encapsulation

UDP HEADER

UDP PAYLOAD

IP HEADER

IP PAYL

OAD

l

ETHERNET HDR.

ETHERNET PAYLOAD

e Field in each header specifies type of encapsulated packet
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Example ARP Packet Format

0 8

16

24 31

ETHERNET ADDRESS TYPE (1)

IP ADDRESS TYPE (0800)

ETH ADDR LEN (6) IP ADDR LEN (4)

OPERATION

SENDER’S ETH ADDR (first 4 octets)

SENDER’S ETH ADDR (last 2 octets)

SENDER’S IP ADDR (first 2 octets)

SENDER’S IP ADDR (last 2 octets)

TARGET'S ETH ADDR (first 2 octets)

TARGET'S ETH ADDR (last 4 octets)

TARGET'S IP ADDR (all 4 octets)

e [Format when ARP used with Ethernet and IP

e [Each Ethernet address Is six octets

e Each IP address is four octets
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End Of Review






|V

Conventional Computer Hardware Architecture
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Softwar e-Based Network System

e Uses conventional hardware (e.g., PC)
e Software

— Runs the entire system

— Allocates memory

— Controls 1/0 devices

— Peaforms al protocol processing
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Why Study Protocol Processing
On Conventional Hardware?

e Past
— Employed in early |P routers

— Many agorithms developed/ optimized for conventional
hardware

e Present

— Used in low-speed network systems
— Easlest to create/ modify

— Costs less than special-purpose hardware
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Why Study Protocol Processing
On Conventional Hardwar e?
(continued)

e [uture
— Processors continue to increase in speed

— Some conventional hardware present in all systems
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Why Study Protocol Processing
On Conventional Hardwar e?
(continued)

e [uture

— Processors continue to increase in speed
— Some conventional hardware present in all systems

— You will build software-based systems in |ab!
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Serious Question

e Which is growing faster?
— Processing power
— Network bandwidth

e Note: if network bandwidth growing faster
— Need special-purpose hardware

— Conventiona hardware will become irrelevant
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Growth Of Technologies

10 Gbps
1 OC-192
2.4 Gbps
10,000 A .
e
@
622 Mbps
- " Pent.-3GH
1,000 + oC 12 en z
bos e e o
100 Mbps . e )
FODI e Pent.-400
........... ®
100 + & Pent.-166
486-33 e o
............. 486-66
o
10 |+ "..
10 Mpbs
Ethernet
| | | | | | | | | | | | | -
1990 1992 1994 1996 1998 2000 2002
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Conventional Computer Hardware

Four important aspects

Processor
Memory
/O interfaces

One or more buses
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| llustration Of Conventional
Computer Architecture

CPU MEMORY
< bus >

~

network interfaces and other 1/0 devices

e Busis centra, shared interconnect

e All components contend for use
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Bus Organization And Operations

_ L J L J
Yo Y Y

control lines address lines data lines

e Parale wires (C+A+D total)

L

e Used to pass
— Control information (C bits)
— An address (A bits)
— A datavalue (D bits)
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Bus Width

e Number of parallel data bits known as width of bus
e \Wider bus

— Transfers more data per unit time

— Costs more

— Requires more physical space

e Compromise: to simulate wider bus, use hardware that
multiplexes transfers
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Bus Paradigm

e Only two basic operations
— Fetch

— Store

e All operations cast as forms of the above
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Fetch/Store

e [Fundamental paradigm

e Used throughout hardware, including network processors
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Fetch Operation

e Place address of a device on address lines
e |ssue fetch on control lines

e Use control lines to wait for device that owns the address to
respond

e |[f operation successful, extract value (response) from data
lines

e |f not successful, report error
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Store Operation

e Place address of a device on address lines
e Place value on data lines
e |ssue store on control lines

e Use control lines to wait for device that owns the address to
respond

e |f operation does not succeed, report error

NSD-Agere -- Chapt. 4 13 2004



Example Of Operations M apped
Into Fetch/Store Paradigm

e |magine disk device attached to a bus

e Assume disk hardware supports three (nontransfer)
operations:

— Start disk spinning
— Stop disk

— Determine current status
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Example Of Operations M apped
Into Fetch/Store Paradigm
(continued)

e Assign the disk two contiguous bus addresses D and D+1

e Arrange for store of nonzero to address D to start disk
spinning

e Arrange for store of zero to address D to stop disk

e Arrange for fetch from address D+1 to return current status

e Note: effect of store to address D+1 can be defined as

— Appears to work, but has no effect

— Returns an error
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Bus Address Space

e Arbitrary hardware can be attached to bus
e K address lines result in 2% possible bus addresses
e Address can refer to
— Memory (e.g., RAM or ROM)
— 1/O device
e Arbitrary devices can be placed at arbitrary addresses

e Address space can contain ‘‘holes’
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Bus Address Terminology

e Device on bus known as memory mapped /0

e | ocations that correspond to nontransfer operations known
as Control and Satus Registers (CSRs)
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Example Bus Address Space

highest bus address ——»
disk
NIC
memory
lowest bus address ———»
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Network 1 /O On
Conventional Hardware

e Network Interface Card (NIC)
— Attaches between bus and network
— Operates like other 1/0 devices
— Handles electrical /optical details of network
— Handles electrical details of bus

— Communicates over bus with CPU or other devices
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Making Network | /0O Fast

e Key idea migrate more functionality onto NIC
e [our techniques used with bus

— Onboard address recognition & filtering

— Onboard packet buffering

— Direct Memory Access (DMA)

— Operation and buffer chaining
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Onboard Address Recognition And Filtering

e NIC given set of addresses to accept
— Station’s unicast address
— Network broadcast address
— Zero or more multicast addresses
e When packet arrives, NIC checks destination address
— Accept packet If address on list

— Discard others
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Onboard Packet Buffering

e NIC given high-speed local memory
e |ncoming packet placed in NIC's memory

e Allows computer’s memory/bus to operate slower than
network

e Handles small packet bursts
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Direct Memory Access (DMA)

e CPU
— Allocates packet buffer in memory
— Passes buffer address to NIC
— (Goes on with other computation
e NIC
— Accepts incoming packet from network
— Copies packet over bus to buffer in memory

— Informs CPU that packet has arrived
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Buffer Chaining

e CPU
— Allocates multiple buffers
— Passes linked list to NIC
e NIC
— Recelves next packet
— Divides into one or more buffers

e Advantage: a buffer can be smaller than a packet
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Operation Chaining

e CPU
— Allocates multiple buffers
— Builds linked list of operations
— Passeslist to NIC
e NIC
— Follows list and performs instructions
— Interrupts CPU after each operation

e Advantage: multiple operations proceed without CPU
Intervention
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|llustration Of
Operation Chaining

i
l l

| packet buffer | | packet buffer | | packet buffer

e Optimizes movement of data to memory
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Data Flow Diagram

NIC
data leaves —

data arrives ~ :

)
G

memory

e Depicts flow of data through hardware units

e Size of arrow represents throughput

e Used throughout the course and text
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Summary

e Software-based network systems run on conventional
hardware

— Processor

— Memory

— 1/O devices
— Bus

e Network interface cards can be optimized to reduce CPU
load

NSD-Agere -- Chapt. 4 28 2004



Questions?




V

Basic Packet Processing:
Algorithms And Data Structures
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Copying
e Used when packet moved from one memory location to
another
e EXpensive
e Must be avoided whenever possible
— Leave packet in buffer

— Pass buffer address among threads/layers
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Possibilities For Buffer Allocation

e Fixed-sze buffers
* Large enough for largest packet

*  Small, with bultiple buffers linked together for large
packets

e Variable-size buffers
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Buffer Addressing

e Buffer address must be resolvable in all contexts

e Easiest implementation: keep buffers in kernel space
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|nteger Representation

e Two standards
— Little endian (least-significant byte at lowest address)

— Big endian (most-significant byte at lowest address)
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NSD-Agere --

lllustration Of Big And
Little Endian Integers

increasing memory addresses

-

i 2 3 4

little endian

increasing memory addresses

-

4 3 2 1

big endian
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e Needed when heterogeneous computers communicate

|nteger Conversion

e Protocols define network byte order

e Computers convert to network byte order

e Typica library functions

Function datasize Translation

ntohs 16 bits  Network byte order to host’s byte order
htons 16 bits  Host’s byte order to network byte order
ntohl 32 bits  Network byte order to host’s byte order
htonl 32 bits Host’'s byte order to network byte order
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Examples Of Algorithms | mplemented
With Software-Based Systems

e Layer?2
— Ethernet bridge
e Layer3
— |P forwarding
— |P fragmentation and reassembly
e |Layear4
— TCP connection recognition and splicing
e Other
— Hash table lookup
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Why Study These Algorithms?
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Why Study These Algorithms?

e Provide insight to packet processing tasks
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Why Study These Algorithms?

e Provide insight to packet processing tasks
e Renforce concepts

e Help students recall protocol details
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Why Study These Algorithms?

e Provide insight to packet processing tasks
e Renforce concepts

e Help students recall protocol details

e Youwill need them in lab!
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Ethernet Bridge

Ethernet 1 Ethernet 2

BRIDGE

e Used between a pair of Ethernets

e Provides transparent, layer 2 connection
e Listensin promiscuous mode

e [Forwards frames in both directions

o Uses addresses to filter
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Bridge Filtering

e Uses source address in frames to identify computers on each
network

e Uses destination address to decide whether to forward frame
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Bridge Algorithm

Assume: two network interfaces each operating in promiscuous
mode.

Create an empty list, L, that will contain pairs of values;
Do forever {
Acquire the next frame to arrive;
Set | to the interface over which the frame arrived,
Extract the source address, S;
Extract the destination address, D;
Add the pair (S, I) to list L if not already present.
If the pair (D, |) appears inlist L {
Drop the frame;
} Else {
Forward the frame over the other interface;

}
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| mplementation Of Table L ookup

e Need high speed (more on this later)

e Software-based systems typically use hashing for table
lookup

NSD-Agere -- Chapt. 5 12 2004



Hashing

e Optimizes number of probes
e Works wedl if table not full
e Practical technique: double hashing
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Hashing Algorithm

Given: a key, a table in memory, and the table size N.

Produce: a slot in the table that corresponds to the key
or an empty table slot if the key is not in the table.

Method: double hashing with open addressing.

Choose P, and P, to be prime numbers;

Fold the key to produce an integer, K;

Compute table pointer Q equal to (P41 xK) modulo N;

Compute increment R equal to (P, xK) modulo N;

While (table slot Q not equal to K and nonempty) {
Q « (Q + R) modulo N;

}

At this point, Q either points to an empty table slot or to the
slot containing the key.
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Address L ookup

e Computer can compare integer in one operation
e Network address can be longer than integer (e.g., 48 bits)
e Two possihilities

— Use multiple comparisons per probe

— Fold address into integer key
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Folding

e Maps N-bit value into M-bit key, M <N
e Typical technique: exclusive or
e Potential problem: two values map to same key

e Solution: compare full value when key matches
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|P Forwarding

e Used in hosts as well as routers

e Conceptual mapping
(next hop, interface) — f(datagram, routing table)

e Tabledriven
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|P Routing Table

e One entry per destination

e Entry contains
— 32-bit IP address of destination
— 32-bit address mask
— 32-bit next-hop address

— N-hit interface number
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Example IP Routing Table

Destination Address Next-Hop Interface
Address Mask Address Number
192.5.48.0 255.255.255.0 128.210.30.5 2
128.10.0.0 255.255.0.0 128.210.141.12 1
0.0.0.0 0.0.0.0 128.210.30.5 2

e Values stored in binary
e [nterface number is for internal use only

e Zero mask produces default route
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| P Forwarding Algorithm

Given: destination address A and routing table R.

Find: a next hop and interface used to route datagrams to A.
For each entry in table R {

Set MASK to the Address Mask in the entry;
Set DEST to the Destination Address in the entry;
If (A & MASK) == DEST {
Stop; use the next hop and interface in the entry;

}
}

If this point is reached, declare error: no route exists;

e Note: agorithm assumes table is sorted in longest-prefix
order
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|P Fragmentation

e Needed when datagram larger than network MTU

e Divides |P datagram into fragments

e Uses FLAGS hits in datagram header
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| P Fragmentation Algorithm
(Part 1. Initialization)

Given: an IP datagram, D, and a network MTU.
Produce: a set of fragments for D.
If the DO NOT FRAGMENT bit is set {

Stop and report an error;

}

Compute the size of the datagram header, H;
Choose N to be the largest multiple of 8 such

that H+N<MTU;
Initialize an offset counter, O, to zero;
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| P Fragmentation Algorithm
(Part 2: Processing)

Repeat until datagram empty {
Create a new fragment that has a copy of D’s header;
Extract up to the next N octets of data from D and place
the data in the fragment;
Set the MORE FRAGMENTS bit in fragment header;
Set TOTAL LENGTH field in fragment header to be H+N;
Set FRAGMENT OFFSET field in fragment header to O;
Compute and set the CHECKSUM field in fragment
header;
Increment O by N/8;
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Reassembly

e Complement of fragmentation

e UsesIP SOURCE ADDRESS and IDENTIFICATION fields
In datagram header to group related fragments

e Joins fragments to form original datagram
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Reassembly Algorithm

Given: a fragment, F, add to a partial reassembly.
Method: maintain a set of fragments for each datagram.
Extract the IP source address, S, and ID fields from F;
Combine S and ID to produce a lookup key, K;
Find the fragment set with key K or create a new set;
Insert F into the set;
If the set contains all the data for the datagram {
Form a completely reassembled datagram and process it;
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Data Structure For Reassembly

e Two parts
— Buffer large enough to hold original datagram
— Linked list of pieces that have arrived

1 [20] 1 [80] 1 [40]A]

reassembly buffer fragment in

/ reassembly buffer

NSD-Agere -- Chapt. 5 26 2004



TCP Connection

e |nvolves a pair of endpoints

e Started with SYN segment

e Terminated with FIN or RESET segment
e |dentified by 4-tuple

(src addr, dest addr, src port, dest port)
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TCP Connection Recognition Algorithm
(Part 1)

Given: a copy of traffic passing across a network.
Produce: a record of TCP connections present in the traffic.
Initialize a connection table, C, to empty;
For each IP datagram that carries a TCP segment {
Extract the IP source, S, and destination, D, addresses;
Extract the source, P4, and destination, P,, port numbers;

Use (S,D,P4,P5,) as a lookup key for table C and
create a new entry, if needed,;
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TCP Connection Recognition Algorithm
(Part 2)

If the segment has the RESET bit set, delete the entry;

Else if the segment has the FIN bit set, mark the
connection

closed in one direction, removing the entry from C if
the connection was previously closed in the other;

Else if the segment has the SYN bit set, mark the
connection as

being established in one direction, making it completely
established if it was previously marked as being
established in the other;
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TCP Splicing

e Join two TCP connections
e Allow datato pass between them

e To avold termination overhead translate segment header
fields

— Acknowledgement number

— Seguence number
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lllustration Of TCP Splicing

Host TCP connection #1 . TCP connection #2 Host
A splicer B
sequence 200 sequence 50 sequence 860 sequence 1200
Connection Sequence Connection Sequence
& Direction Number & Direction Number
Incoming #1 200 Incoming #2 1200
Outgoing #2 860 Outgoing #1 50

Change 660 Change -1150
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TCP Splicing Algorithm
(Part 1)

Given: two TCP connections.

Produce: sequence translations for splicing the connection.

Compute D1, the difference between the starting sequences
on incoming connection 1 and outgoing connection 2,;

Compute D2, the difference between the starting sequences
on incoming connection 2 and outgoing connection 1,
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TCP Splicing Algorithm
(Part 2)

For each segment {

If segment arrived on connection 1 {

Add D1 to sequence number;

Subtract D2 from acknowledgement number;
} else if segment arrived on connection 2 {

Add D2 to sequence number;
Subtract D1 from acknowledgement number;
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Summary

e Packet processing algorithms include
— Ethernet bridging
— |P fragmentation and reassembly
— IP forwarding
— TCP splicing

e Table lookup important
— Full match for layer 2
— Longest prefix match for layer 3
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Questions?




For Hands-On Experience With

A Software-Based System:

Enroll iIn CS636!
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VI

Packet Processing Functions
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Goal

e |dentify functions that occur in packet processing
e Devise set of operations sufficient for all packet processing

e Find an efficient implementation for the operations
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Packet Processing Functions We Will Consider

e Address lookup and packet forwarding

e Error detection and correction

e Fragmentation, segmentation, and reassembly
e Frame and protocol demultiplexing

e Packet classification

e Queueing and packet discard

e Scheduling and timing

e Security: authentication and privacy

e Traffic measurement, policing, and shaping
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Address Lookup And Packet Forwarding

e Forwarding reguires address lookup
e Lookup istable driven
e Two types
— Exact match (typically layer 2)
— Longest-prefix match (typically layer 3)
e Cost depends on size of table and type of lookup
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Error Detection And Correction

e Data sent with packet used as verification
— Checksum
— CRC

e Cost proportional to size of packet

e Often implemented with special-purpose hardware
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An Important Note About Cost

The cost of an operation is proportional to the amount of data
processed. An operation such as checksum computation that

requires examination of all the data in a packet is among the
most expensive.
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Fragmentation, Segmentation, And Reassembly

e |P fragments and reassembles datagrams
e ATM segments and reassembles AALS packets
e Same idea; details differ
e Cost is high because
— State must be kept and managed

— Unreassembled fragments occupy memory
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Frame And Protocol Demultiplexing

e Traditiona technique used in layered protocols
e Type appears in each header

— Assigned on output

— Used on input to select *“‘next’’ protocol

e Cost of demultiplexing proportional to number of layers
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Packet Classification

e Alternative to demultiplexing
e Crosses multiple layers
e Achieves |lower cost

e More on classification later in the course
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Queueing And Packet Discard

e General paradigm is store-and-forward
— Incoming packet placed in queue
— Outgoing packet placed in queue
e When queue is full, choose packet to discard

o Affects throughput of higher-layer protocols
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Queueng Priorities

e Multiple queues used to enforce priority among packets
e |ncoming packet

— Assigned priority as function of contents

— Placed in appropriate priority queue
e Queueng discipline

— Examines priority queues

— Chooses which packet to send

NSD-Agere -- Chapt. 6 11 2004



Examples Of Queueing Disciplines

e Priority Queueing
— Assign unique priority number to each queue

— Choose packet from highest priority queue that Is
nonempty

— Known as strict priority queueing

— Can lead to starvation
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Examples Of Queueing Disciplines
(continued)

e Waeaghted Round Robin (WRR)

Assign unique priority number to each queue
Process all queues round-robin

Compute N, max number of packets to select from a
gueue proportional to priority

Take up to N packets before moving to next queue

Works well if all packets equal size
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Examples Of Queueing Disciplines
(continued)

e Weighted Fair Queueing (WFQ)
— Make selection from queue proportional to priority
— Use packet size rather than number of packets

— Allocates priority to amount of data from a queue rather
than number of packets
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Scheduling And Timing

e |mportant mechanisms

e Used to coordinate parallel and concurrent tasks
— Processing on multiple packets
— Processing on multiple protocols
— Multiple processors

e Scheduler attempts to achieve fairness
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Security: Authentication And Privacy

e Authentication mechanisms
— Ensure sender’ s identity
e Confidentiality mechanisms

— Ensure that intermediaries cannot interpret packet
contents

e Note: in common networking terminology, privacy refers to
confidentiality

— Example: Virtua Private Networks
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Traffic Measurement And Policing

e Used by network managers

e (Can measure aggregate traffic or per-flow traffic
e Often related to Service Level Agreement (SLA)
e (Costishigh if performed in real-time
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Traffic Shaping

e Make traffic conform to statistical bounds
e Typical use

— Smooth bursts

— Avoid packet trains
e Only possihilities

— Discard packets (seldom used)

— Delay packets
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Example Traffic Shaping M echanisms

e | eaky bucket
— Easy to implement
— Popular
— Sends steady number of packets per second
— Rate depends on number of packets waiting

— Does not guarantee steady data rate
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Example Traffic Shaping M echanisms
(continued)

e Token bucket
— Sends steady number of bits per second
— Rate depends on number of bits waiting
— Achieves steady data rate

— More difficult to implement
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Illustration Of Traffic Shaper

packet queue

forwards packets at
a steady rate

|

packets
arrive

R

e Packets
— Arrive in bursts

— Leave at steady rate
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Timer Management

e Fundamental piece of network system
e Needed for

— Scheduling

— Traffic shaping

— Other protocol processing (e.g., retransmission)
e Cost

— Depends on number of timer operations (e.g., Set,
cancel)

— Can be high
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Summary

e Primary packet processing functions are
— Address |lookup and forwarding
— Error detection and correction
— Fragmentation and reassembly
— Demultiplexing and classification
— Queueing and discard
— Scheduling and timing
— Security functions

— Traffic measurement, policing, and shaping
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VI

Protocol Software On A
Conventional Processor
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Possible | mplementations Of
Protocol Software

e |n an application program
— Easy to program
— Runs as user-level process
— No direct access to network devices
— High cost to copy data from kernel address space
— Cannot run at wire speed
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Possible | mplementations Of
Protocol Software
(continued)

e |n an embedded system

Special-purpose hardware device
Dedicated to specific task
|deal for stand-alone system

Software has full control

NSD-Agere -- Chapt. 7 3

2004



Possible | mplementations Of
Protocol Software
(continued)

e |n an embedded system

Special-purpose hardware device
Dedicated to specific task

|deal for stand-alone system
Software has full control

Y ou will experience this in lab!
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Possible | mplementations Of
Protocol Software
(continued)

e |n an operating system kernel
— More difficult to program than application
— Runs with kernel privilege

— Direct access to network devices
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| nterface To The Network

e Known as Application Program Interface (API)
e Can be

— Asynchronous

— Synchronous
e Synchronous interface can use

— Blocking

—  Poalling
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Asynchronous API

e Also known as event-driven
e Programmer
— Writes set of functions
— Specifies which function to invoke for each event type
e Programmer has no control over function invocation
e Functions keep state in shared memory
e Difficult to program

e Example: function f() called when packet arrives
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Synchronous APl Using Blocking

e Programmer
—  Writes main flow-of-control
— Explicitly invokes functions as needed
— Built-in functions block until request satisfied

e Example: function wait_for_packet() blocks until packet
arrives

e [Easier to program
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Synchronous API Using Poalling

e Nonblocking form of synchronous API
e Each function call returns immediately
— Performs operation if available

— Returns error code otherwise

e Example: function try for packet() either returns next
packet or error code if no packet has arrived

e Closer to underlying hardware
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Typical Implementations And APIs

e Application program
— Synchronous API using blocking (e.g., socket API)

— Another application thread runs while an application
blocks

e Embedded systems
— Synchronous API using polling
— CPU dedicated to one task

e QOperating systems
— Asynchronous API

— Built on interrupt mechanism
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Example Asynchronous API

e Design goals

— For use with network processor

— Simplest possible interface

— Sufficient for basic packet processing tasks
e |ncludes

— 1/0O functions

— Timer manipulation functions
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Example Asynchronous API
(continued)

e |nitialization and termination functions
— on_startup()
— on_shutdown()

e [nput function (called asynchronoudly)
— recv_frame()

e OQutput functions
— new_fbuf()

— send frame()
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Example Asynchronous API
(continued)

e Timer functions (called asynchronously)
— delayed cal()
— periodic_call()
— cancd_call()

e |nvoked by outside application

— console_command()
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Processing Priorities

e Determine which code CPU runs a any time
e Generd idea

— Hardware devices need highest priority

— Protocol software has medium priority

— Application programs have lowest priority

e (Queues provide buffering across priorities
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| llustration Of Priorities

Applications

protocol
processing

packet queue
between levels — | ——=

device drivers
handling frames

NIC, NIC,
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| mplementation Of Priorities
In An Operating System

e Two possible approaches
— Interrupt mechanism

— Kernd threads
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Interrupt Mechanism

e Built into hardware

e Operates asynchronously

e Saves current processing state
e Changes processor status

e Branches to specified location
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Two Types Of Interrupts

e Hardware interrupt
— Caused by device (bus)
— Must be serviced quickly
e Software interrupt
— Caused by executing program
— Lower priority than hardware interrupt

— Higher priority than other OS code
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Software Interrupts And
Protocol Code

e Protocol stack operates as software interrupt
e \When packet arrives

— Hardware interrupts

— Device driver raises software interrupt
e When device driver finishes

— Hardware interrupt clears

— Protocol code is invoked
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Kernd Threads

e Alternative to interrupts
e Familiar to programmer
e Finer-grain control than software interrupts

e (Can be assigned arbitrary range of priorities

NSD-Agere -- Chapt. 7 19 2004



Conceptual Organization

e Packet passes among multiple threads of control
e Queue of packets between each pair of threads

e Threads synchronize to access queues
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Possible Organization Of
Kernel Threads For Layered Protocols

e One thread per layer
e One thread per protocol
e Multiple threads per protocol

e Multiple threads per protocol plus timer management
thread(s)

e One thread per packet

NSD-Agere -- Chapt. 7 21 2004



One Thread Per Layer

e FEasy for programmer to understand
e |mplementation matches concept
e Allows priority to be assigned to each layer

e Means packet is enqueued once per layer
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lllustration Of One Thread Per Layer

applications
app. sends ———» T <1—— app. receives

3 - Layer 4

<«— Layer 3

VSN (Yo IS
Qéw k_/épu

<-— Layer 2

packets arrive ———» <— packets leave
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One Thread Per Protocol

e Like one thread per layer

— Implementation matches concept

— Means packet is enqueued once per layer
e Advantages over one thread per layer

— Easier for programmer to understand

— Finer-grain control

— Allows priority to be assigned to each protocol
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| llustration Of One Thread Per Protocol

applications

queue

W

queue

—~

e TCP and UDP reside at same layer

e Separation alows priority
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Multiple Threads Per Protocol

e Further divison of duties
e Simplifies programming
e More control than single thread
e Typica division
— Thread for incoming packets
— Thread for outgoing packets
— Thread for management/timing
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e Separate timer makes programming easier
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Timers And Protocols

e Many protocols implement timeouts
— TCP
*  Retransmission timeout
*  2MSL timeout
— ARP
*  Cache entry timeout
— IP

*  Reassembly timeout
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Multiple Threads Per Protocol
Plus Timer Management Thread(s)

e (Observations

— Many protocols each need timer functionality
— Each timer thread incurs overhead

e Solution: consolidate timers for multiple protocols
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|sOne Timer Thread Sufficient?

e |ntheory
— Yes
e |n practice

— Large range of timeouts (microseconds to tens of
seconds)

— May want to give priority to some timeouts

e Solution; two or more timer threads
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Multiple Timer Threads

e Two threads usually suffice
e Large-granularity timer
— Values specified in seconds
— Operates at lower priority
e Small-granularity timer
— Values specified in microseconds

— Operates at higher priority
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Thread Synchronization

e Thread for layer |
— Needs to pass a packet to layer i + 1
— Enqueues the packet

e Thread for layeri+ 1

— Retrieves packet from the queue
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Thread Synchronization

e Thread for layer |
— Needs to pass a packet to layer i + 1
— Enqueues the packet

e Thread for layeri+ 1
— Retrieves packet from the queue

e Context switch required!
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Context Switch

e (S function
e CPU passes from current thread to a waiting thread
e High cost

e Must be minimized
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One Thread Per Packet

e Preallocate set of threads

e Thread operation
— Waits for packet to arrive
— Moves through protocol stack
— Returns to wait for next packet

e Minimizes context switches
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Summary

e Packet processing software usually runs in OS
e APl can be synchronous or asynchronous
e Priorities achieved with
— Software interrupts
— Threads
e Variety of thread architectures possible
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Questions?
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A Brief History Of
Computer Hardware

e 1940s
— Beginnings
e 1950s
— Consolidation of von Neumann architecture
— |/O controlled by CPU
e 1960s
— |1/O becomes important

— Evolution of third generation architecture with interrupts
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| /O Processing

e Evolved from after-thought to central influence
e | ow-end systems (e.g., microcontrollers)

— Dumb 1/0O interfaces

— CPU does all the work (polls devices)

— Single, shared memory

— Low cost, but low speed
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| /O Processing
(continued)

e Mid-range systems (e.g., minicomputers)
— Single, shared memory

— 1/O interfaces contain logic for transfer and status
operations

- CPU

*  Starts device then resumes processing
— Device

*  Transfers data to/ from memory

*  Interrupts when operation complete
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| /O Processing
(continued)

e High-end systems (e.g., mainframes)
— Separate, programmable | /O processor
— OS downloads code to be run
— Device has private on-board buffer memory

— Examples: IBM channel, CDC peripheral processor
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Networ king Systems Evolution

e Twenty year history

e Same trend as computer architecture
— Began with central CPU
— Shift to emphasison |/O

e Three main generations
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First Generation Network Systems

e Traditional software-based router

e Used conventional (minicomputer) hardware
— Single general-purpose processor
— Single shared memory
— 1/O over abus

— Network interface cards use same design as other 1/0
devices
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Protocol Processing In
First Generation Network Systems

NI\C1 StandaId CPU NI\C2
framing & framing &
address el othgr address
recognition reiEsalnl recognition

e General-purpose processor handles most tasks
e Sufficient for low-speed systems

e Note: we will examine other generations later in the course
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How Fast Does A CPU Need To Be?

e Dependson
— Rate at which data arrives

— Amount of processing to be performed
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Two Measures Of Speed

e Datarate (bits per second)
— Pe interface rate
— Aggregate rate

e Packet rate (packets per second)
— Per interface rate

— Aggregate rate
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How Fast Is A Fast Connection?

e Definition of fast data rate keeps changing
— 1960: 10 Kbps
— 1970: 1 Mbps
— 1980: 10 Mbps
— 1990: 100 Mbps
— 2000: 1000 Mbps (1 Gbps)
— 2004: 2400 Mbps
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e Definition of fast data rate keeps changing
1960:
1970:
1980:
1990:
2000:
2004
Soon:

How Fast Is A Fast Connection?
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10 Kbps
1 Mbps
10 Mbps
100 Mbps

1000 Mbps (1 Gbps)

2400 Mbps
10 Gbps???
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Aggregate Rate Vs.
Per -l nterface Rate

e |[nterfacerate
— Rate at which data enters/leaves
e Aggregate
— Sum of interface rates
— Measure of total data rate system can handle

e Note: aggregate rate crucial if CPU handles traffic from all
Interfaces

NSD-Agere -- Chapt. 8 12 2004



A Note About System Scale

The aggregate data rate is defined to be the sum of the rates at
which traffic enters or leaves a system. The maximum
aggregate data rate of a system is important because it limits

the type and number of network connections the system can
handle.
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Packet Rate Vs. Data Rate

e Sources of CPU overhead
— Per-bit processing
— Per-packet processing

e |[nterface hardware handles much of per-bit processing
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A Note About System Scale

For protocol processing tasks that have a fixed cost per packet,
the number of packets processed is more important than the
aggregate data rate.
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Example Packet Rates

Technology Network Packet Rate Packet Rate
Data Rate  For Small Packets For Large Packets
In Gbps In Kpps In Kpps
10Base-T 0.010 19.5 0.8
100Base-T 0.100 195.3 8.2
OC-3 0.156 303.8 12.8
0OC-12 0.622 1,214.8 51.2
1000Base-T 1.000 1,953.1 82.3
0C-48 2.488 4,860.0 204.9
0C-192 9.953 19,440.0 819.6
OC-768 39.813 77,760.0 3,278.4

e Key concept: maximum packet rate occurs with minimum-

Size packets
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Bar

10° Kpps -}
104 Kpps -}
102 Kpps -}
102 Kpps -}
101 Kpps -}

109 Kpps

Chart Of Example Packet Rates

303.8

195.3
19.5 I
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1214.8

77760.0

19440.0

4860.0
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Bar Chart Of Example Packet Rates

)
10° Kpps -+ 77760.0
19440.0
L s == 4860.0
1953.1 —
1214.8
102 Kpps -} '
303.8
195.3
102 Kpps -} S
195 -
101 Kpps + o '
10°Kpps + |

>
10Base-T 100Base-T 0OC-3 OC-12 1000Base-T 0OC-48 0OC-192 OC-768

e Gray areas show rates for large packets
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Time Per Packet

Technology Time per packet Time per packet
for small packets for large packets

(inps) (inps)
10Base-T 51.20 1,214.40
100Base-T 5.12 121.44
OC-3 3.29 78.09
OC-12 0.82 19.52
1000Base-T 0.51 12.14
OC-48 0.21 4.88
OC-192 0.05 1.22
OC-768 0.01 0.31

e Note: these numbers are for a single connection!
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Conclusion

Software running on a general-purpose processor Is an
Insufficient architecture to handle high-speed networks because
the aggregate packet rate exceeds the capabilities of a CPU.
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Possible Ways To Solve
The CPU Bottleneck

e Fine-grain parallelism

e Symmeltric coarse-grain parallelism
e Asymmetric coarse-grain parallelism
e Special-purpose Coprocessors

e NICs with onboard processing

e Smart NICs with onboard stacks

e Cadll switching

e Data pipelines
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Fine-Grain Parallelism

e Multiple processors
e [nstruction-level parallelism
e Example:

— Parallel checksum: add values of eight consecutive
memory locations at the same time

e Assessment: insignificant advantages for packet processing
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Symmetric Coarse-Grain Parallelism

e Symmetric multiprocessor hardware

— Multiple, identical processors
e Typical design: each CPU operates on one packet
e Requires coordination

e Assessment: coordination and data access means N
processors cannot handle N times more packets than one
[Processor
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Asymmetric Coarse-Grain Parallelism

e Multiple processors
e Each processor

— Optimized for specific task

— Includes generic instructions for control
e Assessment

— Same problems of coordination and data access as
symmetric case

— Designer must choose how many copies of each
processor type

NSD-Agere -- Chapt. 8 23 2004



Special-Purpose Coprocessors

e Specia-purpose hardware

e Added to conventional processor to speed computation

e |nvoked like software subroutine

e Typica implementation: ASIC chip

e Choose operations that yield greatest improvement in speed
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General Principle

To optimize computation, move operations that account for the
most CPU time from software into hardware.
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General Principle

To optimize computation, move operations that account for the
most CPU time from software into hardware.

e |dea known as Amdahl’s law (performance improvement
from faster hardware technology is limited to the fraction of
time the faster technology can be used)
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NICs And Onboard Processing

e Basic optimizations
— Onboard address recognition and filtering
— Onboard buffering
— DMA
— Buffer and operation chaining

e Further optimization possible
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Smart NICs With Onboard Stacks

e Add hardwareto NIC
—  Off-the-shelf chips for layer 2
— ASICsfor layer 3

e Allows each NIC to operate independently
— Effectively a multiprocessor

— Total processing power increased dramatically
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| llustration Of Smart NICs
With Onboard Processing

Smart NIC,

|

Sandard CPU

|

most layer 2 processing
some layer 3 processing

all other
processing

Smart NIC,

|

most layer 2 processing
some layer 3 processing

e NIC handles layers 2 and 3

e CPU only handles exceptions
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Cell Switching

e Alternative to new hardware
e Changes

— Basic paradigm

— All details (e.g., protocols)

e Connection-oriented
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Cdl Switching Detalls

e Fixed-size packets
— Allows fixed-size buffers
— Guaranteed time to transmit/receive

e Relative (connection-oriented) addressing
— Smaller address size
— Label on packet changes at each switch
— Requires connection setup

e Example: ATM
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Data Pipeline

e Move each packet through series of processors

e Each processor handles some tasks

e Assessment

— Weall-suited to many protocol processing tasks

— Individual processor can be fast
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|llustration Of Data Pipeline

packets enter interstage packet buffer packets |eave
the pipeline stage 4 the pipeline
l stage 1 stage 3 stage 5 l
stage 2

I 1 e 1 N S e S e N o S

e Pipeline can contain heterogeneous processors

e Packets pass through each stage
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Summary

e Packet rate can be more important than data rate

e Highest packet rate achieved with smallest packets

e Rates measured per interface or aggregate

e Specia hardware needed for highest-speed network systems
— Smart NIC can include part of protocol stack

— Parallel and pipelined hardware also possible
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Questions?




| X

Classification
And
Forwarding
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Recall

e Packet demultiplexing
— Used with layered protocols
— Packet proceeds through one layer at a time

— On input, software in each layer chooses module at next
higher layer

— On output, type field in each header specifies
encapsulation
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The Disadvantage Of Demultiplexing

Although it provides freedom to define and use arbitrary
protocols without Introducing transmission overhead,

demultiplexing Is Inefficient because It Imposes seguential
processing among layers.
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Packet Classification

e Alternative to demultiplexing
e Designed for higher speed
e Consders al layers at the same time
e Linear in number of fields
e Two possible implementations
— Software

— Hardware
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Example Classification

e (lassify Ethernet frames carrying traffic to Web server
e Specify exact header contents in rule set
e Example

— Ethernet type field specifies IP

— |P type field specifies TCP

— TCP destination port specifies Web server
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Example Classification
(continued)

e Fedsizes and values
— 2-octet Ethernet type 1s 080044

— l-octet IP typeis 6
— 2-octet TCP destination port is 80
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| llustration Of Encapsulated Headers

4 8

10

16 19 24

31

ETHERNET DEST. (0-1)

ETHERNET DESTINATION (2-5)

ETHERNET SOURCE (0-3)

ETHERNET SOURCE (4-5) ETHERNET TYPE
VERS HLEN SERVICE IP TOTAL LENGTH
IP IDENT FLAGS FRAG. OFFSET
IPTTL IP TYPE IP HDR. CHECKSUM

IP SOURCE ADDRESS

IP DESTINATION ADDRESS

TCP SOURCE PORT

TCP DESTINATION PORT

TCP SEQUENCE

TCP ACKNOWLEDGEMENT

HLEN

NOT USED

CODE BITS

TCP WINDOW

TCP CHECKSUM

TCP URGENT PTR

Start Of TCP Data...

e Highlighted fields are used for classification of Web server

traffic
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Softwar e | mplementation
Of Classification

e Compare values in header fields
e Conceptually alogical and of all field comparisons

e Example
if ((frame type == 0x0800) && (IP type ==6) && (TCP port == 80))
declare the packet matches the classification;

else
declare the packet does not match the classification;
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Optimizing Softwar e Classification

e Comparisons performed sequentially

e Can reorder comparisons to minimize effort
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Example Of Optimizing
Softwar e Classification
e Assume
—  95.0% of al frames have frame type 080014
— 87.4% of all frames have IP type 6
—  74.3% of all frames have TCP port 80

e Also assume values 6 and 80 do not occur in corresponding
positions in non-1P packet headers

e Reordering tests can optimize processing time
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Example Of Optimizing
Softwar e Classification
(continued)

if ((TCP port == 80) && (IP type == 6) && (frame type == 0x0800))
declare the packet matches the classification;
else

declare the packet does not match the classification;

e At each step, test the field that will eliminate the most
packets
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Note About Optimization

Although the maximum number of comparisons in a software
classifier is fixed, the average number of comparisons is
determined by the order of the tests; minimum comparisons

result if, at each step, the classifier tests the field that
eliminates the most packets.
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Hardware | mplementation Of Classification

e Can build special-purpose hardware
e Steps

— Extract needed fields

— Concatenate bits

— Place result in register

— Perform comparison

e Hardware can operate in parallel
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| llustration Of Hardwar e Classifier

Memory

<— packet in memory —>

wide data path to move
packet headers from memory ——»
to a hardware register

hardware register

specific header bytes constant to compare
extracted for comparison — /

comparator

result of comparison ——l

e Constant for Web classifier is 08.00.06.00.504¢
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Special Cases Of Classification

e Multiple categories
e Variable-size headers

e Dynamic classification
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|n Practice

e (lassification usually involves multiple categories
e Packets grouped together into flows

e May have a default category

e Each category specified with rule set
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Example Multi-Category Classification

e Fow 1. traffic destined for Web server
e FHow 2: traffic consisting of ICMP echo reguest packets
e How 3: al other traffic (default)
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Rule Sets

e \Web server traffic

— 2-octet Ethernet type i1s 080044

— 1-octet IP typeis 6

— 2-octet TCP destination port is 80
e |CMP echo traffic

— 2-octet Ethernet type 1s 080044

— l-octet IP typeis 1

— 1-octet ICMP typeis 8
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Softwar e | mplementation Of Multiple Rules

if (frame type != 0x0800) {
send frame to flow 3;
} else if (IPtype ==6 && TCP destination port == 80) {
send packet to flow 1;
} else if (IPtype ==1 && ICMP type ==8) {
send packet to flow 2;
} else {
send frame to flow 3;

e Further optimization possible
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Variable-Size Packet Headers

e Fidds not at fixed offsets
e FEasly handled with software

e Finite cases can be specified in rules
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Example Variable-Size Header: |P Options

e RuleSetl

2-octet frame type field contains 080014
1-octet field at the start of the datagram contains 454
1-octet type field in the | P datagram contains 6

2-octet field 22 octets from start of the datagram
contains 80

e Rule Set 2

2-octet frame type field contains 080044
1-octet field at the start of the datagram contains 4644
1-octet type field in the | P datagram contains 6

2-octet field 26 octets from the start of datagram
contains 80
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Effect Of Protocol Design On Classification

e Fixed headers fastest to classify
e Each variable-size header adds one computation step
e |nworst case, classification no faster than demultiplexing

e Extreme example: IPv6
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Hybrid Classification

packets classified into o
flows by hardware packets classified into
flows by software

Dy

hardware software
T . classifier . classifier . T .
packets arrive packets unrecognized exit for
for classification by hardware unclassified packets

e Combines hardware and software mechanisms
— Hardware used for standard cases
— Software used for exceptions

e Note: software classifier can operate at slower rate
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Two Basic Types Of Classification

o Static
— Flows specified in rule sets
— Header fields and values known a priori
e Dynamic
— Flows created by observing packet stream
— Values taken from headers
— Allows fine-grain flows

— Requires state information
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Example Static Classification

e Allocate one flow per service type

¢ One header field used to identify flow
— IP TYPE OF SERVICE (TOS)

e Use DIFFSERYV interpretation

e Note: Ethernet type field also checked
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Example Dynamic Classification

e Allocate flow per TCP connection
e Header fields used to identify flow
— IP source address
— |P destination address
— TCP source port number
— TCP destination port number
e Note: Ethernet type and IP type fields also checked
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| mplementation Of Dynamic Classification

e Usualy performed in software
e State kept in memory
e State information created/updated at wire speed
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Two Conceptual Bindings

classification: packet - flow

forwarding: flow — packet disposition

e (lassfication binding is usually 1-to-1

e [Forwarding binding can be 1-to-1 or many-to-1
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Flow | dentification

e Connection-oriented network
— Per-flow SVC can be created on demand
— Fow ID eguals connection 1D
e Connectionless network
— Flow ID used internally
— Each flow ID mapped to ( next hop, interface)
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Relationship Of Classification And Forwarding
In A Connection-Oriented Networ k

In a connection-oriented network, flow identifiers assigned by
classification can be chosen to match connection identifiers
used by the underlying network. Doing so makes forwarding
more efficient by eliminating one binding.
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Forwarding In A Connectionless Network

e Route for flow determined when flow created
e |ndexing used in place of route lookup

e Fow identifier corresponds to index of entry in forwarding
cache

e Forwarding cache must be changed when route changes
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Second Generation Network Systems

e Designed for greater scale

e Use classification instead of demultiplexing

e Decentralized architecture
— Additional computational power on each NIC
— NIC implements classification and forwarding

e High-speed internal interconnection mechanism
— Interconnects NICs

— Provides fast data path

NSD-Agere -- Chapt. 9 32 2004



| llustration Of Second Generation
Network Systems Architecture

Interface, Sandard CPU Interface,
Control
s A N And - A N
Exceptions

Layer 1 & 2 Class- Forward- Forward- Class- Layer 1 & 2

(framing) ification ing ification (framing)

fast data path ing
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Classification And Forwarding Chips

e Sold by vendors
e [mplement hardware classification and forwarding

e Typica configuration: rule sets given in ROM
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Summary

e (lassfication faster than demultiplexing
e Can be implemented in hardware or software
e Dynamic classification

— Uses packet contents to assign flows

— Requires state information
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Questions?




X1

Network Processors. Motivation And Purpose
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Second Generation Network Systems

e Concurrent with ATM development (early 1990s)
e Purpose: scale to speeds faster than single CPU capacity
e [eatures

— Use classification instead of demultiplexing

— Decentralized architecture to offload CPU

— Design optimized for fast data path
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Second Generation Network Systems
(details)

e Multiple network interfaces
— Powerful NIC
— Private buffer memory
e High-speed hardware interconnects NICs
e General-purpose processor only handles exceptions

e Sufficient for medium speed interfaces (100 Mbps)
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Reminder: Protocol Processing In
Second Generation Network Systems

Interface, Sandard CPU Interface,
Control
r A B And - A )
Layer 1 & 2| Class- | Forward- STl Forward- | Class- |Layer1& 2
(framing) | ification ing fast data path ing ification | (framing)

e NIC handles most of layers 1-3
e [ast-path forwarding avoids CPU completely
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Third Generation Network Systems

o | ate 1990s

e Functionality partitioned further

e Additional hardware on each NIC

e Almost all packet processing off-loaded from CPU
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Third Generation Design

e NIC contains

— ASIC hardware

— Embedded processor plus code in ROM
e NIC handles

— Classification

— Forwarding

— Traffic policing

— Monitoring and statistics
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Embedded Processor

e Two possihilities
— Complex Instruction Set Computer (CISC)
— Reduced Instruction Set Computer (RI1SC)
e RISC used often because
— Higher clock rates
— Smaller

— Lower power consumption
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Purpose Of Embedded Processor
In Third Generation Systems

Third generation systems use an embedded processor to handle
layer 4 functionality and exception packets that cannot be
forwarded across the fast path. An embedded processor
architecture Is chosen because ease of Implementation and
amenability to change are more important than speed.
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Protocol Processing In Third Generation Systems

Interlfacel standard CPU InterlfaceZ
A l A
- N - )
Layer 4 Other processing Layer 4
Embedded : Embedded
processor Traffic Mgmt. (ASIC) | prgcessor
Layers 1 & 2 Layers 1 & 2
Layer 3 & class. switching fabric Layer 3 & class.
ASIC ASIC

e Specia-purpose ASICs handle lower layer functions
e Embedded (RISC) processor handles layer 4
e CPU only handles low-demand processing
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Are Third Generation Systems Sufficient?
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Are Third Generation Systems Sufficient?

e Almost
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Are Third Generation Systems Sufficient?

e Almost ... but not quite.
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Problems With Third Generation Systems

e High cost

e |ong time to market

e Difficult to ssimulate/test

e EXxpensive and time-consuming to change
— Even trivial changes require silicon respin
— 18-20 month development cycle

e Little reuse across products

e Limited reuse across versions
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Problems With Third Generation Systems
(continued)

e No consensus on overall framework
e No standards for special-purpose support chips

e Requires in-house expertise (ASIC designers)

NSD-Agere -- Chapt. 11 12 2004



A Fourth Generation

e (Goal: combine best features of first generation and third
generation systems

— FHexibility of programmable processor
— High speed of ASICs

e Technology called network processors
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Definition Of A Network Processor

A network processor IS a special-purpose, programmable
hardware device that combines the low cost and flexibility of a
RISC processor with the speed and scalability of custom silicon
(i.e., ASC chips). Network processors are building blocks used
to construct network systems.
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Network Processors. Potential Advantages

e Relatively low cost
e Straightforward hardware interface
e Facilities to access
— Memory
— Network interface devices
e Programmable
e Ability to scale to higher
— Datarates
— Packet rates
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Network Processors. Potential Advantages

e Relatively low cost
e Straightforward hardware interface
e Facilities to access
— Memory
— Network interface devices
e Programmable
e Ability to scale to higher
— Datarates
— Packet rates
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The Promise Of Programmability

e [or producers
— Lower initia development costs
— Reuse software in later releases and related systems
— Faster time-to-market
— Same high speed as ASICs
e For consumers
— Much lower product cost

— Inexpensive (firmware) upgrades
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Choice Of Instruction Set

e Programmability alone insufficient
e Also need higher speed
e Should network processors have
— Instructions for specific protocols?
— Instructions for specific protocol processing tasks?

e Choices difficult
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| nstruction Set

e Need to choose one instruction set
e No single instruction set best for all uses
e Other factors

— Power consumption

— Heat dissipation

— Cost

e More discussion later in the course

NSD-Agere -- Chapt. 11 18

2004



Scalability

e Two primary techniques
— Pardléism
— Data pipelining
e Questions
— How many processors?
— How should they be interconnected?

e More discussion later

NSD-Agere -- Chapt. 11 19 2004



Costs And Benefits Of Networ k Processors

e Currently

— More expensive than conventional processor
— Slower than ASIC design
e Where do network processors fit?

—  Somewhere in the middle
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Where Networ k Processors Fit

[ )
ASIC
Designs
_ ? Network
Increasing Processor
Performance Designs

Software
On Conventional
Processor

Increasing cost

e Network processors: the middle ground
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Achieving Higher Speed

e What is known
— Must partition packet processing into separate functions

— To achieve highest speed, must handle each function
with separate hardware

e What is unknown
— Exactly what functions to choose
— Exactly what hardware building blocks to use

— Exactly how building blocks should be interconnected
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Variety Of Network Processors

e Economics driving a gold rush

— NPswill dramatically lower production costs for
network systems

— A good NP design potentially worth lots of $$

e Result
— Wide variety of architectural experiments

— Wild rush to try yet another variation
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An Interesting Observation

e System developed using ASICs
— High development cost ($1M)
— Lower cost to replicate
e System developed using network processors
— Lower development cost
— Higher cost to replicate

e Conclusion: amortized cost favors ASICs for most high-
volume systems
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Summary

e Third generation network systems have embedded processor
on each NIC

e Network processor is programmable chip with facilities to
process packets faster than conventional processor

e Primary motivation is economic
— Lower development cost than ASICs

— Higher processing rates than conventional processor
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Questions?




X1

The Complexity Of
Network Processor Design
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How Should A Network Processor
Be Designed?

e Depends on
— Operations network processor will perform

— Role of network processor in overall system
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Goals

e Generality
— Sufficient for all protocols
— Sufficient for all protocol processing tasks
— Sufficient for all possible networks
e High speed
— Scale to high bit rates
— Scale to high packet rates
e Elegance

— Minimality, not merely comprehensiveness
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The Key Point

A network processor Is not designed to process a specific
protocol or part of a protocol. Instead, designers seek a
minimal set of instructions that are sufficient to handle an
arbitrary protocol processing task at high speed.
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Network Processor Design

e To understand network processors, consider problem to be
solved

— Protocols being implemented

— Packet processing tasks
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Packet Processing Functions

e Error detection and correction

e Traffic measurement and policing

e Frame and protocol demultiplexing

e Address lookup and packet forwarding

e Segmentation, fragmentation, and reassembly
e Packet classification

e Traffic shaping

e Timing and scheduling

e (Queueing

e Security: authentication and privacy
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Questions

e Doesour list of functions encompass all protocol
processing?

e Which function(s) are most important to optimize?

e How do the functions map onto hardware units in a typical
network system?

e Which hardware units in a network system can be replaced
with network processors?

e What minimal set of instructions is sufficiently general to
Implement all functions?
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Division Of Functionality

e Partition problem to reduce complexity

e PBasic division into two parts

e Functions applied when packet arrives known as
INQgress processing

e Functions applied when packet |eaves known as

egress processing
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| ngr ess Processing

e Security and error detection

e (lassification or demultiplexing

e Traffic measurement and policing

e Address lookup and packet forwarding

e Header modification and transport splicing
e Reassembly or flow termination

e [Forwarding, queueing, and scheduling
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Egress Processing

e Addition of error detection codes

e Address lookup and packet forwarding
e Segmentation or fragmentation

e Traffic shaping

e Timing and scheduling

e Queueing and buffering

e QOutput security processing
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arrive
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| llustration Of Packet Flow

Ingress Processing

e Error and security checking

e Classification or demultiplexing

e Traffic measurement and policing

e Address lookup and packet forwarding

e Header modification and transport splicing
e Reassembly or flow termination

e Forwarding, queueing, and scheduling

Egress Processing

e Addition of error detection codes

e Address lookup and packet forwarding
e Segmentation or fragmentation

e Traffic shaping

e Timing and scheduling

e Queueing and buffering

e Qutput security Processing
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A Note About Scalability

Unlike a conventional processor, scalability is essential for
network processors. To achieve maximum scalability, a
network processor offers a variety of special-purpose functional
units, allows parallel or pipelined execution, and operates in a
distributed environment.
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How Will Network Processors
Be Used?

e [or ingress processing only?
e [or egress processing only?

e [or combination?
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How Will Network Processors
Be Used?

e [or ingress processing only?
e [or egress processing only?
e [or combination?

e Answer: No single role
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Potential Architectural Roles
For Network Processor

e Replacement for a conventional CPU

e Augmentation of a conventional CPU

e On theinput path of a network interface card

e Between a network interface card and central interconnect
e Between central interconnect and an output interface

e On the output path of a network interface card

e Attached to central interconnect like other ports
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An Interesting Potential
Role For Network Processors

In addition to replacing elements of a traditional third
generation architecture, network processors can be attached
directly to a central interconnect and used to implement stages
of a macroscopic data pipeline. The interconnect allows
forwarding among stages to be optimized.
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Conventional Processor Design

e Design an instruction set, S
e Build an emulator/simulator for Sin software
e Build acompiler that trandates into S
e Compile and emulate example programs
e Compare results to
— Extant processors

— Alternative designs
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Networ k Processor Emulation

e (Can emulate low-level logic (e.g., Verilog)
e Software implementation

— Slow

— Cannot handle real packet traffic
e FPGA implementation

— Expensive and time-consuming

— Difficult to make mgor changes
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Network Processor Design

e Unlike conventional processor design
e No existing code base
e No prior hardware experience

e Each design differs

NSD-Agere -- Chapt. 12 18 2004



Hardware And Software Design

Because a network processor includes many low-level hardware
details that require specialized software, the hardware and
software designs are codependent; software for a network
processor must be created along with the hardware.
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Summary

e Protocol processing divided into ingress and egress
operations

e Network processor design is challenging because
— Desire generality and efficiency
— No existing code base

— Software designs evolving with hardware
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Questions?




XIT1

Networ k Processor Architectures
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Architectural Explosion

An excess of exuberance and a lack of experience have
produced a wide variety of approaches and architectures.
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Principle Components

e Processor hierarchy

e Memory hierarchy

e |nternal transfer mechanisms

e External interface and communication mechanisms
e Special-purpose hardware

e Polling and notification mechanisms

e Concurrent and parallel execution support

e Programming model and paradigm

e Hardware and software dispatch mechanisms
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Processing Hierarchy

e Consists of hardware units
e Performs various aspects of packet processing
e [ncludes onboard and external processors
e |ndividual processor can be
— Programmable
— Configurable
—  Fixed
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Typical Processor Hierarchy

Level Processor Type Programmable?  On Chip?
8 General purpose CPU yes possibly
7 Embedded processor yes typically
5 I/O processor yes typically
6 Coprocessor no typically
4 Fabric interface no typically
3 Data transfer unit no typically
2 Framer no possibly
1 Physical transmitter no possibly
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Memory Hierarchy

e Memory measurements
— Random access latency
— Sequential access latency
—  Throughput
— Cost

e Can be
— Internal

— Externa
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Typical Memory Hierarchy

Memory Type Rel. Speed Approx. Size On Chip?
Control store 100 103 yes
G.P. Registerst 90 102 yes
Onboard Cache 40 103 yes
Onboard RAM 7 103 yes
Static RAM 2 107 no
Dynamic RAM 1 108 no
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|nternal Transfer M echanisms

e |nterna bus
e Hardware FIFOs
e Transfer registers

e Onboard shared memory
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External Interface And
Communication M echanisms

e Standard and specialized bus interfaces
e Memory interfaces
e Direct I/O interfaces

e Switching fabric interface
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Example Interfaces

e System Packet Interface Level 3 or 4 (SPI-3 or SPI-4)
e SerDes Framer Interface (SFI)
e CSIX fabric interface

Note: The Optical Internetworking Forum (OIF) controls the SPI and SFI
standards.
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Polling And Notification M echanisms

e Handle asynchronous events

— Arriva of packet

— Timer expiration

— Completion of transfer across the fabric
e Two paradigms

— Polling

— Notification

NSD-Agere -- Chapt. 13 11 2004



Concurrent Execution Support

e |mproves overall throughput
e Multiple threads of execution

e Processor switches context when athread blocks
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Support For Concurrent Execution

e Embedded processor
— Standard operating system
— Context switching in software
e |/O processors
— No operating system
— Hardware support for context switching

— Low-overhead or zero-overhead
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Concurrent Support Questions

e |oca or global threads (does thread execution span
multiple processors)?

e Forced or voluntary context switching (are threads
preemptable)?
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Hardware And Software Dispatch M echanisms

e Refersto overall control of parallel operations
e Dispatcher
— Chooses operation to perform

— Assigns to a processor
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Implicit And Explicit Parallelism

e EXxplicit parallelism

— Exposes parallelism to programmer

— Requires software to understand parallel hardware
e |mplicit parallelism

— Hides parallel copies of functional units

— Software written as if single copy executing
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Architecture Styles, Packet Flow,
And Clock Rates

e Embedded processor plus fixed coprocessors

e Embedded processor plus programmable I /O processors
e Parallel (number of processors scales to handle |oad)

e Pipeline processors

e Dataflow
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Embedded Processor Architecture

—)

f(0; 9(0; h(

e Single processor

— Handles al functions

— Passes packet on

e Known as run-to-completion

NSD-Agere -- Chapt. 13

18

—)

2004



Parallel Architecture

coordination

)

mechani Sf/\

é}ﬁ

N

f0; 90; h()

f0; 90; h()

f0;90; h0

N

@O

7

e Each processor handles 1/N of total load
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Pipeline Architecture

0

—)

90

—)

e Each processor handles one function

e Packet moves through *‘pipeline’
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Clock Rates

e Embedded processor runs at > wire speed
e Parallel processor runs at < wire speed

e Pipeline processor runs at wire speed

NSD-Agere -- Chapt. 13 21 2004



Softwar e Architecture

e Centra program that invokes coprocessors like subroutines

e Central program that interacts with code on intelligent,
programmable | /O processors

e Communicating threads

e Event-driven program

e RPC-style (program partitioned among processors)
e Pipeline (even if hardware does not use pipeline)

e Combinations of the above
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Example Uses Of Programmable Processors

General purpose CPU
Highest level functionality
Administrative interface
System control
Overall management functions
Routing protocols

Embedded processor
Intermediate functionality
Higher-layer protocols
Control of I/O processors
Exception and error handling
High-level ingress (e.g., reassembly)
High-level egress (e.g., traffic shaping)

I/O processor
Basic packet processing
Classification
Forwarding
Low-level ingress operations
Low-level egress operations
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Using The Processor Hierarchy

To maximize performance, packet processing tasks should be
assigned to the lowest level processor capable of performing
the task.
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Packet Flow Through The Hierarchy

Standard CPU (external)

almost no
* data -

Embedded (RISC) Processor

small amount
* of data "

I/O Processor

data to/from
*— programmable processors”

Lower Levels Of Processor Hierarchy
data data
arrives — = leaves
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Summary

e Network processor architectures characterized by
— Processor hierarchy
— Memory hierarchy
— Internal buses
— External interfaces
— Special-purpose functional units
— Support for concurrent or parallel execution
— Programming model

— Digpatch mechanisms
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Questions?
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Overview Of The Agere Network Processor
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An Example Network Processor

e We will
— Choose one example
— Examine the hardware
— Understand the programming model
— Consider the capabilities and limitations

e Our choice for this course: Agere Systems APP550
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Agere Hardware Organization

e Conceptual pipeline
e Three maor blocks
— Classifier
— Forwarder

— State Engine
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lllustration Of Hardware Pipéeline

packet
ingress

—)

Classifier

—)

Forwarder

packet
egress

—)

e All packets flow through classifier and forwarder
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Classifier
e (lassifies packets or cells
e |mplemented with pattern matching engine

e Passes packet to forwarder along with classification

e On fast path
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Classifier
e (lassifies packets or cells
e |mplemented with pattern matching engine

e Passes packet to forwarder along with classification

e On fast path
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State Engine

e Invoked by classifier

e Provides host interface
e Collects statistics

e Not on fast path
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Forwarder

e Recelves packets from the classifier

e Performs traffic management and shaping
e Handles scheduling and packet queueing
e Modifies the packet if necessary

e Programmed via scripts

e On fast path

NSD-Agere -- Chapt. 17 7 2004



Forwarder

e Recelves packets from the classifier

e Performs traffic management and shaping
e Handles scheduling and packet queueing
e Modifies the packet if necessary

e Programmed via scripts

e On fast path
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Original Agere Design

e Among the first network processors

e Named PayloadPlus 2.5

e Handled 2.5 Gbps

e Three separate chips
— Fast Pattern Processor (FPP)
— Routing Switching Processor (RSP)
— Agere System Interface (ASl)
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lllustration Of First-Generation Design

T

packets
arrive
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Second Generation Agere Design

e Same basic architecture as first generation

e All three functions combined onto single chip

e [nternal communication paths provide faster pipeline
e Designed to handle 10 Gbps

e Multiple models
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Agere Second Generation Models

Model Throughput Features
APP520 5+ Gbps 2 GIigE ports, no external memory
APP530 2.5 Gbps Slower speed version of the 550
APP530TM 2.5 Gbps 530 plus traffic management software
APP540 5+ Gbps Packet traffic with no external reassembly
APP550 5+ Gbps 4 GIigE ports, full capability
APP750 10.0 Gbps Higher speed than a 550

e Models 520 and 540 provide traffic management only
e We will focus on the APP550
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| llustration Of APP550 Architecture

packet
ingress

—
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APP550 Features

e Unconventional design with special-purpose hardware

e Programmable using high-level languages

e Specialized onboard engines for protocol processing tasks
e Connection for external coprocessor

e Hardware support for classification, scheduling, policing,
shaping, and packet modification

e |nterfaces for various physical media
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APP550 External Interfaces

e Multiple memory interfaces
e Coprocessor interface
e Multiple packet I/O interfaces
e Control interfaces
— Externa scheduling

— Host processor (PCI bus)
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| llustration Of APP550 External Connections

classif. buffer schedul. buffer SED memory
I (FCRAM) (FCRAM) (FCRAM) =
ngress ress
° } | ! S 0
GMII, GMII,
SMIl, ——= — SMII,
PMA PMA
SPI-3, SPI-3,
Utopia " * Utopia
| ]
gl coprocessor
Input output
(SPI-3) APP550 (SPI-3)
classif.
Memory e
(FCRAM)
o v
statistics memory scheduler memory
(DDR-SRAM) (DDR-SRAM)
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Purpose Of External Connections

Interface To

Purpose

memory
media
switching fabric
PCl bus

scheduler
coprocessor

NSD-Agere -- Chapt. 17

Access to storage for packet buffers, queues,
Instructions, and other parameters

Packet or cell ingress from physical network

or egress to physical network

Packet transfer to an output port

Allows host computer to control the APP550

Access to external scheduler

Access to external coprocessor hardware
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External Media Interface Hardware

e Divides packet into 64-byte blocks

e Deliversone block at atime

e Sends additional information
— Bit to indicate first block of packet
— Bit to indicate last block of packet

— Integer to indicate size of block (64 except for final
block)

— Integer to indicate interface over which block arrived

e Note: If packet fits into single block, bits indicate both
“first’”” and ‘‘last’’ block of packet
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APP550 M edia I nterfaces

Standard Name Meaning
GMII Gigabit Media Independent Interface
PMII Physical Media Independent Interface
SMII Serial Media Independent Interface
PMA Physical Medium Attachment
SPI-3 System Packet Interface Level 3
Utopia Universal Test and Operations PHY Interface for ATM
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APP550 External Memory Uses

Engine Memory Use
Classifier FCRAM Packet buffer memory
FCRAM Program memory (patterns)
FCRAM Control memory
State Engine DDR-SRAM  Flow statistics and profile memory
DDR-SRAM  OAM data memory
Stream Editor DDR-SRAM  Context memory
FCRAM Parameter memory
Reorder Buffer FCRAM Scheduler buffer memory
and Shaper DDR-SRAM  Scheduler linked list memory
DDR-SRAM  Scheduler parameter memory
DDR-SRAM  Scheduler gueue memory
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APP550 External Memory Technologies

e [ast Cycle Random Access Memory (FCRAM)
— Low cycle time allows rapid storage of sequential bytes

— Used for packet storage

e Double Data Rate Static Random Access Memory (DDR-
SRAM)

— Low latency for random data access

— Used for table lookup
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APP550 Internal Architecture

e Multiple onboard engines
— Some programmable
— Some configurable
e |/O interface units handle
— Cdls
— Frames
e External memory interface units

¢ Onboard memory
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| llustration Of APP550 Internal Architecture

classif. buffer

schedul. buffer

SED memory
(FCRAM) (FCRAM) (FCRAM)
Ingress A A A | 4 4 APP550 Egress
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) Input Output _
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CoPﬂ?gstor coprocessor
output
(SPI-3) (SPI-3)
_ Pattern Reorder Buffer
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memory s——— Engine Traffic Shaper y
(FCRAM)
State PCI bus
Engine ™ interface
! $ !
R
statistics memory scheduler memory
(DDR-SRAM)
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Example Engines On The APP550

Engine Purpose
Pattern Processing Engine  Classification
State Engine Gathering state information for scheduling

and verifying flow is within bounds

Reorder Buffer Manager Ensure packet order
PDU Assembler Collect all blocks of a frame
Traffic Manager Schedule packets and shape traffic flow
Stream EDitor (SED) Modify outgoing packet
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Full-Duplex Operation

e Single APP550 does not have sufficient capacity to handle
flow In two directions

e Solution: use two APP550s per physical interface
— One handles ingress

— One handles egress
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lllustration Of Two APP550s Used For Full Duplex

— APPS50 —

—r >0 — 0w < I T
O — XU W > T

(T APP550 (T

e Note: egress processor does not need classification
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Questions?
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Functional Units
On
The Agere APP550

NSD-Agere -- Chapt. 18 1 2004



Major Functional Units On the APP550

Unit Programming Purpose
Language
Buffer Manager C-NP Store or drop packets
Input Interface none Interface to network devices
Pattern Processor FPL Classification
PDU Assembler none Collect blocks of a frame
Policing/OAM Engine C-NP Gather statistics and
administrative functions
Reorder Buffer none Ensure packet order
Stream Editor C-NP Modify outgoing packet
Traffic Shaper C-NP Shape outgoing flows
2
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|nput Interface

Recelves packets from

Up to four high-speed sources
Coprocessor

Fabric

host via PCI bus

e Passes packets to classifier
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|nput Interface

(continued)
e Configurable for
— SPI-3
— UTOPIA 2 or UTOPIA 3
— PLATO

e Upto 256 MultiPHY (MPHY) addresses

NSD-Agere -- Chapt. 18 4 2004



Pattern Processing Engine (PPE)

e Used for classification

e Unconventional architecture (no fetch-execute)
e |mplements form of pattern matching

e Programmable using FPL (more later)

e Usesimplicit parallelism

e |nvoked automatically when packet arrives
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Pattern Processing Engine (PPE)
(continued)

e (Can access multiple memories
— Classifier PDU Buffer (CPDUB)
— Classifier Program Memory (CPM)
— Classifier Control Memory (CCM)
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PDU Assembler

e Accepts blocks of data from Pattern Processing Engine

e Combines blocks to form a complete packet
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Data Flow Through Classifier Block

e |ngress storage

— Packet divided into blocks

— Blocks written to Classification PDU buffer (CPDUB)
e First pass of classification

— Blocks pass through PPE

— PPE runs root program on each block
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Data Flow Through Classifier Block
(continued)

e Second pass of classification

— Packet passes through PPE

— PPE runs replay program on packet
e Reassembly and handoff

— Needed for implicit parallelism

— Packets emitted in order

— ReOrder Buffer (ROB) used
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A Key |dea

Each packet passes through the PPE twice: in the first pass, a
root program is invoked once for each sixty-four byte block of
the packet, and in the second pass a replay program is invoked
once for the entire packet.
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State Engine

e |nvoked by Pattern Processing Engine

e Collects statistics needed for policing

e Provide host interface

e Configures and controls other functional units
e Operates like coprocessor (function call)

e Collects statistics for policing and traffic management
functions

e Programmable

e Programming language is ASL, ak.a. C-NP (more later)
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Reorder Buffer

e Associated with buffer manager
e Needed because classifier has

— Implicit parallelism

— Variable processing time (depends on the packet)
e Purpose. guarantee packet order unchanged

— Required for some protocols (e.g., ATM)

— Beneficial for other protocols (e.g., TCP)
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Reorder Buffer
(continued)

e |nvoked after classification

e Not programmable
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Function Of the Reorder Buffer

The Reorder Buffer Manager provides transfer between the
Classifier and Traffic Manager. The Traffic Manager extracts
packets from the ROB table in sequential order, waiting for the
Classifier to finish processing a packet, even if later packets are
already finished.
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Traffic Manager Block

¢ On the fast path

e Programmable with scripts

e TM script invoked once per packet
e Recelves packets from the Classifier
e Polices traffic

e Queues packets

e Schedules and shapes traffic

e Modifies outgoing packets
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Traffic Manager Block
(continued)

e Transmits each packet on the appropriate output port
e Severa subsystems
e Usestwo types of scripts (programs)
— Buffer manager script invoked when packet arrives

— Scheduler script invoked to select packets for egress
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Buffer Manager

e Part of Traffic Manager block
e Receives packets from classifier
e Decides to enqueue or discard packet
e Decision based on
— Maemory use
— Thresholds

— Classification and/ or policing results
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Traffic Shaper

e Part of Traffic Manager block
e |nvoked for outgoing packet
e Programmable
e Programming language is ASL, ak.a. C-NP (more later)
e Handles hierarchy of output queues
e Scheduling based on
— Time
— Current congestion
— Classification results
— Priorities

NSD-Agere -- Chapt. 18 18 2004



Stream editor (SED)

e Part of Traffic Manager block

e |nvoked for outgoing packet

e Handles packet modification/ update
e Not aconventiona processor

e Changes specified with parameters

e Example: compute checksum
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Stream editor (SED)
(continued)

e Capabilities

— Create up to 127 bytes of frame header, and prepend to
frame

— Create up to 20 bytes of cell header, and prepend to
block

— Update items in the packet such asthe TTL or checksum
— Change an MPHY address.
e Parameters used to control processing
— HeaderDeltaParameters
— SED parameters
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Programming, Performance, And Global Pulse Rate
e To process packets at wire speed, cannot spend too long on

any packet
e Clock rate of APP550 Is fixed at 266 MHz

e [or given interface speed, can compute maximum cycles
available per packet

e Agere uses term Global Pulse

e Example: for OC-48 interface, global pulse is 23
Instructions

e Compiler flags program that exceeds global pulse
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Global Pulse And SED Engine

e SED engine
— Exception to global pulse
— Can execute twice as many instructions as other engines

e Reason: hardware provides two copies of the SED engine
(implicit parallelism)
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Other Functional Units

e External Scheduling Interface
e Configuration Bus Interface (CBI)
e Packet Generation Engine

e Output Interface
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Summary

e APP550 contains many functional units
e Some units are programmable; others are not

e (Classifier, Traffic Manager, and State Engine handle basic
packet processing functions

e All packets proceed through the Pattern Processing Engine
e PPE uses the State Engine to collect statistics

e Digposition decisions made in the Traffic Manager
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Questions?
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Reference System

e Provided by vendor

e Targeted at potential customers

e Usually includes

Hardware testbed

Development software

Simulator or emulator

Download and bootstrap software

Reference implementations
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Simulation Vs. Emulation

e Simulator

— Software that mimics external actions of a network
[Processor

— Usually runs on conventional computer (e.g., PC)
— Takes program and sequence of packets as input
e Emulator

— Software that mimics internal actions of a network
Processor

— Attempts to be cycle accurate
— Usually runs on conventional computer (e.g., PC)

— Takes program and sequence of packets as input
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Simulation Vs. Emulation
(continued)

e Simulator

— Not as accurate, but faster

e Emulator

— Not as fast, but more accurate
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Agere Reference System

e Software Development Environment (SDE)
e Hardware Development System (HDS)

e Run Time Environment (RTE)
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Softwar e Development Environment
(SDE)

e Used by programmer to prepare and test software

e Runs on conventional computer
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Agere SDE Components

e FPL compiler

e [PL source code optimizer
e FPL debugger

e C-NP compiler

e Configuration generator

e Simulator

e Traffic generator

e Traffic analyzer and plotter
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System Performance Analyzer
(SPA)

e Graphical User Interface (GUI) for tools in the SDE

e Permits programmer to compile, test, and debug APP550
software

e Can invoke the smulator, generate traffic, and allow a
programmer to monitor the results
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Hardwar e Development System
(HDS)

e Hardware testbed
e Manufactured as a stand-alone system (chassis)
e Composed of three boards

e |ncludes cross-development and downloading facilities
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The Three Boards In Agere sHDS

Port card
An Agere APP550 with associated memory and a
connection to the HDS bus over which the APP550
can access |/O ports.

/O card
Facilities for packet input and output: four 1-Gbps
optical Ethernet connections and an OC-48 TADM
connection that can be configured as an OC-48C
connection or a mixture of up to four OC-12 ATM
and/or Packet Over SONET connections.

CPU card

A PowerPC processor used to control the APP550,
RAM, ROM, and PROM memories, a serial port, an
Ethernet connection, and a debugging port.
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HDS Bootstrap And Operation

e HDS does contain
— Conventional processor (PowerPC)
— Ethernet interface

e HDS does not contain
— Stable storage (e.g., a disk)

e Can still run conventional OS
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Five-Step HDS Bootstrap Procedure

1. CPU card runs an initial bootstrap program from ROM.

2. Boot program obtains address of TFTP server either from
PROM or via BOOTP, and runs TFTP to obtain an
operating system image (embedded Linux or VxWorks),
which is loaded into memory. All communication
proceeds over the Ethernet interface on the CPU card.

3.  When it boots, the operating system creates a RAM disk.
The operating system uses NFS to mount a remote file
system. Once the operating system is running, a user can
log in and recelve a shell prompt for command input.
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Five-Step HDS Bootstrap Procedure

The operating system proceeds to load a set of libraries and
functions that comprise the API (VxWorks) or a kernel
module that can load libraries on demand (Linux).

One of the API functions downloads the Agere
Configuration Image onto the Port card. The configuration
Image contains parameters for the APP550 as well as
compiled code from FPL and C-NP (i.e., data and
Instructions for the APP550).

Another of the API functions downloads vaues into the
FPGA on the | /O card.

The programmer uses the API (from a command or from a
program) to interact with the APP550.
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Testing Paradigms

e APP550 does not
— Provide convenient, efficient host interface
— Support for instrumentation of code

e Hardware testbed allows programmer to
— Test at wire speed

— Measure with actual traffic

NSD-Agere -- Chapt. 19 14 2004



Testing Paradigms
(continued)

e Simulator allows programmer to
— Control input
— Step through a program

— Generate arbitrary flows (e,g, to test queueing or scheduling)
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Summary

e Reference systems
— Provided by vendor
— Targeted at potential customers
— Usually include
* Hardware testbed
*  Cross-development software
*  Download and bootstrap software

*  Reference implementations
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Summary
(continued)

e Agere offers
— Hardware Development System (HDS)
— Software Development Environment

e System Performance Analyzer (SPA) is graphical interface for
reference platforms
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We Wil Discuss

e State Engine role and interface

e C-NP programming language
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State Engine Functionality

e Contains memory used to store statistics
e Performs computations needed for traffic policing

e Provides interface to external host processor

NSD-Agere -- Chapt. 21 3 2004



Memory For Statistics

e State Engine provides
— Interface to memory

— Memory access functions in FPL (e.g., store or
Increment)

e |ntended to be used with classifier
e Notes
— Statistics needed for monitoring and control
— Classifier hardware has no memory except for packets

— FPL cannot have static variables
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Computations For Traffic Policing

e Determine whether flow exceeds performance profile
e Reasults passed to Traffic Manager for drop decision
e Performed by Policing Engine
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Policing Engine

e Part of the State Engine
e Programmable via scripts

e | anguage is C for Network Processors (C-NP), which was
formerly known as Agere Scripting Language (ASL)
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| nterface To Host Processor

e External host necessary
e Functionality
— Overall control
— Chip configuration and initialization
— Dynamic updates to runtime data structures
— Handling traffic on the slow path
* Routing protocols

*  Exceptions
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| nterface To Host Processor
(continued)

e Physical interconnection to external host
— Peripheral Component Interconnect (PCIl) bus
— Terminated by State Engine hardware

e Logical interconnection

— Internal Configuration Bus Interconnect (CBI) connects
State Engine to Classifier and Traffic Manager

— Externa (PCIl) and internal (CBI) buses are mapped
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Communication Paradigm

e Standard bus paradigm
e Host issues fetch or store operation

e APP550 hardware provides large set of Control and Status
Registers (CSRs)

e Semantics of each CSR defined independently
— Meaning of fetch

— Meaning of store
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CSRs On The APP550

e Separate groups of CSRs for
— State Engine
— Classifier
— Traffic Manager
— Internal Memory
— MAC interfaces

e State Engine maps requests and responses between PCl and
CBI buses
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State Engine Memory

e Upto
— 32 MBytes of external DDR-SRAM
— 2.6 Mbytes of internal memory
e |ntegrated into single address space along with CSRs
e Address space defined by CBI
e Byte addressable
e Divided into four-byte units known as registers
— 135 registers of address space for control functions

— 1280 registers of address space for physical memory
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Policing Scripts

e Programs used by Policing Engine
e Stored in State Engine memory
e Memory holds

— 1024 standard scripts

— 256 user-defined scripts
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Two Types Of Policing Scripts

e Void script

— Does not return a value

— Typica use: accumulate statistics
e Vaue-returning script

— Computes and returns a value

— Typical use: notify FPL of a policing decision
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AS| Functions

e Defined by Agere

e (alled from FPL program

e Performed by State Engine
e Typical use: access memory

e Name retained from first-generation chip in which State
Engine was called Agere System Interface

e Functionality offered

— Memory access
— Arithmetic operations
— Logical operations
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Example ASI Function

e Name asiWrite
e Used to store values in memory
e Two arguments: 24-bit memory address and 32-bit value
e Example
asiWrite(0x4:24,949:32)

e Storesinteger 949 into memory location 4
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Memory For Policing Scripts

e |nvoked from FPL
e Run by Policing Engine

e Use on-chip data store known as policing database
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Policing Database

e |mplemented as array in memory

e Values persist across multiple packets

e (Can be used to accumulate statistics for entire flow
e Upto 512K entries, one entry per flow

e |ndexed by integer flow ID

e Occupies up to 32 Mbytes of memory
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Policing Database
(continued)

e Each entry in database contains 64 bytes
e Policing script decides how to use content of entry
e Examples

— Count of packets on flow

— Count of bytes on flow

— Record size of burst

e Note: to optimize performance, policing database items are
cached Iin register file
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Policing Scripts

e Written in C-NP

e Up to 16 scripts

e Each script given name

e Compiler produces .aso file for script

e |nvoked via generic functions
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Generic Policing Functions

e (Called from FPL

e Fow ID is part of name

e Two forms (N denotes flow ID):
— Function asiPoliceN does not return value
— Function asiPoliceEOFN returns a value

e Example call for flow ID 3:

asiPolice3
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Performance

e Functions invoked with asiPolice (no return value)
performed in parallel with FPL

e Programmer can optimize performance by
— Minimizing asiPoliceEOF calls

— Starting computation with asiPolice early

NSD-Agere -- Chapt. 21 21 2004



Binding Script Names

e FPL uses generic functions such as asiPolice0

e Programmer gives each script a descriptive name

e Therefore, must bind generic function to specific script
e Binding specified as flow ID - script file

e Example of binding ID zero:

ID O myscript.aso
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Binding Script Names
(continued)

e Binding
— Controlled by programmer
— Specified before chip configured
— Does not change during execution
e Two possihilities
— Use SPA to specify
— Edit XML configuration file
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Function Prototypes In FPL

e Used to declare external functions
e [FPL statement is SETUP PROTO
e Specifies number and size of arguments

e Example
SETUP PROTO (asiPoliceEOF3, 24, 16, 24);

e Specifies that function asiPoliceEOF3 takes three arguments
that are 24, 16, and 24 bits long
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Example Organization Of Policing Script

#include "np5.fpl*"
#include "np5asi.fpl*

// Note: other initialization code goes here
SETUP PROTO(asiPoliceEOFO, 24, 16, 24);
// Note: classification code goes here

[* Assume flow ID has been placed in variable FID and that  */
/[* variable currlength contains the current length of the packet. */

outcome = asiPoliceEOFO($FID: 24, $currlength: 16, 0:24);
// Note: code to place outcome in tm_flags goes here

fTransmit(0:1, 0:1, $DID: 20, 0:16, 0:5, $tm flags: 10, $info: 24);
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Policing Database | nitialization

e Entry in database must be initialized before APP550 begins
e XML configuration file used

e Valuesgiven as pairs.

(flow ID, 64 bytes of parameters for the flow)
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State Engine Register File

e Hardware mechanism

¢ Much faster than memory access
e Used when policing script runs

e Needed because memory too slow

e Essentially a preloaded cache
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State Engine Register File

Before script for flow ID N runs

— State Engine automatically preloads values from policing
database entry into register file

During script execution

— All memory references refer to values in register file
— Execution does not wait for (slow) memory

After script completes

— State Engine copies values from register file back into
policing database entry

Generic script names provide flow ID to hardware
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Example Policing Function

e Single token bucket
e Test whether flow is over sustained rate
e Adds tokens to bucket for elapsed time

e Compares tokens in bucket to packet rate
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Policing Script Details

e Hardware param block variable preloaded before script runs
e Reasult stored in hardware predicate register

— Sixteen hit value

— Bit fifteen known as OutOfProfile bit
e Code written In C-NP

NSD-Agere -- Chapt. 21 30 2004



e | anguage called C for Network Processors

e Formerly known as Agere Scripting Language

C-NP Language Overview

e We will discuss

Lexical conventions
Data declarations
Expressions
Statements
Preprocessor directives

Script structure
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C-NP Lexical Conventions

e Comments
— C++ or C style comments

e Four forms of numeric constants

Type Syntax
Binary Starts with Ob followed by binary digits
Decimal Digits not starting with zero
Hexadecimal Starts with Ox followed by hex digits
Octal Starts with O followed by digits O through 7

NSD-Agere -- Chapt. 21 32

2004



C-NP Lexical Conventions

e Reserved words

block else if input output signed true
boolean false inout littleEndian  script swap unsigned

e Register file references

Syntactic Form Meaning
h

@[ X ] type Reference the Xt byte (X is between 0 and 127)

@[ X:Y] type Reference a string of bytes from byte X to byte Y
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C-NP Lexical Conventions

e Predicate word reference

$[X] type

e |[ndirect reference

— Permits reference of bytes within a variable

— Example
block entire_packet @[0:63];
block Ip_header packet datal 14:33];
unsigned srclPip _header[12:15];

unsigned destIPip _header[ 16: 19]

e Note: default is big endian byte order; programmer can
override
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C-NP Expressions

e |ntegers are signed or unsigned

e Arithmetic Operatorsare+ - * / unary -

e Type casts are permitted

e Logical operatorsare < > >= <= == I=
e Bitwise shift operators are << >>

e Bitwise Logical Operatorsare & | N ~
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Statements

e Only four statements types

Statement General Form
assignment identifier = expression
conditional with  if ( expression ) statement
optional else else statement
selection switch ( expression ) case statements
compound statements separated by semicolons

e Note no iteration such as for or while
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Preprocessor Directives

#define  #else #error  #Hifdef #include #undef
#elif #endif  #if #ifndef #pragma

e Only one #pragma directive: multiplySupport for
multiplication
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Standard Header Files

e Define constants and variables

File Pertinent Engine
policeNp5.h  Policing Engine
tmNp5.h Traffic Manager
tsNp5.h Traffic Scheduler
sedNp5.h Stream Editor
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Example Header File Contents

e File policeNp5.h contains declaration

unsigned current_time @[8:11] Input;
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Alignment And Timing

e Aligning values in register file speeds access
e Think of register file as 2-dimensional array
— Row corresponds to four-byte register

— Column called a dlice
e Example bytesQ, 4, 8,... lieinfirst dice

e Access optimized when both operands lie in the same dice
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script script name
script body
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Example Policing Script

e Compare arriving traffic to token bucket

e Code does not explicitly return a value: uses predicate
Instead

e Script can set 15 of 16 bits in the predicate
e Example code used bit 15 for OutOfProfile

NSD-Agere -- Chapt. 21 42 2004



Example Policing Script (part 1)

#include "policeNp5.h"

[* Token Bucket parameters in param_block are
/[* Initialized at configuration

[* Bit Rate (initialized to RTC ticks per byte) */
unsigned BR param_block[0:1] input;

[* Burst Size (initialized to Bytes times BR) */
unsigned BS param_block[2:9] input;

[* Previous arrival time (initialized to zero) */
unsigned last_pdu_arrival param_block[10:13] inout;

/* Token counter (initialized to BS) */
unsigned tokens param_block[14:21] inout;
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Example Policing Script (part 2)

[* Packet length (passed as argument from FPL) */
unsigned pdu_length fpp _argg[0:1] input;

unsigned(4) delta t; [* RTC ticks since last packet arrived */
unsigned(4) pdu len t; [* Packet size in RTC ticks */
boolean OutOfProfile $[15] output; /* results of policing */

script tokbucket { /* will be bound to asiPoliceEOFO */
delta t = current_time - last_pdu_arrival;
pdu len t = pdu length * BR;
tokens = tokens + delta t;  /* update bucket length */
If (tokens > BS) {
tokens = BS;

}

NSD-Agere -- Chapt. 21 44 2004



Example Policing Script (part 3)

OutOfProfile = tokens < pdu_len t; /* compute result */

If ('OutOfProfile) {
tokens = tokens - pdu_len t; [* update bucket depth */
}

last_pdu_arrival = current_time; [* update timestamp */
}
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Summary

e State Engine provides

— Memory

— Host interface

— Support for policing computation
e Memory accessed via ASI functions
e Host interface

— Uses PCI bus

— Supports fetch-store paradigm

— Defines CSRs
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Summary
(continued)

e Traffic policing
— Performed by Policing Engine
— Programmable via C-NP scripts
— Decides whether flow is within performance profile
— Result returned to classifier
e C-NP
— Scripting language derived from C
— Limited expressions
— No iteration
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XX

Traffic Manager
(TM)
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Traffic Management

e Generic term
e Usually includes

— Bandwidth allocation

— Enforcement of priorities
e May aso include

— Traffic policing

— Buffering, queueing, and memory management
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Agere Traffic Manager Block

e Performs five main functions
— Buffer management
— Completion of flow policing and packet discard
— Traffic shaping
— Bandwidth allocation
— Packet modification
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Buffer Management

e Needed for store-and-forward paradigm
e Critical decision: what happens when memory exhausted?
— Tall drop: wait until memory full and then discard

— Random Early Detection (RED): probabilistically
discard as memory fills
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Tail Drop

e Trivia to implement

e | eadsto globa synchronization of TCP streams
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Random Early Detection (RED)

e Alternative to tail drop
e More difficult to implement

e Defined for floating point calculation
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RED Algorithm

e Define two thresholds
— T max beyond which all packets are dropped

e Vary probability of drop linearly when average queue size,
Qavg, lies between the thresholds:

Qavg ~ Tmin
Tmax = Tmin

P =
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lllustration Of RED Probability

Probability
[}
1
Avg.
° = Quete
0 Tin Trnax full

e Probability varies linearly over the range from Ty to
Tmax
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RED Queue Size Computation

e Uses smoothed average
— Avoids quick response to packet bursts
— Waeaghts exact queue size and long-term average

e Computation of exact size
Q =Q +N
e Computation of long term average
Qavg = a0 Q + (1 — a) Qayg

e Note aisafraction (0 <a < 1) that weights the new
gueue size (typical valueis 0.2)
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Completion Of Flow Policing

e Performed by Policing Engine
e Determines whether flow is within profile

e Marks each packet for later processing
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Example Flow Policing

e VBR-style profile
e [Four parameters
— Sustained Bit Rate (SBR)
—  Pesk Bit Rate (SBR)
— Sustained Burst Size (SBS)
— Peak Burst Size (PBS)
e |mplemented with dual token bucket
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Dual Token Bucket

e First bucket monitors Peak Bit Rate (PBR)
e Second bucket monitors Sustained Bit Rate (SBR)
e Result istri-color labeling:

— Green: flow is less than the SBR

— Ydlow: flow is less then the PBR but exceeds the SBR
— Red: flow exceeds the PBR
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Discard Decision

e Also called drop decision

e |mportant concept: single decision handles both buffering
and flow policing

e |nput parameters
— Current average queue size
— Tri-color label
e Algorithm is Weighted RED (WRED)
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Weighted RED

e Probabilistic packet discard

e Same basic algorithm as RED

e Three independent sets of parameters
— Tmin ad T ynax for green packest
— Tmin @ad T max for yellow packets

— Tmin @ad T max for red packets
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The Point About Discard

A single algorithm, known as Weighted RED, handles both
buffer management and flow policing. WRED requires the
policer to label each packet with one of three colors, and uses
the color to compute a probability of discard.
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WRED On The APP550

e Cannot use floating point
— Too slow
— No floating point hardware on the APP550
e Solution
— Useinteger arithmetic
— Make a an inverse power of two
— Replace multiplication and division with bit shifting
— Replace linear probability with set of intervals
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Approximation

e Divide the intervd

Tmin 10 T max
Into a set of equal-size groups

e Assign each group fixed value of probability
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lllustration Of Using Intervals

Probability
A range partitioned into sets of size &
r A A
e N —————_—————|S—————————————— —
S
e— & —>
L e e
le— ) —»
L
~— 0 | Avg.
0 i +— Queue
0 Toin T ful 7

e Value of o can be chosen at compile time

e Eliminates multiplication and division
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RED Without Multiplication Or Division

If (packet color isred) {
tmin = red_tmin
tmax = red tmax
delta=red delta

} elseif (packet color isyelow) {
tmin = yellow_tmin
tmax = yellow_tmax
delta = yellow delta

} else {
tmin = green_tmin
tmax = green_tmax
delta = green delta

}
Invoke RED (tmin, tmax, delta)

e Color constants specified at compile time
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Scheduling And Traffic Shaping

e Two problems

— Allocation of bandwidth among flows

— Shape traffic on each flow
e 3Single hierarchical traffic scheduler solves both problems
e Lowest level of hierarchy

— Programmable via C-NP script

— Known as a scheduler
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Scheduler M echanism

e Circular time ot table plus global pointer
e On each time dot, global pointer moves and entry is used
e Each entry points to a queue
e Specific queue can be repeated in table
— Used for queue priorities

— Repetition gives queue higher frequency of selection
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| llustration Of Time Slot Table

queue 1

global queue 2

pointer EvE =
 — queue 1

queue 4
queue 5
queue 1
queue 2
queue 3
queue 1
queue 4
queue 5
queue 1
queue 2
queue 3

e Pointer moves a a fixed rate

e Entriesin table specified by programmer
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CBR Shaping

e Straightforward with time dlot table
e Given queue appears a regular interval throughout the table
e Example

— Time dlot table contains six entries

— Output interface rate is OC-12

— Each table dlot corresponds to OC-2 rate

— A CBR queug, call it X, needs OC-4 rate

— Queue X appears twice in table
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A Note About Bandwidth Allocation

In a packet switching system, the allocation of bandwidth is
closdly interrelated with traffic shaping because both are
achieved by selecting packets from multiple sources.
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Bandwidth Allocation

e Two forms
— Fixed alocation
— Proportional allocation
e Can apply a multiple levels
e Given network system may need both
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Fixed Allocation

e Specified amount of bandwidth allocated to each source
e Form of Time Division Multiplexing

e Often used to subdivide physical channel

e Actual bandwidth cannot exceed allocation

e |f sourceisidle, its allocation goes unused

e Consequence: output may be idle even though packets are
waiting
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Fixed Allocation
(continued)

e Example: can be used to divide an OC-48 line into:
— Four channels that operate at OC-12

— Two channels that operate at OC-12 and eight channels
that operate at OC-3

— Other combhinations that sum to OC-48
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The Point Of Fixed Bandwidth Allocation

Fixed bandwidth allocation is used to partition bandwidth into
Isolated channels. The isolation guarantees that a channel
cannot encroach on the bandwidth allocated to another
channel, but also means that bandwidth can remain unused If a

channel isidle.
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| mplementation Of Fixed Allocation

e Forcdls
— Especialy easy
— Similar to CBR scheme
e For variable-size frames
— Not as smple, but still straightforward

— Instead of counting packets, keep track of size of packets
sent
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Proportional Allocation

e Each source is assigned percentage of total capacity

e |f asource does not have traffic to send, its bandwidth is
allocated to remaining sources proportional to their
percentages

e Often used to partition capacity among flows
e Consequences

— QOutput not idle provided at least one source has packets
to send

— Glven source can exceed its percentage
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Proportional allocation
(continued)

e When all channels busy, resembles fixed allocation

e When only one channel busy, channel receives 100% of the
bandwidth
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The Point Of Proportional Allocation

Proportional bandwidth allocation is used to provide controlled
sharing among a set of channels. When all channels compete,
bandwidth is divided as in a fixed allocation scheme; when
some channels use less than the amount allocated to them, the
excess bandwidth is divided among the remaining channels
proportional to their overall share.
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Example Of Proportional Allocation

Channel Proportional Share Effective Bandwidth

1 25.0% OC-6
2 12.5% OC-3
3 50.0% OC-12
4 12.5% OC-3

e |f channel 3 becomesidie
— Channel 1 receives equivalent of OC-12
— Channel 2 recaives equivalent of OC-6
— Channel 4 receives equivalent of OC-6
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Analysis Of Proportional Allocation

e Letp denote percentage of bandwidth devoted to channdl |,
(1<i<N)

e Tota allocation sums to 100%, so

N
> pi = 100
=1
e |f channdl kisidle, channd | recalves effective bandwidth
of
_ i
9~ 100 - py
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Analysis Of Proportional Allocation
(continued)

e |Letg represent actual use of Channel | measured as
percentage of total bandwidth

e Percentage of unused bandwidth is:
N
A=35 (pi—&)
1=1
e Effective bandwidth allocated to Channel 1 is:

Pi
100 - A
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| mplementation Of Proportional Allocation

e Theoretically optimum algorithm is Generalized Processor
Sharing (GPS

e T00 expensive in practice
— Cannot use floating point

— Cannot use integer multiplication or division
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Algorithms For Proportional Allocation

e Waeghted Fair Queueing (WFQ)

— Too inefficient

— Does not scale well for large numbers of queues
e Weighted Round Robin (WRR)

— Efficient

— Handles variable-size frames

— Scales

— Close to optimal performance
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Algorithms For Proportional Allocation
(continued)

e Smoothed Deficit Weighted Round Robin (SDWRR)
— Variant of WRR
— Supported by Agere hardware
e Generalized Processor Sharing (GPS)
— Theoretical optimal
— Impractical for packet switching systems

— Used to assess other algorithms
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SDWRR

e Usesfour FIFO lists (0 through 3)

e Each FIFO list contains a set of packet queues
e Hardware services FIFOs round-robin

e Assigns three limits to each queue

e Useslimitsto determine whether queue should move to new
FIFO list

e Computes deficit between amount of data sent and amount
that should have been sent
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SDWRR
(continued)

e |f deficit exceeds limit 1, move queue forward one FIFO list

e |[f deficit exceeds limit 2, move queue forward two FIFO
lists

e |[f deficit exceeds limit 2, move queue forward three FIFO
lists

e Moving essentially postpones service because the queue has
already exceeded bandwidth
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APP550 Traffic Management Mechanisms

Five queueing mechanisms

Arranged in a hierarchy

Port Manager
Logical Port
Schedul er
QoS Queue
CoS Queue
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Top Level Port Managers

e Correspond to physical output ports

e Multiple managers can be assigned to given output port
e Configurable, but not programmable

e Configured to provide fixed allocation

e Port manager configurable but not programmable
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Second Level Logical Ports

e Sources of data for a port manager
e Oneor more Logical Ports assigned to Port Manager

e Configurable, but not programmable
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Third Level Schedulers

e Programmable scheduler
— Spans three lower levels of hierarchy
— Selected at the third level
— Makes decisions about fourth and fifth levels

— Multiple schedulers (up to four) can be assigned to
Logical Port
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Fourth Level QoS Queues

e Up to sixty-four thousand QoS queues per scheduler
e Handle per-flow Quality Of Service
e Scheduler selects among gueues

e Typical scheduler algorithm: Smoothed Deficit Weighted
Round Robin (SDWRR)

e Can have proportional bandwidth scheduling
e Can be lowest level
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Fifth Level CoS Queues

e Optional
e Handles Class of Service withing a QoS gueue
e Up to sixteen CoS gqueues per QoS gqueue

e Default: priority of CoS queue i higher than priority of CoS
queue i+1
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Summary Of Traffic Manager Hierarchy

Level Mechanism Number

1 Port Manager 256 total

2 Logical Port 1024 total

3 Scheduler 4 per Logical Port
4 QoS Queue 64K per Scheduler
5 CoS Queue 16 per QoS Queue
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Summary

e APP550 Traffic Manager performs

e Waeaghted RED used for buffer management

Buffer management
Completion of flow policing
Packet discard

Traffic shaping

Bandwidth allocation
Packet modification
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e Traffic manager has five-level scheduling hierarchy

Summary
(continued)

Bandwidth allocation can be

Fixed

Proportional

Port Manager
Local Ports
Schedulers
QoS Queues

Cos Queues
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XXITI

Host | nterface
And
Control Functions
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Motivation For An External Processor

e No general-purpose processor on the APP550
e APP550 hardware is highly specialized
e |nsufficient computational power on APP550 for other tasks

e (Conclusion: externa host needed
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Role Of An External Host Pr ocessor

e |nitial configuration of an APP550
e Dynamic update of data structures
e Retrieval and update of status information and statistics

e Slow-path packet processing
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Dynamic Update Of Data Structures

e Host can alter
— Patterns used in classification
— The set of Destination IDs (DIDs)
— Logical ports used by the Traffic Manager
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Retrieval And Update Of Status
| nfor mation And Statistics

e Performed in conjunction with State Engine

e Allows external host to monitor or reset statistics while
APP550 runs
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Physical | nterconnection
To An External Host

e Peripheral Component Interconnect bus (PCl bus)
e APP550 defines

— Set of hardware registers

— Bus address for each

e State Engine block provides bus interface
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Packet Exchange And The
Concept Of Pseudo Interface

e Hardware defines pseudo interface

— Appears to be packet interface

— Allows packet traffic to pass over bus to external host

e Known as the Management Path Interface
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Application Program Interface (API)
For External Hosts

e Defines communication between APP550 and host
e Consists of functions that host uses to

— Interrogate APP550

— Control APP550
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Two Levels Of API

e Devicelevd

— Implement low-level communication between the host
and APP550

— Messages sent over PCl bus

e Object leve
— Higher-level interface functions
— Invoke device-level functions

— Example: allow host to change data structure for a
Destination |D
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Programming Paradigm And Handles

e Used with object-level functions
e Host program
— Create a handle for specific object

— Use handle in series of calls to interrogate or modify the
obj ect

e Example
— Create handle for complex data object
— Call functions that build the object

— Pass handle to function that uses object
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|tems For Which A Handle Can Be Defined

Chipset

APP550

as

rsp

Originally used to refer to the entire set of three chips,
the name is now used for functions that span one or
more APP550s.

Used for functions that manipulate the APP550
hardware configuration.

Used for functions that refer to the State Engine,
which was known as the ASl in the previous
generation.

Used for functions that refer to the Classification
block and the Pattern Processing Engine, which was
known as the FPP In the previous generation.

Used for functions that refer to the Traffic Manager
block, which was known as the RSP in the previous
generation.
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Example Declarations Used For Handles

ag_chipset t chipset_handle;
. np5 t np_handle;
 fpp t fpp_handle;
| rsp t rsp_handle;
ag_as t asi_handle;

NSD-Agere -- Chapt. 23 12 2004



| nitialization Functions

e Used to initialize data structure associated with a handle
e Set of functions provided by Agere
e |nvoked in top-down order to initialize

—  Chipset

— APP550

— Fpp

— Rsp

— AS
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Initialization Functions (Part 1)

ag_chipset_init
Purpose: initialize a data structure that ties together all
secondary data structures.
Notable argument. &chipset_handle

ag_chipset _config
Purpose: extract hardware configuration parameters from an
Image generated by Agere’s SPA or a command line tool.
Notable argument: chipset _handle

ag_chipset_hdl get
Purpose: initialize the data structures used with the APP550,
and link them into the chipset.
Notable arguments. chipset_handle, & np handle
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|nitialization Functions (Part 2)

ag _fpp_hdl _get
Purpose: initialize data structures associated with the
Classification block, and link them into data structures for
the chip.
Notable arguments. np_handle, &fpp handle

ag _rsp_hdl get
Purpose: initialize data structures associated with the Traffic
Manager block, and link them into data structures for the
chip.
Notable arguments. np _handle, &rsp handle

ag_asi_hdl get
Purpose: initialize data structures associated with the State
Engine block, and link them into data structures for the
chip.
Notable arguments. np_handle, &asi_handle
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| nitialization Functions

e Note: functions initialize items on the host; communication
with APP550 deferred until later
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Examples Of Object Functions

e AP offers many functions host software can invoke to

— Interrogate values

— Modify parameters to control behavior of the APP550

e A few examples include (not a comprehensive list):

Function

Purpose

ag_fpp_learn
ag_fpp_list_ptns
ag_fpp_unlearn

ag _rsp_did_add

ag _rsp_did_get
ag_rsp_queue_add
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Learn a pattern (add to a tree function)

List all patterns in a tree function

Unlearn a pattern (delete from a tree function)
Add a new DID to the set

Obtain information about a DID

Add a queue to the Traffic Manager
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External Host Capability

e |n addition to administrative tasks, external host can change
data structures such as

— |P routing table (forwarding)
— Firewall rules (filtering)
— Classification (queueing)

e Dynamic classification significantly more powerful than
static classification

— Permits flow-based classification

— Per-flow scheduling

NSD-Agere -- Chapt. 23 18 2004



A Dynamic Classification Example

e Assume FPL program contains a tree function named
Networ k

Network: 192.168.0.* fReturn(0);
Network: 192.168.1.* fReturn(1);

e FPL assigns tree function a unique internal identifier

e External host uses identifier to update tree function
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Tree ldentifiers

o External host cannot determine tree function identifier at
run-time

e |nstead, programmer can use SETUP ASSGN statement to
specify explicit identifier

e Assignable range is 3072 through 4095

e Example: to assign 3073 as ID for function Network

SETUP ASSIGN(Network, TREE, 3073)
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Tree ldentifiers
(continued)

e To ensure classification code and external host application
code uses same constant for tree identifier, declare constant
In header file and include in both programs

e Note: FPL and C use same syntax for symbolic constant
declaration

e Example: place the following in file example.h

#define NETWORK_TREE_ID 3073
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Tree ldentifiers
(continued)

e To use constant from file example.h in an FPL program

#include "example.h"

SETUP ASSIGN(Network, TREE, NETWORK_TREE_ID);

Network: 192.168.0.* fReturn(0);
Network: 192.168.1.* fReturn(1);

NSD-Agere -- Chapt. 23 22 2004



Example Of Dynamic Tree Update

e To add the following to a dynamic tree function
Network: 192.168.2.* fReturn (2);
e Stepsare
— Initialize handles

— Invoke function ag_fpp learn

— Use arguments to specify item to be added
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CodeTo lnsert Item Into A Tree Function

/* Initialization of handles goes here */
#include "example.h"

unsigned int netaddr = OxCOA80200;  /*192.168.2.0 */
ag_fpp_ptn_t fppPattern;
ag_fpp_action_t fppAction;

fppPattern.data = &netaddr; /[* pointer to data */
fppPattern.noDataBits = 24; [* 24 significant bits */
fppPattern.noWildCardBits = 8; /* last 8 bits - wildcard */

fppAction.type = ag_fpp_action_type return; /* fReturn() action */
fppAction.value = 2; [* fReturn() value */

ag_fpp_learn(fpp_handle, NETWORK_ TREE_ID,
&fppPattern, &fppAction);
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Constants And Host Byte Order

e Constant 0xCOA80200 depends on host byte order
e Example code assumes host is big-endian

e Library functions do not perform conversions
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Example Of Slow Path Packet Transfer (Part 1)

[* Example code that runs on an external host and obtains */
[* packets from an APP550. The external host is only used for */
/* the slow path. */

#define BUF_SIZE 2048
#include <agere_np5.h>

Int main(int argc, char *argv[]) {

ag_st t rc,

ag_np5 dev _hdl t devHandle;

unsigned char pdu_buf[BUF_SIZE];

ag_uint32_t pdu_buf size = BUF_SIZE, pdu_size, devNum,;

If (argc < 2) {
fprintf(stderr,"\nUsage: %s <device number>\n",argv[0]);
return(-1);

}
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Example Of Slow Path Packet Transfer (Part 2)

[* get device number from command line */
devNum = atoi(argv[l]);

[* Open NP5 device */

rc=ag_np5 dev_open(devNum, 0, &devHandle);

If (rc '= AG_ST_SUCCESS) {
fprintf(stderr,"\nError: Cannot open device number %i.\n",devNum);
return(-1);

}
/[* read packets sent from the APP550 */

while(1) { /* do forever */
[* read packet from ASI receive queue (block if queue is empty) */

rc =ag_np5 dev_pdu read(devHandle, pdu_buf, pdu_buf size,
&pdu_size);

[* use return code to determine processing */
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Example Of Slow Path Packet Transfer (Part 3)

switch (rc) {

case AG_ST DEV _INVALID HANDLE:
fprintf(stderr,"\nError: Invalid device handle! Exiting.\n");
return(-1);

case AG_ST DEV_INVALID BUFFER:
fprintf(stderr,"\nError: Invalid PDU buffer! Exiting.\n");
return(-1);

case AG_ST SUCCESS.

[* At this point, a packet has been loaded into pdu_buf.  */
[* Additional code should be inserted here to handle the */
[* packet. */

break;
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Example Of Slow Path Packet Transfer (Part 4)

default:
fprintf(stderr,"\nUnknown return code: %u. Exiting.\n",rc);
return(-1);

} [* end switch */

}  [* end while */

}  [* end main program */
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Summary

e External host is required to
— Initialize chip
— Update dynamic data structures
— Provide slow-path packet processing

e Agere provides API that software on external host uses to
communicate with APP550

— Device-level functions handle bus interface

— Object-level functions permit host to control and manage
FPL data structures
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Summary
(continued)

e Paradigm: host software
— Initializes a handle

— Makes a set of function calls to build and modify data
structure

— Calls functions to download the resulting data structure
onto the APP550

NSD-Agere -- Chapt. 23 31 2004



XXIV

An Example System
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| SP Access Node

e Example system
— Operates between ISP and clients
— Uses policing and scheduling
— Monitors traffic

— Enforces Service Level Agreement (SLA) between
customer and ISP
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Example Access System Functions

e Classification of packets arriving from client, according to
SLA

e Policing of client traffic to ensure that the traffic follows the
SLA

e Scheduling of traffic in both directions according to the SLA
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Basic Functionality

e Example access system implements Differentiated Services
(DiffServ)

e Traffic divided into five classes

— Four classes are assured forwarding (AF) for normal
traffic

— One class Is expedited forwarding (EF) for network
management traffic

e A dropping precedence is appended to class values
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Binary Encoding Of DiffServ Values

e Known as codepoint
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Encoding Name Encoding Name
001 010 AF11 011 010 AF31
001 100 AF12 011 100 AF32
001 110 AF13 011 110 AF33
010 010 AF21 100 010 AF41
010 100 AF22 100 100 AF42
010 110 AF23 100 110 AF43

101 110 EF
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Mapping SLA Requirements
To DiffServ Classes

e Assume four flows given priority

Client IP addr. Flow Profile Class
1 10.*.*.* Video 100 mbps AF4
1 10.*.*.* Audio 10 mbps AF3
2 128.211.*.* Audio 5 mbps AF3
2 128.10.*.* Audio 2 mbps AF3

e Note: all other flows assigned to DiffServ class AF1.
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Conceptual DiffServ Pipeline

e (lassification
e Metering

e Marking

e Dropping

e Scheduling
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Correspondence Between Model And I mplementation

packets enter packets enter
( classification ] ---------------------- ( PPE (FPL code) J
&
r \/ ‘ - :
| metering ] ---------- SE (policing scrlptj
& &
) [ j ) N
| marking ] _-|T™™ (WRED script)]
A\ - A\
s . N, ( .
L dropping ]*’ . /,ES (SDWRR scrlptﬂ
‘ . et NV ” .
L scheduling ]*’ ‘EED (editing scrlptj
(@) (b)
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Queues And Destination | Ds

DID Port Class

1 0 EF
2 0 AF1
3 0 AF2
4 0 AF3
) 0 AF4
6 1 EF
7 1 AF1
8 1 AF2
9 1 AF3
10 1 AF4
11 2 EF
12 2 AF1
13 2 AF2
14 2 AF3
15 2 AF4
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Classification Algorithm

If (codepoint specified expedited forwarding) {
Run the policing script for EF packets;
Enqueue packet on the EF queue for Port O

} elseif (packet carries UDP/RTP/video) {
Run the policing script for 100 Mbps video;
Enqueue packet on the AF4 queue for Port O

} elseif (packet carries UDP/RTP/audio) {
Run the policing script for 10 Mbps audio;
Enqueue packet on the AF3 queue for Port O

} else{

Run the policing script for best-effort traffic
Enqueue packet on the AF1 queue for Port O.

}
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Decision Tree For Packet From Port 1

start
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class EF

other class

y

packet contains
UDP/RTP/Video

meter 1 mbps

and enqueue

on EF queue
for Port O

packet contains
UDP/RTP/Audio

meter 100 mbps
and enqueue
on AF4 queue
for Port O

other packet contents

meter 10 mbps

and enqueue

on AF3 queue
for Port O

12

meter 20 mbps

and enqueue

on AF1 queue
for Port O
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Decision Tree For Packet From Port 2

start
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Src =128.10.*.*

class EF

other class

Src =128.211.*.*

class EF

packet contains
UDP/RTP/Audio

meter 1 mbps

and enqueue

on EF queue
for Port O

P |

other packet contents

meter 2 mbps

and enqueue

on AF3 queue
for Port O

meter 20 mbps

and enqueue

on AF1 queue
for Port O

R |

other IP source address

packet contains
UDP/RTP/Audio

meter 1 mbps

and enqueue

on EF queue
for Port O

IR |

other packet contents

meter 5 mbps

and enqueue

on AF3 queue
for Port O

meter 20 mbps

and enqueue

on AF1 queue
for Port O

13

discard
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Examples Of Decisions

e (Client 2 sends a packet with an arbitrary source address
— Packet will be discarded
e Client 1 sends a packet with an arbitrary source address

— Packet will be forwarded to Port O
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Decision Tree For Packet From Port O

start

Dst. 10.*.*.*

meter 1 mbps
and enqueue

I
]
I
I
I class AF4

‘—h packet contains
UDP/RTP/Video

on EF queue
for Port 1

meter 100 mbps
and enqueue

I
I

i
I

I
I
i |
| other packet contents
I
I

class AF3
———————®= packet contains
: | UDP/RTP/Audio
! i
| I
I I
I I
| other packet contents
I
I

class AF2

on AF4 queue
for Port 1

meter 10 mbps

and enqueue

on AF3 queue
for Port 1

t
|
|
|
L

class AF1

>“ discard

meter 20 mbps
and enqueue

Dst. 128.211.*.*

class EF

on AF1 queue
for Port 1

meter 1 mbps
and enqueue

class AF3 .
== packet contains

I UDP/RTP/Audio
i
I
I
I

other packet contents

class AF1

on EF queue
for Port 2

meter 5 mbps

and enqueue

on AF3 queue
for Port 2

meter 20 mbps
and enqueue

I
I
I
I
I
I
I
I
I
I
I
I
I
L_Other class

on AF1 queue
for Port 2

I
05 RGOSl — like 128.211.*.* except for metering
I

I
L_other destinations

;“ discard
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Policing, Coloring, And Flow IDs

e Example code uses dual token bucket
e Traffic measured against
— Sustained rate bucket
— Peak rate bucket
e Resultsis color assigned to packet
— Red: exceeds both rates
— Yedlow: only exceeds sustained rate

— Green: does not exceed alther
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Policing, Coloring, And Flow IDs

e Note: If packet aready has DiffServ classification, can use
classification to precolor packet

— Drop precedence 1 green
— Drop precedence 2 yellow
— Drop precedence 3 red

e Policing can move up (green toward red), but never down
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Flow IDs Used In The Example Code

e [or traffic forwarded to clients 1 or 2

Flow ID Destination IP Address Profile Class
1 10.*.*.* None EF
2 128.10.*.* None EF
2 128.211.*.* None EF
3 10.* ., * * None AF1
4 128.211.*.* None AF1
4 128.10.*.* None AF1
5 10.*.*.* 10 mbps AF3
6 128.211.*.* 5 mbps AF3
7 128.10.*.* 2 mbps AF3
8 10.* ., * * 100 mbps AF4
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Flow IDs Used In The Example Code

e [or traffic recaeived from clients 1 or 2

Flow ID  Source IP Address Profile Class
9 10.*.*.* None EF
9 128.211.*.* None EF
9 128.10.*.* None EF

10 10.*.* * None AF1
10 128.211.*.* None AF1
10 128.10.*.* None AF1
11 10.*.*.* 10 mbps AF3
12 128.211.*.* 5 mbps AF3
13 128.10.*.* 2 mbps AF3
14 10.*.* * 100 mbps AF4

e Entry None corresponds to cases where SLA does not
specify a value
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Example Classification Code (part 1)

/* ds _classifier.fpl - classification for the exanpl e D ffServ node */

* DffServ classifier for a boundary node.
* Qupported cl asses are: H-, AFlx, AF2x, AR3x, AFX

* Policing is perforned for packets fromclients; packets to clients are
* already policed and narked wth a D ffServ codepoi nt

* Al franmes are H hernet.

-k/ ----------------------------------------------------------------------

#i ncl ude "np5. fpl ™
#i ncl ude "np5asi . fpl"

/* Setup error hand er */

SETWP ERRRMETror);

| X o e e e e e
* Input Ports

*/

#define INPORT O /* traffic fromthe DS network arrives over Port O */
#define CL PORT 1 /* Traffic fromclient 1 arrives over Port 1 */
#define Q PRT 2 /* Traffic fromclient 2 arrives over Port 2 */
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Example Classification Code (part 2)

| % e e

* Protocol constants
*/
#define | PT_LCP 17
#def i ne RTP_PCRT 5004

| % e e

* Data types

*/

#define UNK O /* Unhknown */
#define AD 1 /* Audio */
#define MD 2 /* Mdeo */

[ % o el

* DffServ cl asses
*/
#define B O
#define AF1L 1
#define AR2 2
#define AF3 3
#define AH4 4

| % e e

*dients
*/
#defi ne A1 O/* client 1 *
#define A2IPL 1 /* client 2, IP
#define A21P2 2 /* client 2, IP
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Example Classification Code (part 3)

[ e e

* dient networks

*/

#define IP.CL 10.*.*.*
#define IPL @ 128.211.*.*
#define IP2 @2 128.10.*.*

| % oo

| % oo

* Orections

*/
#define IN O
#define AQJT 1

* How | Ds

* (flowlIDO is dummy flow)
*/

#define CLINE HAD 1
#define QIPLINE-HAD 2
#define CIP2 INBF HD 2
#define CL IN AFL F D 3
#define QIPLINAFL HD 4
#define CIP2 INAFL HD 4
#define CL IN AR2 FID 0
#define QIPLINAR2 HD O
#define QIP2Z INAR2 HD O
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Example Classification Code (part 4)

#define CLINAF3R AID 5
#define CIPLINAF3 AID 6
#define QIP2 INAF3 FID 7
#define CLINAFMA ID 8
#define CIPLINAM AID 0
#define CIP2 INAFA FID 0
#define CLQUT F AID 9
#define CIPLQUT EF AD 9
#define C2IP2_ QUT BF AID 9
#define CL QUT AFL AD 10
#define C2IPL QUT AFL AD 10
#defi ne C2I P2_ QUT_ AFL_ A D 10
#define CLQUT A2 AD O
#define C2IPL QUT AR2 AD 0
#define C2IP2_ QUT A2 AD O
#define CL QUT AF3 AD 11
#define C2IPL QUT AF3 AD 12
#defi ne C2I P2_QUT_AF3_A D 13
#define CL QUT AF4 AID 14
#define C2IPL QUT AF4 AD 0
#define C2IP2_ QUT AF4 AD O
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Example Classification Code (part 5)

[ e e

* Destination | Ds
*/

#define CLINE DD
#define CIPL IN BE |
#define CQIP2_ I N B |
#define CL IN AF1 D
#define CIPL IN AFL |
#define QI P2 I N AF1L |
#define CL IN AR2 DO
#define CIPL IN AR2
#define QIP2_I N AR2
#define CL IN AR3 DO
#define QIPL IN AF3
#define QI P2 I N AF3
#define CL IN AM D
#define CIPL IN AH4
#define QIP2_IN AH
#define CL_ QJT BF D
#define QI P1L QJT B |
#define QI P2_QJT_ B |
#define CL_ QJT_AF1 D
#define QI PL_QJT

#define QI P2_QJT_AF
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Example Classification Code (part 6)

#define CL QJT A/2 DD 3

#define QIPL QJI AR2 O D 3

#define QIP2 QJT AR2 O D 3

#define CL QJT AR DD 4

#define QIPL QJTr AR3 0D 4

#define QIP2 QJT AR3 DD 4

#define CL QJT AMM DD 5

#define QIPL QJT AFM4 OD5

#define QIP2 QJT A4 DOD5

[# cccococcccoocoooccoooooocoonooocoooooocoooooocooooooCooooo0oCooooooooooC
* Root functions for first and second pass
*/

SETWP ROOr (Passl);

SETWP REPLAYROOT (Pass2);

SETUP PROTO (asi Pol i ceECR, 24, 16, 24) ;

SETWP PROTO (asi Pol i ceERO, 24, 16, 8, 16) ;

SETUP PROIO (f QueueET, 2, 19,6, 1, 2, 1, 11, 13);

SETWP PROIO (f Transmt, 1, 1, 20, 16, 5, 8, 8, 18);
SENWP PROTO (f Transmit, 1, 1, 20, 16, 5, 8, 2, 8, 16);
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Example Classification Code (part 7)

*
/* kkhkkhkkkkhkhkkkhkhkkhkhkhhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkkhkhkhkhkhkhkkhkikkkikkkk*x*%
* kkkk*%x P'A$ 1 *kkkk*%x
k khkhkkkkkkkhkkkkhkhkkkhkhkhkkhkhkhkkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkhkhkkkk*k**%
*/
Passl: fbrnz ($franer&r:1, H rstPassException)
fbrnz ($franer B 1, ProcessLast B ock)
f Queue (0:2, $portNunber:19, $offset:6, 0:1, 0:.2);

ProcesslLast B ock:
f QueueEdH 0: 2, $port Nuntoer : 19, $of fset : 6, 0: 1, 0: 2, 0: 1, $por t Nuner : 11, 0: 13) ;

/'k
* kkkkkkkkkkkkkkkkkkkhkkhkkkkkkhkkhkkhkkhkkkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkhkkkkkkkkkkkkkk*%x
* kkk*k%x P'% 2 *kkk*

* kkkkkkkkkkkkkkkkkkkhkkhkkkkkkhkkhkkhkkhkkkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkhkkkkkkkkkkkkkk*%x

* Process B hernet header, only supporting IP

*/
Pass2: f ki p(96)
0x0800: 16
DenuxPort ($t ag) ;
[# cccococcccoocoooccoooooocoonooocoooooocoooooocooooooCooooo0oCooooooooooC
* Demul ti pl ex based on port (extracted from $tag)
*/
DenuxPort : CL PR3 B TS 21 Processd Traffic();
DenuxPort : Q PR3 BTS 21 Processd Traffic();
DenuxPort : IN PCRT: 3 BI TS 21 Processl ncomngTraffic();
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[

Example Classification Code (part 8)

* Process traffic fromclients
* Qassification based on: Port, Protocol and Source | P

*/

Processd Traffi c:
fSartlpv4Hdr ksunf$currGfset:6) /* start cal cul ati ng header chksum */

Ox4: 4

hl en = f Extract (4) /* get header |ength */
D8CP AU = fExtract (8) /* get DECP QU (TCH */
f Ski p(48) /[* skip to TTL */
Veri fyTTL() [* verify TIL */
proto = fExtract (8) /* get transport |ayer protocol */
f Ski p(16) /* skip | P header checksum */
port = get Port Nunf $t ag) /* get port nunier */
code = get H onCode( $port : 3) /* get code for a flow */
f ski p(32) /* skip destination | P */
opt words = fSub(hlen:16, 5:16) /* IPv4 options size in words */
opt bits =fShift(opt words: 24, LBFT SHFT:1,5:5) /* IP options bits */
f ki p(opt _bits) [* skip I Pv4 options*/
dat a = get Dat aType( $pr ot o: 8) /* get payl oad type */
FID=getHQ($code:2, QJT:1, $data:2, $08CP AL8) /* get HowlID */
/* assign col or based on How ID and policing al gorithm */
col or = asi Pol i ceEGFO( $F D 24, $cur r Lengt h: 16, 0: 24)

DD = getDDQ($H D 8) /* get Destination ID */
f ki pToEnd() /* skip to the end of packet */
checksum = f Get | pHr Cksunt) /* get header checksum */
checkChecksun{ $checksum 2) /* verify checksum */

TMlags D8P = get TMlags DSCP( @1 D 3, $col or: 16) /* get TMfl ags */
/* finish second pass and transmt */

f Transmt

(0:1, 0:1, $OD 20, 0:16, O:5 0:8, $TMIlags D8CP. 8, 0:18);
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Example Classification Code (part 9)

* Process traffic for clients
* (Jassification based on. Protocol, Destination |P and DSCP (TCy) field

*/

Processl ncomngTraf fi c:
fSartlpv4Hdr ksunf$currGfset:6) /* start cal cul ati ng header chksum */

Ox4: 4

hl en = f Extract (4) /* get header |ength */
D8CP AU = fExtract (8) /* get DECP QU (TCH */
f Ski p(48) /[* skip to TTL */
Veri fyTTL() /* verify TIL */
proto = fExtract (8) /* get transport |ayer protocol */
f Ski p(48) /* skip to destination IP */

code = get H owGode( | N PCRT: 3) /* get code for atraffic flow */
opt words = fSub(hlen:16, 5:16) /* IPv4 options length in words */

opt bits =fShift(opt words: 24, LBFT SHFT:1,5:5) /* IP options bits */
f ki p(opt _bits) [* skip I Pv4 options*/
dat a = get Dat aType( $pr ot o: 8) /* get payl oad type */
H D = get H ($code: 2, I N 1, $dat a: 2, $08CP_A 8) /* get HowID */
/* assign col or based on How ID and policing al gorithm */
col or = asi Pol i ceEGFO( $H D 24, $cur r Lengt h: 16, $08CP_AU 8, 0: 16)

DD = getDDQ($H D 8) /* get Destination ID */
f ki pToEnd() /* skip to the end of packet */
checksum = f Get | pHr Cksunt) /* get header checksum */
checkChecksun{ $checksum 2) /* verify checksum */

TMlags D8P = get TMlags DSCP( @1 D 3, $col or: 16) /* get TMfl ags */
/* finish second pass and transmt */

f Transmt

(0:1, 0:1, $OD 20, 0:16, O:5 0:8, $TMIlags D8CP. 8, 0:18);
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Example Classification Code (part 10)

[ e e

* Set of functions to get payl oad type (Moice, M deo or Uhknown)
*/
get Dat aType: | PT_UDP. 8 RIP_PCRT: 16
fSkip(57) /* skip to RTP PT field */
get RTPDat aType() ;
get Dat aType: | PT_UDP. 8 BI TS 16
checkUDPDst Port () ;
get Dat aType: B TS 24 f Ret ur n( UNK) ;

checkUDPDst Port: RTP_PCRT: 16
fXip(41) /* skip to RTP PT field */
get RTPDat aType() ;

checkUDPDst Port: BI TS 16 f Ret urn( UNK) ;

get RTPDat aType: RANGH O, 19):7 fReturn(ALD;
get RTPDat aType: RANGH31,34):7 fReturn(MD);
get RTPDat aType: RANGH 25, 26):7 fReturn(M D) ;

get RTPDat aType: 28:7 fRturn(MD;

get RTPDat aType: B TS 7 fRet urn(UNK) ;

[ X ool
* @Gt HowlID

*/

getHD (A1l1:2 AQJI:1 AD 2 0b101110 B TS 2 fReturn(B~ CL_QJT_ B A D;
getHD Q1.2 QJ:1 MD2 0b101110 B TS 2 fReturn(B~ CL_ QJI BF A D;
getHD (1.2 AQJI:1 UNK 2 0b101110 B TS 2 fReturn(B~ CL_QJT_ B A D;
getHD 1.2 QJ:1 AD2 B TS 8 fReturn(AF3,CL QJT AF3 H D);
getHD Al1l.:2 QU1 MD2 B TS 8 fReturn(AH4, CL QII'AF4_FID;
getHD Q1.2 AJI:1 BTS 10 fReturn(AFL, CL QJT_ AF1 HD;

NSD-Agere -- Chapt. 24 29

2004



Example Classification Code (part 11)

getAHD A21PL:2 QJI: 1 AD 2 0b101110 B TS 2 fReturn(B~, QI PL_ QJT_ B-F A D);
getAHD Q2 PLl:2 QJ:1 MD2 00101110 BITS 2 fReturn(B~ QI PL_QJT B-F A D;
getAHD A21PL:2 QJI: 1 UK 2 0b101110 B TS 2 fReturn(B-, QI PL_ QJT_ B- A D);
getHD Q2 PL:2 QJ:1 AD2 BTS 8 fReturn(AR3, QIPL QJT AR3 FID;
getAHD A2PL2 QJ:1 BTS10 fReturn(AFL, QIPL QJT AFL A D;

getAHD A21P2:2 QJI: 1 AD 2 0b101110 B TS 2 fReturn(B-, QI P2_ QJT_ B- A D);
getAHD Q2 P22 AQJ:1 MD2 00101110 BITS 2 fReturn(B~ QI P2_ QJT B A D;
getAHD A21P2:2 QJI: 1 UK 2 0b101110 B TS 2 fReturn(B-, QI P2_ QJT_ B-F A D);
getHAHD Q21 P22 AJ:1 AD2 BTS 8 fReturn(AR3, QI P2 QJT_ AR3 A D;
getAHD A21P22 QJI:1 BTS10 fReturn(AFL, QIP2 QJT_AFL A D;

getAHD Al1l:2 IN1 AD?2 0b101110 BTS2 fReturn(B- CL IN B A D;

getAHD A1:2 IN1MD2 00101110 B TS 2 fReturn(BE~ CL IN B- H D;

getAHD Al1:2 IN1 UK 2 0b101110 BTS2 fReturn(B- CL IN B A D;

getAHD Q1.2 IN1 ALD 2 0b011 BTSS5 fReturn(AR3, CL INAR3 A D;
getAHD A1:2 IN1MD2 0b100 BITS5 fReturn(AM4, CL IN AM HD);
getAHD A1:2IN1BTS10 fReturn(AFL, CLINAFL HD;

getAHD A2 PL:2 N1 AD?2 0b101110 BTS2 fReturn(B-, CIPL IN B FHD;
getHD A2 PL:2 IN1MD2 0b101110 BTS2 fReturn(BE CIPL IN B- A D;
getAHD A2 PL:2 IN1 UK 2 0b101110 BTS2 fReturn(B-, CIPL IN B HD;
getHD A2 PL:2 IN1 AD 2 0b011 BITS5 fReturn(AR3, QI PL_ IN AR3 A D;
getAHD Q2 PL:2IN1BTS10 fReturn(AFL, CIPLINAFL AD;

getAHD A2 P22 N1 AD?2 0b101110 BTS2 fReturn(B-, CIP2 INB- HD;
getHD A21P22IN1MD2 0b101110 BTS2 fReturn(BE, CIP2_ IN B- H D;
getAD A21P2:2 N1 UK 2 0b101110 BTS2 fReturn(B-, CIP2 INB- HD;
getAHD A21P22IN1 AD?2 0b011 BITS5 fReturn(AR3, QI P2_IN AF3 A D;
getAHD AQ21P22IN1BTS10 fReturn(AFL, CIP2 INAFL AD;
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Example Classification Code (part 12)

| L e e e e eeeeeeeeao
* Get Destination ID

*/

getDD CL AQUr FHD8 fReturn(CL QJI B- OD;
getDD CL QJT AF1 AD8 fReturn(CL QJT_ AF1L DO D;
getDD CL QU AR AID8 fReturn(CL QJI A2 O D;
getDD CL QJT AR AD8 fReturn(CL QJT_ AF3 O D;
getDD CL QU AHM AD8 fReturn(CL QJI AHM O D;
getDD QIPLOJT EFAD8 fReturn(QIPL QJIT E-F OD;
getDD QIPL QJ AFL HD8 fReturn(QIPL_ QJT AF1L DD;
getDD QIPLQJ A2 AID8 fReturn(QIPL QJUT AR2 DD;
getDD QIPLQJ ARB AD8 fReturn(QIPL QUT AR DD;
getDD QIPLOJT AM HD8 fReturn(QIPL QJT AM OD;
getDD QIP2 OQJT F AD8 fReturn(QIP2 QJT B OD;
getDD QIP2 QJT AFL HD8 fReturn(QIP2_ QJT_ AF1L DD;
getDD QIP2 QJT AR2 AID8 fReturn(QI P2 QJUT A2 DD
getDD QIP2 QJT ARB AID8 fReturn(QI P2 QUT AR DD);
getDD QIP2 QJT AM HD8 fReturn(QIP2 OQJT_ AM OD;
getDD CLINEH-HDS8 fRturn(CLINE DD;

getDD CLINAFL HD8 fReturn(CLINAFL DD;
getDD CLINAR2 HD8 fReturn(CLINAR2 OD;
getDD CLINARB HD8 fReturn(CLINAR3 DOD;
getDD CLINAHMM HD8 fReturn(CLINAM DOD;
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Example Classification Code (part 13)

getDD QIPLINEB-HDS8 fReturn(QIPLINE DD;

getDD QIPLINAFL AD8 fReturn(QIPLINAFL DOD;
getDD QIPLINAR2 FID8 fReturn(QIPLINAR2 DD;
getDD QIPLINARKS HD8 fReturn(QIPLINARS OD;
getDD QIPLINAM FID8 fReturn(QIPLINAM DD;
getDD QIP2ZINBE-HDS8 fReturn(QIP2 INE DD;

getDD QIP2 INAFL ID8 fReturn(QIF2 INAFL DD);
getDD QIP2INAR2Z ID8 fReturn(QIP2 INAR2 DD;
getDD QIP2 INARB FID8 fReturn(QIF2 INARR D D);
getDD QIP2 INAM FID8 fReturn(QIP2 INAM DD;

/'k

* Gt TMflags (color) and DSOP, dependi ng on cl ass

* and col or of out-bound packet:

*/
get TMI ags D8P
get TMI| ags DSCP.
get TMI ags D8P
get TMI| ags DSCP.
get TMI ags D8P
get TMI| ags DSCP.
get TMI ags D8P
get TMI| ags DSCP.
get TMI ags D8P
get TMI| ags DSCP.
get TMI ags D8P
get TMI| ags DSCP.
get TMI ags D8P

NSD-Agere -- Chapt. 24

B- 3 0b00: 2
B3 0b01l:2
B3 O0bl:1
AF1: 3 0b00: 2
AF1: 3 0b01: 2
AF1: 3 Obl: 1
AF2: 3 0b00: 2
AR2: 3 0b01: 2
AR2: 3 0bl: 1
AF3: 3 0b00: 2
AF3: 3 0b01: 2
AF3: 3 Obl: 1
AF4: 3 0b00: 2

B TS 14 f Ret ur n( 0b00101110) ;
B TS 14 f Ret urn(0b01101110);
B TS 15 f Ret urn(0b10101110);
B TS 14 f Ret ur n( 0b00001010) ;
B TS 14 f Ret ur n( 0b01001100) ;
Bl TS 15 f Ret ur n(0b10001110);
B TS 14 f Ret ur n( 0b00010010) ;
B TS 14 f Ret ur n(0b01010100) ;
B TS 15 f Ret ur n( 0b10010110) ;
B TS 14 f Ret ur n(0b00011010) ;
B TS 14 f Ret ur n( 0b01011100) ;
B TS 15 f Ret ur n(0b10011110);
B TS 14 f Ret ur n( 0b00100010) ;

32

@R=G een YE=Yel | ow RED=RE

/'k
/*
/'k
/*
/'k
/*
/'k
/*
/'k
/*
/'k
/*
/'k

*/
*/
*/
QR AF11 */
YE AF12 */
RE AF13 */
R AR21 */
YE AF22 */
RE AR23 */
R AR3L */
YE AR32 */
RE AR33 */
R AH41 */

M3
HHE



Example Classification Code (part 14)

get TMlags DBCP. AFR4: 3 0b01: 2 B TS 14 f Ret urn(0b01100100); /* YE AF42 */
get TMlags DSCP. AM4:3 Obl:1 B TS 15 f Ret urn(0b10100110); /* RE AM43 */

[#¥ cocococcccoocoooccoonooccoooooccoooooocooooooCCoooooCCoooo0CCooooooooooC
* Bxtract port nuniber from$tag

*/

get Port Num CLPR:3 BTS 21 f Ret urn(CL_PCRI);

get Port Num C PR3 BTS 21 fReturn(C_PORI) ;

get Port Num INPORT: 3 BTS 21 fReturn(1 N PCRI) ;

[# cccococcccoocoooccoooooocoonooocoooooocoooooocooooooCooooo0oCooooooooooC
* Gt flow code based on port and source or destination |P

*/

get H owCode: CLPRE3 IPCA fReturn(Ql);

IP_
get H owGode: QCPRE3IPL 2 fReturn(Q2l PL);
get H onCode: QCPRE3IPR 2 fReturn( A2l P2);
get H owGode: INPCORT:3 IP ClL fReturn(C.l);
get H owGode: INPCRT: 3 IPL @ fReturn(Q2l PL);
get H owQode: INPCRT: 3 | P2_2 fReturn( A2l P2);
| e e e e e e eeeeeao
* Verify the Tine To Live field in the | P Header
*/

VerifyTTL: 0:8 SecondPassExcepti on();
VerifyTTL: BITS 8 fReturn();
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Example Classification Code (part 15)

[# cccococcccoocoooccoooooocoonooocoooooocoooooocooooooCooooo0oCooooooooooC
* Verify checksum

*/

checkChecksum Obl Obl fReturn(); /* check passed */

/* otherwse error handler is called automatically */

[# cccococcccoocoooccoooooocoonooocoooooocoooooocooooooCooooo0oCooooooooooC
* Min error handl er

*/

MEror: ObO Bl TS 7 FrstPassException(); /* first pass */

MEror: Obl BITS 7 SecondPassException(); /* second pass */

| X o e e e e e
* Hrst pass error handl er
* D scard
*/
H r st PassExcept i on:
fQueueEdH 0: 2, 0:19, $offset:6, 0:1, 0:2, 1.1, 0:24);

* Second pass error handl er
* Send PDUto RSP for discard
*/
SecondPassExcept i on:
f Ski pToEnd()
fTransmt (0:1, 0:1, 0:20, 0:16, 0:5, 0:10, 0:24);
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Error Handling

e FPL provides error handling in case none of the patterns in
a tree function matches

e 1-bit argument specifies whether error occurred in pass 1 or
2

e Tonitialize the error handler:

SETUP ERROR(MYyError),

e Argument used to choose a pass

MyError: 0b0 BITS:7 FirstPassException(); /* first pass */
MyError: Obl BITS:7 SecondPassException(); /* second pass */
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Example Policing Script (part 1)

/* ds_police eof 0O.asl - policing functions for D ffServ exanpl e */
/-k

* Policing script inplenenting dual token bucket al gorithm

*/

#i ncl ude "pol i ceNp5. h"

#defi ne NMAX RTC TI ME Oxffffffff

/*

* Dual token bucket paraneters

* (these are initialized during configuration)

* Bt rates are neasured in RTC ticks per byte.

* Burst sizes are neasured in RTCticks, i.e.

* BurstSze in ticks = BurstSze in bytes x ticks per byte

*/

unsi gned PBR parambl ock[O: 1] input; /* peak bit rate */
unsi gned SBR parambl ock[2: 3] input; /* sustained bit rate */
unsi gned PBS parambl ock[ 4: 11] input; /* peak burst size */

unsi gned SBS param bl ock[ 12: 19] input; /* sustai ned burst size */

/*

* Previous pdu arrival tine

* (initialized to zero during configuration)

*/

unsi gned | ast_pdu_arrival param bl ock[ 20: 23] i nout;
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Example Policing Script (part 2)

/-k

* token counter for peak bucket

* (initialized to PBS during configuration)
*/

unsi gned p _t okens param bl ock[ 24: 31] i nout;

/* token counter for sustained bucket

* (initialized to SBS during configuration)
*/

unsi gned s_t okens param bl ock[ 32: 39] i nout ;

/* PDUlength in bytes (passed by FPP) */
unsi gned pdu | ength fpp args[0: 1] input;

[* DP_ AJfield (passed by FPP) */
unsigned DBCP QJ  fpp_args[2];

/* RICticks since | ast packet arrived, tenporary variabl e */
unsi gned(4) delta t;

/* PDUlength in RTCticks for sustained rate, tenporary variable */
unsi gned(4) pdu peak len t;

/* PDUlength in RTCticks for peak rate, tenporary variable */
unsi gned(4) pdu sust len t;

/* resulting predicate bits */

bool ean PeakBucket Fai | ed $[ 15] out put ;
bool ean Sust Bucket Fai | ed $[ 14] out put ;
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Example Policing Script (part 3)

script dual thbucket {

deltat = (MMXRICTIME - last_pdu arrival) + current _ti ne;
If (current tine >=last pdu arrival) {
deltat =current tine - last_pdu arrival;

}

pdu peak len t = pdu | engt h* PBR
pdu sust |en t = pdu_| engt h*SBR

/* update first bucket */

p tokens = p tokens + delta t;

iIf (p_tokens > PBS {
p_tokens = PBS

}

/* updat e second bucket */
s tokens = s tokens + delta t;
if (s_tokens > SBY {

s _tokens = SBS

}

/* assign color bits (account for pre-coloring) */
Sust Bucket Fai | ed = (s_tokens < pdu_sust |en_t)|]| ((D8P_ALOx10) =0x10);
PeakBucket Fai | ed = (p_tokens < pdu peak |en t)]|| ((DSCP_OLOx18) ==0x18);
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Example Policing Script (part 4)

i f (!PeakBucket Fai | ed) {
/* updat e peak bucket */
p tokens = p tokens - pdu peak |len t;

}

I f (!SustBucket Fail ed) {
/* updat e sustai ned bucket */
s tokens = s tokens - pdu sust len t;

}

/* tinestanp */
last_pdu arrival = current tine;
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Buffer Management And Packet Discard

e |mplementation of Weighted RED (WRED)

e Results of policing passed to the Traffic Manager in two
Individual bits

— PeakBucketFalled
— SustBucketFailed

e |mplementation uses intervals rather than floating point
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Buffer Management And Discard Code (part 1)

/* ds_ tmwed. asl - buffer managenent for DffServ exanpl e */
/-k

* Dscrete Wighted RED for tri-col or schene

*/

# ncl ude "t nNa5. h"

#def i ne LR GREEN  0b00
#def i ne LR YH.LONObO1
#define AR RED  0bl0

/* Queue size |limts for different colors */

unsi gned gthresh red mn parambl ock in extended] 0:1 ];
unsi gned gt hresh red_nax parambl ock_in_extended] 2:3 ];
unsi gned gt hresh_yel | ow mn param bl ock_i nout _extended] 0:1 ];
unsi gned gt hresh_yel | ow nax par am bl ock_i nout _extended[ 2:3 ];
unsi gned gt hresh green mn parambl ock i nout extended] 4:5 ];
unsi gned gt hresh _green_nax par am bl ock i nout _extended[ 6:7 ];

/ * average queue size */
unsi gned Qaver age parambl ock i nout extended[ 8:9 ];

/* Queue steps (4 steps per interval) */

unsi gned gstep red par am bl ock i nout extended] 10: 11 ];

unsi gned gstep_yel | ow parambl ock inout extended] 12:13 ];

unsi gned gstep green parambl ock i nout extended[ 14:15 ];

/* ds tmwed. asl - buffer nanagenent for DffServ exanpl e */
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Buffer Management And Discard Code (part 2)

/* color of the PDU (passed by FPL) */
unsi gned col or paraneters tnjlj;

/* drop probability for current PDU */
unsi gned(1) drop pr;

/-k

* wei ghted runni ng average for the queue size
*as if current PDUis not dropped

*/

unsi gned(2) q_aver age;

/* tenporaries for mn and nax queue sizes */
unsi gned(2) qgthresh mn;

unsi gned(2) qt hresh nax;

/* step to increnent queue size threshold */
unsi gned(2) q_step;

script tmwed {

/*

* conput e average queue size as if the PDUis not dropped
* (average = Qaverage + 1/ 8*(@urrent - Qaver age)

*/

g average = Qaverage + ((bl ocks in _Q + pdu bl ocks)>>3) - (CQaverage>>3);
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Buffer Management And Discard Code (part 3)

/* Set threshol ds according to color of current PDU */

If (color = LR GREN {
gthresh_mn = gthresh green mn;
gt hresh_nmax = gt hresh_green nax;
g_step = gstep _green;
} else {
if (color = QR YHELON {
gthresh_mn = gthresh_yel | ow mn;
gt hresh nmax = gt hresh_yel | ow nax;
g _step = gstep_vyel | ow
} else {
gthresh mn = gthresh red mn;
gt hresh max = gt hresh red nax;
g step = gstep_red;

}

/*

* Calculate drop probability, depending on the
* threshold interval for the current packet

*/

iIf ((q average > gthresh nax) ||
(sch_nem> sch_thresh) ||
(port_nem> port_thresh) ||
(used nem> gl ob threshl)) {
drop pr = Oxff; /* (100%drop probability) */
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Scheduler Ports, Queues, and Weights

Port Port Logical QoS DiffServ Weight
Number Manager Port Queue Class for SDWRR
0 0 0 1 EF 16
0 0 0 2 AF1l 1
0 0 0 3 AF2 2
0 0 0 4 AF3 4
0 0 0 5 AF4 8
1 1 1 6 EF 16
1 1 1 7 AF1 1
1 1 1 8 AF2 2
1 1 1 9 AF3 4
1 1 1 10 AF4 8
2 2 2 11 EF 16
2 2 2 12 AF1 1
2 2 2 13 AF2 2
2 2 2 14 AF3 4
2 2 2 15 AF4 8
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Scheduling Parameters

e Each queue stores three scheduling parameters

e Example: for SDWRR, parameters corresponds to the three
limits used in the algorithm

e To achive weighted bandwidth sharing, assigned values are
function of queue weight
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Scheduling Parameters
(continued)

e Thethreelimits are assigned for the i th gueue as follows:

Wi L max
3

limitl =

2Wi L max

imit2 = 2Aimitl =

imit3 = 3limitli = Wik max

e [or Ethernet, L max 1S 1514

NSD-Agere -- Chapt. 24 46

2004



Dynamic Scheduling

e Rate of given queue depends on other queues
— no apriori limit

— If no other queues have traffic, given queue can consume
all available bandwidth

e Handled by Shared Dynamic Rescheduler (known as Rate
Limiting Dynamic Rescheduler)
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Example SDWRR Scheduler

/* ds ts sdwr.asl -- scheduling script for DffServ exanpl e
/*

* Swot hed Wi ghted Deficit Round Robi n schedul er

*/

#i ncl ude "t sNo5. h"

/-k

* Typical limts assignnent:

* Quant um= nax_PDU si ze/ 3

* limtl = queue wei ght x Quant um

*limt2 = queue_wei ght x Quantumx 2

* limt3 = queue wei ght x Quantumx 3

*/

unsigned limtl par am bl ock i nout extended [0: 3];
unsigned limt2 par am bl ock_i nout _extended [ 4: 7] ;
unsigned limt3 par am bl ock_i nout extended [8: 11];
unsi gned expense par am bl ock_i nout _ext ended [ 12: 15] ;

unsi gned(4) updat ed expense;
unsi gned(1) H FO advance;

/*

* Mixinal rate is used to penal i ze oversubscri bed queues wth
* shared dynamc schedul er. Rates are neasured in bl ock tines.
*/

unsi gned nax_rate par am bl ock_i nout extended [ 16: 17];
unsi gned average rate par am bl ock i nout _ext ended [ 18: 19] ;
unsi gned | ast_sched tine parambl ock i nout extended [ 20: 23] ;
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Example SDWRR Scheduler (part 2)

script sdwr {
if (is first) {

/* average rate= 1/8 (current rate-average rate) + average rate */
average rate = average rate + ((current_tine - |ast_sched ti ne)>>3)
- (average rate>>3);

/* updat e schedul ing tinestanp */
| ast sched tine = current _tine + pdu ttt;

/*
* see if the queue had just entered busy peri od,
* in which case initialize expense to O
*/
iIf (is Qnewto HFO
expense = 0O,

/* cal cul at e new expense */
updat ed_expense = expense + pdu_| engt h;

/* cal culate hownany FIFOlists this queue shoul d advance */
F FO advance = (;
expense = updat ed expense;
I f (updated expense > limtl) {
Fl FO advance = 1;
expense = updat ed expense - limt1;
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Example SDWRR Scheduler (part 3)

I f (updated expense > limt2) {
Fl FO advance = 2;
expense = updated expense - limt2;

if ( updated expense > |imt3) {
Fl FO advance = 3;
expense = updated expense - limt3;

}

/*

* calculate next FIFOlist for current queue:

* current = (current + advance) nod 4

*/

gqueue currentlist = (queue currentlist + Fl FO advance) & 0x3;

/*
* if nmaxi numrate exceeded, send queue to
* shared dynamc reschedul er
*/
iIf (average rate < nax_rate ) {
send Qto dynamc_reschedul er=true;
pdu interval = nax rate + pdu ttt;
upd interval = true;
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Example SDWRR Scheduler (part 4)

/*

* @ tothe next AHFOIlist and update enqueuing |ist.

* Paraneter H FO sched next currentlist is set only by the hardware
*as follows: Bts 0:1 are set to the next HFOIlist, whichis the
* sane as current one if there is still a non-enpty queue on the

* current one, or is set to the next non-enpty FIFOIist otherw se.
* Bts 4.5 are set to (bits 0:1+ 1) nod 4

* Here we leave bits 0:1 as is, and increnent bits 4:5 by 2 nod 4,

* so that enqueuing list is (current list + 3) nod 4

*/

FI FO sched currentlist = (H FOsched next currentl i st+0x20) &0x3f ;

}
}
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Packet Marking (M odification)

e DiffServ uses the term marking to refer to insertion of a
codepoint value

e Example code used SED engine to perform modification

e SED programmed with script
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Example Of Packet Marking
e Copy Ethernet source and destination addresses from
parameter block to the packet
e Decrement time-to-live
e Assign DiffServ codepoint

e Recompute checksum
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Example Packet Marking Code (part 1)

/* ds sed ip ethernet.asl - SED script for DffServ exanpl e */

#i ncl ude "sedNp5. h"

* ODffServ for | P over B hernet
*/
script DSip_ethernet {

unsi gned prmdst nac par am bl ock[ O: 5] ;
unsi gned prmsrc_nac par am bl ock[ 6: 11] ;

/* D8P val ue, passed by FPP */
unsi gned prmdscp flags[O];
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Example Packet Marking Code (part 2)

/~k

* nly the first block of the PDUis nodified. Al other blocks are
* passed through the SED CE wthout nwodification.

*/

if (is_first) {

/*

* The format of the first output data bl ock.

* |t consists of an Bhernet MAC header fol |l owed by an | P header.
* Wthin the | P header, the TG5 TIL and the checksumfields are

* defi ned.

*/

unsi gned dst_nmac data bl ock[ O: 5] ;

unsi gned src_nac data bl ock[ 6: 11] ;

bl ock | p_header data bl ock[ 14: 33];
unsi gned Ip tos ip header[1];

unsi gned ip_ttl ip_header[8];

unsi gned | p_checksumi p_header[ 10: 11] ;
unsi gned(4) checksum

unsi gned( 2) t enp;

/* HIl in source & destination MAC addresses from paraneter bl ock */
dst_nmac = prmdst nac;
Src_nmac = prmsrc_nac;

/*

* Update ttl field Assuming that FPL code has al ready
* verified that it is nonzero

*/

Ip_ttl =ip_ttl - 1;
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Example Packet Marking Code (part 3)

/[* Set TGS (DBP) and adj ust the checksum*/

tenp = prmdscp; /* overcomng conversion probl ens */
checksum= i p_checksum+ ip tos + Ox0100 + (~tenp);

I p_tos = prmdscp;

/* Wap checksumcarry around */
checksum = checksunj O: 1] +checksunj 2: 3] ;
checksum = checksunj O: 1] +checksunj 2: 3] ;
I p_checksum = checksunj 2: 3] ;
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Host Interface

o [Externa host
— Initializes APP550

— Loads code and configuration information onto chip

e After chip initialized, host uses object API to interact with
chip
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Example Host I nterface Code (part 1)

/* ds _host iface.c - external host interface for DffServ exanpl e */

/-k
* Load configuration file and provi de coomand interface for host
*/

#i ncl ude <agere np5. h>
#i ncl ude <stdio. h>

#defi ne MMXQELE 15 /* maxi nal queue | D nunber */
#defi ne MMWX FRAMES ZE 1514 /* naxi nal frane size */
#define MMX LINELEN 16 /* naxinal conmand line [ength */

/* locations of limts and expense in paraneters bl ock */
#define LIMTL_NM O
#define LIMT2 NM 1
#define LIMT3_ NM 2
#def i ne EXPENSE NM 3

/* read config function prototype */
int cfg read func(void *fp, char *buf, int len);

/* chipset handl e definitions */
ag_chi pset t chipsetH ;
ag_np5 t app550H ;

ag rsp t rspHll ;
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Example Host Interface Code (part 2)

#i fdef VWIRKS
static int DffServSart(int argc, char ** argv)
#el se
int nan(int argc, char ** argv)
#endi f
{
int weight, queue, rc;
char cnd buf [ MAX LI NE LEN ;
ag uint32 t paranetersf[4];
ag uint8t paramnuns[]={LIMTL NJMLIMT2 NJM LIM T3 NM EXPENSE NV ;
char * fil enang;
FILE * cfg fp;
ag_chipset _chip error_t chipEror;

/* get and check argunents */
if (argc !'=2) {
fprintf(stderr,"Wage: OffServSart <cfg file nane>\n");
exit(-1);
}
filenane = argv[1];
if ((cfg fp =fopen(filenane, "r")) = NULL) {
fprintf(stderr,"Bror: can not open config file 9%\n",fil enane);
exit(-1);

NSD-Agere -- Chapt. 24 59 2004



Example Host I nterface Code (part 3)

/* initialize chipset */

rc = ag chipset init(0, &hipsetHl);

if (rc !'= AGCHPSET_ST SUXESS {
fprintf(stderr,"Eror: ag chipset init failed\n");
fclose(cfg fp);
exit(-1);

}

/* configure chipset */
rc = ag_chi pset _config(chipsetHll, (ag read fnt) cfg read func,
(void *) cfg fp, NALL, NLL, &hipEror);
if (rc '= AGHPSET ST SUXESS {
fprintf(stderr,"Bror: ag chipset _config failed\n");
fclose(cfg fp);
exit(-1);

/* close config file */
fclose(cfg fp);

/* get object-level APPS50 handl e */
rc = ag _chi pset _hdl get(chipsetHll, (char*) "APPS50", 0, &app550Hl);
if (rc !'= AGCH PSET_ST SUTESS {

fprintf(stderr,"BEror: ag chipset _hdl get failed\n");

exit(-1);
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Example Host Interface Code (part 4)

/* get object-level RSP handl e */

rc = ag rsp_hdl get (app550Hdl, & spHll);

if (rc!=AGST .
fprintf(stderr, "Eror: ag rsp hdl _get failed\n");
exit(-1);

}

[* start our own "shel " */
while (1) { /* do forever */
/* read queue | D and wei ght fromstandard i nput */
fprintf(stdout,"Enter Queue ID and VWi ght (separated by space): ");
if ( fgets(cnd buf, MM LINE LEN stdin) == NULL )
exit(0); /* EGF encountered */
queue = atoi(strtok(cnmd buf," \n"));
weight = atoi (strtok(NWLL," \n"));
if (queue <1 || queue > MMXQEE {
fprintf(stderr,"BEror: invalid queue nunber: %\n", queue);
cont i nue;

}
if (weight <1) {
fprintf(stderr,"Bror: invalid weight value: %\n", weight);

cont i nue;
}
/* conpute new |limts */
paraneters[0] = MAX FRAMES ZEwei ght/3; /* limtl */
par anet ers[ 1] = par anet er s[ 0] *2; [* limt2 */
paraneters[2] = paraneters[0]*3; /[* limt3 */
paraneters[3] = 0; /* expense = 0 */
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Example Host Interface Code (part 5)

/* update paraneters */
rc=ag _rsp qid unatomc repl ace ts parns words(rspHll, queue,
par aneters, paramnuns, 4);
swtch (rc) {
case AG ST SUOESS
/* success */
fprintf(stdout,"Wight for queue % set to %\n", queue, wei ght);
br eak;
case AG ST RSP QD INALID
fprintf(stderr, "Bror: QD% is invalid\n", queue);
cont i nue;
case AG ST RSP QD NOI EX ST:
fprintf(stderr, "Bror: QD % does not exist\n", queue);
conti nue;
case AG ST RSP | N\VALI D HANDLE
fprintf(stderr, "Eror: invalid RSP hand e\n");

exit(-1);
defaul t:
fprintf(stderr, "Eror: invalid return code %\n",rc);
exit(-1);
Y
exit(0);

}
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Example Host Interface Code (part 6)

/* function to read configuration file */
int cfg read func(void *fp, char *buf, int len) {
I nt nread;
If ((nread=fread(buf, 1, len, (HLE *)fp)) <len) {
if (ferror((FILE *)fp)) {
fprintf(stderr,"Bror: cfg read func failed readi ng\n");
return -1;

}
}

return nread;
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Summary

e \We have reviewed complete code for a DiffServ system
— Classification
— Policing and marking
— Buffer management and discard

— Dynamic rescheduling
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Questions?
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Switching Fabrics
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Physical | nterconnection

e Physical box with backplane
e [ndividua blades plug into backplane slots

e FEach blade contains one or more network connections
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L ogical Interconnection

e Known as switching fabric
e Handles transport from one blade to another

e Becomes bottleneck as number of interfaces scales
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lllustration Of Switching Fabric

input ports

(— 1

CPU

input
arrives <

switching
fabric

output ports

1 —")

output
s leaves

e Any input port can send to any output port
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Switching Fabric Properties

e Used inside a single network system

e [nterconnection among | /O ports (and possibly CPU)
e Can transfer unicast, multicast, and broadcast packets
e Scalesto arbitrary data rate on any port

e Scalesto arbitrary packet rate on any port

e Scalesto arbitrary number of ports

e Haslow overhead

e Haslow cost
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Types Of Switching Fabrics

e Space-division (separate paths)

e Time-division (shared medium)
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Space-Division Fabric (separate paths)

interface hardware

. switching fabric
Input ports output ports

s M -
input — 2 2 — output

arrives < — — s |leaves

\—>N4—|: :’—>|\/|—>/

e Can use multiple paths simultaneously
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Space-Division Fabric (separate paths)

input ports \

interface hardware

switching fabric

output ports

- M -
input — 2 2 —»
arrives < —

> N 4—|: :'—> M > )

output
s |leaves

e Can use multiple paths simultaneously

e Still have port contention
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Desires
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Desires

e High speed
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Desires

e High speed

e | Oow cost
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Desires

e High speed and low cost!
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Possible Compromise

e Separation of physical paths
e |esspardle hardware

e Crossbar design
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Space-Division (Crossbar Fabric)

interface hardware

controller

input ports\

—_— 1

switching fabric

Vi b

Va Y
A%

WV

0
\Y %

Va Y
A%

V4 Y
V

0
A\ %

Vd Y
A\

D

|
R

output ports
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Crossbar

e Allows simultaneous transfer on digoint pairs of ports

e Can still have port contention
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Crossbar

e Allows simultaneous transfer on digoint pairs of ports

e Can still have port contention
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Solving Contention

e Queues (FIFOs)
— Attached to input
— Attached to output
— At intermediate points
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Crossbar Fabric With Queuing

input ports l

_ controller
Input queues

switching fabric

—_—

1

D ra
—— = = -

|
T
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Time-Division Fabric (shared bus)

shared bus

<

1

\x

|

input ports

e Chief advantage: low cost
e Chief disadvantage: low speed
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Time-Division Fabric (shared memory)

memory
interface

controller

input ports \

— 1

shared memory
switching fabric

output ports

1

—

e May be better than shared bus

e Usually more expensive
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Multi-Stage Fabrics

e Compromise between pure time-division and pure space-
division

e Attempt to combine advantages of each
— Lower cost from time-division

— Higher performance from space-division

e Technique: limited sharing
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Banyan Fabric

e Example of multi-stage fabric
e Features
— Scalable
— Sdlf-routing
— Packet queues allowed, but not required
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Basic Banyan Building Block

input #1 2-input
\ switch

—_—

—_—

/

input #2

e Address added to front of each packet
e One bit of address used to select output
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4-Input And 8-Input Banyan Switches

4-input switch

00,
SW; SWs | fore
INPULS > outputs
10,
SW, SW, | |rqqe
(a)
8-input switch
'00
SW, '00
4-input switch
(for details
see above) 010"
SW, '011"
INputs ¢
'100"
SW; '101"
4-input switch .
(for details
see above) ‘11
SW, '11
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Summary
e Switching fabric provides connections inside single network
system
e Two basic approaches
— Time-division has lowest cost
— Space-division has highest performance
e Multistage designs compromise between two

e Banyan fabric is example of multistage
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Questions?




X1V

|ssues In Scaling A Network Processor
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e (Can we make network processors

Design Questions

Faster?

Easier to use?
More powerful ?
More general ?
Cheaper?

All of the above?

e Scae isfundamental
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Scaling The Processor Hierarchy

e Make processors faster
e Use more concurrent threads
e |ncrease processor types

e |ncrease numbers of processors
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The Pyramid Of Processor Scale

CPU

/Embedded Proc\

/ I/O Processors \
/ Lower Levels Of Processor Hierarchy \

e | ower levels need the most increase
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Scaling The Memory Hierarchy

e Size

e Speed

e Throughput
e Cost
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Memory Speed

e Access latency
— Raw read/write access speed
— SRAM 2-10ns
— DRAM 50 - 70 ns

— External memory takes order of magnitude longer than
onboard
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Memory Speed
(continued)

Memory cycle time

Measure of successive read/write operations
Important for networking because packets are large

Read Cycle time (tRC) is time for successive fetch
operations

Write Cycle time (tWC) is time for successive store
operations
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The Pyramid Of Memory Scale

Reg.

/ Onboard mem.\

/ External SRAM \
/ External DRAM \

e [argest memory is least expensive

NSD-Agere -- Chapt. 14 8 2004



Memory Bandwidth

e General measure of throughput
e More parallelism in access path yields more throughput
e Cannot scale arbitrarily

— Pinout limits

— Processor must have addresses as wide as bus
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Types Of Memory

Memory Technology

Abbreviation

Purpose

Synchronized DRAM

Quad Data Rate SRAM

Zero Bus Turnaround SRAM
Fast Cycle RAM

Double Data Rate DRAM

Reduced Latency DRAM
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SDRAM
QDR-SRAM
ZBT-SRAM
FCRAM
DDR-DRAM

RLDRAM
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Synchronized with CPU
for lower latency

Optimized for low latency
and multiple access

Optimized for random
access

Low cycle time optimized
for block transfer

Optimized for low
latency

Low cycle time and
low power requirements
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Memory Cache

e General-purpose technigue

e May not work well in network systems
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Memory Cache

e General-purpose technigue
e May not work well in network systems

— Low temporal locality
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Memory Cache

e General-purpose technigue
e May not work well in network systems
— Low temporal locality

— Large cache size (either more entries or larger
granularity of access)
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Content Addressable Memory (CAM)

e Combination of mechanisms
— Random access storage
— Exact-match pattern search

e Rapid search enabled with parallel hardware
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Arrangement Of CAM

one slot CAlM

\

C )

e Organized as array of dots
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L ookup In Conventional CAM

e Given
— Pattern for which to search
— Known as key
e CAM returns
— First dlot that matches key, or
— All dots that match key
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Ternary CAM (T-CAM)

e Allows masking of entries

e (Good for network processor
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T-CAM Lookup

e Each dot has hit mask

e Hardware uses mask to decide which bits to test

e Algorithm

for each slot do {
If ((key & mask ) == ( dlot & mask ) ) {
declare key matches dot;
} else {
declare key does not match slot;

}
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Partial Matching With A T-CAM

key —=| 08 |00 [ 45 (06 | OO | 50 | 00 | 00

dot#1 —» | 08 | 00 | 45| 06 | 00 | 50 | 00 | 02

mask — | ff | ff | ff | ff [ ff | ff | OO [ OO

dot#2 —» (08 |00 |45 (06 |00 | 35|00 |03

mask — | ff | ff | ff | ff | ff | ff | 00 | OO

e Key matches dot #1
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Using A T-CAM For Classification

e Extract values from fields in headers
e [Form values in contiguous string
e Useakey for T-CAM lookup

e Store classification in slot
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Softwar e Scalability

e Not aways easy
e Many resource constraints
e Difficulty arises from
— Explicit parallelism
— Code optimized by hand

— Pipelines on heterogeneous hardware
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Summary

e Scalability key issue
e Primary subsystems affecting scale
— Processor hierarchy
— Memory hierarchy
e Many memory types available
— SRAM
— SDRAM
— CAM
e T-CAM useful for classification
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Questions?




XV

Examples Of Commercial Network Processors
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Commercial Products

e Emergein late 1990s

e Become popular in early 2000s

e EXxceed thirty vendors by 2003

e Fewer than thirty vendors by 2004
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Examples

e (Chosen to
— Illustrate concepts
— Show broad categories
— Expose the variety
e Not necessarily ‘‘best’”
e Not meant as an endorsement of specific vendors

e Show a snapshot as of 2004
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Augmented RISC (Alchemy)

e Based on MIPS-32 CPU
— Five-stage pipeline

e Augmented for packet processing
— Instructions (e.g. multiply-and-accumulate)
— Memory cache

— 1/0O Interfaces
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to
SORAM

Alchemy Architecture

SRAM
bus

SDRAM controller

32-bit PCI 2.2

instruct.

mips-32 | cache

EJTAG

embed.
proc. bus unit

DMA controller

data

MAC cache

Ethernet MAC

Ethernet MAC

|

SRAM controller

USB-Host contr.

RTC (2)

USB-Device contr.

power management

interrupt controller

GPIO (48)
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Parallel Embedded Processors
Plus Coprocessors (AMCC)

e Oneto six nP core processors
e Various engines

— Packet metering

— Packet transform

— Packet policy
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AM CC Architecture
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A A
external search external memory host
interface interface interface
policy metering
engine engine
memory access unit
nPSclc))(res onboard
memory
input packet transform engine output
control iface | debug port inter mod. test iface
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Parallel Pipelines Of
Homogeneous Processor s
(Cisco)
e Parallel eXpress Forwarding (PXF)
e Arranged in parallel pipelines
e Packet flows through one pipeline
e Each processor in pipeline dedicated to one task
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Cisco Architecture

input

output

MAC classify
Accounting & ICMP
FIB & Netflow
MPLS classify
Access Control

CAR routing
MLPPP

WRED
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Pipeline Of Parallel Heter ogeneous
Processors (EZchip)

e [our processor types

e Each type optimized for specific task
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EZchip NP-1c Architecture

TOPparse TOPsearch TOPresolve TOPmodify
memory memory memory memory
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EZchip Processor Types

Processor Type

Optimized For

TOPparse
TOPsearch
TOPresolve
TOPmodify
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Header field extraction and classification
Table lookup

Queue management and forwarding
Packet header and content modification
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Extensive And Diver se Processors
(Hifn, formerly IBM)

e Multiple processor types

e Extensive use of parallelism

e Separate ingress and egress processing paths
e Multiple onboard data stores

e Modd is NPAGS3
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Hifn NP4AGS3 Architecture

to switching PCI external DRAM  from switching
fabric bus and SRAM  fabric
[} [} [}
: ingress - egress
ingress | switch s switch e
store interface interface store
processor processor
. Y
: Embedded Processor Complex
SRAM ; (EPC) traffic
~ for | manag.
mgress e L and
ata sched.
ingress I egress
physical physical
MAC MAC
multiplexor multiplexor
|
|
| |
v \j
packets from packets to egress
physical devices physical devices data store
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Hifn’s Embedded Processor Complex

ingress

to onboard memory

to external memory

r

A r

Ho | |Hi| | H2

Hs

H, | S ||Dy||D,]|D,

D3

D,

control memory arbiter

queue ~

interrupts

-

exceptions

ingress
data

debug & inter.

store

ingress
data

ingress
data
iface

instr. memory

store
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Packet Engines

e [Found in Embedded Processor Complex
e Programmable

e Handle many packet processing tasks

e QOperate in parallel (sixteen)

e Known as picoengines
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Other Processors On The IBM Chip

Coprocessor Purpose

Data Store Provides frame buffer DMA

Checksum Calculates or verifies header checksums

Enqueue Passes outgoing frames to switch or target queues
Interface Provides access to internal registers and memory
String Copy Transfers internal bulk data at high speed

Counter Updates counters used in protocol processing
Policy Manages traffic

Semaphore Coordinates and synchronizes threads
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Homogeneous Parallel Processors
Plus Controller (Intel 1 XP2xxx)

e Two basic models
— IXP2400
— IXP2800

e FEight or sixteen parallel programmable packet processors
Known as microengines

e One XScale embedded RISC processor
e High-speed Media and Switch Fabric interface

e Connections to external buses (e.g., for memory)
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Intel Chip External Connections

PCI bus

optional host connection —» <

|

>

coprocessor
bus
classif.
acceler.
=
ASIC
Flash
Mem. /
Sow Port
interface

IXP2400
chip

flow

Media or Switch Fabric
hardware

NSD-Agere -- Chapt. 15

T

input and output demux

19

control
bus

2004



Intel Chip Internal Architecture

optional host connection —» < PCI bus >

coprocessor
bus IXP2400 chip
XScale PCI SRAM DR
classif. RISC Ifage. iface. [ . S%AM
acceler. [* . processor
coproc. DRAM DDR
1" iface. iface. [T " DRAM
L]
ASIC |&—
MEs 1 - 4 HH " multiple, hua;]si?
iy independent
v internal
L] buses
scratch
MEs 5 -8 memory
Flash slow FC bus
Mem. [* ™ port iface. [*]
Media ?Ltg‘]{iggg Fabric_ | receive transmit How
control
T 1 bus
Media?];r%""v\;g}g':abric—— input and output demux
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Two Intel Chips Used For High Speed

network fabric

interface gasket
IXP2400 F
—> (ingress) —> —> .
input B
<:> demux R
I

IXP2400

< (egress) < < C
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Flexible RISC Plus Coprocessors
(Motorola C-PORT)

e Onboard processors can be
— Dedicated
— Pardld clusters
— Pipeline

NSD-Agere -- Chapt. 15 22 2004



C-Port Architecture

switching fabric
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processor processor
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physical physical
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| nternal Structure Of A
C-Port Channel Processor

switching
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Channel Processor Architectuer

To external DRAM

[}

< memo
¥ ¥

ry bus

RISC Processor
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extract merge
space space
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Serial Data Serial Data
Processor Processor
(in) (out)
v
packets arrive packets leave

e Actually a processor complex
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Extremely Long Pipéeline (Xelerated)

e Pipeline contains 200 processors
e Each processor can execute four instructions per packet

e External coprocessor calls used to pass state
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Xelerated Architecture

packet acket
arrives eaves
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200 processors

e Pipeline has 200 stages

e [our instructions per packet per stage
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Xeerated Internal Architecture

external SRAM, DRAM, TCAM or coprocessors
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Summary

e Many network processor architecture variations
e Examplesinclude
— Augmented RISC processor
— Embedded parallel processors plus coprocessors
— Parallel pipelines of homogeneous processors
— Pipeline of parallel heterogeneous processors
— Extensive and diverse processors
— FHexible RISC plus coprocessors

— Extremely long pipeline
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Questions?







