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ABSTRACT
Seed inputs are critical to the performance of mutation based
fuzzers. Existing techniques make use of symbolic execution and
gradient descent to generate seed inputs. However, these techniques
are not particular suitable for input growth (i.e., making input longer
and longer), a key step in seed input generation. Symbolic execu-
tion models very low level constraints and prefer fix-sized inputs
whereas gradient descent only handles cases where path conditions
are arithmetic functions of inputs. We observe that growing an
input requires considering a number of relations: length, offset,
and count, in which a field is the length of another field, the offset
of another field, and the count of some pattern in another field,
respective. String solver theory is particularly suitable for address-
ing these relations. We hence propose a novel technique called
TensileFuzz, in which we identify input fields and denote them as
string variables such that a seed input is the concatenation of these
string variables. Additional padding string variables are inserted in
between field variables. The aforementioned relations are reverse-
engineered and lead to string constraints, solving which instantiates
the padding variables and hence grows the input. Our technique
also integrates linear regression and gradient descent to ensure the
grown inputs satisfy path constraints that lead to path exploration.
Our comparison with AFL, and a number of state-of-the-art fuzzers
that have similar target applications, including Qsym, Angora, and
SLF, shows that TensileFuzz substantially outperforms the others,
by 39% - 98% in terms of path coverage.
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• Software and its engineering; • Security and privacy→ Soft-
ware and application security;
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1 INTRODUCTION
Mutation based fuzzing [1, 53] is an important technique for input
generation to expose potential problems in software, which may
not have its source code available. Starting from some initial inputs
called seed inputs, fuzzing techniques mutate pieces of the inputs
following certain strategies, for instance, using the coverage im-
provement as the guidance. The effectiveness of fuzzing techniques
hinges on the quality of seed inputs [44, 52]. A seed input driving
program execution to interesting components is critical as input
mutation can focus on exploring the neighbouring input space to
expose defects in these components. However, if high quality seed
inputs are not available, mutation fuzzing becomes challenging due
to the difficulty of deriving such inputs from scratch. This paper
aims to improve seed input generation in mutation based fuzzing
when both seeds and source codes are not available.

There are various existing techniques that can be leveraged to ad-
dress the problem. Symbolic/concolic execution [11, 12, 15, 21, 39]
models individual program paths to symbolic constraints, resolving
which produces inputs to follow those paths. They can generate
inputs from scratch.While these techniques are often sound and fea-
ture accuracy in constraint construction, they entail heavy-weight
per-instruction modeling and some of the constraints are expensive
to solve or even undecidable by their nature. In addition, since the
constraints are very low level, some simple relations (such as length
of a data field) are not explicitly modeled but rather implicitly con-
voluted with many other constraints, making resolution difficult
(see Section 2 for an example). There are a number of proposals
to combine symbolic execution with mutation fuzzing [48, 54, 55].
These techniques alternate between symbolic execution and fuzzing
such that symbolic execution helps penetrate when fuzzing fails to
make progress. Recently, there are techniques that leverage gradient
descent based multi-objective search to generate (seed) inputs, such
as Angora [13], its extended version Matryoshka [14], and SLF [52].
These techniques avoid heavy-weight per-instruction modeling in
symbolic execution. Instead, they use simpler analysis to derive
the gradients of program path conditions regarding input elements.
These gradients represent howmuch change can be induced at path
conditions while the input elements are mutated. Inputs are hence
mutated based on the gradients.
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From our perspective, input generation is essentially search over
an intrinsically constrained input space. That is, individual fields
in the input have (complex) correlations. Various kinds of existing
techniques have different methods of modeling and respecting such
constraints. Vanilla fuzzing has the least modeling of the constraints.
Hence it is light-weight, scalable, but often less effective (than oth-
ers). Gradient descent based techniques consider only the mathe-
matical relations and leave the others unmodeled and eventually
handled by random fuzzing. Grammar based fuzzing/testing [23, 24]
models syntactic constraints as grammar rules. Symbolic execution
provides the most general modeling of constraints, by analyzing
individual statements and path conditions. It is low level and sup-
ports modeling all kinds of constraints as long as they manifest
themselves through program statements. However, such manifesta-
tion is often too low-level. In many cases, the constraints critical
for input growth (e.g., input length constraint) do not explicitly
manifest themselves through program statements. Instead, they
are implicitly convoluted with a large number of functional con-
straints that determine the computation to perform, making them
unnecessarily difficult to resolve (see an example in Section 2).

In this paper, we propose a novel technique to explicitly model
constraints that are critical to input growth. It does not require
heavy-weight program analysis. We observe many growth oriented
relations across input fields have similar nature to string constraints.
For example, an input field being the offset of another input field
(in the whole input) can be precisely modeled by the indexof con-
straint in a string solver. Despite the importance of these relations,
they are known to be difficult for symbolic execution based tech-
niques [46, 52] due to the implicit and convoluted modeling. We
propose to explicitly model these relations as string constraints,
without the need of symbolic execution. In particular, we first use a
field probing technique piggybacking on AFL [1], the most popular
mutation-based fuzzer, to identify individual fields in the input
(see Section 3.2). Multiple consecutive bytes form a field if mu-
tating these bytes have identical effect on coverage (e.g., causing
the same input validation failure). Each field is then represented
by a string variable. The whole input is hence a concatenation of
these string variables. Additional padding string variables are intro-
duced in between field string variables. Instantiating these padding
variables (through constraint solving) allows the input to grow.
Critical cross-field (string) constraints including length, offset, and
count are explicitly derived by observing file I/O changes induced
by field changes (see Section 3.3). To achieve code coverage, addi-
tional cross-field linear constraints are explicitly derived from path
conditions by linear regression on sampled input field values and
path condition expression values (see Section 3.4). The linear con-
straints and string constraints are resolved by an SMT solver. For
constraints related to non-linear components and other program
behaviors that cannot be precisely derived through mutation such
as array-indexing, we do not explicitly model them, but resort to an
external gradient descent procedure (see Section 3.5) and random
mutation.

Our contributions are summarized in the following.
• We develop a novel seed input generation technique for
mutation fuzzing. Starting from a 4-byte empty input, the
technique can automatically grow the input while respecting
the intrinsic constraints across input fields.

50 4b 03 04 00 00 00 00 00 00 00 00 00 00 b7 ef

dc 83 01 00 00 00 01 00 00 00 01 00 04 00 31 31

00 00 00 31 50 4b 03 04 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 50 4b 01 02 00 00 00 00 00 00 00 00 00 00

00 00 b7 ef dc 83 01 00 00 00 01 00 00 00 01 00

04 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00

31 31 00 00 00 31 50 4b 01 02 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

24 00 00 00 50 4b 05 06 00 00 00 00 02 00 02 00

62 00 00 00 42 00 00 00 01 00 31

0x00000000

0x00000010

0x00000020

0x00000030

0x00000040

0x00000050

0x00000060

0x00000070

0x00000080

0x00000090

0x000000a0

0x000000b0

0 1 2 3 4 5 6 7 8 9 a b c d e f

Figure 1: A valid zip archive file.

50 4b 03 04 … b7 ef dc 83 01 00 00 00 … 01 00 04 00 …

50 4b 01 02 … b7 ef dc 83 01 00 00 00 … 01 00 04 00 01 00 … 00 00 00 00 …

50 4b 05 06 00 00 00 00 02 00 02 00 62 00 00 00 42 00 00 00 01 00 31

LFH_MAGIC crc32 comp_size fn_len ef_len

CDH_MAGIC crc32 comp_size fn_len ef_len cmt_len cdentry[0].off

EOCD_MAGIC nentry cd.len cd.off cmt_len tail_len

EOCD

CDH

LFH
lentry[0]

cdentry[0]

eocd.off

Figure 2: Zip archive structure.

• We propose the novel idea of treating binary fields as string
variables and explicitly modeling important cross-field con-
straints as string constraints.

• In addition to string constraints, we propose to use linear
regression to model the linear relations between input fields
and path conditions.

• A layered technique is developed, in which (1) an SMT solver
is first used to efficiently solve the important but relatively
simpler string and linear constraints; (2) gradient descent
is used to address non-linear mathematical relations; (3)
random mutation is the last resort.

• We develop a prototype TensileFuzz and evaluate it on
12 real-world applications and the Google fuzzer-test-suite
benchmark. We compare it with AFL and a number of state-
of-the-art fuzzers, includingQsym [54] that combines fuzzing
and symbolic execution, Angora [13] and SLF [52] that are
gradient descent based. Our results show 39%-98% more cov-
erage. TensileFuzz works on stripped executables and will
be publicly available at [3].

Scope. Since our technique relies on AFL’s functionalities of mutat-
ing inputs and collecting code coverage to construct constraints, it
inherits AFL’s incapabilities of dealing with programs that require
table-based parsing (such as those have LR input grammar like gcc
and sqlite). This is because the code coverage of those programs
discloses little about input constraints. Handling those programs is
beyond the scope of our paper. Most existing fuzzing techniques,
even symbolic execution techniques, have similar limitations unless
they are provided with the explicit input grammar [4, 50].

2 MOTIVATION
Zip file format is one of the most popular cross-platform archive
formats and is widely used as part of other popular formats such as
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01 buf = read_from_file();
02 file_len = length_of_file();
03 while(memcmp(buf + eocd.off, EOCD_MAGIC, 4) != 0)
04 eocd.off++;
05 if(eocd.off > file_len) err(); a○
06 cd.nentry = read_buffer16(buf[eocd.off + 8]);
07 cd.ientry = read_buffer16(buf[eocd.off + 10]);
08 if(cd.ientry != cd.nentry) err(); b○
09 if(cd.nentry < MIN_ENTRY_REQUIRED) err(); c○
10 cd.len = read_buffer32(buf[eocd.off + 12]);
11 cd.off = read_buffer32(buf[eocd.off + 16]);
12 if(cd.off + cd.len > eocd.off) err(); d○
13 eocd.cmt_len = read_buffer16(buf[eocd.off + 20]);
14 tail_len = buffer_left_len(buf[eocd.off + 22]);
15 if(eocd.cmt_len != tail_len) err(); e○
16 left = cd.len, i = 0, off = 0;
17 while(left > 0)
18 if(left < CDENTRYSIZE) err(); f○
19 if(memcmp(buf[cd.off+off],CDH_MAGIC,4))err(); g○
20 fn_len = read_buffer16(buf[cd.off + off + 28]);
21 cde_len = CDENTRYSIZE + fn_len;
22 cdentry[i] = readcd(buf[cd.off + off], cde_len);
23 left -= cde_len, off += cde_len;
24 if(++i == cd.nentry && left != 0) err(); h○
25 for(i = 0; i < cd.nentry; i++)
26 j = cdentry[i].offset + cdentry[i].comp_size
27 + cdentry.fn_len + RECORDSIZE;
28 if(j > cd.offset) err(); i○
29 lentry[i] = readl(buf[cdentry[i].off], j);
30 check_cons(cdentry[i], lentry[i]);
31 crc32 = compute_crc32(lentry[i].data);
32 if(crc32 != lentry[i].crc32) err(); j○

Figure 3: Critical validation checks of libzip.

DOCX, EPUB and JAR. A valid zip archive as in Figure 1may contain
several compressed or uncompressed files. Its format is shown in
Figure 2, which consists of three sections: the first row local file
header (LFH), the second row central directory header (CDH) and
the third row end of central directory (EOCD). EOCD contains the
entry number, that is, the number of files in the archive, followed
by the length of CDH and its offset in the file. CDH is located in
the middle of a zip archive and is divided into multiple central
directory entries. Each central directory entry contains the offset
of the corresponding local entry (in LFH) and additional entry
information, including modification date, size, name, etc. LFH is
at the beginning and made of local entries which store the file
content as well as the entry information like that in CDH. When
libzip is used to read a zip archive, it has to perform a sequence of
validity checks that distribute in multiple functions of the library.
We summarize these checks in Figure 3 and briefly explain them.

Libzip first checks the validity of the file, by searching for the
magic number of EOCD at lines 3-4 in Figure 3. In the input example
in Figure 1, the magic number is at offset 0xa4-0xa7. This allows
locating the EOCD structure. It then reads the entry number at offset
0xac-0xad at lines 6-7 and checks the two copies of entry number
are identical (line 8) and both larger than 1 (line 9). It identifies the
CDH length at 0xb0-0xb3 (line 10) and the CDH offset at offset 0xb4-
0xb7 (line 11) from EOCD. The check at line 12 ensures that there
is no overlap between CDH and EOCD sections. When reading
CDH, it traverses every central directory entry in order (lines 16-
24) and finds the corresponding local entries in LFH (lines 25-32).
While reading each central directory entry, libzip first checks the
remaining length of CDH section is at least as large as a central

directory entry (line 18) and the to-be-read entry starts with a
magic number (line 19). The central directory entry information
is stored in the cdentry[] array. When reading LHF, according to
cdentry[i].off (0x6c-0x6f and 0xa0-0xa4) found in CDH, libzip
accesses every local entry in LFH and checks the consistency of the
central directory entry and the corresponding local entry (line 30).
It also continuously checks if the LFH section overlaps with the
CDH section (line 28). Finally libzip returns file data in each local
entry if its CRC32 (at offset 0x0e-0x11) in the entry matches the
one calculated from the data (line 32). The input file has to pass all
the aforementioned checks. Failing any of them leads to immediate
termination with an error message.
Symbolic Execution. Symbolic execution engines (e.g. KLEE [11]
and S2E [15]) execute programs symbolically and derive symbolic
expressions for variables during execution. When branches are en-
countered, they fork states to explore both paths and invoke SMT
solver to generate test cases satisfying the corresponding symbolic
path constraints. For our example, symbolic execution can easily
handle simple numeric checks such as checks b○ and c○ that are
difficult for vanilla fuzzers. However, symbolic execution relies
solely on the program statements along the path-to-explore to de-
rive constraints. Such constraints are usually very low level, highly
convoluted, and incapable of expressing growth related constraints
in many cases. For example, the input field cd.off (read at line 11)
denotes the offset of CDH and field cd.len denotes the length of
CDH. However, such simple offset and length relations do not have
any corresponding explicit symbolic constraints. Instead, they are
implicitly denoted by a (large) number of low level constraints that
are convoluted with other functionalities. Assume in an invalid
input, cd.len is smaller than the length of CDH, which is very
likely as we start with a simple 4-byte input. Such invalidity cannot
be directly detected. Instead, symbolic execution can pass check
d○ that inspects CDH does not overlap with EOCD. At line 16, the
invalid cd.len value is passed to variable left and used in the loop
in lines 17-24, which reads in individual central directory entries
and reduces left. The invalidity will eventually be detected at f○
after the symbolic execution engine unrolls the loop for a number
of times such that the remaining bytes are insufficient for an entry.
Many symbolic execution engines have path exploration strategies
that prioritize code coverage. Since unrolling a loop iteration usu-
ally does not bring new code coverage, it has a low priority. That
is to say, the invalidity of the input will not be detected until very
late. To make the situation worse, a symbolic execution engine is
not aware of that the root cause of the problem is the mismatch
of the length field and the corresponding CDH. Instead, it picks a
path condition to negate, hoping to achieve new code coverage. In
this case, negating any path condition does not lead to a direct fix
of the problem. The engine ends up being stuck in the loop at lines
17-24 and fails to grow the input. Furthermore, symbolic execution
engines require specifying input length to begin with. Without
knowing the precise input format, providing a proper length is
difficult.
Hybrid Fuzzing. Hybrid fuzzing (e.g. Driller [48] and Qsym [54])
combines fuzzing and symbolic execution. They often start with
mutation fuzzing and resort to symbolic execution when encoun-
tering difficult checks. They hence have the advantages from both
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sides, such as applicability and practicality from fuzzing and pre-
cise modeling and constraint solving from symbolic execution to
penetrate difficult checks. Despite their great potential, it remains
challenging to determine when to switch between the two as it
is hard to predict when the fuzzer is truly stuck. Furthermore, its
capabilities to penetrate difficult checks are bounded by symbolic
execution. In our example, hybrid techniques still have difficulty
with check f○ due to the reasons mentioned before.
Gradient based Fuzzing. Gradient based fuzzers (e.g. Angora [13]
and SLF [52]) leverage gradient to guide fuzzing. These fuzzers
group input bytes into fields by taint analysis or probing, and then
use fields as the basic unit in fuzzing. Instead of solving precise
symbolic constraints, they change input fields related to a target
predicate along the direction indicated by gradients. For our exam-
ple, Angora can pass checks a○, b○ but fails at check c○ due to the
gradient disappearance problem, namely, changing a field in check
c○ results in the failure of a previously passed check b○ which
makes c○ not even reachable. SLF leverages a multi-goal gradient
based search algorithm to solve inter-dependent numerical checks.
However, it still has substantial difficulties on length and offset
related checks. It simply degrades to AFL when encountering such
checks. It hence cannot penetrate checks f○, h○ and i○.
Our Technique. Instead of constructing constraints by modeling
individual program statements like in symbolic execution, we derive
a set of constraints critical to input growth by probing, i.e., mutating
inputs and observing the corresponding execution changes. These
constraints include the length, offset and count relations across
fields. Reasoning about them entails varying input length and is
hence difficult for symbolic execution, which usually requires fixed-
size input. We observe that string solver [29] is particularly suitable
for reasoning about such constraints and string solvers [28, 56]
can shrink, extend, and even shuffle strings, which are the type
of mutations we are looking for. We hence propose to consider
an input byte sequence as a string such that the aforementioned
constraints can be modeled with string operators such as concat,
length, and indexof. In the reminder of the paper, we use the term
input string to denote a sequence of input bytes. Besides explicitly
modeling string constraints, we use linear regression over sample
values collected through multiple mutation executions to derive
linear correlations cross fields. These constraints are explicitly re-
solved by an SMT solver. To handle nonlinear arithmetic relations,
we leverage gradients. Specifically, when SMT fails to produce an
input to follow the path we want, we further change the input
fields that have non-linear relations with path conditions following
their gradients. With the new valuations of non-linear input fields
(generated by gradient descent), we alternate to SMT constraint
solving. The procedure is iterative and alternative. The generated
seed inputs are then passed to AFL for random mutation.

For the motivation example, TensileFuzz starts with a 4-byte
empty input and it can automatically grow the length through
probing, string constraint solving and gradient descent solving.
It correctly identifies various offset, length and count relations,
e.g., between cd.len and CDH, between cd.offset and CDH,
and between cd.nentry and (the number of entries in) LHF. As
such, the string constraints ensure each generated seed input is
structurally valid. It generates the first seed for libzip in 30 minutes
and generates 19 valid seeds in 24 hours which lead to 642 explored

paths. Here, a valid seed is one that passes all the input checks in
Figure 3. In contrast, mutation fuzzer AFL, hybrid fuzzer Qsym,
and gradient descent based fuzzer Angora fail to generate any valid
seed within 24 hours. SLF generates only 6 seeds.

3 DESIGN
3.1 Overview
We illustrate the workflow of TensileFuzz in Figure 4. In Step A,
TensileFuzz starts with an input and mutates every byte of the
input to generate many new inputs and execute the target program
with these inputs. In Step B, it tracks paths of these inputs and
acquires the branches affected by different bytes. It then groups
consecutive bytes that affect the same branches into fields. In Step
C, string variables are introduced to denote these fields such that
an input is a concatenation of these variables. To construct string
constraints representing length, offset, and count relations across
fields, additional string variables are introduced to denote the pos-
sible padding between any two fields. For instance, deciding that
a field denotes the length of another data field can be achieved by
observing the correlation between changing the value of the field
and the need of instantiating the padding field right after the raw
data field (e.g., increasing the length field value by 1 entails adding
a one-byte padding after the data field). String constraints alone
are not sufficient to facilitate program path exploration. Therefore
in Step D, our technique additionally constructs a set of path con-
straints that are integrated with the string constraints. Different
from existing symbolic/concolic execution techniques that require
modeling each instruction to symbolic constraint, our technique
constructs path constraints through probing and linear regression.
Specifically, by mutating fields and observing the predicates that
are affected, it identifies the set of input fields that should be in-
volved in the path constraints denoting those predicates. Linear
regression is used to derive a linear approximation of each path
constraint. To handle non-linear arithmetic relations (check j○ in
Figure 3) that lead to UNSAT of the string and linear constraints, in
Step E, gradient descent is used to generate concrete valuation for
those fields involved in the non-linear relations, hoping the SMT
solver can produce a SAT solution. A SAT solution from the solver
is validated to see if it indeed leads to the intended path. If so, it
is a new seed input and added to the queue. If not, which means
the SAT input leads to a path that deviates from the intended one
due to inaccuracy in constraint construction, the invalid input goes
through steps A∼D to refine the constraints. Seed inputs in the
queue are synchronized with AFL for further random mutation.
AFL may produce new seed inputs as well. They are synchronized
back to TensileFuzz to enhance our seed generation.

3.2 Field Probing
Constraints are present in between fields instead of individual bytes.
As such, the first step is to identify fields in the input string. We
leverage a field probing technique proposed in [52]. We briefly
discuss it for the sake of completeness. Specifically, field probing
executes the target program on an input and then leverage the
fuzzing engine to observe the lhs and rhs values of each program
predicate. It mutates each byte of the input to generate a list of
mutated inputs, each having exactly one byte mutated. It feeds the
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SAT SolutionValid Input
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Figure 4: Overview of TensileFuzz.

⟨Term:bool⟩ ::= (𝑉𝑎𝑟 : 𝑏𝑜𝑜𝑙)
| 𝑡𝑟𝑢𝑒

| 𝑓 𝑎𝑙𝑠𝑒
⟨Term:int ⟩ ::= (𝑉𝑎𝑟 : 𝑖𝑛𝑡 )

| 𝐶𝑜𝑛𝑠𝑡𝐼𝑛𝑡

| (𝑇0 : 𝑖𝑛𝑡 ) {+,−, ∗, /}(𝑇1 : 𝑖𝑛𝑡 )
| 𝑙𝑒𝑛𝑔𝑡ℎ ( (𝑇0 : 𝑠𝑡𝑟𝑖𝑛𝑔))
| 𝑐𝑛𝑡 ( (𝑇0 : 𝑠𝑡𝑟𝑖𝑛𝑔), (𝑇1 : 𝑠𝑡𝑟𝑖𝑛𝑔))
| 𝑖𝑛𝑑𝑒𝑥𝑜 𝑓 ( (𝑇0 : 𝑠𝑡𝑟𝑖𝑛𝑔), (𝑇1 : 𝑠𝑡𝑟𝑖𝑛𝑔))
| 𝑡𝑜𝑖𝑛𝑡 ( (𝑇0 : 𝑠𝑡𝑟𝑖𝑛𝑔))

⟨Term:string⟩ ::= (𝑉𝑎𝑟 : 𝑠𝑡𝑟𝑖𝑛𝑔)
| 𝐶𝑜𝑛𝑠𝑡𝑆𝑡𝑟𝑖𝑛𝑔

| 𝑐𝑜𝑛𝑐𝑎𝑡 ( (𝑇0 : 𝑠𝑡𝑟𝑖𝑛𝑔), (𝑇1 : 𝑠𝑡𝑟𝑖𝑛𝑔))
⟨Expr:bool⟩ ::= (𝑇0 : 𝑏𝑜𝑜𝑙)

| (𝑇0 : 𝑏𝑜𝑜𝑙) = (𝑇1 : 𝑏𝑜𝑜𝑙)
| (𝑇0 : 𝑖𝑛𝑡 ) {=, ≥,>, ≤} (𝑇1 : 𝑖𝑛𝑡 )
| (𝑇0 : 𝑠𝑡𝑟𝑖𝑛𝑔) = (𝑇1 : 𝑠𝑡𝑟𝑖𝑛𝑔)
| 𝑛𝑜𝑡 (𝐸𝑥𝑝𝑟 : 𝑏𝑜𝑜𝑙)
| (𝐸𝑥𝑝𝑟 : 𝑏𝑜𝑜𝑙) ∧ (𝐸𝑥𝑝𝑟 : 𝑏𝑜𝑜𝑙)

⟨Assertion⟩ ::= 𝑎𝑠𝑠𝑒𝑟𝑡 (𝐸𝑥𝑝𝑟 : 𝑏𝑜𝑜𝑙)

Figure 5: Constraint syntax.

program with the mutated inputs and observes the rhs/lhs changes
at individual predicates. The consecutive bytes that induce changes
on a same set of predicates are grouped to a field.

3.3 String Constraint Construction
As mentioned in Section 1, the key feature of our technique is to
explicitly model the input growth relations as string constraints
such that the theory of string solver can be leveraged. Otherwise,
they are implicitly encoded as the convolution of a large number
of path conditions (as illustrated in Section 2) and become very
difficult to satisfy. As shown in Figure 5, we support multiple string
operations: length, offset, and cnt, toint, and concat, representing the
length of a string, the offset of a sub-string in another string, and
the number of occurrences of some pattern denoted by a string in
another longer string, the integer value denoted by a string, and
the concatenation of a list of given strings, respectively.

Here, we call the fields probed by the technique mentioned in the
last section the primitive fields and their concatenation composite
field. After field identification, we introduce a string variable to
denote each primitive field. The overall input string 𝑆 is hence the

concatenation of all these string variables. In addition, we introduce
a set of so called padding string variables in between primitive
fields and at the beginning/end of the input to denote the possible
expansion of the input. Recall that we generate seed inputs by
gradually disclosing more constraints and expanding the input
string (starting from the original four bytes). Assume we have
identified 𝑛 primitive fields, denoted by 𝑇0, 𝑇1, ..., and 𝑇𝑛−1. We
denote the whole input string as 𝑆 and the padding strings as 𝑃𝑖
We have the following global composition constraint.

𝑆 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃0,𝑇0, 𝑃1,𝑇1, . . . ,𝑇𝑛−1, 𝑃𝑛) (1)
We also have a list of primitive length constraints that dictate the
length of individual primitive fields equals to the probed length. Let
𝑙𝑖 be the length of the 𝑖th primitive field. We have the following.

𝑙𝑖 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑖 ) (2)

Note that in contrast padding variables do not have primitive length
constraints. While the above constraints can be directly derived
from field probing results, the key challenge lies in identifying the
length, offset, and cnt relations across fields.
Deriving Length Constraints Across Fields. These constraints
are in the following form.

𝑡𝑜𝑖𝑛𝑡 (𝑇0) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇1) (3)

It denotes that 𝑇0 is the length of 𝑇1. In our motivation example in
Figure 1, we have the following for the CDH field (0𝑥42 − 0𝑥𝑎3)
and its length field cd.len at (0𝑥𝑏0 − 0𝑥𝑏3).

𝑡𝑜𝑖𝑛𝑡 (𝑇0𝑥𝑏0−0𝑥𝑏3) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇0𝑥42−0𝑥𝑎3)
To detect such relations, we intercept all the file read operations.
Without losing generality, we assume all these operations take a
position parameter denoting the starting position of the read, and
a bytes-to-read parameter. We mutate each primitive field and ob-
serve if anymutation leads to change of the bytes-to-read parameter
at some file read API. If so, a length relation is detected. Specifi-
cally, for each field 𝑇𝑖 , we mutate it such that 𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) is increased
by 1 and 2, generating two mutated inputs. We then execute the
program with the mutated inputs. If we observe at some file read
API whose original starting position is denoted as 𝑠 and original
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bytes-to-read is denoted as 𝑙 , the bytes-to-read changes to 𝑙 [+1]

and 𝑙 [+2] in the mutated executions, we introduce the following
constraint, in which 𝑇𝑗 , 𝑇𝑗+1, ... and 𝑇𝑗+𝑚 denote the list of fields
for the bytes in between 𝑠 and 𝑠 + 𝑙 .

𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) × (𝑙 [+1] − 𝑙) = 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃 𝑗 ,𝑇𝑗 , 𝑃 𝑗+1,𝑇𝑗+1, . . . ,

𝑇𝑗+𝑚, 𝑃 𝑗+𝑚+1)) ⇐⇒ 𝑙 [+1] − 𝑙 ≡ 𝑙 [+2] − 𝑙 [+1] (4)

Intuitively, by increasing the length field by 1 and 2 and observing
the corresponding bytes-to-read parameter changes, we identify
the unit of the length field. When such unit is consistent (as implied
by the condition 𝑙 [+1] − 𝑙 ≡ 𝑙 [+2] − 𝑙 [+1] ), we have the constraint in
Formula 4. Note that the presence of the padding variables allows
the string solver to expand the data field while respecting the length
constraint. In other words, expansion is achieved by valuating some
padding variable(s) to non-empty string(s). For example, as shown
in Box (I) in Figure 6, the 4-bytes field at offset 0𝑥𝑏0 is changed
from 0𝑥62 to 0𝑥63 in red (and then 0𝑥64, which is omitted from the
example). The table below presents the intercepted parameters of a
file read at 𝑝𝑐1. Observe that the starting position 𝑠 = 0𝑥42 and the
bytes-to-read parameter changes from 𝑙 = 0𝑥62 to 𝑙 [+1] = 0𝑥63 (in
red). This allows us to derive the first constraint below box (I).
Deriving Offset Constraints Across Fields. These constraints
are in the following form.

𝑡𝑜𝑖𝑛𝑡 (𝑇0) = 𝑖𝑛𝑑𝑒𝑥𝑜 𝑓 (𝑇1,𝑇2) (5)

It means that 𝑇0 represents the offset of 𝑇2 in 𝑇1, with 𝑇1 and 𝑇2
usually composite fields. In our motivation example in Figure 1, we
have the following for the CDH field (0𝑥42 − 0𝑥𝑎3) and its offset
field cd.offset at 0𝑥𝑏4 − 0𝑥𝑏7.

𝑡𝑜𝑖𝑛𝑡 (𝑇0𝑥𝑏4−0𝑥𝑏7) = 𝑖𝑛𝑑𝑒𝑥𝑜 𝑓 (𝑆,𝑇0𝑥42−0𝑥𝑎3)
Similar to length constraints, the derivation of offset constraints
leverages the file read interface. Note that an offset field may not
be relative to the beginning of the whole input string (but rather
the beginning of some internal structure) and its unit may not be
byte. As such, the value of an offset field may not be equivalent to
the starting position parameter 𝑠 in the file read. However, it can
be easily inferred that 𝑠 is a linear function of the offset field 𝑇0, as
shown in the following.

𝑠 = 𝑎 × 𝑡𝑜𝑖𝑛𝑡 (𝑇0) + 𝑏 (6)

Coefficients 𝑎 and 𝑏 denote the unit of the offset and the starting po-
sition of the internal structure regarding which offset is represented.
They can be resolved by observing 𝑠 changes while mutating 𝑇0.
Similar to the derivation of length constraints, for each field 𝑇𝑖 , we
mutate it such that 𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) is increased by 1 and 2, generating two
mutated inputs. We then execute the program with the mutated
inputs. If we observe at some file read API whose original starting
position is denoted as 𝑠 and original bytes-to-read is denoted as 𝑙 ,
the starting position changes to 𝑠 [+1] and 𝑠 [+2] , we introduce the
following constraint, in which 𝑇𝑗 , 𝑇𝑗+1, ... and 𝑇𝑗+𝑚 denote the list
of fields for the bytes in between 𝑠 and 𝑠 + 𝑙 .

𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) × (𝑠 [+1] − 𝑠) = 𝑖𝑛𝑑𝑒𝑥𝑜 𝑓 (𝑆, 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃 𝑗 ,𝑇𝑗 , 𝑃 𝑗+1,𝑇𝑗+1, . . . ,

𝑇𝑗+𝑚, 𝑃 𝑗+𝑚+1)) ⇐⇒ 𝑠 [+1] − 𝑠 ≡ 𝑠 [+2] − 𝑠 [+1] (7)

The condition of the constraint represents the sanity check that
it is a legitimate offset field, conforming to the above linear function.

For example, as shown in Box (II) in Figure 6, the 4-bytes field at
offset 0𝑥𝑏4 (in black) is changed from 0𝑥42 to 0𝑥43 in red (and
then 0𝑥44, which is omitted from the example). The table below
presents the change of intercepted parameters of the file read at
𝑝𝑐1. Observe that originally the starting position 𝑠 = 0𝑥42 and the
bytes-to-read parameter 𝑙 = 0𝑥62. The starting position changes
to 𝑠 [+1] = 0𝑥43 in red (and then 𝑠 [+2] = 0𝑥44). This allows us to
derive the second constraint below box (II).
Deriving Count Constraints Across Fields. These constraints
are in the following form.

𝑡𝑜𝑖𝑛𝑡 (𝑇0) = 𝑐𝑛𝑡 (𝑇1,𝑇2) (8)

It means that𝑇0 is the number of occurrences of a structural pattern
denoted by 𝑇2 in 𝑇1. 𝑇2 is a prefix of 𝑇1. We call 𝑇2 the pattern field
and𝑇1 the data field. In ourmotivating example in Section 2, the field
cd.nentry (0𝑥𝑎𝑒 − 0𝑥𝑎𝑓 ) denotes the number of central directory
entries (e.g., the sequence from 0𝑥42 − 0𝑥𝑎4) in CDH. Hence, we
have the following.

𝑡𝑜𝑖𝑛𝑡 (𝑇0𝑥𝑎𝑒−0𝑥𝑎𝑓 ) = 𝑐𝑛𝑡 (𝑇0𝑥42−0𝑥𝑎4,𝑇0𝑥42−0𝑥75)
Count constraints share similarity with length constraints as

the latter also denotes the number of elements in a data field. The
difference is that in length constraints, the elements in the data field
have a uniform size (e.g., byte). In contrast, in count constraints,
the elements have homogeneous structure but various sizes. For
example, the entries in CDH, one for each file, may be of different
sizes, e.g., depending on the length of the file name represented
by the entry. Count constraints are identified through the file read
operations as well. However, instead of leveraging the parameters of
file reads, we make use of the number of file reads. That is, changing
a count field affects the file reads related to the corresponding
data field. The number of file reads 𝑦 is hence a linear function of
𝑡𝑜𝑖𝑛𝑡 (𝑇𝑐𝑛𝑡 ) if 𝑇𝑐𝑛𝑡 is a count field.

𝑦 = 𝑎 × 𝑡𝑜𝑖𝑛𝑡 (𝑇𝑐𝑛𝑡 ) + 𝑏 (9)

Here, 𝑎 denotes the number of file reads dedicated to an element in
the data field (e.g., an entry in CDH) and 𝑏 the number of file reads
unrelated to the data field (e.g., all the reads unrelated to entries in
CDH). Specifically, for each field𝑇𝑖 , we mutate it such that 𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 )
becomes 0 and 1, generating two respective mutated inputs. We
then execute the program with the inputs and count the number of
file read operations. Assume the original number of file reads, and
the numbers for mutated inputs are 𝑦, 𝑦 [0] and 𝑦 [1] , respectively.
We introduce the following constraint, in which 𝑇𝑗 , 𝑇𝑗+1, ... and
𝑇𝑗+𝑚 denote the list of fields for the bytes read in the execution of
𝑦 but not in that of 𝑦 [0] , 𝑇𝑗 , 𝑇𝑗+1, ... and 𝑇𝑗+𝑟 the list of fields for
the bytes read in the execution of 𝑦 [1] but not in that of 𝑦 [0] (i.e.,
the first element representing the structural pattern), and 𝑣𝑖 the
original value of 𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ).

𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) = 𝑐𝑛𝑡 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃 𝑗 ,𝑇𝑗 , 𝑃 𝑗+1,𝑇𝑗+1, . . . ,𝑇𝑗+𝑚, 𝑃 𝑗+𝑚+1),
𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃 𝑗 ,𝑇𝑗 , 𝑃 𝑗+1,𝑇𝑗+1, . . . ,𝑇𝑗+𝑟 ))

⇐⇒ (𝑦 − 𝑦 [0] ) ≡ (𝑦 [1] − 𝑦 [0] ) × 𝑣𝑖 (10)

The condition of the constraint represents the sanity check to
make sure 𝑇𝑖 is a legitimate count field (conforming to the earlier
linear function).
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… 50 4b 01 02 … 50 4b 05 06 … 02 00 62 00 00 00 42 00 …

0x42 0xa4 0xae 0xb0 0xb4

… 02 00 63 00 00 00 42 00 …

… 02 00 62 00 00 00 43 00 …

… 01 00 62 00 00 00 42 00 …

API Pos Bytes

read @ pc1 0x42 0x63
…

API Pos Bytes

read @ pc1 0x43 0x62
…

API Pos Bytes
read @ pc2 0x42 …

…

API Pos Bytes
read @ pc1 0x42 0x62
read @ pc2 0x42 …
read @ pc2 0x76 …

…
(I) toint(T0xb0-0xb3) =

length(P0x42-0x45+T0x42-0x45+…+P0xa0-0xa3+T0xa0-0xa3+P0xa4-0xa7)
(II) toint(T0xb4-0xb7) = 

offset(S, P0x42-0x45+T0x42-0x45+…+P0xa0-0xa3+T0xa0-0xa3+P0xa4-0xa7)
(III) toint(T0xae-0xaf) =

cnt(P0x42-0x45+T0x42-0x45+…+P0xa0-0xa3+T0xa0-0xa3+P0xa4-0xa7, 
P0x42-0x45+T0x42-0x45+…+P0x72-0x75+T0x72-0x75)

Input

Constraints Input Mutation

( I )

( II )
After Mutation

Before Mutation

( III )

Figure 6: String constraint generation.

For example in box (III) in Figure 6, the 2-byte field at offset
0𝑥𝑎𝑒 (in green) is changed from 0𝑥02 to 0𝑥01 (in red). Note that
according to the tables before (above) and after (below) themutation,
the occurrences of the file read at 𝑝𝑐2 is reduced from 2 to 1, which
gives rise to the constraint in the bottom of box (III), the composite
pattern string is from 0𝑥42−0𝑥75 as indicated by the pos parameters
of the reads at 𝑝𝑐2.
Solving Count Constraints. Different from 𝑙𝑒𝑛𝑔𝑡ℎ, offset, and
𝑡𝑜𝑖𝑛𝑡 operations, 𝑐𝑜𝑢𝑛𝑡 operation is not natively supported by ex-
isting string solvers (e.g., [56]). Since seed inputs are usually small,
we bound the count such that we can use an axiom to unfold a
count constraint to a set of natively supported constraints. Specifi-
cally, the axiom transforms Constraint 10 to the conjunction of the
following Constraints 11 and 12.

𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) < 3 (11)

(𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) == 1 ∧𝑚 == 𝑟 ) ∨ [1]
(𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) == 2 ∧𝑚 == 2𝑟 ) ∨ [2]
( (𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) == 2 ∧𝑚 == 𝑟 ) ∧
𝑃 𝑗+𝑚+1 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃 ′

𝑗 ,𝑇
′
𝑗 , 𝑃

′
𝑗+1,𝑇

′
𝑗+1, . . . ,𝑇

′
𝑗+𝑚)∧

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑐𝑙𝑜𝑛𝑒 (𝑃 𝑗 , . . . ,𝑇𝑗+𝑚, 𝑃 ′
𝑗 , . . . ,𝑇

′
𝑗+𝑚) [3]

(12)

Specifically, Constraint 11 decides the unroll bound. For simplic-
ity of illustration, we assume all counts are smaller than 3. Con-
straint 12 is a disjunction of three possible cases. In the first two
cases, as denoted by the subformula [1] and [2], the number of
primitive fields in the (composite) data field and the (composite)
pattern field matches the count field 𝑇𝑖 . In the third case, denoted
by subformula [3], the count field has value of 2 while the data field
contains only one instance. Therefore, we assert that 𝑃 𝑗+𝑚+1 has the
same composition and inner length, offset constraints as the pattern
field. The function 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡_𝑐𝑙𝑜𝑛𝑒 () copies all these constraints
internal to 𝑃 𝑗 , 𝑇𝑗 , ..., 𝑇𝑗+𝑚 to the corresponding 𝑃 ′

𝑗
, 𝑇 ′

𝑗
, ..., 𝑇 ′

𝑗+𝑚 .
For example, if we have 𝑡𝑜𝑖𝑛𝑡 (𝑇𝑗 ) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑐𝑎𝑡 (𝑇𝑗+1, 𝑃 𝑗+1)),
we have 𝑡𝑜𝑖𝑛𝑡 (𝑇 ′

𝑗
) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑐𝑎𝑡 (𝑇 ′

𝑗+1, 𝑃
′
𝑗+1)). Intuitively, sub-

formula [3] allows the input to grow by instantiating 𝑃 𝑗+𝑚+1 to a
string that is isomorphic to the pattern string. The transformation
for a larger bound can be similarly derived.

3.4 Constraints from Program Paths
The string constraints in the previous section represent those re-
lated to input growth. There are constraints for other aspects. In

0xb0

Input:

Functions:

ⓓ toint(Tk) + toint(Tk+1) ≤ 0xa4

Sample Values
Predicate Tk Tk+1 lhs(ⓓ) rhs(ⓓ)

0x62 0x42 0xa4 0xa4

ⓓ 0x63 0x42 0xa5 0xa4

(≤) 0x63 0x43 0xa6 0xa4

… … … …

Tk Tk+1

Samples:

… 62 00 00 00 42 00 …

Figure 7: Path constraint generation.

this section, we discuss how we generate these constraints from
program paths, without the heavy-weight instruction level tracing
or modeling (like taint analysis). The full constraint syntax is pre-
sented in Figure 5. Observe that in addition to string operations,
we support bool and int operations. We will discuss how to handle
other types of program behaviors without constructing explicit
constraints in Section 3.5.

In order to achieve the goal, we follow a standard path explo-
ration method [11, 37], in which a new path is acquired by negating
a selected predicate of an existing path.We select the predicates that
are input related (as reported in the field probing phase). For a path
that we aim to explore, we identify the primitive fields involved in
each predicate along the path. This can be done by mutating fields
and observing the lhs and rhs value changes for the predicates. In
most cases, the lhs/rhs of predicates are merely linear functions of
the fields. As such, we use linear regression on the observed lhs/rhs
values and the corresponding field values (through multiple muta-
tion runs) to infer such relations and construct linear constraints,
which can be resolved by the integer theory in an SMT solver.
Deriving Linear Constraints. For each input-related predicate 𝑝
along a path (to explore), without losing generality, we assume there
are a list of fields related to the lhs expression of 𝑝 , whose value is
denoted as 𝑙ℎ𝑠 (𝑝). The list may not be complete. We will discuss the
effect of incompleteness later this section. A naive approach would
be to speculate 𝑙ℎ𝑠 (𝑝) has a linear relation with the correlated fields
and then use linear regression to recover the precise linear form.
However in practice, it is possible that 𝑙ℎ𝑠 (𝑝) has non-linear relation
with some of the fields, which would fail the naive linear regression.
Inspired by concolic execution, our strategy is to construct explicit
constraints only for the linear part of the correlations and assert
the input fields that induce non-linear correlations to be fixed.
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1 x = y = get_input_int();
2 if (x < 10) y = 3 * x;

3 if (y < 20) error();

Figure 8: Example for unsoundness.

Specifically, for each𝑇𝑖 related to 𝑝 , we mutate it a few times and
observe the changes of 𝑙ℎ𝑠 (𝑝). If the changes are linear, we can de-
rive the slope𝑎𝑖 of the linear relation for𝑇𝑖 by𝑎𝑖 =

𝑙ℎ𝑠′ (𝑝)−𝑙ℎ𝑠 (𝑝)
𝑡𝑜𝑖𝑛𝑡 (𝑇 ′

𝑖
)−𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖 ) .

Assume the subset of linearly correlated fields are 𝑇𝑖1, 𝑇𝑖2, ..., and
𝑇𝑖𝑚 . We derive the following linear constraint.

𝑙ℎ𝑠 (𝑝) = 𝑎𝑖1𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖1) + 𝑎𝑖2𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖2) + · · · + 𝑎𝑖𝑚𝑡𝑜𝑖𝑛𝑡 (𝑇𝑖𝑚) + 𝑏 (13)

The coefficient𝑏 is the aggregation of all the contributions from the
fields having non-linear correlations. It can be determined through
linear regression. In addition, for each input field 𝑇𝑗 with value 𝑣 𝑗
and non-linear correlation with 𝑙ℎ𝑠 (𝑝), we assert its value stay the
same, in the following form.

𝑡𝑜𝑖𝑛𝑡 (𝑇𝑗 ) = 𝑣 𝑗 (14)

Similar constraints can be derived for the 𝑟ℎ𝑠 (𝑝). The 𝑙ℎ𝑠 (𝑝) and
𝑟ℎ𝑠 (𝑝) can then be connected through the comparative operator to
constitute the constraint for the predicate.

Example. Figure 7 shows an example for linear constraint generation
for check d○. Two fields𝑇𝑘 and𝑇𝑘+1, which correspond to the bytes
shown on the top, are related to 𝑙ℎ𝑠 ( d○). Recall d○ is a check for non-
overlapping EOCD and CDH. The table presents the mutated field
values and the corresponding 𝑙ℎ𝑠 and 𝑟ℎ𝑠 values of the predicate.
Our analysis derives the following constraint.

𝑙ℎ𝑠 ( d○) = 𝑡𝑜𝑖𝑛𝑡 (𝑇0𝑥𝑏0−𝑏3) + 𝑡𝑜𝑖𝑛𝑡 (𝑇0𝑥𝑏4−𝑏5)

Similarly, we have 𝑟ℎ𝑠 ( d○) = 0𝑥𝑎4. If we aim to explore the false
branch of d○, we have 𝑙ℎ𝑠 ( d○) <= 𝑟ℎ𝑠 ( d○).
Soundness and Completeness. For the sake of scalability, our
technique does not resort to heavy-weight program analysis. As a
result, our constraint construction is neither sound nor complete.
It is unsound because the input-predicate relation is derived by
probing (a kind of sampling), which may not disclose the true
relation. Consider the code in Figure 8. Assume 𝑥 has the value
of 6. With a few additional mutations, e.g., 𝑥 = 7 and 𝑥 = 8, our
technique derives a linear constraint for line 3: 3 ∗ 𝑥 >= 20 if the
false branch is intended. However, the constraint is unsound as 𝑦 is
a piece-wise function of 𝑥 , depending on the condition at line 3. And
as we are not explicitly modeling some program behaviors such as
symbolic array indexing and high-order functions, the constraint
construction is incomplete. The consequences of unsoundness and
incompleteness include that (1) a solution to the derived constraints
may not drive program execution to follow the intended path; (2)
constraints being UNSAT does not mean there does not exist a
valid seed input. However, we argue that a full-fledged, sound and
complete constraint modeling is often too expensive and leads to
constraints very difficult to solve. Our technique, on the other hand,
features low cost and capabilities of modeling relations that are
fundamental (e.g., related to input growth).

3.5 Iterative Constraint Solving
We resort to an external iterative procedure to mitigate the con-
sequences of incompleteness and unsoundness. In particular, for
a new path to explore, we construct a set of constraints as men-
tioned earlier and pass them to the SMT solver. If there is a solution,
we execute the program with the solution and validate that the
intended path is taken by the input. If so, the solution is a valid
seed input and added to the seed input set. Otherwise, it is likely
due to the incompleteness and unsoundness of our technique. In
this case, we will redo the field probing and constraint derivation
with the new input. Note that since the new input deviates from
the intended path, it likely discloses the incorrect/missing relations
from the previous round of constraint derivation.
Example. Recall the example that illustrates the unsoundness of
constraint derivation in Figure 8.With the current input value 𝑥 = 6,
our technique derives constraint 3 ∗ 𝑥 >= 20 for line 3 when the
false branch is intended. Assume the solver returns 𝑥 = 15 as the
solution. Executing the program with the input causes line 2 to take
the false branch. As a result, 𝑦 = 𝑥 instead of 𝑦 = 3𝑥 and hence the
true branch of line 3 is taken instead of the intended false branch.
In other words, the solution 𝑥 = 15 is not valid. In this case, our
technique will probe and construct the constraints again. It hence
derives 𝑥 >= 20 as the constraint for line 3 in order to take the false
branch. The solver returns a valid solution 𝑥 = 25. □ Reprobing
and reconstruction continues until a valid solution is produced or
there is no new relations to be discovered, which is usually due to
non-linear relations are not modeled. In this case, we leverage a
multi-goal gradient descent method like that in [14, 52] to generate
new values for input fields that have non-linear relations with
predicate expressions. It is external to the aforementioned iterative
SMT constraint solving procedure. The generated new values are
explicitly integrated into our SMT constraints through assertions
and then we restart the iterative SMT constraint solving.

4 EVALUATION
4.1 Experiment Setup
Our evaluation is performed on two datasets. One contains 12 real
world applications from binutils, Google fuzzer-test-suite [2] and
other commonly fuzzed programs in other projects [14, 52, 53]
for comparison purpose. The other includes 15 programs from the
Google fuzzer-test-suite. Each of these programs has a number of
planted targets. The way to use the suite is to report how many
these targets can be reached by a fuzzer. The two sets cover var-
ious kinds of applications, including image, audio, compression,
executable, document and font format. We configure fuzzing with-
out source code or any valid seeds and we compare TensileFuzz
with 4 popular/state-of-the-art fuzzing tools which do not require
source code. For vanilla fuzzers, we compare with the baseline AFL
which is the most popular fuzzing tool. For hybrid fuzzers combin-
ing fuzzing with concolic execution, we compare with Qsym. For
gradient guided fuzzers, we compare with Angora and SLF which
mitigate inter-dependent constraints by multi-goal-gradient based
search. While there are many other fuzzers, as far as we know,
these black box fuzzers have the state-of-the-art reported results
(e.g., SLF outperforms KLEE and Qsym outperforms Driller [48] and
Vuzzer [43]). We do not compare with data-driven fuzzers [47, 49],
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Table 1: Evaluation for real world application

Program
AFL Qsym Angora SLF TensileFuzz

Path Seed Path Seed Path Seed Path Seed Path Seed

libzip 172 0 316 0 337 0 381 6 642 19
exiv2 1230 843 1886 1316 1468 826 1413 1101 2105 1958
giflib 167 0 180 17 228 16 276 26 328 53
libpng 375 0 777 0 527 0 674 0 1046 1
libtiff 1011 62 977 69 1060 78 1173 112 1613 114

openjpeg 853 113 860 663 783 537 858 577 988 652
lame 1269 1073 1614 1512 2114 1976 1320 1172 1372 1260
odt2txt 243 0 420 0 279 0 342 0 637 0

7z 1035 1 1123 2 / / 1307 4 1519 8
readelf 4119 3662 5138 4600 5857 1056 5131 4521 6758 5826
objdump 650 193 1372 371 1451 369 981 324 1627 897

size 1060 323 1159 432 1460 514 1215 479 1587 659

as those fuzzers need a large training corpus (of seeds) that is not
available in our setting. We do not compare with fuzzers that tar-
get on applications requiring table-based parsing [7, 50], as these
applications are beyond our scope.

All tools run along with AFL in their parallel fuzzing modes
for best performance. All of our experiments are performed on a
machine with 12 cores (Intel® CoreTM i7-8700 CPU @ 3.20GHz)
and 16GB memory running Ubuntu 16.04 operating system.

4.2 Real World Applications
We run TensileFuzz and other tools on 12 real world programs
starting with a 4-byte empty seed. We follow the configurations
recommended in a recent fuzzer evaluation work [30] and run each
experiment for 24 hours to observe the change of path coverage.
We also count the total number of valid seeds for which programs
return 0 to figure out the ability of generating structurally valid
seeds that pass validation checks. All results are the median of 5
runs and statistically significant with maximum p values less than
0.05. They are presented in Table 1 and Figure 9, where X-axis
represents time and Y-axis represents the number of covered paths
for each experiment. Angora does not work for 7z as it fails to
perform taint analysis.

From the table and the figure, we can make the following obser-
vations. Firstly, it is not surprising to see that AFL does not work
well without valid seeds. At the very beginning, AFL can efficiently
mutate input to cover environment related branches and some shal-
low validation checks so the coverage increases like other tools.
Then it quickly gets stuck after reaching the first difficult check. In
most cases, it struggles passing the check in the remaining time and
does not make any progress. For example, AFL gets stuck within
2 hours when fuzzing odt2txt and consequently leads to only 2/5
path coverage of TensileFuzz.

Secondly, Qsym helps AFL to penetrate some difficult checks
by concolic execution and hence achieves better path coverage.
However, since it does not explicitly model constraints related to
input growth, it generates fewer seeds than TensileFuzz leading
to less path coverage in most cases.

Table 2: Growth related constraint identification. TP denotes
True Positive, FP denotes False Positive. A., S., and T. denotes
AFL, SLF, and TensileFuzz, respectively.

Program Total TP FP Program Total TP FP
A. S. T. A. S. T. A. S. T. A. S. T.

libzip 10 0 10 7 0 23 1 lame 2 0 0 0 0 0 0
exiv2 2 1 0 1 9 0 0 odt2txt 10 1 0 6 0 0 0
giflib 1 0 0 1 2 0 0 7z 6 1 0 4 0 0 2
libpng 2 2 0 2 0 0 0 readelf 11 1 0 4 8 2 0
libtiff 2 1 0 1 6 0 0 objdump 11 1 0 4 16 0 0

openjpeg 3 2 0 3 2 0 0 size 11 1 0 4 16 0 0

Table 3: Contribution breakdown. SLS, GDS, and ICS denote
String & Linear Solving, Gradient Descent Solving, and Itera-
tive Constraint Solving, respectively.

Program SLS GDS ICS Program SLS GDS ICS
libzip 88.98% 4.72% 6.30% lame 21.31% 67.21% 11.48%
exiv2 84.55% 10.91% 4.55% odt2txt 90.85% 5.99% 3.17%
giflib 54.76% 35.71% 9.52% 7z 63.87% 27.99% 8.14%
libpng 93.48% 6.52% 0.00% readelf 75.28% 22.47% 2.25%
libtiff 63.76% 29.53% 6.71% objdump 76.67% 23.09% 0.23%

openjpeg 26.09% 53.62% 20.29% size 79.11% 20.67% 0.22%
Overall SLS: 68.23% GDS: 25.70% ICS: 6.06%

Thirdly, gradient based fuzzers rely on gradients and are effi-
cient in solving arithmetic relations such as CRC checks, allowing
to achieve reasonable path coverage. Angora achieves much bet-
ter results in lame than other programs because there are lots
of arithmetic relations in lame. However, in some cases, inter-
dependent checks may prevent them from exploring deeper paths
because the gradients disappear when they go deep. For example,
Angora quickly gets stuck in libzip and makes no progress for a
long time. SLF leverages multi-goal gradient search to mitigate the
inter-dependency so that it can generate valid seeds for such cases.
However, both SLF and Angora lack the ability to grow the input
efficiently.

TensileFuzz can generate valid seeds for all applications except
odt2txt, which requires xml parsing. These seeds are structurally
correct and helps pass most validation checks. As such, it yields
the best path coverage for all the applications except lame. The
average improvements over AFL, Qsym, Angora, SLF are 98%, 39%,
44%, 40%, respectively. From Figure 9, TensileFuzz reaches good
coverage in a much faster pace in most cases (due to its ability of
growing input properly). TensileFuzz does not work well on lame,
which is an mp3 player, because mp3 format has many bit level
growth related constraints that are not currently handled.
Growth Related Constraint Identification. We measure the
accuracy of string constraint identification of TensileFuzz and
compare with AFL and SLF. These constraints, including length,
offset and count are growth related. AFL and SLF have type reverse
engineering capabilities that can identify fields. Such information
may be used to construct constraints. The ground truth is acquired
by manually checking how applications handle each byte. Table 2
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Figure 9: Path coverage. X-axis: time (bounded at 24 hours), Y-axis: the number of unique paths.

represents the result. Total means the number of growth related
relations in a valid seed. TP and FP show how many fields are
correctly or mistakenly identified, respectively. Observe that our
tool has the highest accuracy, explaining why it generates more
structurally correct seeds and thus a higher coverage. It misses some
cases due to various reasons, including the inherent uncertainty in
probing (file read API changes not due to field perturbations) and
lack of support of bit fields.
Contribution Breakdown. In this experiment, we measure the
contributions of individual solving components in satisfying con-
straint queries, each query consisting of a set of constraints de-
noting the intention of exploring some selected branch while re-
specting the growth related conditions. Table 3 shows the results,
each column presents the percentage of queries solved by each
component. Observe on average string & linear solving contributes
the most (68.23%), followed by gradient descent solving (25.70%)
and then iterative constraint solving (6.06%). For some applica-
tions (e.g., openjpeg, lame), the iterative constraint solving plays
an important role. The reason is that these applications contain
a reasonable number of inter-dependent predicates, which might
cause field probing fail in string & linear solving, and the gradient
disappearance in gradient descent solving. Iterative constraint solv-
ing compensates the unsoundness and incompleteness of the other
two solving components to some extent.
Case study. We use openjpeg as a case study. Figure 10 shows
parts of its validation checks on a BMP file. The program first reads
offset and length related fields and perform some checks on these
fields. Then it tries to read some bytes at the position specified
by the offset. Finally it checks whether the bitcount is 24. Since
we start from a four byte seed, the length of the seed is usually
small. Many fuzzers got stuck at line 4 because they cannot read
enough bytes. Symbolic execution cannot help in this situation
because it first tries to change the length to be read to pass the
check. However, some other checks for those length related fields
may fail afterwards. If the file length is not large enough, the only
way to pass line 3 is to make the offset very small, which is of
low priority for symbolic execution. Hence, hybrid fuzzers rely on
random mutation to grow the file length and then pass this check.
However, our tool explicitly denotes such constraints. It recognizes

1 (offset,width,height,bitcount) = get_input_ints();
2 length = width * height * bitcount / 8;
3 if (read( length, offset ) != length) error();

4 if (width<MIN_WIDTH || height<MIN_HEIGHT) error();

5 if (bitcount != 24) error();

Figure 10: Checks for openjpeg.

the width, height and bitcount fields are related to the length of
a structure which starts at the given offset so that it passes line 3.
When it further tries to pass lines 4 and 5, the string constraints
allow it to stretch the file and grow its length.

4.3 Google Fuzzer Test Suite
Google fuzzer-test-suite includes 24 programs across various cate-
gories. Eight of them rely on table-based parsers, which are out of
scope and wpantund is not tagged with any buggy locations and ex-
cluded. Therefore, we choose the remaining 15 programs. Although
directed fuzzers[8, 31] is known to be effective in reaching buggy
lines, they require source code to do annotation so we do not com-
pare with them. Note that we always start with a 4-byte empty seed,
making it very difficult to reach the buggy locations. In fact, none
of the tools can reach any locations for 9 out of the 15 programs.
Hence we only present the results of 6 programs that at least one
tool has reached some buggy location(s). In total, they correspond
to 14 different buggy locations. Table 4 shows the results. It shows
the programs, the tagged location (i.e., target) in the program and
the time for each tool to reach the location (in minutes).

From the table, we can see AFL reaches 6 locations within 24
hours while Qsym and SLF can reach 7 locations. Our tool is able
to reach 12 locations, including all the locations reached by other
tools. Specifically, Qsym is able to pass shallow checks quickly but
it spends much more time solving constraints as paths become
longer. It reaches 7 targets, a subset of ours, and takes 80% more
time to reach these places compared to ours. Angora is much more
efficient and has similar time performance as ours but it gets stuck
as more path conditions become inter-dependent. It can only reach
4 out of 14 locations, only 1/3 of ours. SLF reaches 7 locations
within a reasonable time, but also takes 38% more time than ours.

400



TensileFuzz: Facilitating Seed Input Generation in Fuzzing via String Constraint Solving ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 4: Evaluation forGoogle Fuzzing Test Suite. T/O denotes
tool cannot reach locations in 24 hours. / denotes tool cannot
work on the program.

Program Location
Tool

AFL Qsym Angora SLF TensileFuzz
libjpeg jdmarker.c:659 1245.26 12.07 / 378.8 403.67

woff2 woff2_dec.cc:500 T/O T/O T/O T/O 900.79
woff2_dec.cc:1274 45.26 14.80 10.53 37.08 5.35

llvm-libcxxabi first crash 47.25 46.37 42.00 49.53 48.06

vorbis
codebook.c:479 T/O T/O / T/O 1206.00
codebook.c:407 T/O T/O / T/O T/O

res0.c:690 T/O T/O / T/O T/O

libpng

png.c:1035 187.23 812.76 0.87 273.00 1.72
pngread.c:757 T/O T/O T/O 37.61 36.27
pngrutil.c:1393 T/O 836.63 T/O T/O 473.20
pngread.c:738 190.65 822.40 19.22 29.40 15.43
pngrutil.c:3182 T/O T/O T/O T/O 55.47
pngrutil.c:139 0.25 0.45 0.45 0.33 0.30

libarchive archive...warc.c:537 T/O T/O T/O T/O 73.96

TensileFuzz is most efficient and outperforms others both in time
and the number of reached locations.

We also investigate why none of the tools can reach any lo-
cations in the other 9 programs. None of the tools work well on
network protocol programs (i.e., libssh, openssl, boringssl and c-
ares) because these programs typically have built-in arrays which
are difficult for symbolic execution and multiple inter-dependent
non-linear predicates which prevents searching by gradients. Ten-
sileFuzz degrades to Angora because these programs do not have
string constraints and have many inter-dependent non-linear con-
straints. For the other programs (e.g., lcms, harfbuzz and freetype),
they accept many different kinds of inputs. It is rather difficult to
reach a specific location without the guidance of diverse seeds.

5 RELATEDWORK
Generation-based fuzzing. Generation-based fuzzing generates
inputs from file format specification either manually provided or
learnt from a large corpus [24, 49]. Some works[10, 19, 25, 35]
leverage reverse engineering to recover the file format by control
flow or data flow. For example, Mimid[25] takes a program and
a small set of sample inputs and automatically infers a readable
context-free grammar capturing the input language of the program.
It infers the syntactic input structure by observing access of input
characters at different locations of the input parser. Tupni[19] can
automatically identify record sequences and record types in input
formats and find different types of constraints on the values of
fields. It can generalize input formats overmultiple inputs, including
protocols and binary file format. Although these techniques are
effective in generating valid seeds, they require initial valid seed
corpus for learning purpose. In contrast, our work does not need
initial valid seed inputs. Instead, it relies on fuzzing and concolic
execution to generate seed inputs and learn constraints on the fly.
Mutation-based fuzzing. Mutation-based fuzzing generates in-
puts bymutating the prepared seed inputs. There are a large number
of projects aiming to improve mutation effectiveness using inter-
nal program states [33, 43], statistical metrics [9, 32] and online
input probing[53]. Another line of work focuses on hybrid fuzzing,
which integrates fuzzing with constraint solving. Path constraints
are collected and solved by invoking symbolic execution engines.
Driller [48] is the first fuzzer combining concolic execution with

fuzzing at run time. It begins with AFL and seeks help from con-
colic execution when it gets stuck in some hard constraints like
magic numbers. Qsym[54] improves the performance of concolic
execution by optimizing emulation speed and reducing emulation
usage. Intriguer[16] optimizes symbolic execution with field-level
knowledge and efficiently performs symbolic emulation for more
relevant instructions. REDQUEEN[5] utilize the idea of observing
the correspondence between the input fields and program state and
invoke smt solver to solve magic bytes and (nested) checksum tests.
Other work uses a lightweight gradient descent to solve path con-
straints. Angora[13] is the first fuzzer which introduces gradient
descent to fuzzing. It mutates fields by the gradient computed from
predicate values and field values. SLF[52] and Matryoshka[14] im-
prove Angora with multi-goal search algorithms aiming at passing
nested constraints. Eclipser[17] uses linear regression to simplify
the path constraints and solve them by gradient descent, which
is similar to our path constraints solving technique. Technically
speaking, TensileFuzz is also a hybrid fuzzing approach, which
features a high-level constraint modeling and a layered constraint
solving technique.
Symbolic Execution. Symbolic execution provides an automatic
mechanism for exploring program paths. Prior work has proposed
several optimizations at the levels of the execution engine [41, 42,
51] and the constraint solver [20, 36]. Specific accelerated solv-
ing algorithms have been proposed for certain program structures
(e.g., arrays [38] and loops [46]). Different from existing constraint
optimization methods, TensileFuzz proposes a new way to ex-
plicitly model input growth related constraints, which are critical
in fuzzing. Our technique is also related to string constraint solv-
ing [6, 18, 22, 26, 27, 34, 40, 45], by being a client analysis.

6 LIMITATION
TensileFuzz identifies input fields at the byte level by grouping con-
secutive bytes so it can only work for chunk based binary programs
but not text/grammar based programs. In addition, the constraints
built by TensileFuzz are usually under-constrained because it mod-
els only string constraints and linear path constraints. The missing
non-linear constrains are handled by an external gradient descent
engine. As a result, the performance of TensileFuzz degrades when
programs have many complex bit/non-linear checks.

A few programs may not invoke file I/O APIs for many times.
Instead, they read the entire file to a buffer and process the buffer.
TensileFuzz can not rely on file read APIs to build string con-
straints but applies heuristic rules to infer constraints among fields.
The string constraints can be more inaccurate in this case. Better
heuristic rules help mitigate the problem.

7 CONCLUSION
We develop a seed input generation technique for mutation fuzzing.
It features explicitly modeling constraints critical to input growth
as string constraints and solving them with a string solver. It ad-
ditionally models constraints important to path exploration using
linear regression and gradient descent. Our experiments show that
our technique TensileFuzz is highly effective, out-performing the
state-of-the-art that targets the same set of applications.
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