

Université Joseph Fourier

6 weeks from june to mid july

- Scientific course (30h or 60h)
- French language (36h)
- Lab/industry visits
- Cultural visits
- Interaction with french science students

First session in june 2012 free of tuition fee

Engineering		
Title	Introduction to Physical computing	
Instructor	Didier.donsez@imag.fr	
Organisation	60 h Lecture / tutorials / lab and company visits	
Prerequisites	Basics in programming and electronics	
Торіс	Computer Science and instrumentation: Physical computing focuses on interactions with the physical world using a variety of sensors and actuators that are controlled by microcontrollers and computers. This module introduces the technical aspects of development with the Arduino platform <u>http://air.imag.fr/</u> .	

Introduction to Physical computing

Electronics: what you should know to start Physical computing:

Definitions, principles and examples

Microcontroller,s sensors and actuators, simple programming language Arduino project

Practicals: elementary and basic circuits

Robotics: building an autonomous mobile robot

guiding and moving programming (hard and soft aspects) Motor driving, collision prevention Communication protocol between robots Practicals: building the robot http://air.imag.fr/mediawiki/index.php/Magician_Chassis

Introduction to Fablab:

digital construction (CAD / CAM) Designing / cutting / adapting of robot chassis Construction

Visits:

Schneider Electric Home project, LIG Domus, CCSTI's fablab, Orange Labs' thinging fablab

Physics	
Title	Introduction to large scale facilities: probing matter with neutron and synchrotron radiation
Instructor	Beatrice.grenier@ill.fr
Organisation	60 h Lecture / tutorials / lab work / ESRF and ILL visit
Prerequisites	Wave propagation and interferences, background in quantum mechanics is useful
Торіс	Introduction to crystallography and other neutron and synchrotron techniques. Application to the study of structure in condensed matter and in other domains such as biology,
	industry,

Introduction to large scale facilities: probing matter with neutron and synchrotron radiation

CRYSTALLOGRAPHY

Crystallography in Direct Space Diffraction – Crystallography in Reciprocal Space X-ray and neutron diffraction by a crystal **NEUTRON SCATTERING**

Neutrons: What for and How ?comparison to X-rays Instrumentation and experimental results : Diffraction, Small angle neutron scattering, Liquid scattering, Reflectivity (examples will be given in condensed matter physics, biology, industry, ...) SYNCHROTRON SCATTERING AND ABSORPTION X-rays and their interaction with matter Synchrotron radiation Refraction and reflection from interfaces Kinematical diffraction Scattering from a surface, Scattering from a helix Photoelectric absorption Imaging Lab-works X-rays – Debye-Scherrer, X-rays – Fluorescence, Neutron – Laue diffraction, Synchrotron – EXAFS

ILL and ESRF visits

Maths		
Title	Probability modeling	
Instructor	Bernard.Ycart@imag.fr	
Organisation	30 h Lecture / tutorials	
Prerequisites	Basics in set theory and elementary calculus including infinite series, partial differentiation, and multiple integration. Some exposure to rudimentary linear algebra (e.g., matrices and determinants) is useful.	
Торіс	Basics in mathematical probability, discrete and continuous random variables, expectation and variance, random vectors, laws of large numbers and central limit theorem.	

Indexed Dendrograms for uniform i.i.d. dissimilarities

Probability modeling

Random experiments

Events, axioms of probability, probability measurements, conditional probability, independence, random variables, distribution function, expectation, variance, modeling, peudorandom generators, simulation.

Discrete random variables

Bernoulli, binomial, geometric, Poisson, hypergeometric, negative binomial. Applications in biology

Continuous random variables

Uniform, exponential, normal. Change of variables, simulation. Applications in biology, reliability, physics, chemistry.

Random vectors

Covariance and correlation, multidimensional density, change of variables, characteristic function. Gaussian vectors, applications to statistics

Limit theorems

Law of large numbers, central limit theorem **Birth-death processes**

Poisson process, basics in queuing theory, birth-and-death processes in biology, stochastic modeling of chemical reactions.

june 4 - july 13, 2012

- Scientific course (30h or 60h)
- French language (36h)
- Lab/industry visits
- Cultural visits
- Interaction with french science students

Academic coordinator: Sophie.de-Brion-Ravel@ujfgrenoble.fr