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Grey-box fuzzing 1s one of the most important techniques for software
testing and vulnerability detection.

@ * More than 21,000 bugs in the Chromium projects [1]
* More than 16,000 bugs in other open source projects [2]

Bug Detection

* 79 Papers published in the top security conferences in the
recent three years [3]
' * 56 Papers published in the top software engineering
$

Research conferences in the recent three years [3]

[1] https://bugs.chromium.org/p/chromium/issues/list?can=1&qg=label%3 A ClusterFuzz+-status%3 A WontFix%2CDuplicate&colspec=ID+Pri+ M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&
[2] https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&qg=-status%3 A WontFix%2CDuplicate+-Infra&colspec=ID+Type+Component+Status+Proj+Reported+Owner+Summary&cells=ids
[3] https://weventure.github.io/FuzzingPaper/

releaseblock&cells=ids



https://bugs.chromium.org/p/chromium/issues/list?can=1&q=label%3AClusterFuzz+-status%3AWontFix%2CDuplicate&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://bugs.chromium.org/p/oss-fuzz/issues/list?can=1&q=-status%3AWontFix%2CDuplicate+-Infra&colspec=ID+Type+Component+Status+Proj+Reported+Owner+Summary&cells=ids
https://wcventure.github.io/FuzzingPaper/
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Grey-box fuzzing leverages runtime feedback to learn how to reach deeper
into the subject program.
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libFuzzer - a library for coverage-guided fuzz testing.
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Grey-box fuzzing leverages runtime feedback to learn how to reach deeper

into the subject program.

Z2LLYM

libFuzzer - a library for coverage-guided fuzz testing.

Introduction
LibFuzzer is in-process, coverage-guided, evolutionary fuzzing engine.

LibFuzzer is linked with the library under test, and feeds fuzzed inputs to the library via a specific fuzz
fuzzer then tracks which areas of the code are reached, and generates mutations on the corpus of inpy
coverage. The code coverage information for libFuzzer is provided by LLVM's instrug

Contact: libfuzzer(#)googlegroups.com

Versions

LibFuzzer is under active development so you will need the current (or at least a very recent) version of
)

Refer to for documentation on the older version

Getting Started

american fuzzy lop (2.52b)

American fuzzy lop is a security-oriented fuzzer that employs a novel type of pil instrumentation and genetic al; test cases that trigger new internal states in the targeted binary.
‘This substantially improves the functional coverage for the fuzzed code. The compact synthesized corpora produced by the tool are also useful for seeding other, more labor- or resource-intensive testing regimes down the road.

to lly discover clean,

american fuzzy lop 0.47b (

Compared to other instrumented fuzzers, afl-fuzz is designed to be practical: it has modest performance overhead, uses a variety of highly effective fuzzing strategies and effort minimization tricks, requires essentially no configuration, and

¢, comman image parsing or file compression libraries.

seamlessly handles complex, real-world use cases

The "sales pitch"

In a hurry? There are several fairly decent reasons to give afl-fitzz a try:

* Itis pretty sophisti It's an instr ided genetic fuzzer capable of synthesizing complex file semantics in a wide range of non-trivial targets, lessening the need for purpose-built, syntax-aware toals. It also
comes with a unique crash explorer, a test case nizer, a fault-triggering allocator, and a syntax analyzer - making it dead simple to evaluate the impact of crashing bugs.

= It has street smarts. It is built around a range of carefully researched, high-gain test case preprocessing and fuzzing strategies rarely employed with comparable rigor in other fuzzing frameworks. As a result, it finds real

bugs.

It is fast. Thanks to its low-level compile-time or binary-only instrumentation and other optimizations, the tool offers near-native or better-than-native fuzzing speeds against common real-world targets. The newly-added
persistent mode allows for exceptionally f

t fuzzing of many programs with the help of minimal code modifications, too.

It's rock solid. Compared to other instr ion- or sol sed fuzzers, it has ren

hiccups.

ly few gotchas and failure modes. It also comes with robust, user-friendly problem detection that guides you through any potential
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Grey-box fuzzing leverages runtime feedback to learn how to reach deeper
into the subject program.
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Another scenario: binary-only fuzzing (no source code)
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Another scenario: binary-only fuzzing (no source code)

Random Generated Inputs

| —

101
on
Stripped Grey-box Fuzz
Binary (e.g., AFL)

| t
Code Coverage?
L

Stochastic Process



STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Another scenario: binary-only fuzzing (no source code)

Bugs 1n close-sourced programs can also have unprecedented impact

(e.g., WannaCry ransomware
[t 1s important to effectively ¢

- Wana DecryptOr 2.0 | x |

Ooops, your files have been encrypted!

What Happened to My Computer?
Your important files are encrypted.
Many of your documents, photos, videos, databases and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
our decryption service.
Payment will be raised on B0 .0 1 Recover My Files?
SN6/201T 00:47:55 Sure. We guarantee that you can recover all your files safely and easily. But you have
not so enough time.
Time Left You can decrypt some of your files for free. Try now by clicking <Decrypt>.
''''' But if you want to decrypt all your files, you need to pay.
You only have 3 days to submit the payment. After that the price will be doubled.
Also, if you don’t pay in 7 days, you won't be able to recover your files forever.
We will have free events for users who are so poor that they couldn’t pay in 6 months.
Your files will be lost on
SR How Do I Pay?
Payment is accepted in Bitcoin only. For more information, click <About bitcoin>.
Please check the current price of Bitcoin and buy some bitcoins. For more information,
click <How to buy bitcoins>,
And send the correct amount to the address specified in this window.
After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am
Moo T

v

52012017 00:47:55

e Left

. . Send $300 worth of bitcoin to this address:
b btcon bitcoin
a2 1d | 12t9YDPgwueZ9NyMgw519p7AABIsjré SMw
ot iR
SR | ChecxPamen N Deom |

attack).
etect bugs 1n programs without source.

Random Generated Inputs

101
on
Stripped Grey-box Fuzz
Blnlary (e.g., AFL)
t
Code Coverage')

Stochastic Process
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G Dynamic Binary Translation: Translate a subject binary during its
E M U execution. It 1s sound but expensive (high overhead >600%).
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Existing solutions fall into three categories.

G Dynamic Binary Translation: Translate a subject binary during its
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Hardware-Assisted Tracing: Make use of advanced hardware support

< N tel such as Intel PT to collect runtime traces that can be post-processed
(Relatively high overhead and only coverage-based feedback).
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G Dynamic Binary Translation: Translate a subject binary during its
E M U execution. It 1s sound but expensive (high overhead >600%).

Hardware-Assisted Tracing: Make use of advanced hardware support

< N tel such as Intel PT to collect runtime traces that can be post-processed
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f directly instrument binaries (cost-effective but usually unsound).
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Existing solutions fall into three categories.

é Dynamic Binary Translation: Translate a subject binary during its
E M U execution. It 1s sound but expensive (high overhead >600%).

Hardware-Assisted Tracing: Make use of advanced hardware support

< n tel such as Intel PT to collect runtime traces that can be post-processed
(Relatively high overhead and only coverage-based feedback).

Static Binary Instrumentation: Leverage advanced binary analysis to
f directly instrument binaries (cost-effective but usually unsound).
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Challenges of static binary rewriting

.CODE1:

0: lea rax, [rip+8] Inst vVar | Val Note

7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret
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Challenges of static binary rewriting

.CODE1l:
0: 1lea rax, [rip+8] Inst Var | Val Note
7: mov rbx, [rax] 0: lea rax, [rip+8] | rax 15 .DATA

10: add rax, rbx
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Challenges of static binary rewriting

.CODE1:
0: lea rax, [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: 1lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA

13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret
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Challenges of static binary rewriting

.CODE1l:
0 :?rax, [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: 1lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA
13: Jmp rax 10: add rax, rbx rax 23 .CODE2
.DATA:
15: .long 8

.CODE2:
23: ret
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Challenges of static binary rewriting

.CODE1:
0: lea rax,
7: mov rbx,
10: add rax,
13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret

[rip+8]
[rax]
rbx

Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 .CODE2- .DATA
10: add rax, rbx rax 23 .CODE2
13: Jmp rax jmp | . CODE2 -
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Challenges of static binary rewriting

.CODE1:
0 :?rax, [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA
13: Jmp rax 10: add rax, rbx rax 23 .CODE2
DATA - 13: Jmp rax jmp | .CODE2 -
15: .long 8 23: et - - -

.CODE2:
23: ret
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Challenges of static binary rewriting

.CODE1:
0 :?rax, [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA
13: Jmp rax 10: add rax, rbx rax 23 .CODE2
DATA - 13: Jmp rax jmp | .CODE2 -
15: .long 8 23: et - - -

.CODE2:
23: ret



STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

Challenges of static binary rewriting

.CODE1l:
0-: lea rax [rip+8] Inst Var Val Note
7: mov rbx, [rax] 0: lea rax, [rip+8] | rax 15 .DATA
10: add rax, rbx 7: mov rbx, [rax] rbx 8 .CODE2- .DATA
13: Jmp rax 10: add rax, rbx rax 23 .CODE2
13: jmp rax jm .CODE2 -
.DATA: TP IR | s
15: .long 8 23: ret - - -
.CODE2: * JIdentify the interleaved data section: due to the inline data
23: ret (.DATA), rewriters may not only mis-rewrite data as code, but

also fail to identify the indirect jump target (. CODE2).

* Distinguish between scalars and the address offsets:
misclassifying an address offset (. CODE2-.DATA) as a scalar
may break the rewritten binaries (note that addresses have
changed after instrumentation).
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Challenges of static binary rewriting

0:
7:
10:
13:
15:
17:
19:
21 :

lea
mov
add
Jmp
or

add
add
add

.CODEL1l:
rax, [rip+8]
rbx, [rax]

rax, rbx

rax

[rax],
[rax],
[rax],
[rax],

al
al
al
al

Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 .CODE2- .DATA
10: add rax, rbx rax 23 .CODE2
13: Jmp rax jmp | . CODE2 -
23: ret - - -

Identify the interleaved data section: due to the inline data

(.DATA), rewriters may not only mis-rewrite data as code, but
also fail to identify the indirect jump target (. CODE2).
Distinguish between scalars and the address offsets:

misclassifying an address offset (. CODE2-.DATA) as a scalar

may break the rewritten binaries (note that addresses have
changed after instrumentation).
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Challenges of static binary rewriting

0:
7:
10:
13:
15:
17:
19:
21 :
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mov
add
Jmp
or

add
add
add

.CODEL1l:
rax, [rip+8]
rbx, [rax]

rax, rbx

rax

[rax],
[rax],
[rax],
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al
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Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 _
10: add rax, rbx rax 23 .CODE2
13: Jjmp rax jmp ?2?2? -
23: ret - - -

Identify the interleaved data section: due to the inline data

(.DATA), rewriters may not only mis-rewrite data as code, but
also fail to identify the indirect jump target (. CODE2).
Distinguish between scalars and the address offsets:

misclassifying an address offset (. CODE2-.DATA) as a scalar

may break the rewritten binaries (note that addresses have
changed after instrumentation).
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Challenges of static binary rewriting

.CODE1l:
0: lea rax, [rip+8]
7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax

.DATA :
15: .long 8

.CODE2:
23: ret

Inst Var Val Note
0: lea rax, [rip+8] | rax 15 .DATA
7: mov rbx, [rax] rbx 8 .CODE2- .DATA
10: add rax, rbx rax 23 .CODE2
13: Jmp rax jmp | . CODE2 -
23: ret - - -

RetroWrite, e9patch, and
datalog disassembly (the
version before we reported the
issue) all fail on a similar case.

Identify the interleaved data section: due to the inline data

(.DATA), rewriters may not only mis-rewrite data as code, but
also fail to identify the indirect jump target (. CODE2).
Distinguish between scalars and the address offsets:

misclassifying an address offset (. CODE2-.DATA) as a scalar
may break the rewritten binaries (note that addresses have
changed after instrumentation).
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How we handle the motivation case: Incremental Rewriting

The first technique we introduced is named Incremental Rewriting.

While grey-box fuzzers continuously mutate inputs across test runs, they may as well be enhanced to
mutate the program on-the-fly.

As such, disassembly and static rewriting (which are difficult due to the lack of symbol information
and difficulties in resolving indirect jumps/calls offline) can be incrementally performed over time.
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How we handle the motivation case: Incremental Rewriting

The first technique we introduced is named Incremental Rewriting.

*  While grey-box fuzzers continuously mutate inputs across test runs, they may as well be enhanced to
mutate the program on-the-fly.

* As such, disassembly and static rewriting (which are difficult due to the lack of symbol information
and difficulties in resolving indirect jumps/calls offline) can be incrementally performed over time.

Our basic 1dea is to trigger an intentional crash once an unresolved control flow target is reached. Starting
from the address where the crash happens, we can incrementally rewrite all directly reachable addresses.

The fuzzer continues fuzzing with the new binary and the incremental rewriting is invoked again if other
intentional crashes occur.
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How we handle the motivation case: Incremental Rewriting

0: lea rax, [rip+8]
7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax
15: .long 8
23: ret
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How we handle the motivation case: Incremental Rewriting

0: lea rax, [rip+8]
7: mov rbx, [rax]
10: add rax, rbx
13: Jmp rax
15: .long 8
23: ret

For easy understanding, let’s first assume:
*  Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

*  We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).
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How we handle the motivation case: Incremental Rewriting

10:
13:
15:
23:

lea rax,
mov rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]
[rax]
rbx

Initial Rewriting

a
»

For easy understanding, let’s first assume:

10:
13:
15:
23:

jmp 90
hlt
hlt
hlt
.long 8
hlt

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jjmp

rax,
rbx,
rax,
rax

[rip-92]
[rax]
rbx

Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).
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How we handle the motivation case: Incremental Rewriting

10:
13:
15:
23:

lea rax,
mov rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]
[rax]
rbx

Initial Rewriting

a
»

For easy understanding, let’s first assume:

10:
13:
15:
23:

jmp 90
hlt
hlt
hlt
.long 8
hlt

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jjmp

rax,
rbx,
rax,
rax

[rip-92]
[rax]
rbx

Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).




SJOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

How we handle the motivation case: Incremental Rewriting
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How we handle the motivation case: Incremental Rewriting

10:
13:
15:
23:

lea rax,
mov rbx,
add rax,
jmp rax
.long 8
ret

[rip+8]

[rax]
rbx

Initial Rewriting

For easy understanding, let’s first assume:

a
»

10:
13:
15:

23

hlt
hlt
hlt

:*.t

jmp 90

.long 8

-

90:
100:
107:
110:
113:

[AFL trampoline]

lea
mov
add

Jjmp

rax,
rbx,
rax,
rax

<

[rip-92]

[rax]
rbx

Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).
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How we handle the motivation case: Incremental Rewriting

90: [AFL trampoline]
3: lea rgx, Erip;B] 0: dmp 90 100: lea rax, |[[rip-92]
: mov rbx, [rax - o i .
10: add rax, rbx Initial Rewriting > 1;; iit 12;; :ZZ i::: isz]
13: Jmp rax 13: hilt 113: jmp rax
15: .long 8 15: .long 8
23: ret 23: *.t e

90: [AFL trampoline]
0O: Jjmp 90 100: lea rax, [rip-92]

7: hlt 107: mov rbx, [rax]
10: hlt 110: add rax, rbx < —
13: hilt 113: jmp rax Incremental Rewriting caused by
15: .long 8 115: [AFL trampoline] the 1ntentional crash at address 23

23: Jmp 115 125: ret

For easy understanding, let’s first assume:
*  Our underlying binary analysis cannot find the indirect jump target (address 23 . CODE2) .

*  We can 100% accurately distinguish code and data (later, I will explain what if this assumption does not hold).
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How we handle the motivation case: Stochastic Rewriting
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How we handle the motivation case: Stochastic Rewriting

90: [AFL trampoline]
0: dJmp 90 100: lea rax, [rip-92]

7: hlt 107: mov rbx, [rax]
10: hlt 110: add rax, rbx
13: hlt 113: jmp rax —

15: hlt ., *
23: hlt
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How we handle the motivation case: Stochastic Rewriting

The second technique we introduced 1s named Stochastic Rewriting.
* During fuzzing, we can try different data and code separations.
* More samples we collect, more precise separation we can have.
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How we handle the motivation case: Stochastic Rewriting

The second technique we introduced 1s named Stochastic Rewriting.
* During fuzzing, we can try different data and code separations.
* More samples we collect, more precise separation we can have.

Stochastic Rewriting 1s piggy-backing on the fuzzing procedure.

* A probabilistic inference to compute the likelihood of each byte being data (or code)
* Generating different binaries for different fuzzing runs

* A error diagnosis process to locate and repair rewriting errors
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10: add rax, rbx
13: Jmp rax
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How we handle the motivation case: Stochastic Rewriting
— Probability of being data bytes
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How we handle the motivation case: Stochastic Rewriting

— Probability of being data bytes 90: [AFL trampoline]
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How we handle the motivation case: Stochastic Rewriting

Binary

— Probability of being data bytes 90: [AFL trampoline]
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0.0] 7: mov rbx, [rax] 0.0] 7: hlt 107: mov rbx, [rax]
0.0]10: add rax, rbx Initial |{0.0]|10: hlt 110: add rax, rbx
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0.3]15: .long 8 0.3]115: hlt :*
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Refine the probabilities based on these new hints Binary Cleaning
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?2??2115: .long 8 1.0]15: hlt ?2??2115: .long 8
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Universal Control-flow Graph (UCFG) and Probability Analysis

0:

3:

XOor rcx, recx o—1: xor ecx, ecx
l — 2: leave
Cmp IXcx, 5 +— 4: cmp ecx, 5
| — 5: stc
— 7: ret — 6: INVALID

Addr Byte | [Len] Decoded Instruction
0 48 | [3] xor rcx, rcx
1 : 31 | [2] xor ecx, ecXx
2 c9 | [1] leave
3 48 | [4] cmp rcx, 5
4 83 | [3] cmp ecx, 5
5 £f9 | [1] stc
6 : 05 | [0] INVALID
7 c3 | [1] ret
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Universal Control-flow Graph (UCFG) and Probability Analysis

[Len]

Decoded Instruction

Addr Byte |
O: xXor rex, rex| m 1: xor ecx, ecx
O : 48
l — 2: leave 1 : 31
3: cmp rcx, 5 « 4: cmp ecx, 5 2 c9
! ) ! 3 48
4 83
5 £9
| — 5: stc 6 05
— 7: ret — 6: INVALID 7 - e3

[3]
[2]
[1]
[4]
[3]
[1]
[0]
[1]

XOr rcx, rcx
XOr ecx, ecx
leave

cmp rcx, 5
cmp ecx, 5
stc

INVALID

ret

If there 1s a definition-use relation between two addresses, both addresses are likely to be code
* Address 0 and address 3 have a definition-use relation about register rcx.
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Universal Control-flow Graph (UCFG) and Probability Analysis

Addr Byte | [Len] Decoded Instruction

O: Xor rex, rex o— 1: xor ecx, ecx
O : 48 | [3] xor rcx, rcx
l — 2: leave 1 : 31 | [2] xor ecx, ecx
3: cmp rex. 5 «— 4 5 2 c9 | [1] leave
) P ’ - CWp ecx, 3 48 | [4] cmp rcx, 5
4 83 | [3] cmp ecx, 5
5 £f9 | [1] stc
v — o ste 6 : 05 | [0] INVALID
— 7: ret — 6: INVALID 7 c3 | [1] ret

If there 1s a definition-use relation between two addresses, both addresses are likely to be code
* Address 0 and address 3 have a definition-use relation about register rcx.

The control flow cannot reach invalid instructions or data
* Address 5 cannot be a valid instruction boundary as it leads to an invalid instruction.
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* Stochastic Rewriting needs to locate and repair the crashs inducing rewriting errors.

* Delta Debugging
* A binary-search like debugging technique
* Check whether the unintentional crash can be reproduced with part of uncertain
addresses patched
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We also address a number of practical challenges

* Rewriting optimization (e.g., removing flag register saving)

* Supporting stack unwinding (e.g., exception handling in C++)
* Reducing process set up cost

* Safeguarding non-crashing rewriting errors

* Handling overlapping rewriting
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Evaluation

Benchmark:

* Google Fuzzer Test Suite (Google FTS)
* Google Fuzzer Test Suite w/ inlined data
* Fuzzing benchmark from RetroWrite

Baselines:

e E9patch: static binary rewriting [PLDI’20]

* Datalog Disassembly: static binary rewriting [USENIX Security’20]
* RetroWrite: static binary rewriting [S&P’20]

e PTFuzzer: hardware-assisted fuzzing [IEEE Access’ 18]

* AFL-Qemu: dynamic binary translation

e AFL-GCC: compiler-based instrumentation

» AFL-Clang-fast. compiler-based instrumentation
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Evaluation: Fuzzing Efficiency on Google FTS (in 24 hours)

 EXxisting static rewriting W afl-gcc H ¢9patch
techniques (e9patch and m afl-clang-fast ® ddisasm
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* Other tools have relatively
higher overhead. openssl-C
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%
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* Existing static rewriting
techniques (e9patch and
datalog disasm) fail on

12.5-37.5% of the programs, * AFL-GCC: 124.1 million
while StochFuzz succeeds on * AFL-Clang-fast. 138.1 million
all the 24 programs. * AFL-Qemu: 16.0 million

« Compared Wi.th aﬂ-clang—fast, : ggFutZZher ggg mlﬂlon
the IR-based instrumentation, pdich. -6 M1on
StochFuzz only has 11.77% * Datalog Disassembly: 98.7 million
slowdown on average.  STOCHFUZZ: 129.3 million

* Other tools have relatively
higher overhead.
* AFL-Qemu: 88.71%
* PTFuzzer: 75.81%
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Evaluation: Collect Other Runtime Feedback Than Coverage (IJON)

e IJON: state-aware fuzzing [S&P’20]

*  We port IJON to support binary-only fuzzing based on AFL-Qemu and STOCHFUZZ
e The same maze experiment

e STOCHFUZZ is 8% faster than afl-gemu, and only has around 8% slowdown compared with source-code based

IJON
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We develop a new fuzzing technique for stripped binaries.

* [t features a novel incremental and stochastic rewriting technique that piggy-backs on the fuzzing
procedure.

» It leverages the large number of trial-and-error chances provided by the numerous fuzzing runs to
improve rewriting accuracy over time.

* [t has probabilistic guarantees on soundness.

* The empirical results show that it outperforms state-of-the-art binary-only fuzzers that are either not
sound or having higher overhead.
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