
Ripser++: GPU-Accelerated
Computation of Vietoris-Rips

Persistence Barcodes
Simon Zhang, Mengbai Xiao and Hao Wang

The Ohio State University, USA

1

What is a Vietoris-Rips Filtration?

• Let X be a set of points with an underlying metric
• For every t (real), define a Vietoris-Rips complex by:

• Where the s are also known as (abstract) simplices on X
• The increasing sequence of such Vietoris-Rips complexes indexed by t

and ordered by inclusions form a Vietoris-Rips filtration

2

An Illustration of a Vietoris-Rips Filtration

• Real-World Data: the C. elegans
neuronal network X

• Each node is a neuron and edges
are synapses or gap junctions
between neurons

• one of the simplest connectomes
in living organisms

• With dimensionality reduction
from 202 dimensions down to
the Euclidean plane by the t-SNE
algorithm

3

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 0.0 (the original point cloud)

4

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 1.0

5

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 2.0

6

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 3.0

7

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 4.0

8

A illustration of the 1-skeleton of the Vietoris-
Rips Complex up to diameter= 5.0

9

Persistent Homology: Persistence Barcodes
• Persistence Barcodes:

• Consider a multiset of pairs (b,d) of simplex diameters where a “birth” and
“death”, respectively of homological features occur in the Vietoris-Rips
filtration.

• e.g. is a birth-death pair
• The multiset of half open intervals {[b,d)} represent the persistence barcodes

10

0 1

2 3

diam. = 2

0 1

2 3

0 1

2 3

diam. = 1

1

Dimension 1 Vietoris-Rips
Persistent Homology Barcodes

⊆ ⊆

0=diam. 1=diam. 2=diam.

An Increasing Sequence of 1-Skeletons of a
Vietoris-Rips Filtration.

Persistent Homology: Birth and Death for H1
of the C. elegans Dataset

Birth event:
cycle forms (of
an H1 class) at
diameter:
3.6357

Death event: (merge or zeroing
of H1 class due to triangles (only
the longest edge of the triangle
is shown) added into the flag
complex) at diameter: 4.8984

11

Persistence
Barcodes:

How does GPU offer Massive Parallelism?

• A GPU (or graphical
processing unit) is a
processor designed for
massively parallel
algorithms executing in
SIMT (single instruction
multiple thread) mode

• If massive parallelism can
be utilized then there can
be tremendous speedup

12

GPU Acceleration is a Part of General Computing

13

2018 Q4 launched Intel Core i7-9700K (Coffee Lake)
The die area is also used for GPU.
Eight 3.6 GHz cores (16 ops per cycles).

• 2014 Intel i7 CPU performance = 3.0 * 16 * 8 = 384 Gflops
• 2018 Intel i7 CPU performance = 3.6 * 16 * 8 = 460.8 Gflops
• As the area of CPU cores is shrinking, CPU performance doesn’t significantly improve in the past

five years. Overall performance must be accelerated by GPU.

2014 Q3 launched Intel Core i7-5960X (Haswell-E)
Large shared L3 cache, no GPU.
Eight 3.0 GHz cores (16 ops per cycles).

Performance of Ripser++ at a Glance
• Example dataset:

• 192 points on (embedded in)
• Persistent homology barcodes up to dimension 3
• Over 2.1 billion simplices in the 4-skeleton flag complex

14

Performance of Ripser++ at a Glance
• Example dataset:

• 192 points on (embedded in)
• Persistent homology barcodes up to dimension 3
• Over 2.1 billion simplices in the 4-skeleton flag complex

• Comparison with existing software:
Super computer node: 28 x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.4GHz, 100 GB DRAM
• Eirene: 769.50 seconds, 168.00 GB for CPU (no generators recorded)
• Ripser: 36.96 seconds, 4.32 GB for CPU
• Ripser++: 2.43 seconds (15x+), 2.92 GB for GPU and 2.03 GB for CPU

• Super computing GPU: NVIDIA Tesla V100, 32 GB Device Memory
On my $900 laptop: 6 x Intel(R) Core(TM) i7-9750H CPU @ 2.6 GHz, 16 GB DRAM
• Ripser++: 5.0 seconds (7x+), 2.92 GB for GPU and 2.03 GB for CPU

• Laptop GPU : NVIDIA GTX 1660 Ti, 6 GB Device Memory

• Ripser++ is fastest in Vietoris-Rips persistence barcode computation
15

Computation of Vietoris-Rips Persistence Barcodes
for standard matrix reduction algorithm, see [Edelsbrunner, Letscher, Zomordian 2002]

• Our goal is to develop GPU-accelerated parallel computation of this
algorithm

16

What are the Challenges for
Parallelization?

• Exponentially growing filtration size in
dim. d of computation (lines 1 and 2)

• Sequential memory accesses (lines 1
and 2)

• Indefinite O(filt. size) col. additions
(line 5)

• Heavy data movement during col.
addition (lines 6)

• Extremely sparse computation!

• Identifying hidden parallelism

Design Goals for High Performance

• Build upon the computational foundations of Ripser
• Parallelization of persistent homology barcode computation
• Eliminate as much I/O as possible
• Potential for memory performance through implementation

17

Finding
Apparent

Pairs

Submatrix
Reduction

Filtration
Construction
+ Clearing

GPU

Dim. d+1 SimplicesFramework of
Ripser++

Matrix Reduction

Dim. 0
Barcode
Computation

Distance
Matrix

Dim. 1 Simplices

Efficient data
structures to store
persistence pairs
and coboundary
matrix columns

I/O with
Disk

The Four Components of Ripser++ for
Accelerated Performance
• Finding and Using Apparent Pairs
• A CPU-GPU Hybrid
• Efficient Filtration Construction with Clearing
• Efficient Hashmap

18

What is an Apparent Pair? (preliminaries)

• Given data (e.g. a point cloud X), form the Rips filtration indexed
by diameter thresholds t (up to some max threshold and dimension of
computation)

• Define a simplex-wise filtration refinement on via the ordering
on simplices:

• Increasing simplex diameters, followed by
• Increasing simplex dimension, followed by
• Decreasing simplex combinatorial indices

• Where the diameter of a simplex is the maximum length edge in the clique
associated with a simplex

• Where the combinatorial index is a bijective encoding of simplices to the
natural numbers [Knuth 1997] (most originally known to Pascal in 1887)

• If s<s’ in the ordering, then s is older than s’ and s’ is younger than s
19

What is an Apparent Pair?

• A facet s of a simplex t is defined as the codimension 1 simplex in the
boundary of t.

• e.g. simplex (210) (having vertices 0, 1, and 2) has facets (10), (21), and (20)

• A cofacet t of simplex s is defined as a simplex containing s as a facet
• E.g. simplex (10) could have cofacets (210) and (310)

• A pair of simplices (s,t) is an apparent pair [Bauer 2019] iff
• s is the youngest facet of t
• t is the oldest cofacet of s

20

Finding Apparent Pairs

• The Apparent Pairs Lemma from this paper:
• Given a simplex s and its cofacet t

1. t is the lexicographically greatest cofacet of s with diam(s)=diam(t) and
2. no facet s’ of t is strictly lexicographically smaller than s with

diam(s’)=diam(s)
iff (s,t) is an apparent pair

• Corollary: apparent pairs can be found massively in parallel
• Checking this lemma for a given simplex is memory efficient
• Facets and cofacets can be efficiently enumerated by computation of

combinatorial indices
21

Finding Apparent Pairs Algorithm, a Simple
Case for a Single Column
• Consider edge (20) (assign a thread to this column)

22

2

01

3
(diam., simplex) (6, (10)) (5, (20)) (4, (21)) (3, (30)) (2, (31)) (1, (32))

(6, (210)) 1 1 1

(6, (310)) 1 1 1

(5, (320)) 1 1 1

(4, (321)) 1 1 1

Dim 1 Coboundary Matrix

older

older

Finding Apparent Pairs Algorithm, a Simple
Case for a Single Column
• Consider edge (20) (assign a thread to this column)

• Check condition 1 of lemma: search in decreasing lexicographic order the
cofacets of (20) for a triangle of diam((20))=5. Find (320)

23

2

01

3
(diam., simplex) (6, (10)) (5, (20)) (4, (21)) (3, (30)) (2, (31)) (1, (32))

(6, (210)) 1 1 1

(6, (310)) 1 1 1

(5, (320)) 1 1 1

(4, (321)) 1 1 1

Dim 1 Coboundary Matrix

older

older

Finding Apparent Pairs Algorithm, a Simple
Case for a Single Column
• Consider edge (20) (assign a thread to this column)

• Check condition 1 of lemma: search in decreasing lexicographic order the
cofacets of (20) for a triangle of diam((20))=5. Find (320)

• Check condition 2 of lemma: search in increasing lexicographic order the
facets of (320) for a facet s’ with diam(s’)=5 and cidx(s’)<cidx((20))

24

2

01

3
(diam., simplex) (6, (10)) (5, (20)) (4, (21)) (3, (30)) (2, (31)) (1, (32))

(6, (210)) 1 1 1

(6, (310)) 1 1 1

(5, (320)) 1 1 1

(4, (321)) 1 1 1

Dim 1 Coboundary Matrix

older

older

Finding Apparent Pairs Algorithm, a Simple
Case for a Single Column
• Consider edge (20) (assign a thread to this column)

• Check condition 1 of lemma: search in decreasing lexicographic order the
cofacets of (20) for a triangle of diam((20))=5. Find (320)

• Check condition 2 of lemma: search in increasing lexicographic order the
facets of (320) for a facet s’ with diam(s’)=5 and cidx(s’)<cidx((20))

25

2

01

3
(diam., simplex) (6, (10)) (5, (20)) (4, (21)) (3, (30)) (2, (31)) (1, (32))

(6, (210)) 1 1 1

(6, (310)) 1 1 1

(5, (320)) 1 1 1

(4, (321)) 1 1 1

Dim 1 Coboundary Matrix

older

older

Apparent Pairs Dominate Vietoris-Rips
Persistence Pairs
• Empirically on real world and synthetic datasets, up to 99.9% of

persistence pairs are apparent

26

Time and Memory Performance of Ripser++

27

A diverse set of real-
world and synthetic
data sets

Speedup on
these
datasets

Summary

• Ripser++ is software with GPU-acceleration for computation of
Vietoris-Rips persistent barcodes with up to 30x speedup over Ripser

• Apparent pairs are explored and studied
• Utilized in a massively parallel way
• Foundations for their dominant appearance in Vietoris-Rips filtrations

• Future work based on Ripser++
• Accelerating persistent homology computation with lower-star filtrations or

other filtrations types in a similar manner
• Applications requiring high speed computations of persistent homology
• Ripser++ on a cluster of GPUs (for even larger datasets)

28

Use Ripser++!

• Code is available at
• https://github.com/simonzhang00/ripser-plusplus

• Read the full version paper at:
• https://arxiv.org/abs/2003.07989
• More theoretical results and details on implementation/optimizations

Thank You!

29

https://github.com/simonzhang00/ripser-plusplus
https://arxiv.org/abs/2003.07989

	Ripser++: GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes
	What is a Vietoris-Rips Filtration?
	An Illustration of a Vietoris-Rips Filtration
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 0.0 (the original point cloud)
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 1.0
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 2.0
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 3.0
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 4.0
	A illustration of the 1-skeleton of the Vietoris-Rips Complex up to diameter= 5.0
	Persistent Homology: Persistence Barcodes
	Persistent Homology: Birth and Death for H1 of the C. elegans Dataset
	How does GPU offer Massive Parallelism?
	GPU Acceleration is a Part of General Computing
	Performance of Ripser++ at a Glance
	Performance of Ripser++ at a Glance
	Computation of Vietoris-Rips Persistence Barcodes for standard matrix reduction algorithm, see [Edelsbrunner, Letscher, Zomordian 2002]
	Design Goals for High Performance
	The Four Components of Ripser++ for Accelerated Performance
	What is an Apparent Pair? (preliminaries)
	What is an Apparent Pair?
	Finding Apparent Pairs
	Finding Apparent Pairs Algorithm, a Simple Case for a Single Column
	Finding Apparent Pairs Algorithm, a Simple Case for a Single Column
	Finding Apparent Pairs Algorithm, a Simple Case for a Single Column
	Finding Apparent Pairs Algorithm, a Simple Case for a Single Column
	Apparent Pairs Dominate Vietoris-Rips Persistence Pairs
	Time and Memory Performance of Ripser++
	Summary
	Use Ripser++!

