# Ripser++: GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes

Simon Zhang, Mengbai Xiao and Hao Wang The Ohio State University, USA



#### What is a Vietoris-Rips Filtration?

- Let X be a set of points with an underlying metric
- For every t (real), define a Vietoris-Rips complex by:  $Rips_t(X) = \{ \emptyset \neq s \subset X \mid diam(s) \leq t \}$
- Where the s are also known as (abstract) simplices on X
- The increasing sequence of such Vietoris-Rips complexes indexed by t and ordered by inclusions form a Vietoris-Rips filtration

#### An Illustration of a Vietoris-Rips Filtration

- Real-World Data: the C. elegans neuronal network X
  - Each node is a neuron and edges are synapses or gap junctions between neurons
  - one of the simplest connectomes in living organisms
- With dimensionality reduction from 202 dimensions down to the Euclidean plane by the t-SNE algorithm



### A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 0.0 (the original point cloud)



### A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 1.0



### A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 2.0



### A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 3.0



### A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 4.0



### A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 5.0



# Persistent Homology: Persistence Barcodes

- Persistence Barcodes:
  - Consider a multiset of pairs (b,d) of simplex diameters where a "birth" and "death", respectively of homological features occur in the Vietoris-Rips filtration.
    - e.g. $(1,\sqrt(2))$  is a birth-death pair
  - The multiset of half open intervals {[b,d)} represent the persistence barcodes



# Persistent Homology: Birth and Death for H1 of the C. elegans Dataset

Persistence Barcodes:



Death event: (merge or zeroing of H1 class due to triangles (only the longest edge of the triangle is shown) added into the flag complex) at diameter: 4.8984

11 20

15

#### How does GPU offer Massive Parallelism?

- A GPU (or graphical processing unit) is a processor designed for massively parallel algorithms executing in SIMT (single instruction multiple thread) mode
- If massive parallelism can be utilized then there can be tremendous speedup



#### GPU Acceleration is a Part of General Computing





2014 Q3 launched Intel Core i7-5960X (Haswell-E) Large shared L3 cache, no GPU. Eight 3.0 GHz cores (16 ops per cycles). 2018 Q4 launched Intel Core i7-9700K (Coffee Lake)
The die area is also used for GPU.
Eight 3.6 GHz cores (16 ops per cycles).

- 2014 Intel i7 CPU performance = 3.0 \* 16 \* 8 = 384 Gflops
- 2018 Intel i7 CPU performance = 3.6 \* 16 \* 8 = 460.8 Gflops
- As the area of **CPU cores** is shrinking, CPU performance doesn't significantly improve in the past five years. Overall performance must be accelerated by **GPU**.

### Performance of Ripser++ at a Glance

- Example dataset:
  - 192 points on  $\mathbb{S}^2$  (embedded in  $\mathbb{R}^3$ )
  - Persistent homology barcodes up to dimension 3
  - Over 2.1 billion simplices in the 4-skeleton flag complex

### Performance of Ripser++ at a Glance

- Example dataset:
  - 192 points on  $\mathbb{S}^2$  (embedded in  $\mathbb{R}^3$ )
  - Persistent homology barcodes up to dimension 3
  - Over 2.1 billion simplices in the 4-skeleton flag complex
- Comparison with existing software:

Super computer node: 28 x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.4GHz, 100 GB DRAM

- Eirene: 769.50 seconds, 168.00 GB for CPU (no generators recorded)
- Ripser: 36.96 seconds, 4.32 GB for CPU
- Ripser++: 2.43 seconds (15x+), 2.92 GB for GPU and 2.03 GB for CPU
  - Super computing GPU: NVIDIA Tesla V100, 32 GB Device Memory

On my \$900 laptop: 6 x Intel(R) Core(TM) i7-9750H CPU @ 2.6 GHz, 16 GB DRAM

- Ripser++: 5.0 seconds (7x+), 2.92 GB for GPU and 2.03 GB for CPU
  - Laptop GPU : NVIDIA GTX 1660 Ti, 6 GB Device Memory
- Ripser++ is fastest in Vietoris-Rips persistence barcode computation

# Computation of Vietoris-Rips Persistence Barcodes

for standard matrix reduction algorithm, see [Edelsbrunner, Letscher, Zomordian 2002]

Let K be the largest complex of  $Rips_{\bullet}(X)$ Let  $F : \mathbb{R} \to K, S : \mathbb{N} \to K$  and  $r : \mathbb{R} \to \mathbb{N}$ 

Algorithm 1 : Standard Vietoris-Rips Persistent Homology Computation

**Require:** data X such as a point cloud, threshold t, and computation dim. d**Ensure:** P persistence barcodes

- 1:  $\mathbf{F} \leftarrow Rips_{\bullet}(X) \triangleright \text{Let } \mathbf{F}$  be the Rips filtration of X for a given threshold t and dim. of computation d
- 2:  $S \leftarrow \text{simplex-wise-refinement}(F)$   $\triangleright F = S \circ r$  where r is injective 3:  $R \leftarrow \partial(S)$
- 4: for every column j in R do  $\triangleright$  the standard matrix reduction algorithm
- 5: while  $\exists k < j \text{ s.t. } low_R(j) = low_R(k) \text{ do}$
- 6: column  $j \leftarrow$  column k + column j
- 7: **if**  $low(j) \neq -1$  **then**

8:  $P \leftarrow P \cup r^{-1}([low(j), j)) \triangleright$  we call the pair (low(j), j) a pivot in the matrix R.

#### What are the Challenges for Parallelization?

- Exponentially growing filtration size in dim. d of computation (lines 1 and 2)
- Sequential memory accesses (lines 1 and 2)
- Indefinite O(filt. size) col. additions (line 5)
- Heavy data movement during col. addition (lines 6)
- Extremely sparse computation!
- Identifying hidden parallelism
- Our goal is to develop GPU-accelerated parallel computation of this algorithm

### Design Goals for High Performance

- Build upon the computational foundations of Ripser
- Parallelization of persistent homology barcode computation
- Eliminate as much I/O as possible
- Potential for memory performance through implementation



Efficient data structures to store persistence pairs and coboundary matrix columns

# The Four Components of Ripser++ for Accelerated Performance

- Finding and Using Apparent Pairs
- A CPU-GPU Hybrid
- Efficient Filtration Construction with Clearing
- Efficient Hashmap

### What is an Apparent Pair? (preliminaries)

- Given data (e.g. a point cloud X), form the Rips filtration  $Rips_t(X)$  indexed by diameter thresholds t (up to some max threshold and dimension of computation)
- Define a simplex-wise filtration refinement on  $Rips_t(X)$  via the ordering on simplices:
  - Increasing simplex diameters, followed by
  - Increasing simplex dimension, followed by
  - Decreasing simplex combinatorial indices
- Where the diameter of a simplex is the maximum length edge in the clique associated with a simplex
- Where the combinatorial index is a bijective encoding of simplices to the natural numbers [Knuth 1997] (most originally known to Pascal in 1887)
- If s<s' in the ordering, then s is **older** than s' and s' is **younger** than s

#### What is an Apparent Pair?

- A facet s of a simplex t is defined as the codimension 1 simplex in the boundary of t.
  - e.g. simplex (210) (having vertices 0, 1, and 2) has facets (10), (21), and (20)
- A cofacet t of simplex s is defined as a simplex containing s as a facet
  E.g. simplex (10) could have cofacets (210) and (310)
- A pair of simplices (s,t) is an apparent pair [Bauer 2019] iff
  - s is the **youngest** facet of t
  - t is the oldest cofacet of s



### Finding Apparent Pairs

- The **Apparent Pairs Lemma** from this paper:
- Given a simplex s and its cofacet t
  - 1. t is the lexicographically greatest cofacet of s with diam(s)=diam(t) and
  - no facet s' of t is strictly lexicographically smaller than s with diam(s')=diam(s)

iff (s,t) is an apparent pair

- Corollary: apparent pairs can be found massively in parallel
- Checking this lemma for a given simplex is memory efficient
- Facets and cofacets can be efficiently enumerated by computation of combinatorial indices

• Consider edge (20) (assign a thread to this column)



- Consider edge (20) (assign a thread to this column)
  - Check condition 1 of lemma: search in decreasing lexicographic order the cofacets of (20) for a triangle of diam((20))=5. Find (320)



- Consider edge (20) (assign a thread to this column)
  - Check condition 1 of lemma: search in decreasing lexicographic order the cofacets of (20) for a triangle of diam((20))=5. Find (320)
  - Check condition 2 of lemma: search in increasing lexicographic order the facets of (320) for a facet s' with diam(s')=5 and cidx(s')<cidx((20))</li>



- Consider edge (20) (assign a thread to this column)
  - Check condition 1 of lemma: search in decreasing lexicographic order the cofacets of (20) for a triangle of diam((20))=5. Find (320)
  - Check condition 2 of lemma: search in increasing lexicographic order the facets of (320) for a facet s' with diam(s')=5 and cidx(s')<cidx((20))</li>



### Apparent Pairs Dominate Vietoris-Rips Persistence Pairs

• Empirically on real world and synthetic datasets, up to 99.9% of persistence pairs are apparent

|                                     | 1    |   |                   |                   |                                 |  |
|-------------------------------------|------|---|-------------------|-------------------|---------------------------------|--|
| Datasets                            | n    | d | apparent<br>pairs | all<br>pairs      | percentage of<br>apparent pairs |  |
| celegans                            | 297  | 3 | $317,\!664,\!839$ | $317,\!735,\!650$ | 99.9777139%                     |  |
| dragon 1000                         | 1000 | 2 | $166,\!132,\!946$ | 166, 167, 000     | 99.9795062%                     |  |
| HIV                                 | 1088 | 2 | $214,\!000,\!996$ | $214,\!060,\!736$ | 99.9720920%                     |  |
| $o\mathcal{3}$ (sparse: $t = 1.4$ ) | 4096 | 3 | $43,\!480,\!968$  | $44,\!081,\!360$  | 98.6379912%                     |  |
| $sphere\_3\_192$                    | 192  | 3 | $54,\!779,\!316$  | $54,\!888,\!625$  | 99.8008531%                     |  |
| $Vicsek300\_of\_300$                | 300  | 3 | $330,\!724,\!672$ | $330,\!835,\!726$ | 99.9664323%                     |  |

 Table 1: Empirical Results on Apparent Pairs

#### Time and Memory Performance of Ripser++

| Total Execution Times and CPU/GPU Memory Usage |           |                 |                  |                    |                    |                    |                   |  |  |  |
|------------------------------------------------|-----------|-----------------|------------------|--------------------|--------------------|--------------------|-------------------|--|--|--|
| Datasets                                       | num. dim. | R.++            | R.               | R.++               | R.++               | R. CPU             | Speedup           |  |  |  |
|                                                | ptns.     | time            | time             | GPU                | CPU                | mem                |                   |  |  |  |
|                                                |           |                 |                  | mem.               | mem.               |                    |                   |  |  |  |
| celegans                                       | 297 3     | $7.3\mathrm{s}$ | 228s             | 16.84GB            | 12.5GB             | 23.8GB             | 31.23x            |  |  |  |
| dragon1000                                     | 1000 2    | $5.9\mathrm{s}$ | $48.9\mathrm{s}$ | 8.8GB              | 4.2GB              | $5.79 \mathrm{GB}$ | $8.29 \mathrm{x}$ |  |  |  |
| HIV                                            | 1088 2    | 8.12            | 147s             | 11.3GB             | 7.89GB             | 14.59G <b>B</b>    | 18.1x             |  |  |  |
| o3 (sparse: $t=1.4$ )                          | 4096 3    | 15.58s          | 64s              | 18.76GB            | 3.1GB              | $3.86\mathrm{GB}$  | 4.1x              |  |  |  |
| $sphere_3_192$                                 | 192 3     | 3s              | $36.9\mathrm{s}$ | $2.92 \mathrm{GB}$ | 2.39GB             | 4.3GB              | 12.3x             |  |  |  |
| Vicsek300_of_300                               | 300 3     | 11.2s           | 248s             | 17.5GB             | $13.6 \mathrm{GB}$ | 27.7GB             | 22.14x            |  |  |  |
|                                                |           |                 |                  |                    |                    |                    |                   |  |  |  |

A diverse set of realworld and synthetic data sets Speedup on these datasets

27

### Summary

- Ripser++ is software with GPU-acceleration for computation of Vietoris-Rips persistent barcodes with up to 30x speedup over Ripser
- Apparent pairs are explored and studied
  - Utilized in a massively parallel way
  - Foundations for their dominant appearance in Vietoris-Rips filtrations
- Future work based on Ripser++
  - Accelerating persistent homology computation with lower-star filtrations or other filtrations types in a similar manner
  - Applications requiring high speed computations of persistent homology
  - Ripser++ on a cluster of GPUs (for even larger datasets)

#### Use Ripser++!

- Code is available at
  - <u>https://github.com/simonzhang00/ripser-plusplus</u>
- Read the full version paper at:
  - <u>https://arxiv.org/abs/2003.07989</u>
  - More theoretical results and details on implementation/optimizations

#### Thank You!