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INTRODUCTION

Since proteins perform functions via interactions with other
proteins, understanding the functional role of proteins
requires an understanding of which proteins interact with each
other. These interactions are what we model as edges in
Protein-Protein Interaction networks.

We run our initial analysis on the Gavin 2002 dataset which has 1470
nodes and 3756 edges. Since our clustering is based on network 1. Create a minimum cut partition of the protein interaction graph,
topology, we can isolate sections to cluster independently. We isolate starting from the entire graph, and stopping when each protein
150 nodes within the largest connected component of the dataset represents Its own cluster.

_ _ e _ 2. For each node in the cut tree, calculate W = average pairwise
with 656 edges. This allows us to make our initial evaluations more functional similarity of proteins in that node.

quickly. This sample is not intended to represent the entire dataset. 3. For 1:100
1. Randomly permute protein identities in the protein interaction
graph
Gene Ontology 2. For each node in the cut tree, calculate W' = average pairwise
Our functional information comes from the Gene Ontology. GO is a functional similarity of proteins with permuted labels in that
hierarchical approach to organizing functional information. The GO . o |n0|det' the Gap statistic — (W — W.) where W W) anc
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implemented in the SemSim package in Bioconductor, for calculating the highest node with Gap > max(Gap) - sd(Gap)For selected nodes
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The goal of using semantic similarity with respect to the cellular
component ontology in GO is to have a numerical notion of how close
two proteins are within a cell. If all of the proteins in a cluster are

Our algorithm produced 19 disjoint clusters. The
average similarity within each of these clusters is
plotted in figure 8. Figure 9 shows the similarity for the
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Skig very similar, it is more likely that this cluster actually represents a _ 0 _ | _
cluster of interacting proteins. 21 clusters identified by the MCL_cI_usterlng algor!thm
without the use of a gap statistic. Our algorithm
METHODS produced more similar clusters than topology only MCL.
Algorithm
We employ a minimum cut algorithm for clustering. A cut is a CONCLUSIONS
Core 326 -y - - - . _ - _ o T o ‘- . .
| | | | partitioning of a graph into two sets of nodes. A minimum cut is a cut Our results demonstrate the utility of using a gap
Figure 2: Exosome Protein Cluster from Gavin 2006 dataset Figure 3: Exosome Crystal Structure i o _ _ _ o ] '
which removes the fewest edges to create the two sets. statistic with biological similarity measures as stopping
Unfortunately high-throughput data generally has more noise 0525 criteria for topology based clustering algorithms. For

than manually generated data sets. For example, in many
techniques cells are destroyed in the process of extracting the e | CET)

proteins contained within them. This allows proteins which
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future analyses, additional biological references and
datasets will be used to offset the bias introduced by
using a single measure of similarity for clustering and
validation. Further refinement of the algorithm can also
be explored to further fine tune the resulting clusters.
The end goal of having the clusters will be to further
study the datasets themselves and work toward a
statistical notion of biological confidence for the
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interact. The resulting edge in the graph is a false positive
since it represents an interaction which cannot actually occur
despite the compatible protein domains.

Goal: To define statistically motivated criteria for R PR OROR:! observed interactions.
determining the point at which a structural clustering
no longer identifies biologically relevant clusters, and SRR SRRl ACKNOWLEDGEMENTS
therefore should be stopped. We thank Susanne Hambrusch, Sagar Mittal and John Valko for generating the
EED BT SBIRED MCL algorithm clusters as well as helpful discussion.
BIOLOGICAL DATA @ ONG REFERENCES
The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genet., 25:25-29,

Data base Gavi 2(1)5?10.F 1onal 1zat1 f th b ' lysis of ' 1 N

. : . Figure 6: Cut tree showing similarities at each step. Figure 7: Cut tree showing gap statistic and standard deviation avin. et. Al. Functional organization of the yeast proteome by systematic analysis ot protein complexes. Nature,
The IntAct database contains a wide array of experimental : = g : i 415:141-147, 2002.

- - - - - - : . L X. Guo. Gene Ontology-based Semantic Similarity Measures. Bioconductor Library, Oct 2007.

datasets N a common format Wlth da common Set Of prOteI N In this example, the arrow In figure 6 corresponds to the node with the highest gap statistic on a path from root to S. Kerrien et. Al. Intact - open source resource for molecular interaction data. Nucleic Acids Research, 2006.

circled leaf. The highest node with a gap statistic above ymax — sd(random)s; is identified by the arrow in figure 7. R. Tibshirani, G.Walther, and T. Hastie. A constraint-based framework for diagrammatic reasoning. Applied

IDs. This makes it ideal for exploring new techniques. Tibs |
Artificial Intelligence, 14:327-344, 2000.



