Ripser++: GPU-Accelerated
Computation of Vietoris-Rips
Persistence Barcodes

Simon Zhang, Mengbai Xiao and Hao Wang
The Ohio State University, USA

What is a Vietoris-Rips Filtration?

* Let X be a set of points with an underlying metric

* For every t (real), define a Vietoris-Rips complex by:
Ripsi(X) ={0 # s C X | diam(s) < t}

* Where the s are also known as (abstract) simplices on X

* The increasing sequence of such Vietoris-Rips complexes indexed by t
and ordered by inclusions form a Vietoris-Rips filtration

An lllustration of a Vietoris-Rips Filtration

* Real-World Data: the C. elegans
neuronal network X

* Each node is a neuron and edges
are synapses or gap junctions
between neurons

* one of the simplest connectomes
in living organisms
* With dimensionality reduction
from 202 dimensions down to

the Euclidean plane by the t-SNE
algorithm

20 r

15

10

-10

-15 1

-20 1

20

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 0.0 e original point cloud)

(Y -
'3
'Y LA
L »
15 v
. . .
i [P **
L4 wY * L ’o hd
10 1 ol [§ sl g ®
*, - . .
e % eer ¥ . Ie. 5
L3 . £l A S en "
| L4 £ L * .
5 : = . .y ® *
. . o . e * L 4
- L3 . . -
- » - L4 L L]
L3 . L » .
0+ o - L 3 »
e e
L 00:{..’. - ¥
. e v e v Pet e & L]
. o P9 HE S e o >
L L
. L 3
S5t % ¥ & ¥ . :. "oy
L L3 - . -
* * * * ’:0 » * 000. *
L3 . '»
" o L3 .
10 t e . g .
e LJ
L3 L3 .
I L34 8 .
[
15 | . & "%
s .
-
1 1 1 1 1 1 1 1 1

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 1.0

(23 _—
*
e M
15 v
& .
i [:0 e ®
g Y - %
10 gl * * peracill S o 8
* . ®)
A N T a e @ S 5
. & BN * g ® & ey ¥
s L4 LA L * e
5 : = - " I -
. L - 'D. . e ¥ L4 4
. PR F -
- b e % . *
L 3 ’ » = . L %
0r T riF e o *
* LI ..:z’o. 3 L 4
2 s v o Tsb b & .
. [TR L B »
e ey »: L
L * . g ®
'5 R T o e Lo -
- . »
. . ° .
il -3, . oy (= ad
" & - .
s
-10 | e L ¥ v
e - -
. . ®
* [a4 T ’
15 | * : g
s .
-
1 1 1 1 1 1 1 1 1

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 2.0

20

15

-10

-15

-20 -15 -10 -5 0 5 10 15 20

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 3.0

20

15

107

-15

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter=4.0

20

15

-10

-15

-20 -15 -10 -5 0 5 10 15 20

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 5.0

20

15

107

-15

| O=diam.

Persistent Homology: Persistence Barcodes

e Persistence Barcodes:

e Consider a multiset of pairs (b,d) of simplex diameters where a “birth” and
“death”, respectively of homological features occur in the Vietoris-Rips
filtration.

« e.g.(1,4/(2)) is a birth-death pair
* The multiset of half open intervals {[b,d)} represent the persistence barcodes

Ar\ Inc.reasjmg §equ§nce of 1-Skeletons of a / /*\ | /*\ / / >< \
Vietoris-Rips Filtration. : - \
0® ol | 0 |
) \x P — \ ,/s
C diam. =1}
- >< (Plgm. =2
20 o3 |

2
I=diam. \ o

,//

o /‘ //\/§=diam.

|

Dimension 1 Vietoris-Rips
Persistent Homology Barcodes

Persistent Homology: Birth and Death for H1
of the C. elegans Dataset

Persistence
Barcodes:

Death event: (merge or zeroing

of H1 class due to triangles (only
the longest edge of the triangle
is shown) added into the flag
complex) at diameter: 4.8984

20

15
Birth event:

cycle forms (of
an H1 class) at
diameter: g
3.6357 5

-10

10

15

-20

How does GPU offer Massive Parallelism?

* A GPU (or graphical
processing unit) is a
processor designed for
massively parallel
algorithms executing in
SIMT (single instruction
multiple thread) mode

* If massive parallelism can
be utilized then there can
be tremendous speedup

Why a GPU?

Optiﬁﬁfzéd for
Serial Tasks

Optimized for Many
Parallel Tasks

00000
IEEEREEE EEEEEnEE
ENEEEEEE EEEEEEEE
ENEEEEEE EEEEEEEE
IEEENEEE EENEEEEN
INEEEEEN EEEEEEEN

ENENNENE EEEEEEEE

GPU Acceleration is a Part of General Computing

Queue, Uncore, I/O.Controller

@)
v

CPU
Core

L3 Cache
ayode) £1
L3 Cache

ayoed £1
L3 Cache
Q)
(o}
1
(¢}

L3 Cache

Ring Intcnt. Ring Intcnt!.' Ring Intcn_t[(Ring Int,cn,h!\ Eii
Agents Agents Agents " Agents]

yosej g1
3 Cache
ey €7

CPU CPU
Core °~ Core

L3 Cache

(@)
o
ﬂ
(]

ay

L3 Cache
@)
0
c

ayde) g7

L3 Cache

MemoyzControllelr

2014 Q3 launched Intel Core i7-5960X (Haswell-E) 2018 Q4 launched Intel Core i7-9700K (Coffee Lake)
Large shared L3 cache, no GPU. The die area is also used for GPU.

Eight 3.0 GHz cores (16 ops per cycles). Eight 3.6 GHz cores (16 ops per cycles).

e 2014 Intel i7 CPU performance = 3.0 * 16 * 8 = 384 Gflops
e 2018 Intel i7 CPU performance =3.6 * 16 * 8 = 460.8 Gflops

e Asthe area of CPU cores is shrinking, CPU performance doesn’t significantly improve in the past

five years. Overall performance must be accelerated by GPU. 13

Performance of Ripser++ at a Glance

* Example dataset:
* 192 points on S? (embedded in R3)
e Persistent homology barcodes up to dimension 3
e Over 2.1 billion simplices in the 4-skeleton flag complex

Performance of Ripser++ at a Glance

* Example dataset:
* 192 points on S? (embedded in R3)
e Persistent homology barcodes up to dimension 3
e Over 2.1 billion simplices in the 4-skeleton flag complex

 Comparison with existing software:

Super computer node: 28 x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.4GHz, 100 GB DRAM
e Eirene: 769.50 seconds, 168.00 GB for CPU (no generators recorded)
* Ripser: 36.96 seconds, 4.32 GB for CPU

* Ripser++: 2.43 seconds (15x+), 2.92 GB for GPU and 2.03 GB for CPU
e Super computing GPU: NVIDIA Tesla V100, 32 GB Device Memory

On my $900 laptop: 6 x Intel(R) Core(TM) i7-9750H CPU @ 2.6 GHz, 16 GB DRAM

* Ripser++: 5.0 seconds (7x+), 2.92 GB for GPU and 2.03 GB for CPU
* Laptop GPU : NVIDIA GTX 1660 Ti, 6 GB Device Memory

* Ripser++ is fastest in Vietoris-Rips persistence barcode computation

15

Computation of Vietoris-Rips Persistence Barcodes

for standard matrix reduction algorithm, see [Edelsbrunner, Letscher, Zomordian 2002]
Let K be the largest complex of Ripse(X)
Let F:R—-K,S:N—Kandr:R—N

Algorithm 1 : Standard Vietoris-Rips Persistent Homology Computation

Require: data X such as a point cloud, threshold ¢ ,and computation dim. d
Ensure: P persistence barcodes

1:

F < Ripse(X) © Let F be the Rips filtration of X for a given threshold ¢
and dim. of computation d

S <simplex-wise-refinement(F) > F' = S or where r is injective
R+ 9(S)
for every column j in R do > the standard matrix reduction algorithm

while 3 k < j s.t. lowr(j)=lowgr(k) do
column j < column k£ + column j
if low(j) # —1 then

P <+ PUr Y[low(j),7)) > we call the pair (low(j),j) a pivot in the
matrix R.

What are the Challenges for
Parallelization?

Exponentially growing filtration size in
dim. d of computation (lines 1 and 2)
Sequential memory accesses (lines 1
and 2)

Indefinite O(filt. size) col. additions
(line 5)

Heavy data movement during col.
addition (lines 6)

Extremely sparse computation!

|dentifying hidden parallelism

* Our goal is to develop GPU-accelerated parallel computation of this

algorithm

16

Design Goals for High Performance

* Build upon the computational foundations of Ripser
* Parallelization of persistent homology barcode computation

* Eliminate as much |/O as possible

_ . : Efficient dat
* Potential for memory performance through implementation ; *°" °=°

Framework of persistence pairs

Dim. d+1 Simplices

Ripser++ _ _ _ == and coboundary
matrix columns
F | ||
. Filtration Finding | .
I Distance . g Submatrix
Main Construction Apparent | I :
| atrix . i Reduction
o i + Clearing Pairs
I/0 with .
Disk

Matrix Reduction

Dim. 1 Simplices d > 1
17

The Four Components of Ripser++ for
Accelerated Performance
* Finding and Using Apparent Pairs

* A CPU-GPU Hybrid

e Efficient Filtration Construction with Clearing
e Efficient Hashmap

What is an Apparent Pair? (preliminaries)

* Given data (e.g. a point cloud X), form the Rips filtration Rips; (X) indexed
by diameter thresholds t (up to some max threshold and dimension of
computation)

* Define a simplex-wise filtration refinement on Rips; (X)via the ordering
on simplices:
* Increasing simplex diameters, followed by
* Increasing simplex dimension, followed by
e Decreasing simplex combinatorial indices

 Where the diameter of a simplex is the maximum length edge in the clique
associated with a simplex

* Where the combinatorial index is a bijective encoding of simplices to the
natural numbers [Knuth 1997] (most originally known to Pascal in 1887)

* |f s<s’ in the ordering, then s is older than s’ and s’ is younger than s

What is an Apparent Pair?

* A facet s of a simplex t is defined as the codimension 1 simplex in the
boundary of t.

e e.g. simplex (210) (having vertices O, 1, and 2) has facets (10), (21), and (20)

* A cofacet t of simplex s is defined as a simplex containing s as a facet
e E.g. simplex (10) could have cofacets (210) and (310)

* A pair of simplices (s,t) is an apparent pair [Bauer 2019] iff
* sis the youngest facet of t . Cotmn Dim s d (-]
* tis the oldest cofacet of s

older
Cofacet ¢ [0 ... 0 1

Fow Dim 1s d+1

Coboundary Matrix of Di_ng
(a) (b)

Finding Apparent Pairs

* The Apparent Pairs Lemma from this paper:

e Given a simplex s and its cofacet t
1. tisthe lexicographically greatest cofacet of s with diam(s)=diam(t) and

2. nofacets’ of tis strictly lexicographically smaller than s with
diam(s’)=diam(s)
iff (s,t) is an apparent pair

e Corollary: apparent pairs can be found massively in parallel
* Checking this lemma for a given simplex is memory efficient

* Facets and cofacets can be efficiently enumerated by computation of
combinatorial indices

21

Finding Apparent Pairs Algorithm, a Simple
Case for a Single Column

* Consider edge (20) (assign a thread to this column)

; Dim 1 Coboundary Matrix

—— older

(diam., simplex) | (6, (10)) (5,20)) (4, 2D)) G, G0 206D (1,62)

(6, (210)) 1 1 1
6, (310)) 1 1 1
(5, (320)) 1 1 1

2 older (4, (321)) 1 1 1

Finding Apparent Pairs Algorithm, a Simple
Case for a Single Column

* Consider edge (20) (assign a thread to this column)

* Check condition 1 of lemma: search in decreasing lexicographic order the
cofacets of (20) for a triangle of diam((20))=5. Find (320)

—— older

; Dim 1 Coboundary Matrix

(diam., simplex) | (6, (10)) | (5,20) | (4, 2D)) G, G0 206D (1,62)

(6, (210)) 1 1 1
6, (310)) 1 1 1
(5, (320)) 1 1 1

2 older (4, (321)) 1 1 1

23

Finding Apparent Pairs Algorithm, a Simple
Case for a Single Column

* Consider edge (20) (assign a thread to this column)

* Check condition 1 of lemma: search in decreasing lexicographic order the
cofacets of (20) for a triangle of diam((20))=5. Find (320)

* Check condition 2 of lemma: search in increasing lexicographic order the
facets of (320) for a facet s” with diam(s")=5 and cidx(s")<cidx((20))

—— older

; Dim 1 Coboundary Matrix

(diam., simplex) | (6,(10)) | 5,20) | “.@1) GG @G (LG
(6, (210)) 1 1 1
6, (310)) 1 1 1
(5, (320)) 1 1 N

2 older (4, (321)) 1 1 1

24

Finding Apparent Pairs Algorithm, a Simple
Case for a Single Column

* Consider edge (20) (assign a thread to this column)

* Check condition 1 of lemma: search in decreasing lexicographic order the
cofacets of (20) for a triangle of diam((20))=5. Find (320)

* Check condition 2 of lemma: search in increasing lexicographic order the
facets of (320) for a facet s” with diam(s")=5 and cidx(s")<cidx((20))

—— older

; Dim 1 Coboundary Matrix

(diam., simplex) | (6,(10)) | 5,20) | “.@1) GG @G (LG
(6, (210)) 1 1 1
6, (310)) 1 1 1
(5, (320)) 1 1 N

2 older (4, (321)) 1 1 1

25

Apparent Pairs Dominate Vietoris-Rips
Persistence Pairs

* Empirically on real world and synthetic datasets, up to 99.9% of
persistence pairs are apparent

Table 1: Empirical Results on Apparent Pairs

apparent all ercentage
Datasets n d pairs pairs pparent pairs
celegans 297 3 317,664,839 317,735,650 { 99.9777139% \
dragon1000 1000 2 166,132,946 166,167,000 99.9795062%
HIV 1088 2 214,000,996 214,060,736 99.9720920%
03 (sparse: t = 1.4) 4096 3 43,480,968 44,081,360 98.6379912%
sphere_3_192 192 3 54,779,316 54,888,625 99.8008531%
Vicsek300_0f-300 300 3 330,724,672 330,835,726 9.9664323%

26

Time and Memory Performance of Ripser++

Total Execution Times and CPU/GPU Memory Usage

N

data sets

iétasets num. dim.| R.++ | R. R.++ R.++ | R.CPU /Speeduki
ptns. time time GPU CPU mem
mem. meim.
celegans 297 3 | 7.3s | 2285 | 16.84GB 12.5GB| 23.8GB
dragon1000 1000 2 5.9s 48.9s 8.8GB 4.2GB | 5.79GB| | 8.29x
HIV 1088 2 8.12 147s 11.3GB 7.89GB| 14.59GB| 18.1x
03 (sparse: t=1.4) 4096 3 15.58s | 64s 18.76GB 3.1GB | 3.86GB | 4.1x
sphere_3_192 192 3 33 36.9s 2.92GB 2.39GB| 4.3GB 12.3x
\YicsekSOO_of_ 0 300 3 11.2s 248s 17.5GB 13.6GB| 27.7GB |\ 22.14x
A diverse set of real- Speedup on
world and synthetic these

datasets

27

Summary

* Ripser++ is software with GPU-acceleration for computation of
Vietoris-Rips persistent barcodes with up to 30x speedup over Ripser

* Apparent pairs are explored and studied
* Utilized in a massively parallel way
* Foundations for their dominant appearance in Vietoris-Rips filtrations

* Future work based on Ripser++

* Accelerating persistent homology computation with lower-star filtrations or
other filtrations types in a similar manner

* Applications requiring high speed computations of persistent homology
* Ripser++ on a cluster of GPUs (for even larger datasets)

28

Use Ripser++!

 Code is available at
* https://github.com/simonzhang00/ripser-plusplus

* Read the full version paper at:
* https://arxiv.org/abs/2003.07989
* More theoretical results and details on implementation/optimizations

Thank You!

29

https://github.com/simonzhang00/ripser-plusplus
https://arxiv.org/abs/2003.07989

	Ripser++: GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes
	What is a Vietoris-Rips Filtration?
	An Illustration of a Vietoris-Rips Filtration
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 0.0 (the original point cloud)
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 1.0
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 2.0
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 3.0
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 4.0
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 5.0
	Persistent Homology: Persistence Barcodes
	Persistent Homology: Birth and Death for H1 of the C. elegans Dataset
	How does GPU offer Massive Parallelism?
	GPU Acceleration is a Part of General Computing
	Performance of Ripser++ at a Glance
	Performance of Ripser++ at a Glance
	Computation of Vietoris-Rips Persistence Barcodes for standard matrix reduction algorithm, see [Edelsbrunner, Letscher, Zomordian 2002]
	Design Goals for High Performance
	The Four Components of Ripser++ for Accelerated Performance
	What is an Apparent Pair? (preliminaries)
	What is an Apparent Pair?
	Finding Apparent Pairs
	Finding Apparent Pairs Algorithm, a Simple Case for a Single Column
	Finding Apparent Pairs Algorithm, a Simple Case for a Single Column
	Finding Apparent Pairs Algorithm, a Simple Case for a Single Column
	Finding Apparent Pairs Algorithm, a Simple Case for a Single Column
	Apparent Pairs Dominate Vietoris-Rips Persistence Pairs
	Time and Memory Performance of Ripser++
	Summary
	Use Ripser++!

