Distance between two hyperplanes

Xiao (Cosmo) Zhang

September 9, 2014

Suppose we have two parallel hyperplanes $L_1 : w^T x + b_1 = 0, L_2 : w^T x + b_2 = 0$, the distance between them is $d = \frac{|b_1 - b_2|}{\|w\|}$.

proof: There must exist two points x_1, x_2, while x_1 is in L_1, and x_2 is in L_2. Also, a pair of x_1, x_2 satisfies $\|x_1 - x_2\| = |b_1 - b_2|$. let d be a vector perpendicular to L_1 and L_2 and $\|d\| = d$. Since $w \perp L_1$, let $d = cw$.

Then we have

$$(x_2 - x_1 - cw)^T cw = 0 \implies w^T (x_1 - x_2) - c \|w\|^2 = 0.$$

Then

$$c = \frac{w^T (x_2 - x_1)}{\|w\|^2}.$$

Since $w^T (x_2 - x_1) = b_1 - b_2 \implies c = \frac{b_1 - b_2}{\|w\|^2}$. Therefore, $d = \|d\| = |c| \|w\| = \frac{|b_1 - b_2|}{\|w\|}$.