STOCHFUZZ: Sound and Cost-effective Fuzzing of
Stripped Binaries by Incremental and Stochastic Rewriting

Zhuo Zhang, We1 You, Guanhong Tao, Yousra Aafer, Xuwei Liu, Xiangyu Zhang

PURDUE) tAA kA% B WATERLGO

RENMIN UNIVERSITY OF CHINA

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Grey-box fuzzing 1s one of the most important techniques for software
testing and vulnerability detection.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Grey-box fuzzing 1s one of the most important techniques for software
testing and vulnerability detection.

@ * More than 21,000 bugs in the Chromium projects [1]
* More than 16,000 bugs in other open source projects [2]

Bug Detection

* 79 Papers published in the top security conferences in the
recent three years [3]
' * 56 Papers published in the top software engineering
$

Research conferences in the recent three years [3]

[1] https://bugs.chromium.org/p/chromium/issues/list?can=1&qg=label%3 A ClusterFuzz+-status%3 A WontFix%2CDuplicate&colspec=ID+Pri+ M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&
[2] https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&qg=-status%3 A WontFix%2CDuplicate+-Infra&colspec=ID+Type+Component+Status+Proj+Reported+Owner+Summary&cells=ids
[3] https://weventure.github.io/FuzzingPaper/

releaseblock&cells=ids

https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=-status%3AWontFix%2CDuplicate+-Infra&colspec=ID+Type+Component+Status+Proj+Reported+Owner+Summary&cells=ids
https://wcventure.github.io/FuzzingPaper/

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Grey-box fuzzing leverages runtime feedback to learn how to reach deeper
into the subject program.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Grey-box fuzzing leverages runtime feedback to learn how to reach deeper
into the subject program.

) TN/
Prid i

libFuzzer - a library for coverage-guided fuzz testing.

instrumentation

zzzzzzz

Getting Started

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Grey-box fuzzing leverages runtime feedback to learn how to reach deeper

into the subject program.

Z2LLYM

libFuzzer - a library for coverage-guided fuzz testing.

Introduction
LibFuzzer is in-process, coverage-guided, evolutionary fuzzing engine.

LibFuzzer is linked with the library under test, and feeds fuzzed inputs to the library via a specific fuzz
fuzzer then tracks which areas of the code are reached, and generates mutations on the corpus of inpy
coverage. The code coverage information for libFuzzer is provided by LLVM's instrug

Contact: libfuzzer(#)googlegroups.com

Versions

LibFuzzer is under active development so you will need the current (or at least a very recent) version of
)

Refer to for documentation on the older version

Getting Started

american fuzzy lop (2.52b)

American fuzzy lop is a security-oriented fuzzer that employs a novel type of pil instrumentation and genetic al; test cases that trigger new internal states in the targeted binary.
‘This substantially improves the functional coverage for the fuzzed code. The compact synthesized corpora produced by the tool are also useful for seeding other, more labor- or resource-intensive testing regimes down the road.

to lly discover clean,

american fuzzy lop 0.47b (

Compared to other instrumented fuzzers, afl-fuzz is designed to be practical: it has modest performance overhead, uses a variety of highly effective fuzzing strategies and effort minimization tricks, requires essentially no configuration, and

¢, comman image parsing or file compression libraries.

seamlessly handles complex, real-world use cases

The "sales pitch"

In a hurry? There are several fairly decent reasons to give afl-fitzz a try:

* Itis pretty sophisti It's an instr ided genetic fuzzer capable of synthesizing complex file semantics in a wide range of non-trivial targets, lessening the need for purpose-built, syntax-aware toals. It also
comes with a unique crash explorer, a test case nizer, a fault-triggering allocator, and a syntax analyzer - making it dead simple to evaluate the impact of crashing bugs.

= It has street smarts. It is built around a range of carefully researched, high-gain test case preprocessing and fuzzing strategies rarely employed with comparable rigor in other fuzzing frameworks. As a result, it finds real

bugs.

It is fast. Thanks to its low-level compile-time or binary-only instrumentation and other optimizations, the tool offers near-native or better-than-native fuzzing speeds against common real-world targets. The newly-added
persistent mode allows for exceptionally f

t fuzzing of many programs with the help of minimal code modifications, too.

It's rock solid. Compared to other instr ion- or sol sed fuzzers, it has ren

hiccups.

ly few gotchas and failure modes. It also comes with robust, user-friendly problem detection that guides you through any potential

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Grey-box fuzzing leverages runtime feedback to learn how to reach deeper
into the subject program.

Random Generated Inputs

| o,
<] >Q§ gt

Source Code Instrumented Grey-box Fuzz

Compiler Binary (e.g., AFL)
| t

Code Coverage

Stochastic Process

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Another scenario: binary-only fuzzing (no source code)

Source Code

Random Generated Inputs

| —

R 101
. on
Instrumented Grey-box Fuzz
Binlary (e.g., AFL)
t

Code Coverage

Stochastic Process

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Another scenario: binary-only fuzzing (no source code)

Random Generated Inputs

| —

101
on
Stripped Grey-box Fuzz
Binary (e.g., AFL)

| t
Code Coverage?
L

Stochastic Process

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Another scenario: binary-only fuzzing (no source code)

Bugs 1n close-sourced programs can also have unprecedented impact

(e.g., WannaCry ransomware
[t 1s important to effectively ¢

- Wana DecryptOr 2.0 | x |

Ooops, your files have been encrypted!

What Happened to My Computer?
Your important files are encrypted.
Many of your documents, photos, videos, databases and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
our decryption service.
Payment will be raised on B0 .0 1 Recover My Files?
SN6/201T 00:47:55 Sure. We guarantee that you can recover all your files safely and easily. But you have
not so enough time.
Time Left You can decrypt some of your files for free. Try now by clicking <Decrypt>.
''''' But if you want to decrypt all your files, you need to pay.
You only have 3 days to submit the payment. After that the price will be doubled.
Also, if you don’t pay in 7 days, you won't be able to recover your files forever.
We will have free events for users who are so poor that they couldn’t pay in 6 months.
Your files will be lost on
SR How Do I Pay?
Payment is accepted in Bitcoin only. For more information, click <About bitcoin>.
Please check the current price of Bitcoin and buy some bitcoins. For more information,
click <How to buy bitcoins>,
And send the correct amount to the address specified in this window.
After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am
Moo T

v

52012017 00:47:55

e Left

. . Send $300 worth of bitcoin to this address:
b btcon bitcoin
a2 1d | 12t9YDPgwueZ9NyMgw519p7AABIsjré SMw
ot iR
SR | ChecxPamen N Deom |

attack).
etect bugs 1n programs without source.

Random Generated Inputs

101
on
Stripped Grey-box Fuzz
Blnlary (e.g., AFL)
t
Code Coverage')

Stochastic Process

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Existing solutions fall into three categories.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Existing solutions fall into three categories.

G Dynamic Binary Translation: Translate a subject binary during its
E M U execution. It 1s sound but expensive (high overhead >600%).

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Existing solutions fall into three categories.

G Dynamic Binary Translation: Translate a subject binary during its
E M U execution. It 1s sound but expensive (high overhead >600%).

Hardware-Assisted Tracing: Make use of advanced hardware support

< N tel such as Intel PT to collect runtime traces that can be post-processed
(Relatively high overhead and only coverage-based feedback).

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Existing solutions fall into three categories.

G Dynamic Binary Translation: Translate a subject binary during its
E M U execution. It 1s sound but expensive (high overhead >600%).

Hardware-Assisted Tracing: Make use of advanced hardware support

< N tel such as Intel PT to collect runtime traces that can be post-processed
(Relatively high overhead and only coverage-based feedback).

Static Binary Instrumentation: Leverage advanced binary analysis to
f directly instrument binaries (cost-effective but usually unsound).

=

L

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Existing solutions fall into three categories.

é Dynamic Binary Translation: Translate a subject binary during its
E M U execution. It 1s sound but expensive (high overhead >600%).

Hardware-Assisted Tracing: Make use of advanced hardware support

< n tel such as Intel PT to collect runtime traces that can be post-processed
(Relatively high overhead and only coverage-based feedback).

Static Binary Instrumentation: Leverage advanced binary analysis to
f directly instrument binaries (cost-effective but usually unsound).

=

i

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1:

0: lea rax, [rip+8] Inst vVar | Val Note

7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1l:
0: 1lea rax, [rip+8] Inst Var | Val Note
7: mov rbx, [rax] 0: lea rax, [rip+8] | rax 15 .DATA

10: add rax, rbx
13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1:
0: lea rax, [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: 1lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA

13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1l:
0 :?rax, [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: 1lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA
13: Jmp rax 10: add rax, rbx rax 23 .CODE2
.DATA:
15: .long 8

.CODE2:
23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1:
0: lea rax,
7: mov rbx,
10: add rax,
13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret

[rip+8]
[rax]
rbx

Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 .CODE2- .DATA
10: add rax, rbx rax 23 .CODE2
13: Jmp rax jmp | . CODE2 -

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1:
0 :?rax, [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA
13: Jmp rax 10: add rax, rbx rax 23 .CODE2
DATA - 13: Jmp rax jmp | .CODE2 -
15: .long 8 23: et - - -

.CODE2:
23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1:
0 :?rax, [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA
13: Jmp rax 10: add rax, rbx rax 23 .CODE2
DATA - 13: Jmp rax jmp | .CODE2 -
15: .long 8 23: et - - -

.CODE2:
23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1l:
0-: lea rax [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA
13: Jmp rax 10: add rax, rbx rax 23 .CODE2
13: jmp rax jm .CODE2 -
.DATA: TP IR | s
15: .long 8 23: ret - - -
.CODE2: * JIdentify the interleaved data section: due to the inline data
23: ret (.DATA), rewriters may not only mis-rewrite data as code, but

also fail to identify the indirect jump target (. CODE2).

* Distinguish between scalars and the address offsets:
misclassifying an address offset (. CODE2-.DATA) as a scalar
may break the rewritten binaries (note that addresses have
changed after instrumentation).

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

0:
7:
10:
13:
15:
17:
19:
21 :

lea
mov
add
Jmp
or

add
add
add

.CODEL1l:
rax, [rip+8]
rbx, [rax]

rax, rbx

rax

[rax],
[rax],
[rax],
[rax],

al
al
al
al

Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 .CODE2- .DATA
10: add rax, rbx rax 23 .CODE2
13: Jmp rax jmp | . CODE2 -
23: ret - - -

Identify the interleaved data section: due to the inline data

(.DATA), rewriters may not only mis-rewrite data as code, but
also fail to identify the indirect jump target (. CODE2).
Distinguish between scalars and the address offsets:

misclassifying an address offset (. CODE2-.DATA) as a scalar

may break the rewritten binaries (note that addresses have
changed after instrumentation).

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

0:
7:
10:
13:
15:
17:
19:
21 :

lea
mov
add
Jmp
or

add
add
add

.CODEL1l:
rax, [rip+8]
rbx, [rax]

rax, rbx

rax

[rax],
[rax],
[rax],
[rax],

al
al
al
al

Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 .CODE2- .DATA
10: add rax, rbx rax 23 .CODE2
13: Jmp rax jmp | . CODE2 -
23: ret - - -

Identify the interleaved data section: due to the inline data

(.DATA), rewriters may not only mis-rewrite data as code, but
also fail to identify the indirect jump target (. CODE2).
Distinguish between scalars and the address offsets:

misclassifying an address offset (. CODE2-.DATA) as a scalar

may break the rewritten binaries (note that addresses have
changed after instrumentation).

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

0:
7:
10:
13:
15:
17:
19:
21 :

lea
mov
add
Jmp
or

add
add
add

.CODEL1l:
rax, [rip+8]
rbx, [rax]

rax, rbx

rax

[rax],
[rax],
[rax],
[rax],

al
al
al
al

Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 _
10: add rax, rbx rax 23 .CODE2
13: Jjmp rax jmp ?2?2? -
23: ret - - -

Identify the interleaved data section: due to the inline data

(.DATA), rewriters may not only mis-rewrite data as code, but
also fail to identify the indirect jump target (. CODE2).
Distinguish between scalars and the address offsets:

misclassifying an address offset (. CODE2-.DATA) as a scalar

may break the rewritten binaries (note that addresses have
changed after instrumentation).

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1l:
0: lea rax, [rip+8]
7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret

Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 .CODE2- .DATA
10: add rax, rbx rax 23 .CODE2
13: Jmp rax jmp | . CODE2 -
23: ret - - -

RetroWrite, e9patch, and
datalog disassembly (the
version before we reported the
issue) all fail on a similar case.

Identify the interleaved data section: due to the inline data

(.DATA), rewriters may not only mis-rewrite data as code, but
also fail to identify the indirect jump target (. CODE2).
Distinguish between scalars and the address offsets:

misclassifying an address offset (. CODE2-.DATA) as a scalar
may break the rewritten binaries (note that addresses have
changed after instrumentation).

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

The first technique we introduced is named Incremental Rewriting.

While grey-box fuzzers continuously mutate inputs across test runs, they may as well be enhanced to
mutate the program on-the-fly.

As such, disassembly and static rewriting (which are difficult due to the lack of symbol information
and difficulties in resolving indirect jumps/calls offline) can be incrementally performed over time.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

The first technique we introduced is named Incremental Rewriting.

* While grey-box fuzzers continuously mutate inputs across test runs, they may as well be enhanced to
mutate the program on-the-fly.

* As such, disassembly and static rewriting (which are difficult due to the lack of symbol information
and difficulties in resolving indirect jumps/calls offline) can be incrementally performed over time.

Our basic 1dea is to trigger an intentional crash once an unresolved control flow target is reached. Starting
from the address where the crash happens, we can incrementally rewrite all directly reachable addresses.

The fuzzer continues fuzzing with the new binary and the incremental rewriting is invoked again if other
intentional crashes occur.

SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

0: lea rax, [rip+8]
7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax
15: .long 8
23: ret

SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

0: lea rax, [rip+8]
7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax
15: .long 8
23: ret

For easy understanding, let’s first assume:
* Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

* We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).

SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

10:
13:
15:
23:

lea rax,
mov rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]
[rax]
rbx

Initial Rewriting

a
»

For easy understanding, let’s first assume:

10:
13:
15:
23:

jmp 90
hlt
hlt
hlt
.long 8
hlt

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jjmp

rax,
rbx,
rax,
rax

[rip-92]
[rax]
rbx

Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).

SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

10:
13:
15:
23:

lea rax,
mov rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]
[rax]
rbx

Initial Rewriting

a
»

For easy understanding, let’s first assume:

10:
13:
15:
23:

jmp 90
hlt
hlt
hlt
.long 8
hlt

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jjmp

rax,
rbx,
rax,
rax

[rip-92]
[rax]
rbx

Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).

SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

10:
13:
15:
23:

lea rax,
mov rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]

[rax]
rbx

Initial Rewriting

a
»

For easy understanding, let’s first assume:

10:
13:
15:
23:

jmp 90
hlt
hlt
hlt
.long 8
hlt

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jjmp

rax,
rbx,
rax,
rax

[rip-92]

[rax]
rbx

Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).

SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

10:
13:
15:
23:

lea rax,
mov rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]

[rax]
rbx

Initial Rewriting

For easy understanding, let’s first assume:

a
»

10:
13:
15:

23

hlt
hlt
hlt

:*.t

jmp 90

.long 8

-

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jjmp

rax,
rbx,
rax,
rax

<

[rip-92]

[rax]
rbx

Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).

SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting

90: [AFL trampoline]
3: lea rgx, Erip;B] 0: dmp 90 100: lea rax, |[[rip-92]
: mov rbx, [rax - o i .
10: add rax, rbx Initial Rewriting > 1;; iit 12;; :ZZ i::: isz]
13: Jmp rax 13: hilt 113: jmp rax
15: .long 8 15: .long 8
23: ret 23: *.t e

90: [AFL trampoline]
0O: Jjmp 90 100: lea rax, [rip-92]

7: hlt 107: mov rbx, [rax]
10: hlt 110: add rax, rbx < —
13: hilt 113: jmp rax Incremental Rewriting caused by
15: .long 8 115: [AFL trampoline] the 1ntentional crash at address 23

23: Jmp 115 125: ret

For easy understanding, let’s first assume:
* Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

* We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

90: [AFL trampoline]
0: dJmp 90 100: lea rax, [rip-92]

7: hlt 107: mov rbx, [rax]
10: hlt 110: add rax, rbx
13: hlt 113: jmp rax —

15: hlt ., *
23: hlt

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

The second technique we introduced 1s named Stochastic Rewriting.
* During fuzzing, we can try different data and code separations.
* More samples we collect, more precise separation we can have.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

The second technique we introduced 1s named Stochastic Rewriting.
* During fuzzing, we can try different data and code separations.
* More samples we collect, more precise separation we can have.

Stochastic Rewriting 1s piggy-backing on the fuzzing procedure.

* A probabilistic inference to compute the likelihood of each byte being data (or code)
* Generating different binaries for different fuzzing runs

* A error diagnosis process to locate and repair rewriting errors

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

The second technique we introduced 1s named Stochastic Rewriting.
* During fuzzing, we can try different data and code separations.
* More samples we collect, more precise separation we can have.

Stochastic Rewriting 1s piggy-backing on the fuzzing procedure.

* A probabilistic inference to compute the likelihood of each byte being data (or code)
* Generating different binaries for different fuzzing runs

* A error diagnosis process to locate and repair rewriting errors

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

The second technique we introduced 1s named Stochastic Rewriting.
* During fuzzing, we can try different data and code separations.
* More samples we collect, more precise separation we can have.

Stochastic Rewriting 1s piggy-backing on the fuzzing procedure.

* A probabilistic inference to compute the likelihood of each byte being data (or code)
* Generating different binaries for different fuzzing runs

* A error diagnosis process to locate and repair rewriting errors

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

The second technique we introduced 1s named Stochastic Rewriting.
* During fuzzing, we can try different data and code separations.
* More samples we collect, more precise separation we can have.

Stochastic Rewriting 1s piggy-backing on the fuzzing procedure.

* A probabilistic inference to compute the likelihood of each byte being data (or code)
* Generating different binaries for different fuzzing runs

* A error diagnosis process to locate and repair rewriting errors

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

0: 1lea rax, [rip+8]
7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax
15: .long 8
23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting
— Probability of being data bytes

\ 4

0: 1lea rax, [rip+8]
7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax
15: .long 8
23: ret

O OO O OO
R WO O OoOOo

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

y

— Probability of being data bytes

O OO O OO

R WO O OoOOo

0:
7:
10:
13:
15:
23:

lea
mov

rax,
rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]
[rax]
rbx

Initial

Rewriting

o O O O OO0
W oo oo

10:
13:
15:
23:

jmp 90
hlt
hlt
hlt
hlt
hlt

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jmp

rax,
rbx,
rax,
rax

[rip-92]
[rax]
rbx

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

y

— Probability of being data bytes

O OO O OO

R WO O OoOOo

0:
7:
10:
13:
15:
23:

lea
mov

rax,
rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]
[rax]
rbx

Initial

Rewriting

o O O O OO0
W oo oo

10:
13:
15:
23:

jmp 90
hlt
hlt
hlt
hlt
hlt

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jmp

rax,
rbx,
rax,
rax

[rip-92]
[rax]
rbx

Ra

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

y

— Probability of being data bytes

O OO O OO

R WO O OoOOo

0:
7:
10:
13:
15:
23:

lea
mov

rax,
rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]
[rax]
rbx

Initial

Rewriting

90: [AFL trampoline]
0.0] 0: Jjmp 90 100: lea rax, [rip-92]
0.0] 7: hlt 107: mov rbx, [rax]
0.0|]10: hlt 110: add rax, rbx
0.0]13: hlt 113: jmp rax
0.3]15: hlt R *
0.1]23: hlt
Binary Cleaning
0.0] 0: Jjmp 90
0.0] 7: hlt
0.0]10: hlt
0.0]13: hlt
???]115: .long 8
22?2]|23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

y

— Probability of being data bytes

O OO O OO

R WO O OoOOo

0:
7:
10:
13:
15:
23:

lea
mov

rax,
rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]
[rax]
rbx

Initial

Rewriting

90: [AFL trampoline]
0.0] 0: Jjmp 90 100: lea rax, [rip-92]
0.0] 7: hlt 107: mov rbx, [rax]
0.0|]10: hlt 110: add rax, rbx
0.0]13: hlt 113: jmp rax
0.3]15: hlt R *
0.1]23: hlt
Binary Cleaning
0.0] 0: Jjmp 90
0.0] 7: hlt
0.0]10: hlt
0.0]13: hlt
???]115: .long 8
22?2]|23: ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

— Probability of being data bytes 90: [AFL trampoline]
0.0 0: 1lea rax, [rip+8] 0.0] 0: Jjmp 90 100: lea rax, [rip-92]
0.0] 7: mov rbx, [rax] 0.0] 7: hlt 107: mov rbx, [rax]
0.0]10: add rax, rbx Initial |{0.0]|10: hlt 110: add rax, rbx
0.0]13: Jjmp rax Rewriting[0.0 13: hlt 113: jmp rax
0.3]15: .long 8 0.3]115: hlt :*
0.1]23: ret 0.1]23: hlt

Binary Cleaning
0.0|] O0: Jjmp 90 0.0] O0: Jjmp 90 0.0] O0: Jjmp 90
0.0] 7: hlt 0.0] 7: hlt 0.0] 7: hlt
0.0/10: hlt < 0.0/10: hlt ~ Bmary |0.0|10: hlt
0.0|13: hlt 0.0|13: hit "~ Mutation |0.0|13: hlt
?2??2115: .long 8 1.0]15: hlt ?2??2115: .long 8
0.0]23: hlt ?2?2?2]|23: ret 2?22]|23: ret
Binary

Mutation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

— Probability of being data bytes 90: [AFL trampoline]
0.0 0: 1lea rax, [rip+8] 0.0] 0: Jjmp 90 100: lea rax, [rip-92]
0.0] 7: mov rbx, [rax] 0.0] 7: hlt 107: mov rbx, [rax]
0.0]10: add rax, rbx Initial |{0.0]|10: hlt 110: add rax, rbx
0.0]13: Jjmp rax Rewriting[0.0 13: hlt 113: jmp rax
0.3]15: .long 8 0.3]115: hlt :*
0.1]23: ret 0.1]23: hlt

Binary Cleaning
0.0|] O0: Jjmp 90 0.0] O0: Jjmp 90 0.0] O0: Jjmp 90
0.0] 7: hlt 0.0] 7: hlt 0.0] 7: hlt
0.0/10: hlt < 0.0/10: hlt ~ Bmary |0.0|10: hlt
0.0|13: hlt 0.0|13: hit "~ Mutation |0.0|13: hlt
?2??2115: .long 8 1.0]15: hlt ?2??2115: .long 8
0.0]23: hlt ?2?2?2]|23: ret 2?22]|23: ret
Binary

Mutation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

— Probability of being data bytes 90: [AFL trampoline]
0.0 0: 1lea rax, [rip+8] 0.0] 0: Jjmp 90 100: lea rax, [rip-92]
0.0] 7: mov rbx, [rax] 0.0] 7: hlt 107: mov rbx, [rax]
0.0]10: add rax, rbx Initial |{0.0]|10: hlt 110: add rax, rbx
0.0]13: Jjmp rax Rewriting[0.0 13: hlt 113: jmp rax
0.3]15: .long 8 0.3]115: hlt :*
0.1]23: ret 0.1]23: hlt

Binary Cleaning

v * :
0.0 O0: Jjmp 90 0.0] O0: Jjmp 90 0.0] O0: Jjmp 90
0.0] 7: hlt 0.0] 7: hlt 0.0] 7: hlt
0.0/10: hlt < 0.0/10: hlt ~ Bmary |0.0|10: hlt
0.0/13: hilt 0.0/13: hilt Mutation [0.0]|13: hilt
?2??2115: .long 8 1.0]15: hlt ?2??2115: .long 8
0.0]23: hlt 2?72]23: ret 2?22]23: ret

Binary

Mutation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Stochastic Rewriting

Binary

— Probability of being data bytes 90: [AFL trampoline]
0.0 0: 1lea rax, [rip+8] 0.0] 0: Jjmp 90 100: lea rax, [rip-92]
0.0] 7: mov rbx, [rax] 0.0] 7: hlt 107: mov rbx, [rax]
0.0]10: add rax, rbx Initial |{0.0]|10: hlt 110: add rax, rbx
0.0]13: Jjmp rax Rewriting[0.0 13: hlt 113: jmp rax
0.3]15: .long 8 0.3]115: hlt :*
0.1]123: ret 0.1]23: hlt

Refine the probabilities based on these new hints Binary Cleaning

v * :

0.0 O0: Jjmp 90 0.0] O0: Jjmp 90 0.0] O0: Jjmp 90

0.0] 7: hlt 0.0] 7: hlt 0.0] 7: hlt

0.0/10: hlt < 0.0/10: hlt ~ Bmary |0.0|10: hlt

0.0/13: hit 0.0/13: hit "~ Mutation |0.0|13: hlt

?2??2115: .long 8 1.0]15: hlt ?2??2115: .long 8

0.0]23: hlt ?2?2?2]|23: ret 2?22]|23: ret

Mutation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Universal Control-flow Graph (UCFG) and Probability Analysis

0:

3:

XOor rcx, recx o—1: xor ecx, ecx
l — 2: leave
Cmp IXcx, 5 +— 4: cmp ecx, 5
| — 5: stc
— 7: ret — 6: INVALID

Addr Byte | [Len] Decoded Instruction
0 48 | [3] xor rcx, rcx
1 : 31 | [2] xor ecx, ecXx
2 c9 | [1] leave
3 48 | [4] cmp rcx, 5
4 83 | [3] cmp ecx, 5
5 £f9 | [1] stc
6 : 05 | [0] INVALID
7 c3 | [1] ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Universal Control-flow Graph (UCFG) and Probability Analysis

0:

3:

XOor rcx, recx o—1: xor ecx, ecx
l — 2: leave
Cmp IXcx, 5 +— 4: cmp ecx, 5
| — 5: stc
— 7: ret — 6: INVALID

Addr Byte | [Len] Decoded Instruction
0 48 | |[3] xor rcx, rcx
1 31 | [2] xor ecx, ecx
2 c9 | [1] leave
3 48 | [4] cmp rcx, 5
4 83 | [3] cmp ecx, 5
5 £f9 | [1] stc
6 : 05 | [0] INVALID
7 c3 | [1] ret

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Universal Control-flow Graph (UCFG) and Probability Analysis

[Len]

Decoded Instruction

Addr Byte |
O: xXor rex, rex| m 1: xor ecx, ecx
O : 48
l — 2: leave 1 : 31
3: cmp rcx, 5 « 4: cmp ecx, 5 2 c9
!) ! 3 48
4 83
5 £9
| — 5: stc 6 05
— 7: ret — 6: INVALID 7 - e3

[3]
[2]
[1]
[4]
[3]
[1]
[0]
[1]

XOr rcx, rcx
XOr ecx, ecx
leave

cmp rcx, 5
cmp ecx, 5
stc

INVALID

ret

If there 1s a definition-use relation between two addresses, both addresses are likely to be code
* Address 0 and address 3 have a definition-use relation about register rcx.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Universal Control-flow Graph (UCFG) and Probability Analysis

Addr Byte | [Len] Decoded Instruction

O: Xor rex, rex o— 1: xor ecx, ecx
O : 48 | [3] xor rcx, rcx
l — 2: leave 1 : 31 | [2] xor ecx, ecx
3: cmp rex. 5 «— 4 5 2 c9 | [1] leave
) P ’ - CWp ecx, 3 48 | [4] cmp rcx, 5
4 83 | [3] cmp ecx, 5
5 £f9 | [1] stc
v — o ste 6 : 05 | [0] INVALID
— 7: ret — 6: INVALID 7 c3 | [1] ret

If there 1s a definition-use relation between two addresses, both addresses are likely to be code
* Address 0 and address 3 have a definition-use relation about register rcx.

The control flow cannot reach invalid instructions or data
* Address 5 cannot be a valid instruction boundary as it leads to an invalid instruction.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Error Diagnosis: Delta Debugging

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Error Diagnosis: Delta Debugging

* Stochastic Rewriting needs to locate and repair the crashs inducing rewriting errors.

* Delta Debugging
* A binary-search like debugging technique
* Check whether the unintentional crash can be reproduced with part of uncertain
addresses patched

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Error Diagnosis: Delta Debugging

* Stochastic Rewriting needs to locate and repair the crashs inducing rewriting errors.

* Delta Debugging
* A binary-search like debugging technique
* Check whether the unintentional crash can be reproduced with part of uncertain
addresses patched

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

We also address a number of practical challenges

* Rewriting optimization (e.g., removing flag register saving)

* Supporting stack unwinding (e.g., exception handling in C++)
* Reducing process set up cost

* Safeguarding non-crashing rewriting errors

* Handling overlapping rewriting

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation

Benchmark:

* Google Fuzzer Test Suite (Google FTS)
* Google Fuzzer Test Suite w/ inlined data
* Fuzzing benchmark from RetroWrite

Baselines:

e E9patch: static binary rewriting [PLDI’20]

* Datalog Disassembly: static binary rewriting [USENIX Security’20]
* RetroWrite: static binary rewriting [S&P’20]

e PTFuzzer: hardware-assisted fuzzing [IEEE Access’ 18]

* AFL-Qemu: dynamic binary translation

e AFL-GCC: compiler-based instrumentation

» AFL-Clang-fast. compiler-based instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation

Benchmark:

* Google Fuzzer Test Suite (Google FTS)
* Google Fuzzer Test Suite w/ inlined data
* Fuzzing benchmark from RetroWrite

Baselines:

e E9patch: static binary rewriting [PLDI’20]

* Datalog Disassembly: static binary rewriting [USENIX Security’20]
* RetroWrite: static binary rewriting [S&P’20]

e PTFuzzer: hardware-assisted fuzzing [IEEE Access’ 18]

* AFL-Qemu: dynamic binary translation

e AFL-GCC: compiler-based instrumentation

» AFL-Clang-fast. compiler-based instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation

Benchmark:

* Google Fuzzer Test Suite (Google FTS)
* Google Fuzzer Test Suite w/ inlined data
* Fuzzing benchmark from RetroWrite

Baselines:

e E9patch: static binary rewriting [PLDI’20]

* Datalog Disassembly: static binary rewriting [USENIX Security’20]
* RetroWrite: static binary rewriting [S&P’20]

e PTFuzzer: hardware-assisted fuzzing [IEEE Access’ 18]

* AFL-Qemu: dynamic binary translation

e AFL-GCC: compiler-based instrumentation

» AFL-Clang-fast. compiler-based instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

m afl-gcc m c9patch
m afl-clang-fast ® ddisasm
m afl-gemu StochFuzz
m ptfuzzer
-
2o o S 5
S S

0.00
0.00

openssl-C

1.08

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

m afl-gcc m c9patch
m afl-clang-fast ® ddisasm
m afl-gemu StochFuzz
m ptfuzzer
-
2o o S 5
S S

0.00

G 0.00

opensd-C

1.08

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

m afl-gcc m c9patch
m afl-clang-fast ® ddisasm
m afl-gemu StochFuzz
m ptfuzzer
-
2o o S 5
S S

00
00

opensslt

0
0

1.08

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

 EXxisting static rewriting W afl-gcc H ¢9patch
techniques (e9patch and m afl-clang-fast ® ddisasm
datalog disasm) fail on m afl-gemu StochFuzz
12. r5—37.5% of the programs, ptfuzzer
while StochFuzz succeeds on
all the 24 programs. A 00
o —_ <
. =P > .
 Compared with afl-clang-fast, = =

S
<
—

the IR-based instrumentation,
StochFuzz only has 11.77%

\O
slowdown on average. o 00
oo O
S _oco <
sliSsS S
S o

* Other tools have relatively
higher overhead. openssl-C
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

 EXxisting static rewriting W afl-gcc H ¢9patch
techniques (e9patch and m afl-clang-fast ® ddisasm
datalog disasm) fail on m afl-gemu StochFuzz

12.5—-37.5% of the programs,
while StochFuzz succeeds on
all the 24 programs.

ptfuzzer

1.14 e

1.08

S
<
—

1.00
0.89
0.89

* Compared with afl-clang-fast,
the IR-based instrumentation,
StochFuzz only has 11.77%

\O
slowdown on average. o 00
oo O
S _oco <
sliSsS S
S o

* Other tools have relatively
higher overhead. openssl-C
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

 EXxisting static rewriting W afl-gcc H ¢9patch

techniques (e9patch and
datalog disasm) fail on
12.5—-37.5% of the programs,
while StochFuzz succeeds on
all the 24 programs.

Compared with afl-clang-fast,
the IR-based instrumentation,
StochFuzz only has 11.77%

slowdown on average.

Other tools have relatively
higher overhead.
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%

m afl-clang-fast ® ddisasm
m afl-gemu StochFuzz

ptfuzzer

1.00
0.89
0.89

0.26

0.08
0.00
0.00

openssl-C

S
<
—

1.14

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

 EXxisting static rewriting W afl-gcc H ¢9patch
techniques (e9patch and m afl-clang-fast ® ddisasm
datalog disasm) fail on m afl-gemu StochFuzz

12.5—-37.5% of the programs,
while StochFuzz succeeds on
all the 24 programs.

ptfuzzer

1.00
0.89
0.89
1.14
95 <=
1.08

* Compared with afl-clang-fast,
the IR-based instrumentation,
StochFuzz only has 11.77%

o .
<
—

\O
slowdown on average. o 00
oo O
S _oco <
sliSsS S
S o

* Other tools have relatively
higher overhead. openssl-C
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

 EXxisting static rewriting W afl-gcc H ¢9patch
techniques (e9patch and m afl-clang-fast ® ddisasm
datalog disasm) fail on m afl-gemu StochFuzz

12.5—-37.5% of the programs,

) ptfuzzer
while StochFuzz succeeds on

all the 24 programs.
 Compared with afl-clang-fast, = =

the IR-based instrumentation,
StochFuzz only has 11.77%

\O
slowdown on average. a
oo O

SO0

=]

o O

* Other tools have relatively
higher overhead. openssl-C
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

* Existing static rewriting
techniques (e9patch and
datalog disasm) fail on

12.5-37.5% of the programs, * AFL-GCC: 124.1 million
while StochFuzz succeeds on * AFL-Clang-fast. 138.1 million
all the 24 programs. * AFL-Qemu: 16.0 million

« Compared Wi.th aﬂ-clang—fast, : ggFutZZher ggg mlﬂlon
the IR-based instrumentation, pdich. -6 M1on
StochFuzz only has 11.77% * Datalog Disassembly: 98.7 million
slowdown on average. STOCHFUZZ: 129.3 million

* Other tools have relatively
higher overhead.
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

* Existing static rewriting
techniques (e9patch and
datalog disasm) fail on

12.5-37.5% of the programs, * AFL-GCC: 124.1 million
while StochFuzz succeeds on * AFL-Clang-fast. 138.1 million
all the 24 programs. * AFL-Qemu: 16.0 million

« Compared Wi.th aﬂ-clang—fast, : ggFutZZher ggg mlﬂlon
the IR-based instrumentation, pdich. -6 M1on
StochFuzz only has 11.77% * Datalog Disassembly: 98.7 million
slowdown on average. STOCHFUZZ: 129.3 million

* Other tools have relatively
higher overhead.
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

* Existing static rewriting
techniques (e9patch and
datalog disasm) fail on

12.5-37.5% of the programs, * AFL-GCC: 124.1 million
while StochFuzz succeeds on * AFL-Clang-fast. 138.1 million
all the 24 programs. * AFL-Qemu: 16.0 million

« Compared Wi.th aﬂ-clang—fast, : ggFutZZher ggg mlﬂlon
the IR-based instrumentation, pdich. -6 M1on
StochFuzz only has 11.77% * Datalog Disassembly: 98.7 million
slowdown on average. STOCHFUZZ: 129.3 million

* Other tools have relatively
higher overhead.
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved
with .fext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)
change over 24-hour fuzzing.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved
with .fext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)
change over 24-hour fuzzing.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved
with .fext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)
change over 24-hour fuzzing.

3004 -10.0
o —— {#Intentional Crashes -7.5
_3:; 2001 #Unintentional Crashes
5 — False Negative Rate 5.0
= 100 - —— False Positive Rate 5 s
0- - = 0.0
0O 1 23 45 6 7 8 910 200 400 600

Time (min)

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved
with .fext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)
change over 24-hour fuzzing.

300 - -10.0
o —— {#Intentional Crashes -7.5
_3:; 2001 #Unintentional Crashes
5 False Negative Rate 5.0
= 100 - / False Positive Rate 5 s
0- e . 0.0
0O 1 23 456 7 8 910 200 400 600

Time (min)

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved

with .zext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)

change over 24-hour fuzzing.

300 1

#Crashes

0_

(W]
o
-

#Intentional Crashes
#Unintentional Crashes
False Negative Rate

False Positive Rate

01 23 456 7 8910 200

400 600
Time (min)

-10.0

7.5

5.0

2.5

0.0

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved

with .zext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)

change over 24-hour fuzzing.

#Crashes

300 1

(W]
o
-

0_

#Intentional Crashes
#Unintentional Crashes
— False Negative Rate

False Positive Rate

01 23 456 7 8910 200

400 600
Time (min)

-10.0

7.5

5.0

2.5

0.0

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved
with .fext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)
change over 24-hour fuzzing.

3004 -10.0
o #Intentional Crashes -7.5
_3:; 2001 #Unintentional Crashes
5 False Negative Rate 5.0
= 100 - —— False Positive Rate 5 s
0 \ - = 0.0
0O 1 23 456 7 8 910 200 400 600

Time (min)

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved
with .fext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)
change over 24-hour fuzzing.

3004 -10.0
o —— {#Intentional Crashes -7.5
_3:; 2001 #Unintentional Crashes
5 — False Negative Rate 5.0
= 100 - —— False Positive Rate 5 s
0- - = 0.0
0O 1 23 45 6 7 8 910 200 400 600

Time (min)

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved

with .zext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)

change over 24-hour fuzzing.

* The process almost converges at
the first 5 minutes.

* The number of crashes by
rewriting errors is very small
compared to that of intentional
crashes (i.e., most rewriting
errors are fixed by observing new
coverage, without triggering
unintentional crashes).

#Crashes

300 1

200 1

100 -

0_

R

—— {#Intentional Crashes
#Unintentional Crashes
— False Negative Rate

—— False Positive Rate

01 23 456 7 8 910 200

400 600
Time (min)

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved

with .zext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)

change over 24-hour fuzzing.

* The process almost converges at
the first 5 minutes.

* The number of crashes by
rewriting errors is very small
compared to that of intentional
crashes (i.e., most rewriting
errors are fixed by observing new
coverage, without triggering
unintentional crashes).

300 1

200 1

#Crashes

100 -

—— {#Intentional Crashes
#Unintentional Crashes
— False Negative Rate

—— False Positive Rate

0_

A 132345678 610 20

400 600
Time (min)

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Progress of Incremental and Stochastic Rewriting (freetype?)

We hence modify the compilation tool-chain of Google FTS to force .rodata sections to be interleaved

with .zext sections.

We study how the numbers of intentional crashes and unintentional crashes, false positives (FPs) (i.e., a
data byte 1s identified as code) and false negatives (FNs) (i.e., a code byte 1s not identified as code)

change over 24-hour fuzzing.

* The process almost converges at
the first 5 minutes.

* The number of crashes by
rewriting errors is very small
compared to that of intentional
crashes (i.e., most rewriting
errors are fixed by observing new
coverage, without triggering
unintentional crashes).

#Crashes

300 1

200 1

100 -

0_

R

—— {#Intentional Crashes
#Unintentional Crashes
— False Negative Rate

—— False Positive Rate

01 23 456 7 8 910 200

400 600
Time (min)

False Positive/Negative Rate (%)

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Collect Other Runtime Feedback Than Coverage (IJON)

AFL Instrumentation IJON Instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Collect Other Runtime Feedback Than Coverage (IJON)

while (...) {
afl coverage();,
char ¢ = input();
if (¢ == ‘A’) {
afl coverage();
x = change(x, c);
} else {
afl coverage();
y = change(y, c);

AFL Instrumentation IJON Instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Collect Other Runtime Feedback Than Coverage (IJON)

while (...) {
afl coverage();,
char ¢ = input();
if (¢ == ‘A’) {
afl coverage();
x = change(x, c);
} else {
afl coverage();
y = change(y, c);

AFL Instrumentation IJON Instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Collect Other Runtime Feedback Than Coverage (IJON)

while (...) { while (...) {
afl coverage();, afl coverage();,
char ¢ = input(); char ¢ = input()
if (¢ == 'A") { if (¢ == ‘A") {
afl coverage(); afl coverage();
x = change(x, c); x = change(x, c);
} else { } else {
afl coverage(); afl coverage();
y = change(y, c); y = change(y, c);
} }
ijon value(x, y);
} }

AFL Instrumentation IJON Instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Collect Other Runtime Feedback Than Coverage (IJON)

while (...) { while (...) {
afl coverage();, afl coverage();,
char ¢ = input(); char ¢ = input()
if (¢ == 'A") { if (¢ == ‘A") {
afl coverage(); afl coverage();
x = change(x, c); x = change(x, c);
} else { } else {
afl coverage(); afl coverage();
y = change(y, c); y = change(y, c);
} }
ijon value(x, y);
} }

AFL Instrumentation IJON Instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Evaluation: Collect Other Runtime Feedback Than Coverage (IJON)

e IJON: state-aware fuzzing [S&P’20]

* We port IJON to support binary-only fuzzing based on AFL-Qemu and STOCHFUZZ
e The same maze experiment

e STOCHFUZZ is 8% faster than afl-gemu, and only has around 8% slowdown compared with source-code based

IJON
while (...) { while (...) {
afl coverage();, afl coverage();,
char ¢ = input(); char ¢ = input()
if (¢ == 'A") { if (¢ == ‘A") {
afl coverage(); afl coverage();
x = change(x, c); x = change(x, c);
} else { } else {
afl coverage(); afl coverage();
y = change(y, c); y = change(y, c);
} }
ijon value(x, y);
} }

AFL Instrumentation IJON Instrumentation

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Related Works

Binary Rewriting and Binary-only Fuzzing:

Flores-Montoya, Antonio, and Eric Schulte. "Datalog disassembly." 29¢th {USENIX} Security Symposium ({USENIX}
Security 20). 2020.

Duck, Gregory J., Xiang Gao, and Abhik Roychoudhury. "Binary rewriting without control flow

recovery." Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. 2020.

Dinesh, Sushant, et al. "Retrowrite: Statically instrumenting cots binaries for fuzzing and sanitization." 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020.

Zhang, Gen, et al. "Ptfuzz: Guided fuzzing with processor trace feedback." IEEE Access 6 (2018): 37302-37313.
Chen, Yaohui, et al. "Ptrix: Efficient hardware-assisted fuzzing for cots binary." Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security. 2019.
S.Schumilo,C.Aschermann,R.Gawlik,S.Schinzel,andT.Holz,kafl: Hardware-assisted feedback fuzzing for {OS}
kernels,” in USENIX Security, 2017, pp. 167—182.

Probabilistic Program Analysis:

Borges, Mateus, et al. "[terative distribution-aware sampling for probabilistic symbolic execution." Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. 2015.

Miller, Kenneth, et al. "Probabilistic disassembly." 2019 IEEE/ACM 4 1st International Conference on Software
Engineering (ICSE). IEEE, 2019.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

We develop a new fuzzing technique for stripped binaries.

* [t features a novel incremental and stochastic rewriting technique that piggy-backs on the fuzzing
procedure.

» It leverages the large number of trial-and-error chances provided by the numerous fuzzing runs to
improve rewriting accuracy over time.

* [t has probabilistic guarantees on soundness.

* The empirical results show that it outperforms state-of-the-art binary-only fuzzers that are either not
sound or having higher overhead.

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

We develop a new fuzzing technique for stripped binaries.

* [t features a novel incremental and stochastic rewriting technique that piggy-backs on the fuzzing
procedure.

» It leverages the large number of trial-and-error chances provided by the numerous fuzzing runs to
improve rewriting accuracy over time.

* [t has probabilistic guarantees on soundness.

* The empirical results show that it outperforms state-of-the-art binary-only fuzzers that are either not
sound or having higher overhead.

Thanks!

STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

We develop a new fuzzing technique for stripped binaries.

* [t features a novel incremental and stochastic rewriting technique that piggy-backs on the fuzzing
procedure.

» It leverages the large number of trial-and-error chances provided by the numerous fuzzing runs to
improve rewriting accuracy over time.

* [t has probabilistic guarantees on soundness.

* The empirical results show that it outperforms state-of-the-art binary-only fuzzers that are either not
sound or having higher overhead.

Thanks!

Github Repo zhan3299@purdue.edu

