Université Joseph Fourier

Summer Bachelor Program
Summer Bachelor Program

6 weeks from June to mid July
- Scientific course (30h or 60h)
- French language (36h)
- Lab/industry visits
- Cultural visits
- Interaction with French science students

First session in June 2012 free of tuition fee
Summer Bachelor Program

<table>
<thead>
<tr>
<th>Engineering</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Physical computing</td>
<td>Introduction to large scale facilities</td>
</tr>
<tr>
<td>Maths</td>
<td></td>
</tr>
<tr>
<td>Probability modeling</td>
<td></td>
</tr>
</tbody>
</table>
Introduction to Physical computing

Title
Introduction to Physical computing

Instructor
Didier.donsez@imag.fr

Organisation
60 h Lecture / tutorials / lab and company visits

Prerequisites
Basics in programming and electronics

Topic
Computer Science and instrumentation: Physical computing focuses on interactions with the physical world using a variety of sensors and actuators that are controlled by microcontrollers and computers. This module introduces the technical aspects of development with the Arduino platform http://air.imag.fr/.
Introduction to Physical Computing

Electronics: what you should know to start Physical computing:
- Definitions, principles and examples
- Microcontroller, sensors and actuators, simple programming language
- Arduino project
- Practicals: elementary and basic circuits

Robotics: building an autonomous mobile robot
- Guiding and moving programming (hard and soft aspects)
- Motor driving, collision prevention
- Communication protocol between robots
- Practicals: building the robot
- http://air.imag.fr/mediawiki/index.php/Magician_Chassis

Introduction to Fablab:
- Digital construction (CAD / CAM)
- Designing / cutting / adapting of robot chassis
- Construction

Visits:
- Schneider Electric Home project,
- LIG Domus, CCSTI's fablab,
- Orange Labs' thinging fablab
Physics

<table>
<thead>
<tr>
<th>Title</th>
<th>Introduction to large scale facilities: probing matter with neutron and synchrotron radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Beatrice.grenier@ill.fr</td>
</tr>
<tr>
<td>Organisation</td>
<td>60 h Lecture / tutorials / lab work / ESRF and ILL visit</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Wave propagation and interferences, background in quantum mechanics is useful</td>
</tr>
<tr>
<td>Topic</td>
<td>Introduction to crystallography and other neutron and synchrotron techniques. Application to the study of structure in condensed matter and in other domains such as biology, industry, …</td>
</tr>
</tbody>
</table>
Introduction to large scale facilities: probing matter with neutron and synchrotron radiation

CRYSTALLOGRAPHY
- Crystallography in Direct Space
- Diffraction - Crystallography in Reciprocal Space
- X-ray and neutron diffraction by a crystal

NEUTRON SCATTERRING
- Neutrons: What for and How ? comparison to X-rays
- Instrumentation and experimental results:
 - Diffraction, Small angle neutron scattering, Liquid scattering, Reflectivity (examples will be given in condensed matter physics, biology, industry, …)

SYNCHROTRON SCATTERING AND ABSORPTION
- X-rays and their interaction with matter
- Synchrotron radiation
- Refraction and reflection from interfaces
- Kinematical diffraction
- Scattering from a surface, Scattering from a helix
- Photoelectric absorption
- Imaging

Lab-works
- X-rays - Debye-Scherrer, X-rays - Fluorescence, Neutron - Laue diffraction, Synchrotron - EXAFS
- ILL and ESRF visits
Maths

<table>
<thead>
<tr>
<th>Title</th>
<th>Probability modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Bernard.Ycart@imag.fr</td>
</tr>
<tr>
<td>Organisation</td>
<td>30 h Lecture / tutorials</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Basics in set theory and elementary calculus including infinite series, partial differentiation, and multiple integration. Some exposure to rudimentary linear algebra (e.g., matrices and determinants) is useful.</td>
</tr>
<tr>
<td>Topic</td>
<td>Basics in mathematical probability, discrete and continuous random variables, expectation and variance, random vectors, laws of large numbers and central limit theorem.</td>
</tr>
</tbody>
</table>
Summer Bachelor Program

<table>
<thead>
<tr>
<th>Probability modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random experiments</td>
</tr>
<tr>
<td>Events, axioms of probability, probability measurements, conditional probability, independence, random variables, distribution function, expectation, variance, modeling, pseudo-random generators, simulation.</td>
</tr>
</tbody>
</table>

Discrete random variables
Bernoulli, binomial, geometric, Poisson, hypergeometric, negative binomial. Applications in biology

Continuous random variables
Uniform, exponential, normal. Change of variables, simulation. Applications in biology, reliability, physics, chemistry.

Random vectors
Covariance and correlation, multidimensional density, change of variables, characteristic function. Gaussian vectors, applications to statistics

Limit theorems
Law of large numbers, central limit theorem

Birth-death processes
Summer Bachelor Program

June 4 - July 13, 2012

- Scientific course (30h or 60h)
- French language (36h)
- Lab/industry visits
- Cultural visits
- Interaction with French science students

Academic coordinator:
Sophie.de-Brion-Ravel@ujf-grenoble.fr