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What is a Vietoris-Rips Filtration?

• Let X be a set of points with an underlying metric
• For every t (real), define a Vietoris-Rips complex by:

• Where the s are also known as (abstract) simplices on X
• The increasing sequence of such Vietoris-Rips complexes indexed by t 

and ordered by inclusions form a Vietoris-Rips filtration

2



An Illustration of a Vietoris-Rips Filtration 

• Real-World Data: the C. elegans 
neuronal network X

• Each node is a neuron and edges 
are synapses or gap junctions 
between neurons

• one of the simplest connectomes 
in living organisms

• With dimensionality reduction 
from 202 dimensions down to 
the Euclidean plane by the t-SNE 
algorithm
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A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 0.0 (the original point cloud)
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A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 1.0 
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A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 2.0
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A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 3.0
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A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 4.0
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A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 5.0
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Persistent Homology: Persistence Barcodes
• Persistence Barcodes:

• Consider a multiset of pairs (b,d) of simplex diameters where a “birth” and 
“death”, respectively of homological features occur in the Vietoris-Rips 
filtration. 

• e.g.                   is a birth-death pair
• The multiset of half open intervals {[b,d)} represent the persistence barcodes
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Persistent Homology: Birth and Death for H1 
of the C. elegans Dataset 

Birth event:
cycle forms (of 
an H1 class) at 
diameter: 
3.6357

Death event: (merge or zeroing 
of H1 class due to triangles (only 
the longest edge of the triangle 
is shown) added into the flag 
complex) at diameter: 4.8984
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How does GPU offer Massive Parallelism?

• A GPU (or graphical 
processing unit) is a 
processor designed for 
massively parallel 
algorithms executing in 
SIMT (single instruction 
multiple thread) mode

• If massive parallelism can 
be utilized then there can 
be tremendous speedup
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GPU Acceleration is a Part of General Computing 
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2018 Q4 launched Intel Core i7-9700K (Coffee Lake)
The die area is also used for GPU.
Eight 3.6 GHz cores (16 ops per cycles). 

• 2014 Intel i7 CPU performance = 3.0 * 16 * 8 = 384 Gflops
• 2018 Intel i7 CPU performance = 3.6 * 16 * 8 = 460.8 Gflops
• As the area of CPU cores is shrinking, CPU performance doesn’t significantly improve in the past 

five years. Overall performance must be accelerated by GPU.  

2014 Q3 launched Intel Core i7-5960X (Haswell-E)
Large shared L3 cache, no GPU.
Eight 3.0 GHz cores (16 ops per cycles). 



Performance of Ripser++ at a Glance
• Example dataset: 

• 192 points on      (embedded in      )
• Persistent homology barcodes up to dimension 3 
• Over 2.1 billion simplices in the 4-skeleton flag complex
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Performance of Ripser++ at a Glance
• Example dataset: 

• 192 points on      (embedded in      )
• Persistent homology barcodes up to dimension 3 
• Over 2.1 billion simplices in the 4-skeleton flag complex

• Comparison with existing software:
Super computer node: 28 x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.4GHz, 100 GB DRAM
• Eirene: 769.50 seconds, 168.00 GB for CPU (no generators recorded)
• Ripser: 36.96 seconds, 4.32 GB for CPU
• Ripser++: 2.43 seconds (15x+), 2.92 GB for GPU and 2.03 GB for CPU

• Super computing GPU: NVIDIA Tesla V100, 32 GB Device Memory
On my $900 laptop: 6 x Intel(R) Core(TM) i7-9750H CPU @ 2.6 GHz, 16 GB DRAM
• Ripser++: 5.0 seconds (7x+), 2.92 GB for GPU and 2.03 GB for CPU

• Laptop GPU : NVIDIA GTX 1660 Ti, 6 GB Device Memory

• Ripser++ is fastest in Vietoris-Rips persistence barcode computation
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Computation of Vietoris-Rips Persistence Barcodes 
for standard matrix reduction algorithm, see [Edelsbrunner, Letscher, Zomordian 2002] 

• Our goal is to develop GPU-accelerated parallel computation of this 
algorithm
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What are the Challenges for 
Parallelization?

• Exponentially growing filtration size in 
dim. d of computation (lines 1 and 2)

• Sequential memory accesses (lines 1
and 2)

• Indefinite O(filt. size) col. additions 
(line 5)

• Heavy data movement during col. 
addition (lines 6)

• Extremely sparse computation!

• Identifying hidden parallelism



Design Goals for High Performance

• Build upon the computational foundations of Ripser
• Parallelization of persistent homology barcode computation
• Eliminate as much I/O as possible 
• Potential for memory performance through implementation
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The Four Components of Ripser++ for 
Accelerated Performance
• Finding and Using Apparent Pairs
• A CPU-GPU Hybrid
• Efficient Filtration Construction with Clearing
• Efficient Hashmap
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What is an Apparent Pair? (preliminaries)

• Given data (e.g. a point cloud X), form the Rips filtration                     indexed 
by diameter thresholds t (up to some max threshold and dimension of 
computation)

• Define a simplex-wise filtration refinement on                    via the ordering 
on simplices:

• Increasing simplex diameters, followed by
• Increasing simplex dimension, followed by
• Decreasing simplex combinatorial indices

• Where the diameter of a simplex is the maximum length edge in the clique 
associated with a simplex

• Where the combinatorial index is a bijective encoding of simplices to the 
natural numbers [Knuth 1997] (most originally known to Pascal in 1887)

• If s<s’ in the ordering, then s is older than s’ and s’ is younger than s
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What is an Apparent Pair?

• A facet s of a simplex t is defined as the codimension 1 simplex in the 
boundary of t. 

• e.g. simplex (210) (having vertices 0, 1, and 2) has facets (10), (21), and (20)

• A cofacet t of simplex s is defined as a simplex containing s as a facet
• E.g. simplex (10) could have cofacets (210) and (310)

• A pair of simplices (s,t) is an apparent pair [Bauer 2019] iff
• s is the youngest facet of t
• t is the oldest cofacet of s
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Finding Apparent Pairs

• The Apparent Pairs Lemma from this paper:
• Given a simplex s and its cofacet t

1. t is the lexicographically greatest cofacet of s with diam(s)=diam(t) and
2. no facet s’ of t is strictly lexicographically smaller than s with 

diam(s’)=diam(s) 
iff (s,t) is an apparent pair

• Corollary: apparent pairs can be found massively in parallel
• Checking this lemma for a given simplex is memory efficient 
• Facets and cofacets can be efficiently enumerated by computation of 

combinatorial indices
21



Finding Apparent Pairs Algorithm, a Simple 
Case for a Single Column
• Consider edge (20) (assign a thread to this column)
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Finding Apparent Pairs Algorithm, a Simple 
Case for a Single Column
• Consider edge (20) (assign a thread to this column)

• Check condition 1 of lemma: search in decreasing lexicographic order the 
cofacets of (20) for a triangle of diam((20))=5. Find (320)
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Finding Apparent Pairs Algorithm, a Simple 
Case for a Single Column
• Consider edge (20) (assign a thread to this column)

• Check condition 1 of lemma: search in decreasing lexicographic order the 
cofacets of (20) for a triangle of diam((20))=5. Find (320)

• Check condition 2 of lemma: search in increasing lexicographic order the 
facets of (320) for a facet s’ with diam(s’)=5 and cidx(s’)<cidx((20))
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Finding Apparent Pairs Algorithm, a Simple 
Case for a Single Column
• Consider edge (20) (assign a thread to this column)

• Check condition 1 of lemma: search in decreasing lexicographic order the 
cofacets of (20) for a triangle of diam((20))=5. Find (320)

• Check condition 2 of lemma: search in increasing lexicographic order the 
facets of (320) for a facet s’ with diam(s’)=5 and cidx(s’)<cidx((20))
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Apparent Pairs Dominate Vietoris-Rips 
Persistence Pairs
• Empirically on real world and synthetic datasets, up to 99.9% of 

persistence pairs are apparent
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Time and Memory Performance of Ripser++
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Summary

• Ripser++ is software with GPU-acceleration for computation of 
Vietoris-Rips persistent barcodes with up to 30x speedup over Ripser

• Apparent pairs are explored and studied
• Utilized in a massively parallel way
• Foundations for their dominant appearance in Vietoris-Rips filtrations

• Future work based on Ripser++
• Accelerating persistent homology computation with lower-star filtrations or 

other filtrations types in a similar manner
• Applications requiring high speed computations of persistent homology 
• Ripser++ on a cluster of GPUs (for even larger datasets)
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Use Ripser++!

• Code is available at 
• https://github.com/simonzhang00/ripser-plusplus

• Read the full version paper at: 
• https://arxiv.org/abs/2003.07989
• More theoretical results and details on implementation/optimizations

Thank You!
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