Ripser++: GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes

Simon Zhang, Mengbai Xiao and Hao Wang The Ohio State University, USA

What is a Vietoris-Rips Filtration?

- Let X be a set of points with an underlying metric
- For every t (real), define a Vietoris-Rips complex by:

$$
\operatorname{Rips}_{t}(X)=\{\emptyset \neq s \subset X \mid \operatorname{diam}(s) \leq t\}
$$

- Where the s are also known as (abstract) simplices on X
- The increasing sequence of such Vietoris-Rips complexes indexed by t and ordered by inclusions form a Vietoris-Rips filtration

An Illustration of a Vietoris-Rips Filtration

- Real-World Data: the C. elegans neuronal network X
- Each node is a neuron and edges are synapses or gap junctions between neurons
- one of the simplest connectomes in living organisms
- With dimensionality reduction from 202 dimensions down to the Euclidean plane by the t-SNE algorithm

A illustration of the 1-skeleton of the VietorisRips Complex up to diameter $=0.0$ (the original point clowe)

A illustration of the 1-skeleton of the VietorisRips Complex up to diameter= 1.0

A illustration of the 1-skeleton of the VietorisRips Complex up to diameter= 2.0

A illustration of the 1-skeleton of the VietorisRips Complex up to diameter= 3.0

A illustration of the 1-skeleton of the VietorisRips Complex up to diameter= 4.0

A illustration of the 1-skeleton of the VietorisRips Complex up to diameter= 5.0

Persistent Homology: Persistence Barcodes

- Persistence Barcodes:
- Consider a multiset of pairs (b,d) of simplex diameters where a "birth" and "death", respectively of homological features occur in the Vietoris-Rips filtration.
- e.g. $(1, \sqrt{(2))}$ is a birth-death pair
- The multiset of half open intervals $\{[b, d)\}$ represent the persistence barcodes

An Increasing Sequence of 1-Skeletons of a Vietoris-Rips Filtration.
$0 \bullet$
$\left.\right|^{0=\text { diam. }}$

Persistent Homology: Birth and Death for H1 of the C. elegans Dataset

Persistence

Barcodes:

Death event: (merge or zeroing of H 1 class due to triangles (only the longest edge of the triangle is shown) added into the flag complex) at diameter: 4.8984

How does GPU offer Massive Parallelism?

- A GPU (or graphical processing unit) is a processor designed for massively parallel algorithms executing in SIMT (single instruction multiple thread) mode
- If massive parallelism can be utilized then there can be tremendous speedup

Why a GPU?

CPU
Optimized for Serial Tasks

GPU
Optimized for Many
Parallel Tasks

GPU Acceleration is a Part of General Computing

2014 Q3 launched Intel Core i7-5960X (Haswell-E) Large shared L3 cache, no GPU.

Eight 3.0 GHz cores (16 ops per cycles).

2018 Q4 launched Intel Core i7-9700K (Coffee Lake) The die area is also used for GPU.

Eight 3.6 GHz cores (16 ops per cycles).

- 2014 Intel i7 CPU performance $=3.0$ * 16 * 8 = 384 Gflops
- 2018 Intel i7 CPU performance $=3.6$ * 16 * 8 = 460.8 Gflops
- As the area of CPU cores is shrinking, CPU performance doesn't significantly improve in the past five years. Overall performance must be accelerated by GPU.

Performance of Ripser++ at a Glance

- Example dataset:
- 192 points on \mathbb{S}^{2} (embedded in \mathbb{R}^{3})
- Persistent homology barcodes up to dimension 3
- Over 2.1 billion simplices in the 4 -skeleton flag complex

Performance of Ripser++ at a Glance

- Example dataset:
- 192 points on $\mathbb{S}^{2}\left(\right.$ embedded in $\left.\mathbb{R}^{3}\right)$
- Persistent homology barcodes up to dimension 3
- Over 2.1 billion simplices in the 4-skeleton flag complex
- Comparison with existing software:

Super computer node: $28 \mathrm{x} \operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R}) \mathrm{CPU}$ E5-2680 v4 @ $2.4 \mathrm{GHz}, 100$ GB DRAM

- Eirene: 769.50 seconds, 168.00 GB for CPU (no generators recorded)
- Ripser: 36.96 seconds, 4.32 GB for CPU
- Ripser++: 2.43 seconds ($15 x+$), 2.92 GB for GPU and 2.03 GB for CPU
- Super computing GPU: NVIDIA Tesla V100, 32 GB Device Memory

On my \$900 laptop: 6 x Intel(R) Core(TM) i7-9750H CPU @ 2.6 GHz, 16 GB DRAM

- Ripser++: 5.0 seconds ($7 \mathrm{x}+$), 2.92 GB for GPU and 2.03 GB for CPU
- Laptop GPU : NVIDIA GTX 1660 Ti, 6 GB Device Memory
- Ripser++ is fastest in Vietoris-Rips persistence barcode computation

Computation of Vietoris-Rips Persistence Barcodes

for standard matrix reduction algorithm, see [Edelsbrunner, Letscher, Zomordian 2002]
Let \boldsymbol{K} be the largest complex of Rips $\boldsymbol{\bullet}(X)$
Let $\boldsymbol{F}: \mathbb{R} \rightarrow \boldsymbol{K}, \boldsymbol{S}: \mathbb{N} \rightarrow \boldsymbol{K}$ and $r: \mathbb{R} \rightarrow \mathbb{N}$

```
Algorithm 1 : Standard Vietoris-Rips Persistent Homology Computation
Require: data \(X\) such as a point cloud, threshold \(t\), and computation dim. \(d\)
Ensure: \(\boldsymbol{P}\) persistence barcodes
    1: \(\boldsymbol{F} \leftarrow \operatorname{Rips}_{\bullet}(X) \triangleright\) Let \(\boldsymbol{F}\) be the Rips filtration of \(X\) for a given threshold \(t\)
    and dim. of computation \(d\)
    \(\boldsymbol{S} \leftarrow\) simplex-wise-refinement \((\boldsymbol{F}) \quad \triangleright \boldsymbol{F}=\boldsymbol{S} \circ r\) where \(r\) is injective
    \(R \leftarrow \partial(\boldsymbol{S})\)
    for every column j in \(R\) do \(\quad \triangleright\) the standard matrix reduction algorithm
        while \(\exists k<j\) s.t. \(\operatorname{low}_{R}(j)=\operatorname{low}_{R}(k)\) do
                column \(j \leftarrow\) column \(k+\) column \(j\)
            if \(\operatorname{low}(j) \neq-1\) then
                \(\boldsymbol{P} \leftarrow \boldsymbol{P} \cup r^{-1}([\operatorname{low}(j), j)) \triangleright\) we call the pair \((\operatorname{low}(j), j)\) a pivot in the
    matrix \(R\)
```

What are the Challenges for Parallelization?

- Exponentially growing filtration size in dim. d of computation (lines 1 and 2)
- Sequential memory accesses (lines 1 and 2)
- Indefinite O(filt. size) col. additions (line 5)
- Heavy data movement during col. addition (lines 6)
- Extremely sparse computation!
- Identifying hidden parallelism
- Our goal is to develop GPU-accelerated parallel computation of this algorithm

Design Goals for High Performance

- Build upon the computational foundations of Ripser
- Parallelization of persistent homology barcode computation
- Eliminate as much I/O as possible
- Potential for memory performance through implementation

Efficient data
structures to store persistence pairs and coboundary matrix columns

The Four Components of Ripser++ for Accelerated Performance

- Finding and Using Apparent Pairs
- A CPU-GPU Hybrid
- Efficient Filtration Construction with Clearing
- Efficient Hashmap

What is an Apparent Pair? (preliminaries)

- Given data (e.g. a point cloud X), form the Rips filtration $\operatorname{Rips}_{t}(X)$ indexed by diameter thresholds t (up to some max threshold and dimension of computation)
- Define a simplex-wise filtration refinement on $\operatorname{Rips}_{t}(X)$ via the ordering on simplices:
- Increasing simplex diameters, followed by
- Increasing simplex dimension, followed by
- Decreasing simplex combinatorial indices
- Where the diameter of a simplex is the maximum length edge in the clique associated with a simplex
- Where the combinatorial index is a bijective encoding of simplices to the natural numbers [Knuth 1997] (most originally known to Pascal in 1887)
- If $s<s^{\prime}$ in the ordering, then s is older than s^{\prime} and s^{\prime} is younger than s

What is an Apparent Pair?

- A facet s of a simplex t is defined as the codimension 1 simplex in the boundary of t.
- e.g. simplex (210) (having vertices 0,1 , and 2) has facets (10), (21), and (20)
- A cofacet t of simplex s is defined as a simplex containing s as a facet
- E.g. simplex (10) could have cofacets (210) and (310)
- A pair of simplices (s, t) is an apparent pair [Bauer 2019] iff
- s is the youngest facet of t
- t is the oldest cofacet of s

(a)

Finding Apparent Pairs

- The Apparent Pairs Lemma from this paper:
- Given a simplex s and its cofacet t

1. t is the lexicographically greatest cofacet of s with diam(s)=diam(t) and
2. no facet s^{\prime} of t is strictly lexicographically smaller than s with $\operatorname{diam}\left(s^{\prime}\right)=\operatorname{diam}(s)$
iff (s, t) is an apparent pair

- Corollary: apparent pairs can be found massively in parallel
- Checking this lemma for a given simplex is memory efficient
- Facets and cofacets can be efficiently enumerated by computation of combinatorial indices

Finding Apparent Pairs Algorithm, a Simple Case for a Single Column

- Consider edge (20) (assign a thread to this column)

Finding Apparent Pairs Algorithm, a Simple Case for a Single Column

- Consider edge (20) (assign a thread to this column)
- Check condition 1 of lemma: search in decreasing lexicographic order the cofacets of (20) for a triangle of diam ((20))=5. Find (320)

$\xrightarrow[\text { (diam., simplex) }]{\longrightarrow} \text { olde }$	Dim 1 Coboundary Matrix					
	$(6,(10))$	$(5,(20))$	(4, (21))	$(3,(30))$	(2, (31))	(1, (32))
(6, (210))	1	1	1			
(6, (310))	1			1	1	
(5, (320))		1		1		1
(4, (321))			1		1	1

Finding Apparent Pairs Algorithm, a Simple Case for a Single Column

- Consider edge (20) (assign a thread to this column)
- Check condition 1 of lemma: search in decreasing lexicographic order the cofacets of (20) for a triangle of diam ((20))=5. Find (320)
- Check condition 2 of lemma: search in increasing lexicographic order the facets of (320) for a facet s^{\prime} with diam($\left.s^{\prime}\right)=5$ and cidx($\left.s^{\prime}\right)<c i d x((20))$

	Dim 1 Coboundary Matrix					
	$(6,(10))$	(5, (20))	$(4,(21))$	$(3,(30))$	(2, (31))	(1, (32))
(6, (210))	1	1	1			
(6, (310))	1			1	1	
(5, (320))		1		1		1
(4, (321))			1		1	1

Finding Apparent Pairs Algorithm, a Simple Case for a Single Column

- Consider edge (20) (assign a thread to this column)
- Check condition 1 of lemma: search in decreasing lexicographic order the cofacets of (20) for a triangle of diam ((20))=5. Find (320)
- Check condition 2 of lemma: search in increasing lexicographic order the facets of (320) for a facet s^{\prime} with diam($\left.s^{\prime}\right)=5$ and cidx($\left.s^{\prime}\right)<c i d x((20))$

$\xrightarrow[(\text { diam., simplex) }]{\longrightarrow} \text { older }$	(6, (10))	Dim 1 Coboundary Matrix			(2, (31))	(1, (32))
		$(5,(20))$	(4, (21))	(3, (30))		
(6, (210))	1	1	1			
(6, (310))	1			1	1	
(5, (320))		1		1		1
(4, (321))			1		1	1

Apparent Pairs Dominate Vietoris-Rips Persistence Pairs

- Empirically on real world and synthetic datasets, up to 99.9\% of persistence pairs are apparent

Table 1: Empirical Results on Apparent Pairs

Lable 1: Empirical Results on Apparent Pairs					
			apparent patasets	n	d

Time and Memory Performance of Ripser++

Summary

- Ripser++ is software with GPU-acceleration for computation of Vietoris-Rips persistent barcodes with up to 30x speedup over Ripser
- Apparent pairs are explored and studied
- Utilized in a massively parallel way
- Foundations for their dominant appearance in Vietoris-Rips filtrations
- Future work based on Ripser++
- Accelerating persistent homology computation with lower-star filtrations or other filtrations types in a similar manner
- Applications requiring high speed computations of persistent homology
- Ripser++ on a cluster of GPUs (for even larger datasets)

Use Ripser++!

- Code is available at
- https://github.com/simonzhang00/ripser-plusplus
- Read the full version paper at:
- https://arxiv.org/abs/2003.07989
- More theoretical results and details on implementation/optimizations

Thank You!

