
Poirot: Probabilistically Recommending Protections for the
Android Framework

Zeinab El-Rewini
University of Waterloo
zelrewin@uwaterloo.ca

Zhuo Zhang
Purdue University

zhan3299@purdue.edu

Yousra Aafer
University of Waterloo

yousra.aafer@uwaterloo.ca

ABSTRACT
Inconsistent security policy enforcement within the Android frame-
work can allow malicious actors to improperly access sensitive
resources. A number of prominent inconsistency detection ap-
proaches have been proposed in and across various layers of the
Android operating system. However, the existing approaches suffer
from high false positive rates as they rely solely on simplistic con-
vergence analysis and reachability based relations to reason about
the validity of access control enforcement.

We observe that resource-to-access control associations are highly
uncertain in the context of Android. Thus, we introduce Poirot, a
next-generation inconsistency detection tool that leverages prob-
abilistic inference to generate a comprehensive set of protection
recommendations for Android framework APIs. We evaluate Poirot
on four Android images and detect 26 total inconsistencies.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Access
control; •Mathematics of computing→ Probabilistic inference
problems.

KEYWORDS
android security; inconsistency detection; probabilistic inference

ACM Reference Format:
Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer. 2022. Poirot: Probabilisti-
cally Recommending Protections for the Android Framework. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3548606.3560710

1 INTRODUCTION
Access control systems are known to be vulnerable to anomalies in
security policies, such as inconsistent security policy enforcement.
The Android security model is no exception. Prominent research
efforts [6, 18, 22] have shown that the Android framework, which
houses the framework system services and implements the Ap-
plication Programming Interfaces (APIs), is riddled with access
control inconsistencies. An inconsistency occurs when one path
to a sensitive resource (which can take the form of a field access,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560710

internal method or API invocation) requires stricter access control
enforcement than another. Malicious third-party application devel-
opers can take advantage of such inconsistencies to access sensitive
resources through the least-protected path.

Prior works provide good approximate solutions to detecting
framework-level access control inconsistencies. Kratos [22], Ace-
Droid [6] and ACMiner [18] all rely on convergence analysis to
assess the adequacy of enforced access control. The tools extract
access control enforcement along different paths leading to a reach-
able shared convergence point and compare them to detect incon-
sistencies. AceDroid advances Kratos’s approach by modeling and
normalizing access control checks to reduce false alarms. New
approaches attempt to detect framework-level access control in-
consistencies by leveraging security specifications across different
Android software stack layers. FReD [2] identifies conflicting ac-
cess control requirements for APIs by comparing them against their
reachable files’ Linux-layer permissions. IAceFinder [34] compares
access control enforcement in both the Java and native contexts to
detect cross-context inconsistencies.

While this body of literature has proven to be quite beneficial, we
note that the existing works suffer from a number of shortcomings.
First, cross-layer inconsistency detection solutions are limited in
scope as they can only detect vulnerabilities in APIs with specific
implementations (i.e., APIs accessing files as in FReD [2] or APIs
reaching a JNI interface as in IAceFinder [34]). Second, although
in-framework inconsistency detection approaches leverage a richer
learning ground for access control owing to the substantial number
of reachable resources in the framework-layer, we note that their
underlying detection methodology is highly simplistic, often lead-
ing to inaccurate output unless substantial heuristics are adopted.
Specifically, the tools are founded on the assumption that two APIs
converging on an instruction (i.e., field update, method invocation)
are related and thus require similar protections. However, the con-
vergence point may be auxiliary to the general functionality and
hence likely irrelevant to the enforced access control. Failing to
discern the relevance of the convergence point leads to significant
false positives. Additionally, the tools rely only on a reachability
analysis to link resources and derive their access control. However,
we observe that Android resources are also connected via implicit
structural, semantic and data-flow relations. For example, a data-
flow between two resources may imply that they require similar
protections. Similarly, a naming similarity between a protected API
and a reachable resource may indicate that the resource is likely to
require the API’s protection. Modeling these implicit relations can
uncover new inconsistencies.

The fundamental limitation of existing tools is that statically
determining which protections are required for certain resources is
highly imprecise. On the one hand, in a given Android API, a pro-
tection check may precede both security-relevant and non-security

937

https://doi.org/10.1145/3548606.3560710
https://doi.org/10.1145/3548606.3560710
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3560710&domain=pdf&date_stamp=2022-11-07

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer

relevant resources. On the other hand, deducing an access control
implication from an implicit relation linking resources (such as a
naming similarity) entails a degree of uncertainty.

In this work, we re-conceptualize the inconsistency detection
problem to account for uncertainty via probabilistic inference. In-
stead of assuming precise associations between resources and access
control (resource 𝑟 requires protection 𝑝), we assume probabilis-
tic ones (resource 𝑟 may require protection 𝑝 with confidence 𝑐).
Specifically, our solution works as follows: we begin by statically
analyzing each Android API to collect basic access control facts
through path-sensitive analysis. The facts correlate a resource 𝑟
in the API to a protection 𝑝 , which is a set of conjoint security
constraints based on detected control dependencies. Each unique
correlation is then assigned a prior probability value indicating our
degree of belief in the access control implication.We then propagate
the initially assigned protections to other resources via implication
constraints. These constraints encode statically observed structural,
semantic and data-flow relations that connect resources and en-
able the propagation of their protections. To account for inherent
uncertainty, this propagation is probabilistic.

Finally, the probabilistic inference engine aggregates the statically-
collected basic facts, observations and constraints to project a high
confidence protection recommendation for a resource. Depending
on the type and number of facts and observations, the inference
sharpens the initial probabilities and suppresses uncertainties. The
generated probabilistic protection recommendations can then natu-
rally be leveraged to detect access control inconsistencies.

We have integrated our proposed static analysis and probabilis-
tic inference into an analysis pipeline, which we name Poirot. Our
evaluation of Poirot shows that it is effective in generating protec-
tion recommendations for resources exhibiting sufficient facts and
observations. Poirot can successfully predict normalized protections
equivalent to AOSP implemented protections with an accuracy up
to 84%. Our evaluation further reveals that our approach is effective
in detecting inconsistencies. We run Poirot to analyze three custom
images from Amazon, Xiaomi and LG and discover 26 true incon-
sistencies. While some of these inconsistencies may be detected via
existing approaches, we note that 10 are uniquely discovered by
Poirot. We build end-to-end PoCs for 8 inconsistencies to demon-
strate their security impacts. In particular, we note that one instance
of an implicit relation has caused the exposure of 118 APIs, lead-
ing to substantial security impacts (e.g., acquiring permissions at
runtime, enforcing a recovery password and others). We have re-
sponsibly reported the violations to the vendors; All vulnerabilities
have been acknowledged and fixed.1

Our contributions are summarized as follows:

• We develop Poirot, a tool that generates probabilistic protec-
tion recommendations for framework-level resources. Poirot
melds probabilistic inference and static program analysis
to account for the uncertainties pertaining to static access
control inference.

• Our proposed approach supplements the traditional reacha-
bility analysis with rich semantic, structural and data-flow

1Two vulnerabilities were internally known to the vendors and have been patched in
newest models.

relations that provide insight into the relationships between
framework resources and protections.

• We evaluate Poirot on four Android images and find that
it substantially suppresses false positives exhibited by Ace-
Droid and Kratos, the two leading inconsistency detection
tools, by 66% and 70%, respectively.

2 BACKGROUND AND MOTIVATION
In this section, we cover essential background and a few examples
to motivate our proposed probabilistic inference approach.

2.1 Background
The Android framework is a collection of Java libraries and system
services located within the Android middleware. Application devel-
opers rely on the framework APIs, the publicly exposed methods of
the framework system services, to access integral Android features
such as the camera, display settings or Bluetooth.

Each API implements a concise functionality by accessing one or
many Android resources. These resources can largely be classified
into three categories according to the taxonomy proposed in [9]2:
field access and update, internal method invocation (e.g., native
methods, file access methods, non-exposed service methods) and
API method invocation (an API may invoke another API).

Framework developers are responsible for implementing access
control enforcement, depending on the category / sensitivity of
accessed resources. For instance, the API requestLocationUp-
dates() in the LocationManagerService should require a location-
access permission. An access control check determines whether (1)
the calling app holds specific permissions or satisfies certain criteria
(e.g., assigned a specific UID), and/or if (2) the calling physical user
is privileged enough to access the resource.

Unfortunately, due to the lack of precise and complete security
specifications, access control implementations tend to be uncoor-
dinated and inconsistent. This has motivated the emergence of
inconsistency detection solutions.

2.2 Motivation
To detect and correct access control inconsistencies in the Android
framework, the Android community has proposed a number of in-
consistency detection tools, which largely work by extracting and
comparing access control enforcement along various paths leading
to the same resource. Kratos [22] performs a path-insensitive anal-
ysis to extract explicit security checks (such as permission checks
or package name checks) along the path to a given Android re-
source. The tool then conducts a convergence analysis to identify
paths converging to the same resource and compares the union
of extracted checks to detect potential inconsistencies. AceDroid
[6] addresses specific Android access control peculiarities; namely,
that access control implementations tend to be conjoint and/or dis-
joint and may be syntactically diverse yet semantically equivalent.
It is able to do so by conducting a path-sensitive analysis, mod-
eling a wider variety of security checks and normalizing diverse
access control checks. While Kratos and AceDroid manually define

2Unlike [9], we do not classify exception throwing as a resource for simplicity reasons.

938

Poirot: Probabilistically Recommending Protections for the Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Figure 1: False Positive Due to Inaccurate Identification of Targets

patterns characterizing security checks, ACMiner [18] takes a semi-
automated approach to security check identification by tracing back
from thrown security exceptions.

Though the existing inconsistency detection tools have helped
identify and correct significant access control anomalies, they suffer
from two major limitations: (1) they may not accurately identify
the targets of a given access control check and thus will inherently
generate an overwhelming number of false positives and (2) they
can only detect explicit reachability-based inconsistencies and thus
may miss a significant number of other implicit inconsistencies.
Next, we use examples to illustrate these shortcomings and explain
how our technique addresses them.
Inaccurate Identification of Access Control Targets. Existing
inconsistency detection tools consider two APIs to overlap in func-
tionality if they converge on a similar instruction; for instance,
if they invoke the same method or update the same variable. We
refer to the similar instruction as the convergence point. If a conver-
gence exists, the tools compare the enforced access control along
the two paths from each API’s entry to the convergence point and
check if they are consistent. Essentially, the tools assume that the
operation indicated by the convergence point should require all
security checks found along the most stringent access control path.
However, this assumption is fundamentally inaccurate as the con-
vergence point may not be the target of the access control check along
the two paths. In fact, APIs commonly converge on instructions
that are irrelevant to the enforced access control check.

Let us consider the code snippets (A) and (B) in Figure 1, ex-
tracted from AOSP (version 12). The highly simplified snippets
depict the implementation of two APIs in the PackageManagerSer-
vice (hereafter abbreviated as PMS) that perform two different func-
tionalities: (A) PMS.flushPackageRestrictionsAsUser() flushes
a specified package’s restrictions for a given user to disk, while
(B) PMS.installExistingPackageAsUser() installs an existing
package for a specified user. Given the varying sensitivity of the
operations, the two APIs enforce different access control checks.
(A) performs a user ownership/ privilege check (shown in green),

while (B) enforces a signature permission check (INSTALL_PACK-
AGES or INSTALL_EXISTING_PACKAGES, shown in red) in addition
to the user ownership/ privilege checks. Despite their dissimilar
functionalities, the two APIs converge on an internal method invo-
cation mSettings.writePackageRestrictionsLPr(), prompting
existing inconsistency detection tools to treat the APIs as related.
Existing tools would wrongly flag the least protected path lead-
ing to the convergence point (in this case, the path starting at the
entry of flushPackageRestrictionsAsUser()) as a potential in-
consistency since it does not enforce the checks shown in red in
(B).

This shortcoming in existing tools is due to the inability of sim-
plistic inconsistency analysis to accurately pinpoint the target(s)
of enforced access control checks. To demonstrate this point, we
assess the likely target of the checks implemented by the two APIs:

• The user checks (in green) within flushPackageRestri-
ctionsAsUser() likely target all operations shown in the
yellow box (including the convergence point writePackage-
RestrictionsLPr()) since their names and parameter val-
ues imply a connection to flushing/ writing restrictions based
on the user parameter. Note that we are uncertain about
mHandler.removeMessages()’s relevance to the user check.

• The permission checks INSTALL_PACKAGES and INSTALL_-
EXISTING_PACKAGES and the user restriction check DISALLO-
W_INSTALL_APPS (in red) within installExistingPackage-
AsUser() likely target themethods PkgSettings.setInsta-
lled and PkgSettings.setInstallReason since both their
names are related to package installation.

• The user checkswithin installExistingPackageAsUser()
(in green) likely target all operations in the yellow boxes
as well as writePackageRestrictionsLPr() since they all
perform operations based on the user parameter.

Based on this analysis, we deduce that the convergence point
writePackageRestrictionsLPr() is highly unlikely related to the
permission checks required for package installation and to the user
restriction check (DISALLOW_INSTALL_APPS). Hence, the detected

939

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer

Figure 2: Probabilistic Inference of Access Control Checks and Implicit Inconsistencies

inconsistency is a false positive. In practice, we have observed that
this approximation results in a large number of false positives that
overshadow true inconsistencies. We provide more details on the
prevalence of false positives in Section 7.7).
Implicit Access Control Inconsistencies. The previous work as-
sociates target resources with access control based on the notion of
reachability, or whether a resource is reachable from a protectedAPI.
For example, in Figure 1(A), the resources mSettings.writePacka-
geRestrictionsLPr(), mDirtyUsers.remove() and mHandler.r-
emoveMessages() are all reachable from the API flushPackageRe-
strictionsAsUser() and thus are assumed to require its protec-
tion; more specifically, the user checks in the green box. Note that
control dependencies may be extracted to determine the right pro-
tection (as performed by AceDroid [6]). Reachability-based incon-
sistencies are then naturally detected if a resource is reachable from
different paths exhibiting different protections. While reachability
analysis can approximately associate a large number of resources
with access control, we observe that resources may also be linked to
protections via other types of implicit relations including semantic,
data-flow and structural associations. More importantly, Android
resources are usually transitively connected via multiple implicit
relations. As reachability and convergence analyses cannot detect
inconsistencies implied by such implicit and complex relations, they
can overlook important inconsistencies.

To illustrate this, consider the motivating examples shown in
Figure 2, extracted from LG V405E (version 10). Snippets (A) and (B)
correspond to highly simplified implementations of two custom LG
APIs defined in its MDMService. Snippet (C) depicts an excerpt from
the AOSP API PMS.grantRuntimePermission(). Linking access
control information pertaining to the resources in the three APIs
reveals a (serious) implicit inconsistency in LG’s setActiveAd-
min(). The inconsistency in (B) allows a third-party app to manip-
ulate the content of mAdminMaps, a local resource used as a trigger
condition in (B) setRuntimePermissionGrantState() (in purple).
Having full control of this important field allows the third-party
app to subsequently trigger the underlying privileged operations

(in yellow), including granting itself runtime permissions (via (C)
grantRuntimePermission()). Observe that this case would go un-
detected by existing inconsistency approaches since there is no
clear reachability-based access control violation.

We are motivated by these types of implicit inconsistencies that
require reasoning about various relations between resources and
aggregating the pertaining access control information. We note that
this reasoning entails a degree of uncertainty; we cannot be fully
sure that an observed relation always implies a certain protection.

Returning to our example in Figure 2, we can infer the implicit in-
consistency in API (B) by following the ordered steps: (1) statically
analyzing snippet (C) shows that grantRuntimePermission() re-
quires the permission ADJUST_RUNTIME_PERMISSION. In (2), we
propagate this information to theAPI’s call site in setRuntimePerm-
issionGrantState(). This indicates the latter should enforce a
permissionwith aminimumprotection level equivalent to ADJUST_-
RUNTIME_PERMISSION. In (3), we observe that the API setRuntime-
PermissionGrantState() does not implement a permission check
along the path leading to grantRuntimePermission(); rather, it
uses the trigger condition check pertaining to a read of the field
mAdminMaps to control access. We refer to such a construct as a
trigger-condition hint, indicating that the trigger likely provides a
protection required by the reachable resource, grantRuntimePer-
mission(). Intuitively, this implies that the trigger should not be
altered by a third-party app unless it holds a permission equiva-
lent to (or stronger than) ADJUST_RUNTIME_PERMISSION. In (4), we
propagate the implied access control information to the write site of
the field mAdminMaps.put() in API (B). In (5), we detect a violation
of this implication due to the flawed check in the red box.

By analyzing API (A), we discern another hint that helps us
reason about access control requirements. The boxes linked with
a blue arrow indicate mutually exclusive operations that are pre-
ceded by a common trigger condition.3 As such, we can infer that
both operations are likely to require similar access control. This

3Note that we do not consider input validations to be triggering conditions since they
can be manipulated.

940

Poirot: Probabilistically Recommending Protections for the Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

hint is particularly important when propagating the access con-
trol extracted from grantRuntimePermission() to LG’s custom
method permissionControllerManager.setRun...Admin(), as
shown in (6). The mutually exclusive relation is effective in helping
us derive the access control requirement for the custom resource
and subsequently detect potential inconsistencies.
Our Solution. Due to the inherent uncertainty in linking resources
to protections, it is challenging to formulate general patterns that
can precisely associate resources with access control. Hence, it is
difficult to accurately detect access control anomalies. Statically
extracted associations are imprecise for two main reasons: (1) accu-
rately pinpointing the resource(s) targeted by an observed access
control check is difficult and (2) inferring an access control im-
plication from implicit observed associations entails a degree of
uncertainty.

To meet these challenges, we propose a new solution centered
around generating probabilistic protection recommendations for
Android resources and leveraging them to identify potential incon-
sistencies. Our approach is based on the insight that the Android
framework is rich with various structural, semantic and data-flow
hints that link resources to protections and resources to other re-
sources. These hints can be naturally consolidated into a protection
recommendation using probabilistic inference. Specifically, depend-
ing on the type and number of hints collected, we compute the
marginal probabilities that a resource 𝑟 should be associated with
various protections 𝑃 . Observe that hints are inherently uncertain
andmay reflect different degrees of certainty. That is, some hints are
more certain than others. The probabilistic analysis will aggregate
these hints and their corresponding frequencies (i.e., a larger num-
ber of hints implies higher confidence) to suppress uncertainties
and infer protection recommendations.

3 APPROACH
Given an Android ROM, Poirot preprocesses the framework and sys-
tem classes to identify system services and their APIs. It statically
analyzes the APIs to identify reachable resources and preceding ac-
cess control checks in a path-sensitive fashion. Since the number of
identified resources can prohibitively affect the probabilistic infer-
ence, Poirot statically preprocesses the APIs to eliminate irrelevant
code blocks and reduce the resources to be further analyzed.
Basic Facts Collection. Poirot begins by collecting basic access
control facts. Using an inter-procedural, path-sensitive analysis,
the tool identifies possible paths leading to each resource in the
reduced set. For each path, the tool extracts all enforced access
control checks and considers them a conjoint set. It then introduces
a random variable denoting the probability of the resource found
at the end of the path to require the conjoint set of access control
checks. Observe that new random variables are added if the resource
is found to require a new protection at other call sites.
Access Control Constraint Detection. For each resource, Poirot
generates access control constraints, which assign prior probabili-
ties to the random variables by analyzing access control properties;
that is, control dependency properties between resources and ac-
cess control checks (regarded as basic facts). A prior probability
is a value between 0 and 1 representing our degree of belief in a
basic fact’s access control implication. Particularly, A one-to-one

control dependency between an access control check and a single
resource is a strong indication that the resource is the target of
the access control check. On the other hand, a one-to-many control
dependency between an access control check and a set of resources
implies that one or more items in the set is the likely target. As
a result, one-to-one hints are more certain than one-to-many hints.
Hence, we associate one-to-one hints with a 0.95 prior probabil-
ity value while we associate one-to-many hints with a 0.60 prior
probability value. (More information on Poirot’s prior probability
values can be found in Section 7.3.) Observe that the generated
access control constraints may only assign initial protections to
a subset of the sinks reachable from the API since not all will be
linked to enforced access control via the collected basic facts. Note
that uncertain protection assignments will be suppressed as more
observations are collected.
Implication Constraint Detection. Poirot propagates the initial
probabilistic access control information to other resources through
implication constraints. These types of constraints encode observed
structural, semantic and data-flow relations that connect one re-
source to another resource with some degree of confidence. In such a
way, basic access control facts can be propagated from resource to
resource. We have identified seven types of implication constraint
categories: Reachability, Triggering Condition, Mutual Exclusivity,
Name Correlation, Getter-to-Setter, Data-Flow and Parameter Flow
constraints. An implication constraint relates two predicates as
follows: p𝑟𝑒𝑑1

𝑝𝑟
−−→ p𝑟𝑒𝑑2 where p𝑟 denotes our confidence in p𝑟𝑒𝑑1

implying p𝑟𝑒𝑑2 to be true. Similar to the previous step, Poirot relies
on static program analysis to extract the relations and to construct
the pertaining implication constraints.
Probabilistic Inference. We pass the collected probabilistic con-
straints to a probabilistic inference engine, which outputs final
protection recommendations for framework APIs. Framework de-
velopers can compare each recommendation with the correspond-
ing API implementation to detect access control inconsistencies.

4 ACCESS CONTROL CONSTRAINTS
Before collecting access control constraints from an API, we first
perform a resource reduction using program analysis. We eliminate
all resources within the API that are commonly used for sanitization
checks, logging and metrics collection.

4.1 Definitions
To facilitate discussion, we introduce a few Android-specific defini-
tions in Figure 3. We use func to denote a Function, which can be
either an API (an exposed Android binder interface entry point) or
an internal method (an unexposed method used internally by the
system). An Expression e denotes a construct made up of variables,
operators and method invocations that evaluates to a single value.

An Expression may be related to a Resource r (e.g., motion-
Event.X = 300), a Protection p (e.g., Binder.getCallingUid()
== 1000) or others. We use s to denote a Statement, which rep-
resents a complete unit of execution. It corresponds to either a
sequence of statements or code blocks along the true/false branches
in conditional constructs.

941

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer

⟨Function⟩ func F <signature> { 𝑠 }
⟨Expression⟩ 𝑒 F 𝐸 (𝑟) | 𝐸 (𝑝) | 𝐸 (others)
⟨Statement⟩ 𝑠 F 𝑠1; 𝑠2 | 𝑒 | if (𝑒) { 𝑠𝑡 }

| if (𝑒) { 𝑠𝑡 } else { 𝑠𝑓 }
⟨Protection⟩ 𝑝 F 𝑐1 ∧ 𝑐2 ∧ · · · ∧ 𝑐𝑛
⟨Resource⟩ 𝑟 F 𝑓 | 𝑚 | 𝑎

⟨FieldAccess⟩ 𝑓 F 𝑓 read | 𝑓 write

⟨InternalMethod⟩ 𝑚 F 𝑚getter | 𝑚setter | 𝑚others

⟨APICall⟩ 𝑎 F 𝑎getter | 𝑎setter | 𝑎others

⟨SecurityConstraint⟩ 𝑐

Figure 3: A Simple Language for Android Functions

Table 1: Probabilistic Inference Rules

ID Conditions∗ Probabilistic Constraint

𝑅1 ControlDependency(𝑝, {𝑟 }) AccessControl(𝑝, 𝑟, SELF) = true (0.95)

𝑅2
ControlDependency(𝑝, 𝑅) ∧ |𝑅 | > 1 ∧ AccessControl(𝑝, 𝑟, SELF) = true (0.60)

𝑟 ∈ 𝑅

𝑅3
Reachability(𝑎, {𝑟 }) ∧ AccessControl(𝑝, 𝑎,𝑑)

𝑑 ∈ {FORWARD, SELF, -}} 0.95−−−→ AccessControl(𝑝, 𝑟, FORWARD)

𝑅4
Reachability(𝑎, 𝑅) ∧ |𝑅 | > 1 ∧ AccessControl(𝑝, 𝑎,𝑑)

𝑑 ∈ {FORWARD, SELF, -} ∧ 𝑟 ∈ 𝑅
0.60−−−→ AccessControl(𝑝, 𝑟, FORWARD)

𝑅5
Reachability(𝑎, 𝑅) ∧ 𝑟 ∈ 𝑅 ∧ AccessControl(𝑝, 𝑟,𝑑)

𝑑 ∈ {BACKWARD, SELF, -} 0.95−−−→ AccessControl(𝑝, 𝑎, BACKWARD)

𝑅6 SameBlock(𝐸 (𝑟1), 𝐸 (𝑟2))
AccessControl(𝑝, 𝑟1, BACKWARD)

0.6−−→ AccessControl(𝑝, 𝑟2, FORWARD)

𝑅7
NameCorrelation(a, r) ∧ Reachability(𝑎, {𝑟 }) ∧ AccessControl(𝑝, 𝑎,𝑑)

𝑑 ∈ {FORWARD, SELF, -} 0.70−−−→ AccessControl(𝑝, 𝑟, FORWARD)

𝑅8
NameCorrelation(a, r) ∧ Reachability(𝑎, {𝑟 }) ∧ AccessControl(𝑝, 𝑎, BACKWARD)

InPath(𝑝, 𝑎, 𝑟) 0.70−−−→ AccessControl(𝑝, 𝑟, FORWARD)

𝑅9
NameCorrelation(a, r) ∧ Reachability(𝑎, {𝑟 }) ∧ AccessControl(𝑝, 𝑟,𝑑)

𝑑 ∈ {BACKWARD, SELF, -} 0.70−−−→ AccessControl(𝑝, 𝑎, BACKWARD)

𝑅10

(
∃𝑠, s.t. 𝑠 ≡ if (𝐸 (𝑟 read2)) {𝑠𝑡 }

)
∧ AccessControl(𝑝, 𝑟1, 𝑑)

Contains(𝑠𝑡 , 𝑟1) ∧ 𝑑 ≠ AGGREGATED
0.85−−−→ AccessControl(𝑝, 𝑟write2 , -)

𝑅11

(
∃𝑠, s.t. 𝑠 ≡ if (𝑒) {𝑠𝑡 } else {𝑠𝑓 }

)
∧ (AccessControl(𝑝, 𝑟1, 𝑑)

(𝑒≡𝐸 (INPUT_CHK) ∨ 𝑒≡𝐸 (SYS_PROPERTY)) ∧ 0.90−−−→ AccessControl(𝑝, 𝑟2, -))∧
Contains(𝑠𝑡 , 𝐸 (𝑟1)) ∧ Contains(𝑠𝑓 , 𝐸 (𝑟2)) ∧ (AccessControl(𝑝, 𝑟2, 𝑑)

𝑑 ≠AGGREGATED ∧ NameCorrelation(𝑟1, 𝑟2)
0.90−−−→ AccessControl(𝑝, 𝑟1, -))

𝑅12 𝑑 ≠ AGGREGATED
AccessControl(𝑝,𝑚getter, 𝑑)

0.80−−−→ AccessControl(𝑝,𝑚setter, -)

𝑅13 𝑑 ≠ AGGREGATED
AccessControl(𝑝, 𝑎getter, 𝑑)

0.80−−−→ AccessControl(𝑝, 𝑎setter, -)

𝑅14 Data-flow(𝐸 (𝑟1), 𝐸 (𝑟2))) ∧ 𝑑 ≠ AGGREGATED

(AccessControl(𝑝, 𝑟1, 𝑑)
0.80−−−→ AccessControl(𝑝, 𝑟2, -))∧

(AccessControl(𝑝, 𝑟2, 𝑑)
0.80−−−→ AccessControl(𝑝, 𝑟1, -))

𝑅15
DataFlow(𝑒, 𝐸 (𝑟)) ∧ Argument(𝑎, 𝑒) ∧ AccessControl(𝑝, 𝑎,𝑑)

Reachability(𝑎, 𝑟) ∧ 𝑑 ∈ {FORWARD, SELF, -} 0.70−−−→ AccessControl(𝑝, 𝑟, FORWARD)

𝑅16
DataFlow(𝑒, 𝐸 (𝑟)) ∧ Argument(𝑎, 𝑒) ∧ AccessControl(𝑝, 𝑎, BACKWARD)

Reachability(𝑎, 𝑟) ∧ InPath(𝑝, 𝑎, 𝑟) 0.70−−−→ AccessControl(𝑝, 𝑟, FORWARD)

𝑅17 𝑑 ≠ AGGREGATED
AccessControl(𝑝, 𝑟,𝑑) 1.00−−−→

AccessControl(𝑝, 𝑟, AGGREGATED)

∗Each fact/observation is encoded with a unique ID. As such, the more facts/observations (of
the same type) that Poirot derives, the higher the confidence assigned to the corresponding

constraint. We elide the details in the table for simplicity.

Our analysis considers three types of resources: (1) FieldAccess,
denoted by f , (2) InternalMethod, denoted by m and (3) API, de-
noted by a. f is categorized by access type (read or write), while m

Table 2: Fact and Observation Definition

ID Facts and Observations (derived from static program analysis)

𝐹1
ControlDependency(𝑝, 𝑅= {𝑟1, 𝑟2, ..., 𝑟𝑛 }) : a set of resources (𝑅) are

control-dependent on protection 𝑝 .

𝑂1
Reachability(func, 𝑅= {𝑟1, 𝑟2, ..., 𝑟𝑛 }): a set of resources (𝑅) are reachable

from the entrypoint of function func.
𝑂2 SameBlock(𝑒1, 𝑒2) : expressions 𝑒1 and 𝑒2 are within the same basic block.
𝑂3 Contains(𝑠, 𝑒) : the expression 𝑒 is a part of the statement 𝑠 .
𝑂4 Dataflow(𝑒1, 𝑒2) : there is a direct data-flow from the expression 𝑒1 to 𝑒2 .
𝑂5 Argument(func, 𝑒) : the expression 𝑒 is an argument of the function func.
𝑂6 NameCorrelation(𝑟1, 𝑟2) : the resources 𝑟1 and 𝑟2 have name correlation.
𝑂7 InPath(𝑝, 𝑎, 𝑟) : protection 𝑝 is located in the path from API 𝑎 to resource 𝑟 .

AccessControl(𝑝, 𝑟,𝑑) : the resource 𝑟 is protected by the protection 𝑝 ,
which is inferred along with the direction 𝑑 .

𝑑 ∈ {FORWARD, BACKWARD, SELF, AGGREGATED}.
SELF: directly derived from facts
FORWARD: forward propagation, i.e., following the program’s control flow
BACKWARD: backward propagation, i.e., reversing the program’s control flow
-: direction-free propagation
AGGREGATED: the aggregated result from the three aforementioned directions.

Figure 4: Defining the Random Variables

and a are categorized as setters, getters or standard methods using
a few rules and naming conventions.

Along each unique execution path from an API a, a resource r
may be protected by a set of security checks. Protection p repre-
sents the conjunction of these security checks (e.g., UserHandle.id=
Owner ∧ permission="Location"). Note that we approximately
model the Protection p required to invoke a by taking a union of
all security checks along the protection path.

4.2 Basic Access Control Facts
As mentioned earlier, we rely on program analysis to collect basic
access control facts from the reduced set of resources within an API.
From the basic facts, we generate access control constraints, which
assign an initial protection p to a resource rwith some confidence c.
To collect the basic facts, Poirot conducts a path-sensitive analysis
since resources may be protected with disjunctive or conjunctive
checks within an API. First, we perform a forward control-flow
analysis on the API’s interprocedural control flow graph (ICFG)
and identify the conditional branches on which a target resource is
control dependent. We then process the branches to infer access
control patterns (for example, one operand in the predicate evalu-
ating to an invocation of Binder.getCallingUid()) and extract
other pertaining constraints using DefUse chains (e.g., operator,
variables used in the operands). If multiple constraints are found
along the same ICFG path leading to the target resource, the analy-
sis merges them using a logical AND (implying conjoint checks).
Conversely, if multiple ICFG paths lead to the target resource, the
analysis merges the in-path constraints for each ICFG path using a
logical OR (implying disjoint checks). The latter scenario indicates
that the target resource is reachable from different paths.

For each unique access control path leading to the target, Poirot
introduces a new random variable denoting the probability that the
target requires the union of constraints along the path.

942

Poirot: Probabilistically Recommending Protections for the Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

4.3 Access Control Constraints
Once the initial access control facts are collected, Poirot generates
access control constraints, which assign prior probabilities to the
random variables.
One-to-OneControl-DependencyConstraints.One-to-one con-
straints link a protection to a single resource. They are detected
when an access control path is found to lead to one single resource.
For example, Listing 1 shows that the permission check for MOUNT_-
UNMOUNT_FILESYSTEMS precedes a single call to mMoveCallbacks.-
unregister(). As such, we can intuitively link the permission to
the invoke statement with high confidence.

1 public void unregisterMoveCallback(IPackageMoveObserver callback) {
2 if(checkCallingPermission(MOUNT_UNMOUNT_FILESYSTEMS) == GRANTED)
3 this.mMoveCallbacks.unregister(callback);

Listing 1: unregisterMoveCallback

To gather one-to-one constraints, Poirot performs a depth-first
traversal of an API’s ICFG and identifies the unique resources that
are control-dependent on an identified protection. For each discov-
ered one-to-one relationship between a resource 𝑟 and a protection
𝑝 , Poirot formulates an access control constraint, depicted by Rule
𝑅1 in Table 1: AccessControl(𝑝, 𝑟, SELF) = true (0.95) with the ran-
dom variable AccessControl(𝑝, 𝑟, SELF) asserting that 𝑝 is derived
from a one-to-one control dependency. Figure 4 describes the mean-
ing of AccessControl. Note that the third parameter denotes the
propagation direction, which we will discuss shortly.
One-to-Many Control-Dependency Constraints. These con-
straints are detected when an access control path leads to more
than one resource along a unique ICFG path. They reflect the less
certain scenario where it is challenging to pinpoint the exact pro-
tection target(s) without additional clues. (Refer to the motivating
examples in Figures 1(A) and (B) for illustration.) Poirot formulates
this access control constraint (depicted by 𝑅2 in Table 1) for each
pair of protection 𝑝 and its control-dependent resources 𝑟 ∈ 𝑅 ,
as follows: AccessControl(𝑝, 𝑟, SELF) = true (0.60) with the random
variable AccessControl(𝑝, 𝑟, SELF) asserting that the protection 𝑝 is
derived from a one-to-many control dependency.

5 IMPLICATION CONSTRAINTS
Implication constraints do not directly link a resource with a pro-
tection. Instead, they link resources to one another by leveraging
observed relations statically connecting the resources. As such,
these constraints propagate protection recommendations across
resources. Note that a propagated protection could be directly as-
signed by an access control constraint or iteratively deduced during
probabilistic inference. More formally, implication constraints are
presented as an implication from a prior probability predicate to
a posterior predicate or from one posterior predicate to another
posterior predicate. Table 2 lists the observations (O1 to O7) that
Poirot relies on to establish the implication constraints.

Below, we discuss in detail each observation and corresponding
implication constraint. We note that our tool is extensible so new
constraints can always be added to refine the analysis.

5.1 Structural Constraints
These constraints are identified by considering the program struc-
ture. They allow us to encode the most commonly used structures
that we have observed.
Reachability. Reachability forms the most basic structural con-
straint that can connect two resources. A resource 𝑟1 is reachable
from 𝑟2 if 𝑟2 is the direct caller of 𝑟1. We establish reachability hints
exclusively between an API 𝑟𝑐𝑎𝑙𝑙𝑒𝑟 and its reachable resources. In
other words, we do not consider internal method reachability hints
since our analysis is interprocedural. To collect reachability hints,
Poirot builds a call graph for each API and performs an inspection
to identify direct <𝐴𝑃𝐼 -𝑟𝑐𝑎𝑙𝑙𝑒𝑒> relations. Transitive reachability
constraints will be encoded during probabilistic inference.

Observed reachability between𝐴𝑃𝐼 and 𝑟𝑐𝑎𝑙𝑙𝑒𝑒 implies that𝐴𝑃𝐼 ’s
inferred protections should be propagated to 𝑟𝑐𝑎𝑙𝑙𝑒𝑒 . However, we
note that some of the inferred protections may already be encoded
through control-dependency constraints. Consider Listing 2:

1 public void removeUser(int userId) {
2 if(checkPermission(MANAGE_USERS) == GRANTED || ...)
3 removeUserUnchecked(userId);

Listing 2: removeUser

The forward reachability hint between caller removeUser and
callee removeUserUnchecked should not propagate the caller’s in-
API protection requirements to the callee. As such, our implication
constraints are tailored to account for the direction of the inferred
protection. As we show in Figure 4, Poirot considers five directions.

A SELF direction indicates that the protection is derived from a
basic fact within the API’s implementation. A FORWARD direction
indicates that the protection is inferred from the API’s call site. For
example, the call site of removeUserUnchecked() enforces a protec-
tion. A BACKWARD direction denotes the opposite: a callee’s protec-
tion is propagated back to its calling API. In this case, removeUser’s
protection is propagated back to some other invoking API. A - direc-
tion signifies a direction-free propagation. (We discuss this case in
greater detail later on.) Finally, an AGGREGATED direction represents
the cases where a protection is an aggregated result of different
protection directions.

Intuitively, a reachability implication constraint is bidirectional
in the FORWARD and BACKWARD directions and its confidence is sub-
ject to the one-to-one and one-to-many constraints. However, sub-
tleties regarding the propagation direction must be accounted for.

1 public void reportFailedPasswordAttempt(int userHandle) {
2 if(checkPermission(BIND_DEVICE_ADMIN) == GRANTED){
3 Binder.clearCallingIdentity ();
4 policy.mFailedPasswordAttempts ++;
5 if(policy.mFailedPasswordAttempts >= max))
6 if (userHandle == UserHandle.USER_OWNER) {
7 wipeDataLocked(wipeExtRequested , reason);
8 } else {
9 am.switchUser(UserHandle.USER_OWNER);
10 mUserManager.removeUser(UserHandle)

Listing 3: reportFailedPasswordAttempt

We explain further in the next example, which describes each
step Poirot takes to generate observations and constraints from
Listings 2 and 3.

943

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer

(1) API resources am.switchUser() and mUserManager.rem-
oveUser() are reachable from API resource reportFailed-
PasswordAttempt() (𝑂1).

(2) InternalMethod resource removeUserUnchecked() is reach-
able from API mUserManager.removeUser() (𝑂1).

(3) API mUserManager.removeUser() is linked to permission
BIND_DEVICE_ADMIN by a one-to-many constraint (𝑅2).

(4) InternalMethod resource removeUserUnchecked() is linked
to permission MANAGE_USERS by a one-to-one constraint (𝑅1).

From (2) and (3), Poirot establishes a forward reachability con-
straint (𝑅3) to propagate the following:

(5) AccessControl(BIND_...ADMIN, mUserManager.removeUser(), FORWARD)
0.95−−→ AccessControl(BIND_...ADMIN, removeUserUnchecked(), FORWARD).

From (2) and (4), Poirot generates the following backward reach-
ability constraint (𝑅5):

(6) AccessControl(MANAGE_USERS, removeUserUnchecked(), BACKWARD)
0.95−−→ AccessControl(MANAGE_USERS, UM.removeUser(), BACKWARD) .

Similarly, from (1) and (6), Poirot derives the following backward
reachability constraint (𝑅5):

(7) AccessControl(𝑝, UM.removeUser(), BACKWARD)
0.95−−→ AccessControl(𝑝, report...PasswordAttempt(), BACKWARD) .

At this stage, the backward derived permission MANAGE_USERS
for reportFailedPasswordAttempt() from UM.removeUser()
can be further propagated in a forward fashion to other reachable
resources based on (1). However, we note that the propagation
would likely cause incorrect protection inference. We address this
potential inaccuracy by limiting this propagation to resources in
the same block. Rule 𝑅6 enforces this constraint with 0.6 confidence
to model this inherent uncertainty.
Triggering Conditions. Here we rely on the conditional control
flow construct if Trigger Predicate then 𝑟 to correlate resources.
This construct is common in Android APIs that deliver a promised
functionality only when certain triggering conditions are satisfied.
For example, an API that allows the caller to send a SMS message
may only invoke the actual sending functionality when the mobile
data is active. The triggers often reflect global system properties
such as hardware features, running device state or local properties
defined in the resource’s scope (e.g., policy contains a value).

We observe that altering the triggers is usually a protected opera-
tion that requires at least the same privilege as that of the invoked
resource. Intuitively, this is essential to prevent triggering the sinks
adversely in unsupported situations.

Poirot generates the following implication constraint (Rule 𝑅10)
to encode this observation. If a resource 𝑟1 is control-dependent
upon an expression pertaining to a read of resource 𝑟2 (i.e., 𝑟 read2),
Poirot adds a unidirectional trigger implication constraint between
the two predicates:

AccessControl(𝑝, 𝑟1, 𝑑4) 0.85−−→ AccessControl(𝑝, 𝑟write2 , -)
Here we adopt a relatively low confidence given the uncertainty

of this observation. Note that this implication is not related to
reachability and hence is a direction-free propagation.

4We omit direction details for simplicity. More details can be found in Table 1.

Mutual Exclusivity. For this constraint, we rely on control flow
constructs in the forms (1) if Predicate then 𝑟1 else 𝑟2 and (2) if
Predicate1 then 𝑟1 elseif Predicate2 then 𝑟2 to correlate 𝑟1 and 𝑟2.
These constructs are commonly used in APIs that provide varied
implementations for the same functionality depending on the run-
ning device properties. For instance, a sendSMS() API may check
if the device is a CDMA or GSM model to select the relevant SMS
dispatcher method (e.g., 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐶𝐷𝑀𝐴 vs 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐺𝑆𝑀). Note
that the triggered methods are mutually exclusive and provide se-
mantically similar functionality. We rely on this observation to
speculate that two mutually exclusive operations may require simi-
lar protections.

To detect this pattern, Poirot focuses on the structure of the
control flow branch. The triggering predicate(s) should be related to
system properties or to input checks and the individually triggered
paths should be semantically related. We leverage a simple naming
similarity analysis to determine equivalence (akin to the similarity
measure discussed in Section 5.2). Note that the analysis avoids
flagging error/validation checks, which follow similar constructs.

Once two mutually exclusive operations 𝑟1 and 𝑟2 are detected,
Poirot adds a bidirectional implication constraint as depicted by
Rule 𝑅11 in Table 1:(

AccessControl(𝑝, 𝑟1, 𝑑)
0.90−−→ AccessControl(𝑝, 𝑟2, -)

)
∧(

AccessControl(𝑝, 𝑟1, 𝑑)
0.90−−→ AccessControl(𝑝, 𝑟2, -)

)
5.2 Semantic Hints
Semantic hints capture dependencies that exist between resources
based on naming information or operation semantics.
Name Correlation. Android framework code contains a consider-
able amount of semantic information to support comprehensibility
and development. APIs, internal methods, fields and other program
elements often possess meaningful names. More importantly, re-
lated elements are often named similarly. That is, the names may
share a root or substrings. We leverage this knowledge to link
resources together and refine their protection probabilities. Specif-
ically, given a set of resources 𝑅 reachable from a protected API,
Poirot identifies the subset of resources whose names are similar to
the API and accordingly creates a naming correlation implication
constraint. This constraint implies that the API’s protections are
likely to be required for any resource bearing a similar name.

Back to Listing 3, we spot a naming similarity between API
reportFailedPasswordAttempt() and field resource policy.mF-
ailedPasswordAttempt. Hence, we can accordingly increase our
confidence that the field access policy.mFailedPasswordAttempt
requires BIND_DEVICE_ADMIN, whichwas initially assigned through
a one-to-many control-dependency constraint.

To calculate the naming similarity between two resources 𝑎 and
𝑟 , Poirot relies on the DICE coefficient score [4]. It then establishes
a naming correlation implication constraint between 𝑎 and 𝑟 if the
DICE coefficient is substantially high. This constraint is depicted
in Rule 𝑅7, where direction 𝑑 ∈ {FORWARD, SELF, -}:

AccessControl(𝑝, 𝑎,𝑑) 0.70−−→ AccessControl(𝑝, 𝑟, FORWARD)
When the learning direction is SELF (i.e., 𝑝 is derived within 𝑎’s
implementation via a basic fact), we enforce an additional condition:
𝑟 should be control dependent upon 𝑝 to exclude protections that
may target different resources in different branches.

944

Poirot: Probabilistically Recommending Protections for the Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

As the naming similarity constraint is bi-directional, we can
backward propagate protections inferred for 𝑟 to 𝑎 as shown below
in Rule 𝑅9, where direction 𝑑 ∈ {BACKWARD, SELF, -}:

AccessControl(𝑝, 𝑟,𝑑) 0.70−−→ AccessControl(𝑝, 𝑎, BACKWARD)

Getter-to-Setter. Here, we rely on operation semantics to corre-
late resources. We focus on linking getter and setter resources (for
both APIs and internal methods) to transfer their protections. This
constraint is founded on the general observation that a mutate/set
operation is likely to be at least as restrictive as a get operation. We
note that this observation may not hold in all cases. For instance,
consider the case where appending to a shared buffer is allowed, but
reading is not. However, the inherent uncertainty in this constraint
can be suppressed during probabilistic inference.

To collect <𝑟𝑔𝑒𝑡𝑡𝑒𝑟 , 𝑟𝑠𝑒𝑡𝑡𝑒𝑟> pairs, Poirot constructs the ICFG
of each API and detects all return statements. It then resolves the
object returned as follows. First, if the object resolves to a global
field, Poirot inspects other APIs to identify corresponding setters.
Second, if the object resolves to a return value of other methods,
Poirot transitively analyzes them following the same procedure to
resolve the actual object returned. The tool similarly looks for cor-
responding setters. We note that we rely on a few rules to identify
field get and field set operations. Details are elided due to space
constraints. For each identified pair, we construct the following
implication constraints (Rules 𝑅12 and 𝑅13), which propagate the
getter’s protections to the setter. Note that these constraints are
unidirectional.

AccessControl(𝑝,𝑚getter, 𝑑) 0.80−−→ AccessControl(𝑝,𝑚setter, -)
AccessControl(𝑝, 𝑎getter, 𝑑) 0.80−−→ AccessControl(𝑝, 𝑎setter, -)

5.3 Data-Flow Hints
Data-flow constraints denote define-use associations across re-
sources. They are particularly helpful when deriving protection
requirements for a resource that has not been associated with any
particular protection but is linked to other resources via define-use
relations. Consider the highly simplified snippets from two APIs
spotted in FireOS in Listing 4.

1 String moveId;
2 public MigrationInfo getMoveData () {
3 if (checkPermissio("READ_MOUNT_DATA") == 0){
4 MigrationInfo info = new MigrationInfo ();
5 info.moveId = moveId;
6 info.moveStatus = moveStatus;
7 return info;
8 public void moveData () {
9 moveId = readMoveData ();

Listing 4: getMoveData

As shown, no high-confidence access control constraint assigns
a protection to the global resource moveId. However, we can infer
its protection via the data-flow constraint in line 11 connecting the
resource to APM.readMoveData() , which requires a signature pro-
tection. Note that this can help us transitively infer a new protection
for info.moveId (line 5) through another data-flow constraint.

Poirot collects data-flow constraints as follows. First, for each
𝑟1 update operation (e.g., a direct assignment statement, an add
operation on a Java class implementing Collection interface, etc.),
the tool leverages interprocedural def-use chains to transitively
resolve the resource 𝑟2 flowing to 𝑟1.

If a data flow is observed between 𝑟1 and 𝑟2, Poirot adds the
following bi-directional implication constraint (Rule 𝑅14):(

AccessControl(𝑝, 𝑟1, 𝑑)
0.80−−→ AccessControl(𝑝, 𝑟2, -)

)
∧(

AccessControl(𝑝, 𝑟2, 𝑑)
0.80−−→ AccessControl(𝑝, 𝑟1, -)

)
Parameter Flow.We observe a special type of data-flow constraint
that can help us refine the less certain one-to-many reachability
constraints. A parameter flow from anAPI resource 𝑟1 to a reachable
resource 𝑟2 often hints that 𝑟2 is highly related to 𝑟1. We employ
this observation to refine the protection probabilities of reachable
resources.

The confidence is calculated as a function of the number of pa-
rameters that flow to a target resource. If a high-confidence param-
eter flow is observed between an API resource 𝑟1 and a reachable
resource 𝑟2, Poirot adds the following implication constraints (Rules
𝑅15 and 𝑅16):

AccessControl(𝑝, 𝑎,𝑑) 0.70−−→ AccessControl(𝑝, 𝑟, FORWARD)
AccessControl(𝑝, 𝑎, BACKWARD) 0.70−−→ AccessControl(𝑝, 𝑟, FORWARD)

5.4 Access Control Aggregation.
At this stage, Poirot has gathered a set of access control and impli-
cation constraints, each denoting our confidence that a resource 𝑟
requires a protection 𝑝 . We note that these confidences are obtained
via different directions (e.g., FORWARD, SELF, etc.). We enable the
inference engine to aggregate the confidence into a final confidence
via Rule 𝑅17 in Table 1. Specifically, given a propagation direction 𝑑
where 𝑑 is not AGGREGATED, the confidence of AccessControl(𝑝, 𝑟, 𝑑)
is faithfully propagated toAccessControl(𝑝, 𝑟, AGGREGATED). If a pro-
tection recommendation is derived from different directions, the
aggregated confidence will subsequently increase. The aggregated
confidence also increases as new facts and observations of the same
type are recovered at multiple program points.

6 POIROT IN ACTION
We implement a prototype for Poirot consisting of two com-

ponents: (1) a static analysis component and (2) a probabilistic
inference engine. The static analysis component is built on top of
WALA [5] and relies on Akka Typed [1] to parallelize the analysis.
We use ProbLog [3] as our probabilistic inference engine. As the
underpinning solving technique is beyond the scope of this paper,
we omit the details.

The static analyzer processes the Android framework, extracts
basic facts and generates access control constraints. The analyzer
implements a number of Observation Extraction modules, each
responsible for identifying structural, semantic or data-flow ob-
servations. These observations are used to generate implication
constraints in the form of Probabilistic Logic Program rules – i.e.,
𝐶 ∧ 𝑥1

𝑝
−→ 𝑥2. The constraint solver associates each Resource 𝑟

with one or more Recommendations. Each Recommendation con-
sists of a Protection 𝑟𝑝 and a Confidence 𝑐 , where 𝑐 is a value
between 0 and 1. The tool outputs a ranked list of recommendations,
from which we pick the top three results. (Refer to Section 7.2 for
more detail.) We normalize the recommendations following [6] to
allow comparison and effective inconsistency detection.

945

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer

Table 3: Evaluation of APIs with High Confidence Access Control Recommendations
No Unlinked Resources Unlinked Resources >=1

Evaluation Set Average APIs Analyzed APIs (#) Total Satisfaction Partial Satisfaction APIs (#) Total Satisfaction Partial Satisfaction Correct Recommendations
1-system service set 78 59 56 1 19 3 1 77%
2-system service set 131 101 101 0 30 3 7 82%
3-system service set 175 136 129 3 39 6 10 84%

Example.We use the AOSP API getSyncStatusAsUser() defined
in the ContentService to illustrate Poirot’s output. The tool gen-
erates the three protection recommendations listed below. Note
that the probabilities are enclosed in brackets.

(1) INTERACT_ACROSS_USERS ∧ READ_SYNC_SETTINGS [0.91]
(2) INTERACT_ACROSS_USERS_FULL ∧ READ_SYNC_SETTINGS [0.91]
(3) INTERACT_ACROSS_USERS_FULL ∧ READ_SYNC_STATS [0.91]

Observe that the above recommendations are disjunctive, mean-
ing that just one is sufficient for proper access control enforcement.
To detect inconsistencies, Poirot compares the recommended access
control enforcement with the implemented access control after nor-
malization. Since the API implements the third recommendation,
this case is considered consistent.

7 EVALUATION
We design several experiments that assess Poirot’s effectiveness
and performance. Specifically, our evaluation aims to answer the
following research questions:

• RQ1: Can Poirot accurately infer protection recommenda-
tions for Android resources?

• RQ2: Can different cut-off criteria configurations affect
Poirot’s accuracy?

• RQ3: Can variations in the probability values affect Poirot’s
accuracy?

• RQ4: What is the impact of each probabilistic rule on the
analysis results?

• RQ5: What is Poirot’s runtime and memory overhead?
• RQ6: Can Poirot accurately detect access control inconsis-
tencies?

• RQ7: Can Poirot detect a greater number of access control
inconsistencies than state-of-the-art tools?

• RQ8: Can Poirot suppress the false alarms associated with
state-of-the art inconsistency detection tools?

All experiments were conducted on an IBM Power LC922 server
machine equipped with a 22 core CPU (2.6 GHz POWER9 processor)
and 256G main memory.

7.1 (RQ1) Evaluating Poirot’s Protection
Recommendations

In this experiment, we evaluate the accuracy of Poirot’s protection
recommendations for framework APIs.
Computation of Accuracy. Before describing our experiment
setup, we explain how we estimate the accuracy of Poirot’s gener-
ated protection recommendations. For each API, Poirot outputs a
ranked list of protection recommendations with probabilities. In-
tuitively, when the calculated probability of a recommendation is
sufficiently high, we can conclude that the API does indeed require
the recommended protection. We introduce a configurable parame-
ter CUTOFF and only report the protection recommendations with

probabilities higher than CUTOFF. Note that more than one recom-
mendation may correctly satisfy the latter condition due to the
disjoint nature of Android access control. Thus, we introduce an-
other configurable threshold TOP𝑛 to limit the number of reported
recommendations. TOP𝑛 denotes the optimum number of protec-
tions that Poirot should report. We consider a recommendation for
an API to be accurate if at least one recommended access control in
the TOP𝑛 recommendations is as strong as the enforced access con-
trol found within the implementation of the API in AOSP, which we
rely on as ground truth. Unless otherwise specified, we report the
accuracy based on the configurations 𝐶𝑈𝑇𝑂𝐹𝐹=0.90 and 𝑇𝑂𝑃𝑛=3.
(Refer to Section 7.2 for more details on the selection criteria.)
Experiment Setup. For each AOSP system service, we begin by
gathering all service APIs. We randomly select 10% of these APIs,
which we term the testing set. Our goal is to generate accurate,
high-confidence recommendations for the testing set APIs using
basic facts generated from the other 90% of APIs, which we term
the training set. We repeat this process ten times so that all service
APIs are part of the testing set at least once.
Each round, we gather basic facts only from the training APIs. We
supplement the basic facts with implication constraints from APIs
in either set. Then we pass all basic facts and constraints into the
inference engine and attempt to output high-confidence recom-
mendations for the testing set APIs. Finally, we compare all high-
confidence recommendations with the corresponding AOSP API
implementations to assess the recommendation accuracy.

We rely on two additional setups to assess the impact of increas-
ing the pool of APIs used to derive the training and testing sets.
The first additional setup considers APIs from two similarly named
services at one time. The second additional setup considers three
similarly named services at one time.
Results. Table 3 reports the results. Column 1 lists the evaluation
sets that we used for training and Column 2 reports the average
number of APIs for which Poirot was able to generate a high con-
fidence protection recommendation. As expected, the number of
APIs for which Poirot produces a recommendation increases as we
include more services in the analysis.
Our analysis distinguishes between APIs with linked resources and
those with unlinked resources. A linked resource is a sink within a
testing API that is associated with a high-confidence recommen-
dation. Recommendations for a linked resource can be propagated
back up to the testing API. On the other hand, an API with unlinked
resources contains sinks with no corresponding high-confidence
recommendations. As a result, an inaccurate recommendation in a
testing API with an unlinked resource could be attributed to the
fact we did not extract basic facts from some related APIs also in
the testing set.
Columns 3-8 report the number of APIs for which Poirot generated
a high confidence recommendation. Overall, Poirot achieves an ac-
curacy of 77%, 82% and 84% in 1-system, 2-system and 3-system

946

Poirot: Probabilistically Recommending Protections for the Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

service sets. As expected, the accuracy improves as more services
are included in the analysis, leading Poirot to uncover new cross-
service observations and sharpen in-service probabilities.

7.2 (RQ2) Impact of Cut-off Criteria
This experiment evaluates the impact of the 𝐶𝑈𝑇𝑂𝐹𝐹 and 𝑇𝑂𝑃𝑛
criteria. Columns 3-6 in Table 4 report Poirot’s accuracy using four
𝑇𝑂𝑃𝑛 settings (namely, 1, 2, 3 and 4) and under three 𝐶𝑈𝑇𝑂𝐹𝐹
configurations (0.85, 0.90 and 0.95). The last column reports the
coverage achieved.

Table 4: Impact of Cut-off Criteria
Accuracy (%) Coverage (%)TOP 1 TOP 2 TOP 3 TOP 4

CUTOFF
0.85 74.3 74.6 75.2 75.3 60.2
0.90 76.6 76.7 77.4 77.4 59.4
0.95 78.9 81.4 82.7 82.7 55.6

Note that the impact of 𝑇𝑂𝑃𝑛 on the coverage is negligible;
hence, we report the coverage based on the 𝐶𝑈𝑇𝑂𝐹𝐹 criteria only.
As shown, Poirot achieves the highest accuracy at 𝐶𝑈𝑇𝑂𝐹𝐹 = 0.95
and at 𝑇𝑂𝑃𝑛 = 3 or 𝑇𝑂𝑃𝑛 = 4. There is no significant improvement
at top 4 for all 𝐶𝑈𝑇𝑂𝐹𝐹 configurations. Observe that 𝐶𝑈𝑇𝑂𝐹𝐹
impacts the coverage in the other direction. This experimentation
demonstrates that𝐶𝑈𝑇𝑂𝐹𝐹 = 0.90 and𝑇𝑂𝑃𝑛 = 3 leads to an optimal
trade-off between accuracy and coverage.

7.3 (RQ3) Impact of Prior Probability Values
We examine the sensitivity of Poirot’s accuracy to variations in the
constraints’ prior probability values. We run the analysis under
multiple configurations for two representative constraints: (1) the
Getter-to-Setter constraint with confidence varying from 0.80 to 0.90
and (2) the Reachability constraint with confidence varying from
0.50 to 0.60. As shown in Table 5, the exploration demonstrates that
parameter variation does not significantly affect the results as the
accuracy varies within a limited range of less than 2%.

Table 5: Impact of Prior Probabilities
Getter-to-Setter Constraint
p = 0.80 p = 0.85 p = 0.90

Reachability p = 0.50 77.61 77.72 77.88
p = 0.55 78.57 77.46 76.99

Constraint p = 0.60 77.98 78.10 77.31

Note that variations in other constraints, which we omit due
to space limits, reveal similar trends. This experiment shows that
Poirot is robust against prior probability variations.

7.4 (RQ4) Impact of Probabilistic Constraints
In this experiment, we estimate the impact of Poirot’s collected
constraints on the probabilistic inference. Each constraint’s impact
can be understood by examining its frequency, as the number of
collected constraints plays a major role in the inference. To con-
duct this experiment, we examine AOSP using a similar setup to
Experiment 7.3. We count and report the number of each constraint
type found and present them in Figure 5.

In total, Poirot collects 2803 access control constraints and 3923
implication constraints from AOSP. Though all constraints con-
tribute to the inference, the reachability and one-to-many con-
straints are particularly prevalent.

One-to-One
235

One-to-N
2568

Access Control Constraints

Reachability

2697

Name Correlation

749 Data-flow

208 Getter-to-Setter

142 Triggering Condition
67 Mutual Exclusivity60

Implication Constraints

Figure 5: Breakdown of Probabilistic Constraints in AOSP

7.5 (RQ5) Runtime and Memory Overhead
Table 6 shows the execution time and memory consumption of
Poirot on the analyzed ROMs. The results are broken down by
analysis phase. Poirot’s main bottleneck is the basic facts extraction,
which relies on a path-sensitive, inter-procedural analysis. The
execution time varies for different ROMs, taking more time for
highly customized images, such as the Amazon Fire HD.

Table 6: Average Overhead Measurement∗

ROM Basic Fact Implication Probabilistic Inconsistency
Extraction Constraint Inference Analysis

Generation
Time Memory Time Memory Time Memory Time Memory

AOSP 50.0 332.3 22.8 302.1 23.5 367.5 2.7 365.4
Xiaomi Poco C3 53.3 373.1 33.4 280.8 30.3 361.5 4.1 366.3
Amazon Fire HD 56.0 301.9 32.4 309.3 31.0 320.3 4.5 382.3
LG LM-V405 54.1 327.1 31.4 300.9 28.0 338.2 3.3 367.4
*Time is in minutes, memory in mB.

7.6 (RQ6 & RQ7) Detecting Inconsistencies
This experiment evaluates Poirot’s ability to detect access control
inconsistencies. We analyze four ROMs from AOSP, Amazon, Xi-
aomi and LG. Detailed information about the ROMs is listed in
Columns 1 and 2 in Table 7.
Experiment Setup. Unlike Experiment 7.1, we extract basic facts
from all APIs since a diverse set of basic facts is necessary to ac-
curately detect access control inconsistencies. We pass these basic
facts and all generated implication constraints to Poirot’s inference
engine in order to generate high-confidence recommendations that
can be used to detect inconsistencies. An inconsistency is reported
when Poirot’s high-confidence protection recommendation for an
API is stronger than the API’s enforced access control.
Results. Table 7 presents the reported inconsistencies. As shown,
Poirot detects high-confidence true positive (TP) inconsistencies in
all analyzed ROMs, ranging from 5 in AOSP to 14 in Xiaomi – in
total, 26 unique inconsistencies. It is worthy to note that one instance
in LG 5 exposes 118 APIs, each leading to a different security impact
including obtaining runtime permissions, starting apps with system
privilege, and even enforcing a password recovery. Notwithstanding
the high-severity level and tremendous amount of the exposed APIs,
we consider the 118 cases as a single inconsistency.
Inconsistencies Uniquely Discovered by Poirot. Column 5 in
Table 7 lists the number of inconsistencies that were detected using
at least one non-reachability implication constraint.

5This case was discussed in the Motivation section and illustrated in Figure 2.

947

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer

Table 7: Poirot’s Inconsistency Detection Results

Rom Version Analyzed Inconsistencies With >= 1
APIs (TP) implication constraint

AOSP 10 2739 8 (5) 1

Xiaomi Poco C3 10 3335 19 (14) 4

Amazon Fire HD 10 2779 18 (12) 4

LG LM-V405 10 1585 15 (10) 4*

*one case exposes and impacts 118 APIs

As shown, 10 inconsistencies were uniquely detected by Poirot.
This means that our tool was able to uniquely detect 38% of all
detected inconsistencies. We have manually analyzed the imple-
mentation of each reported inconsistency to estimate this number.
Poirot’s False Positives. Due to the lack of ground truth secu-
rity specifications for custom vendor APIs, we estimate the false
positive (FP) inconsistencies through manual investigation. We re-
port the number of FPs in column 4. As shown, out of all reported
inconsistencies, 32.7% are false alarms. We identified two main
reasons for the false positives. First, certain high-confidence recom-
mendations were derived from substantially frequent occurrences
of low-confidence constraints. In such cases, the higher number
of constraints improves the initially assigned low protection prob-
abilities. Second, our tool failed to recognize some custom access
control checks uniquely introduced by vendors.

7.7 (RQ8) Suppressing False Positives of Other
Tools

This experiment assesses whether Poirot successfully suppresses
the high false positives seen in Kratos [22] and AceDroid [6], two
state-of-the-art access control inconsistency detection tools. Both
tools operate in a largely similar fashion with subtle differences. To
detect inconsistencies, Kratos performs a simplistic convergence
analysis, while AceDroid relies on access control modeling and
normalization to detect exploitable inconsistencies only.

We obtained access to AceDroid and applied it to analyze the
collected ROMs. Since Kratos is not publicly available, we developed
a simulated version, which we refer to as Kratos+. Kratos relies on a
number of unknown heuristics to reduce the number sinks used to
find converging APIs. To ensure a faithful comparison with Poirot,
we incorporate Poirot’s sink reduction strategy into Kratos+.
Experiment Setup. We applied AceDroid and Kratos+ to identify
inconsistencies.We estimate FPs using the notion of likely protection
targets, which we explain next. A protection target is a sink within
an API that is the target of some access control enforcement. A
likely protection target is a sink that we believe has strong potential
to be a protection target because Poirot identified it as linked to
the calling API through some implicit relation, such as a naming
correlation or a parameter flow. Intuitively, if AceDroid or Kratos+
detect an inconsistency for two APIs that converge upon an unlikely
protection target, then that inconsistency is probably an FP.
Results. Table 8 reports the results. As shown, both AceDroid
and Kratos+ generate substantial FPs ranging from 71% to 81%
in AceDroid and from 84% to 91% in Kratos+. We note that both
estimations are higher than the FPs reported by AceDroid and
Kratos. We believe this is likely due to the fact that we are not

Table 8: AceDroid and Kratos+’s False Positives

ROM AceDroid Kratos+
Inc# FP# (%) FP (%) ↓ by Poirot Inc# FP# (%) FP (%) ↓ by Poirot

AOSP 27 22 (81.4) 54.5 51 46 (90.1) 58.9
Xiaomi Poco C3 44 34 (77.2) 66.3 88 78 (88.6) 70.6
Amazon Fire HD 34 26 (76.4) 56.8 86 79 (91.8) 64
LG LM-V405 39 28 (71.9) 54.1 73 62 (84.9) 61.1

including the heuristics and manual filtering followed by AceDroid
and Kratos to reduce the number of sinks. Although our results are
an over-estimation of the existing work’s FPs, we note that they
reflect pure-convergence inconsistency detection results.
False Positives Suppression by Poirot. As shown in Columns 4
and 7 in Table 8, Poirot substantially improves the results of Kratos
and AceDroid thanks to its ability to pinpoint likely protection
targets in APIs. It can reduce the false positives up to 66% and 70%
in AceDroid and Kratos, respectively.

8 CASE STUDIES
We would like to note that not all inconsistencies are exploitable.
The reasons are twofold. First, triggering an inconsistency may
require certain conditions unrelated to access control to be met.
These are not picked up by our tool. Second, an API’s functionality
might not necessarily reflect a security sensitive operation.

Table 9 reports the cases for which we have successfully built
a PoC. Here, we select one compelling case for discussion. We
intentionally picked a vulnerability that is hard to detect using
existent inconsistency detection tools.
Crashing and Rebooting the System. Poirot reported two incon-
sistencies in Amazon Fire HD’s MigrationService, located in two
custom APIs. While both APIs do enforce a Normal permission, our
tool recommended a higher privilege check: a permission equiva-
lent to the system-level permission MOVE_PACKAGE. We manually
investigated the reports and found that Poirot generated a few high
confidence recommendations for different resources within the two
APIs based on a combination of data-flow, backward reachability
and naming correlation hints. The detection entailed a cascading
effect that propagated a protection from a single occurrence of a
basic access control fact to two privileged resources. Specifically:

• Poirot identified a data-flow hint that assigned a global field
the return value of a privileged getter API with assigned
protection MOVE_PACKAGE.

• Poirot relied on the data-flow hint to propagate protection
MOVE_PACKAGE to the global field implying that any corre-
sponding read operation should require this protection.

• Poirot identified an API getMoveData() that reads and re-
turns global field; as such, the MOVE_PACKAGE recommenda-
tion was issued for the getMoveData() API. The case was
flagged as an inconsistency since getMoveData()’s enforced
access control was weaker than MOVE_PACKAGE.

• In a different API, Poirot identified a getter-to-setter hint
where the global field was being written. Hence, Poirot con-
cluded that the new site requires MOVE_PACKAGE.

• The recommendation was further consolidated by naming
correlation and backward reachability hints pertaining to
another resource. Details are elided for simplicity. The API

948

Poirot: Probabilistically Recommending Protections for the Android Framework CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 9: Summary of Discovered Protection Inconsistencies that can lead to Security Issues

OS Image System Service:API Enforced Access Control Recommended Access Control Constraint(s) Potential Security Implication

LG LM-V405 LGMDM.setActiveAdmin UserCheck AND UserCheck AND Trigger Condition Replace device admin with own package
(E || MANAGE_DEVICE_ADMINS) (SYSTEM_PERMISSION) Reachability Expose 118 APIs in MDM service

LG LM-V405 LGMDM. UserCheck UserCheck AND Data Flow Exfiltrate running packages details
getRunningPackagesFromPid (REAL_GET_TASKS) Reachability

Fire HD 10 AmazonInput.setInputFilter E SYSTEM_PERMISSION Reachability Key Logger
Naming Correlation

Fire HD 10 MigrationService.migrate Normal_Permission MOVE_PACKAGE Setter-getter Local system crash
Naming Correlation Reboot
Forward Reachability

Fire HD 10 MigrationService.getMigrateData Normal_Permission MOVE_PACKAGE Data Flow Obtain migration meta data

Fire HD 10 AmazonPMS.setAmazonFlags E SYSTEM_PERMISSION Trigger Condition Change Amazon-Specific package settings*

Fire HD 10 AmazonPMS.removeAmazonFlags E SYSTEM_PERMISSION Trigger Condition Change Amazon-Specific package settings

Xiaomi Poco C3 IPerfShielder. E UserCheck AND Reachability Exfiltrate running processes info**
getAllRunningProcessMemInfos (REAL_GET_TASKS)

*Amazon mentioned that they have fixed the vulnerability thanks to an earlier report.
**The vendors have acknowledged the issues but mentioned that the cases were known internally/reported before us.

migrate() was subsequently flagged as an inconsistency
due to a weaker protection enforcement.

We tested the reported vulnerability and confirmed that both
APIs lack protections. Triggering migrate() with specific parame-
ters (i.e., supplying private data folder to be migrated) crashes the
system server.

9 RELATEDWORK
Probabilistic ProgramAnalysis. Probabilistic type inference [28]
has been proposed for dynamic programming languages, e.g., Python.
Probabilistic model checking [13, 16, 20] enhances the existing de-
terministic techniques by encoding probabilities into the transition
among states. With largely extended scalability, probabilistic sym-
bolic execution [10, 17] efficiently predicts the likelihood of reach-
ing a certain program point. Researchers also adapt probabilistic
inference and distribution analysis techniques in the domain of
binary analysis [21, 31] to provide a systematic approach to model
the inherent uncertainty caused by information loss during com-
pilation. Other applications include fuzzing [32], network trace
analysis [30], race and leak detection [11, 19] and runtime event
analysis for program understanding [25, 33]. To the best of our
knowledge, Poirot is the first approach to leverage probabilistic
analysis to generate Android access control recommendations.
Security Property Inference. Inference techniques have been
widely adopted for vulnerability detection and security invariant
validation. Engler et. al. [14] devise a static checker to infer bugs
in real systems such as Linux and OpenBSD. AutoISES [24] auto-
matically infers high-level security specification and detects vio-
lation afterwards. Srivastava et. al. [23] adapt a precise, flow and
context-sensitive security policy inference technique to analyze
relationships between security checks and security-sensitive events.
Vaughan et. al. [26] devise a security-expressive language to de-
scribe security policy where inference of expressive is introduced
to help reduce the number of annotations. JIGSAW [27] infers pro-
grammer expectations to achieve better access control. Yamaguchi
et. al. [29] leverage inference techniques to search taint-style vul-
nerabilities in C code. Inspired by these works, Poirot adopts rule
inference techniques to recommend Android access control using

probabilistic constraints, which naturally model the uncertainty
inherent in statically extracted API-to-protection mappings.
Inconsistency Detection. Inconsistency detection tools pinpoint
security policy inconsistencies. Two recent works extend their
scope beyond the Android framework. FReD [2] identifies incon-
sistencies in API access control requirements by analyzing Linux-
layer permissions. IAceFinder [34] detects cross-context inconsis-
tencies in the Java and native layers. Kratos [22], AceDroid [6] and
ACMiner [18], discussed elaborately throughout the paper, leverage
in-framework security oracles.
API-to-Protection Mappings. Stowaway [15] and Dynamo [12]
deduce permission requirements for Android APIs using a dynamic
approach. PScout[8], Axplorer[9] and Arcade [7] address the same
issue using static analysis. Similarly, Poirot statically infers protec-
tion recommendations; however, it accounts for inherent uncer-
tainty using a probabilistic approach.

10 CONCLUSION
We propose Poirot, a novel probabilistic access control recommen-
dation framework for Android resources. The framework features
tailored static analysis to collect various implicit relations beyond
reachability that can connect resources and access control. The
relations are organically transformed into implication constraints
to connect resources with inherent uncertainty and predict their
protection recommendations. We applied our framework to analyze
four Android ROMs. Our evaluation shows that Poirot effectively
generates protection recommendations and detects inconsistencies.

ACKNOWLEDGMENTS
We wish to thank Güliz Seray Tuncay for kindly providing her
feedback on our collected rules. This research was supported in part
by NSERC under grant RGPIN-07017, by the Canada Foundation
for Innovation under project 40236 and by a Google ASPIRE award.
This work benefitted from the use of the CrySP RIPPLE Facility at
the University of Waterloo. Any opinions, findings and conclusions
in this paper are those of the authors only and do not necessarily
reflect the views of our sponsors.

949

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer

REFERENCES
[1] 2022. Akka. https://akka.io/
[2] 2022. FReD: Identifying File Re-Delegation in Android System Services. In 31st

USENIX Security Symposium (USENIX Security 22). USENIX Association, Boston,
MA. https://www.usenix.org/conference/usenixsecurity22/presentation/gorski

[3] 2022. ProbLog. https://dtai.cs.kuleuven.be/problog/
[4] 2022. Sorenson-Dice Coefficient. https://en.wikipedia.org/wiki/S%C3%

B8rensen%E2%80%93Dice_coefficient
[5] 2022. WALA. https://github.com/wala/WALA
[6] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen

Tian. 2018. AceDroid: Normalizing Diverse Android Access Control Checks for
Inconsistency Detection. Internet Society. https://doi.org/10.14722/ndss.2018.
23121

[7] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li.
2018. Precise android API protection mapping derivation and reasoning. In
Proceedings of the ACM Conference on Computer and Communications Security.
Association for Computing Machinery, 1151–1164. https://doi.org/10.1145/
3243734.3243842

[8] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 12. PScout:
Analyzing the Android Permission Specification. In CCS. 1070.

[9] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and
Sebastian Weisgerber. 2016. On Demystifying the Android Application Frame-
work: Re-Visiting Android Permission Specification Analysis. In Proceedings of
the 25th USENIX Security Symposium. USENIX Association, 48.

[10] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, and Corina S. Pasareanu. 2015.
Iterative distribution-aware sampling for probabilistic symbolic execution. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015. 866–877.

[11] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A deployable sampling
strategy for data race detection. In Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016. 810–821.

[12] Abdallah Dawoud and Sven Bugiel. 2021. Bringing Balance to the Force:
Dynamic Analysis of the Android Application Framework, In Network and
Distributed Systems Security (NDSS) Symposium 2021. Bringing Balance to
the Force: Dynamic Analysis of the Android Application Framework. https:
//publications.cispa.saarland/3340/

[13] Alastair F. Donaldson, Alice Miller, and David Parker. 2009. Language-Level
Symmetry Reduction for Probabilistic Model Checking. In QEST 2009, Sixth
International Conference on the Quantitative Evaluation of Systems, Budapest,
Hungary, 13-16 September 2009. 289–298.

[14] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review 35, 5 (2001), 57–72.

[15] Adrienne Porter Felt. 2011. Permission Re-Delegation: Attacks and Defenses.
In 20th USENIX Security Symposium (USENIX Security 11). USENIX Associa-
tion, San Francisco, CA. https://www.usenix.org/conference/usenixsecurity11/
permission-re-delegation-attacks-and-defenses

[16] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. 2011. Run-time efficient
probabilistic model checking. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011.
341–350.

[17] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic
symbolic execution. In International Symposium on Software Testing and Analysis,
ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012. 166–176.

[18] Sigmund Albert Gorski, Benjamin Andow, Adwait Nadkarni, Sunil Manandhar,
William Enck, Eric Bodden, and Alexandre Bartel. 2019. ACMiner: Extraction
and Analysis of Authorization Checks in Android’s Middleware. (1 2019). http:

//arxiv.org/abs/1901.03603
[19] Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead memory

leak detection using adaptive statistical profiling. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2004, Boston, MA, USA, October 7-13, 2004. 156–164.

[20] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0:
Verification of Probabilistic Real-Time Systems. In Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. 585–591.

[21] Kenneth A. Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and
Zhiqiang Lin. 2019. Probabilistic disassembly. In Proceedings of the 41st Interna-
tional Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM,
1187–1198. https://doi.org/10.1109/ICSE.2019.00121

[22] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2017.
Kratos: Discovering Inconsistent Security Policy Enforcement in the Android
Framework. Internet Society. https://doi.org/10.14722/ndss.2016.23046

[23] Varun Srivastava, Michael D Bond, Kathryn S McKinley, and Vitaly Shmatikov.
2011. A security policy oracle: Detecting security holes using multiple API
implementations. ACM SIGPLAN Notices 46, 6 (2011), 343–354.

[24] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008. Au-
toISES: Automatically Inferring Security Specification and Detecting Violations..
In USENIX Security Symposium. 379–394.

[25] Neil Toronto, Jay McCarthy, and David Van Horn. 2015. Running Probabilistic
Programs Backwards. In Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. 53–79.

[26] Jeffrey A Vaughan and Stephen Chong. 2011. Inference of expressive declassifi-
cation policies. In 2011 IEEE Symposium on Security and Privacy. IEEE, 180–195.

[27] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer, and Trent Jaeger. 2014.
{JIGSAW}: Protecting resource access by inferring programmer expectations. In
23rd USENIX Security Symposium (USENIX Security 14). 973–988.

[28] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python
probabilistic type inference with natural language support. In Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 607–618.

[29] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015. Auto-
matic inference of search patterns for taint-style vulnerabilities. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 797–812.

[30] Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, and Dongyan Xu.
2021. NetPlier: Probabilistic Network Protocol Reverse Engineering from
Message Traces. In 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet So-
ciety. https://www.ndss-symposium.org/ndss-paper/netplier-probabilistic-
network-protocol-reverse-engineering-from-message-traces/

[31] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-Chuan Lee, Yonghwi
Kwon, Yousra Aafer, and Xiangyu Zhang. 2021. OSPREY: Recovery of Variable
and Data Structure via Probabilistic Analysis for Stripped Binary. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021. IEEE, 813–832. https://doi.org/10.1109/SP40001.2021.00051

[32] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hardest Problems
My Way: Probabilistic Path Prioritization for Hybrid Fuzzing.. In NDSS.

[33] Yutao Zhong andWentao Chang. 2008. Sampling-based program locality approxi-
mation. In Proceedings of the 7th International Symposium onMemoryManagement,
ISMM 2008, Tucson, AZ, USA, June 7-8, 2008. 91–100.

[34] Hao Zhou, Haoyu Wang, Xiapu Luo, Ting Chen, Yajin Zhou, and Ting Wang.
2022. Uncovering Cross-Context Inconsistent Access Control Enforcement in
Android.

950

https://akka.io/
https://www.usenix.org/conference/usenixsecurity22/presentation/gorski
https://dtai.cs.kuleuven.be/problog/
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://github.com/wala/WALA
https://doi.org/10.14722/ndss.2018.23121
https://doi.org/10.14722/ndss.2018.23121
https://doi.org/10.1145/3243734.3243842
https://doi.org/10.1145/3243734.3243842
https://publications.cispa.saarland/3340/
https://publications.cispa.saarland/3340/
https://www.usenix.org/conference/usenixsecurity11/permission-re-delegation-attacks-and-defenses
https://www.usenix.org/conference/usenixsecurity11/permission-re-delegation-attacks-and-defenses
http://arxiv.org/abs/1901.03603
http://arxiv.org/abs/1901.03603
https://doi.org/10.1109/ICSE.2019.00121
https://doi.org/10.14722/ndss.2016.23046
https://www.ndss-symposium.org/ndss-paper/netplier-probabilistic-network-protocol-reverse-engineering-from-message-traces/
https://www.ndss-symposium.org/ndss-paper/netplier-probabilistic-network-protocol-reverse-engineering-from-message-traces/
https://doi.org/10.1109/SP40001.2021.00051

	Abstract
	1 Introduction
	2 BACKGROUND AND Motivation
	2.1 Background
	2.2 Motivation

	3 Approach
	4 Access Control Constraints
	4.1 Definitions
	4.2 Basic Access Control Facts
	4.3 Access Control Constraints

	5 Implication Constraints
	5.1 Structural Constraints
	5.2 Semantic Hints
	5.3 Data-Flow Hints
	5.4 Access Control Aggregation.

	6 Poirot in Action
	7 Evaluation
	7.1 (RQ1) Evaluating Poirot's Protection Recommendations
	7.2 (RQ2) Impact of Cut-off Criteria
	7.3 (RQ3) Impact of Prior Probability Values
	7.4 (RQ4) Impact of Probabilistic Constraints
	7.5 (RQ5) Runtime and Memory Overhead
	7.6 (RQ6 & RQ7) Detecting Inconsistencies
	7.7 (RQ8) Suppressing False Positives of Other Tools

	8 Case Studies
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

